1
|
Buzza A, Tapas K, Anders J, Jenkins M, Moffitt M. Photobiomodulation for pain relief: Model-based estimates of effective doses of light at the neural target. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112929. [PMID: 38759478 PMCID: PMC11482420 DOI: 10.1016/j.jphotobiol.2024.112929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
INTRODUCTION Photobiomodulation (PBM) has been studied since the 1960s as a clinical tool. More recently, PBM has been observed to reduce compound action potential components and hypersensitivities associated with neuropathic pains. However, no definitive description of efficacious light parameters has been determined. Some reasons may be that previous meta-analyses and reviews have focused on emitter output rather than the light at the target tissue and have included data sets that are large but with notable variability (e.g., combining data from various disease etiologies, and data from PBM at various wavelengths). This fact has made it difficult to successfully define the range of effective parameters. METHODS In this study, photon propagation software was used to estimate irradiance at a target nerve using several published data sets chosen for their narrow criteria to minimize variability. Utilizing these estimates, effective and ineffective light irradiances at the nerve of interest for wavelengths of 633 nm or 808-830 nm were examined and estimated. These estimates are focused on the amount of light required to achieve a reduction in pain or a surrogate measure via a hypothesized nerve block mechanism. RESULTS Accounting for irradiance at the target nerve yielded a clear separation of PBM doses that achieved small-fiber nerve block from those that did not. For both the 633 nm group and the 808-830 group, the irradiance separation threshold followed a nonlinear path with respect to PBM application duration, where shorter durations required higher irradiances, and longer durations required lower irradiances. Using the same modeling methods, irradiance was estimated as a function of depth from a transcutaneous source (distance from skin surface) for emitter output power using small or large emitter sizes. CONCLUSION Taken together, the results of this study can be used to estimate effective PBM dosing schemes to achieve small-fiber inhibition for various anatomical scenarios.
Collapse
Affiliation(s)
- Andrew Buzza
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Kalista Tapas
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Juanita Anders
- Department of Anatomy, Physiology, and Genetics, Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Moffitt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Witke T, Kuhn E, Teichert F, Goßler C, Schwarz UT, Thränhardt A. Angle-dependent light scattering in tissue phantoms for the case of thin bone layers with predominant forward scattering. JOURNAL OF BIOPHOTONICS 2024; 17:e202300358. [PMID: 38018656 DOI: 10.1002/jbio.202300358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023]
Abstract
The cochlea forms a key element of the human auditory system in the temporal bone. Damage to the cochlea continues to produce significant impairment for sensory reception of environmental stimuli. To improve this impairment, the optical cochlear implant forms a new research approach. A prerequisite for this method is to understand how light propagation, as well as scattering, reflection, and absorption, takes place within the cochlea. We offer a method to study the light distribution in the human cochlea through phantom materials which have the objective to mimic the optical behavior of bone and Monte-Carlo simulations. The calculation of an angular distribution after scattering requires a phase function. Often approximate functions like Henyey-Greenstein, two-term Henyey-Greenstein or Legendre polynomial decompositions are used as phase function. An alternative is to exactly calculate a Mie distribution for each scattering event. This method provides a better fit to the data measured in this work.
Collapse
Affiliation(s)
- Tom Witke
- Institute of Physics, Technische Universität Chemnitz, Chemnitz, Germany
| | | | - Fabian Teichert
- Institute of Physics, Technische Universität Chemnitz, Chemnitz, Germany
| | | | | | - Angela Thränhardt
- Institute of Physics, Technische Universität Chemnitz, Chemnitz, Germany
| |
Collapse
|
3
|
Hamidi A, Bayhaqi YA, Canbaz F, Navarini AA, Cattin PC, Zam A. Towards phase-sensitive optical coherence tomography in smart laser osteotomy: temperature feedback. Lasers Med Sci 2023; 38:222. [PMID: 37752387 PMCID: PMC10522524 DOI: 10.1007/s10103-023-03886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
Thermal effects during bone surgery pose a common challenge, whether using mechanical tools or lasers. An irrigation system is a standard solution to cool the tissue and reduce collateral thermal damage. In bone surgery using Er:YAG laser, insufficient irrigation raises the risk of thermal damage, while excessive water lowers ablation efficiency. This study investigated the potential of optical coherence tomography to provide feedback by relating the temperature rise with the photo-thermal expansion of the tissue. A phase-sensitive optical coherence tomography system (central wavelength of λ=1.288 μm, a bandwidth of 60.9 nm and a sweep rate of 104.17 kHz) was integrated with an Er:YAG laser using a custom-made dichromatic mirror. Phase calibration was performed by monitoring the temperature changes (thermal camera) and corresponding cumulative phase changes using the phase-sensitive optical coherence tomography system during laser ablation. In this experiment, we used an Er:YAG laser with 230 mJ per pulse at 10 Hz for ablation. Calibration coefficients were determined by fitting the temperature values to phase later and used to predict the temperature rise for subsequent laser ablations. Following the phase calibration step, we used the acquired values to predict the temperature rise of three different laser-induced cuts with the same parameters of the ablative laser. The average root-mean-square error for the three experiments was measured to be around 4 °C. In addition to single-point prediction, we evaluated this method's performance to predict the tissue's two-dimensional temperature rise during laser osteotomy. The findings suggest that the proposed principle could be used in the future to provide temperature feedback for minimally invasive laser osteotomy.
Collapse
Affiliation(s)
- Arsham Hamidi
- Biomedical Laser and Optics Group (BLOG), Department of Biomedical Engineering, University of Basel, CH-4123, Allschwil, Switzerland.
| | - Yakub A Bayhaqi
- Biomedical Laser and Optics Group (BLOG), Department of Biomedical Engineering, University of Basel, CH-4123, Allschwil, Switzerland
| | - Ferda Canbaz
- Biomedical Laser and Optics Group (BLOG), Department of Biomedical Engineering, University of Basel, CH-4123, Allschwil, Switzerland
| | - Alexander A Navarini
- Digital Dermatology, Department of Biomedical Engineering, University of Basel, CH-4123, Allschwil, Switzerland
| | - Philippe C Cattin
- Center for Medical Image Analysis and Navigation (CIAN), Department of Biomedical Engineering, University of Basel, CH-4123, Allschwil, Switzerland
| | - Azhar Zam
- Biomedical Laser and Optics Group (BLOG), Department of Biomedical Engineering, University of Basel, CH-4123, Allschwil, Switzerland
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, 129188, UAE
- Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| |
Collapse
|
4
|
Rovnyagina NR, Budylin GS, Dyakonov PV, Efremov YM, Lipina MM, Goncharuk YR, Murdalov EE, Pogosyan DA, Davydov DA, Korneev AA, Serejnikova NB, Mikaelyan KA, Evlashin SA, Lazarev VA, Lychagin AV, Timashev PS, Shirshin EA. Grading cartilage damage with diffuse reflectance spectroscopy: Optical markers and mechanical properties. JOURNAL OF BIOPHOTONICS 2023; 16:e202200149. [PMID: 36066126 DOI: 10.1002/jbio.202200149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Osteoarthritis (OA) is one of the most common joint diseases worldwide. Unfortunately, clinical methods lack the ability to detect OA in the early stages. Timely detection of the knee joint degradation at the level of tissue changes can prevent its progressive damage. Here, diffuse reflectance spectroscopy (DRS) in the NIR range was used to obtain optical markers of the cartilage damage grades and to assess its mechanical properties. It was observed that the water content obtained by DRS strongly correlates with the cartilage thickness (R = .82) and viscoelastic relaxation time (R = .7). Moreover, the spectral parameters, including water content (OH-band), protein content (CH-band), and scattering parameters allowed for discrimination between the cartilage damage grades (10-4 < P ≤ 10-3 ). The developed approach may become a valuable addition to arthroscopy, helping to identify lesions at the microscopic level in the early stages of OA and complement the surgical analysis.
Collapse
Affiliation(s)
- Nataliya R Rovnyagina
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Gleb S Budylin
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Pavel V Dyakonov
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Moscow, Russia
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marina M Lipina
- Department of Trauma, Orthopedics and Disaster Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yuliya R Goncharuk
- Department of Trauma, Orthopedics and Disaster Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Emirkhan E Murdalov
- Department of Trauma, Orthopedics and Disaster Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
| | - David A Pogosyan
- Department of Trauma, Orthopedics and Disaster Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Denis A Davydov
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander A Korneev
- N.V. Sklifosovskiy Institute of Clinical Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalia B Serejnikova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Karen A Mikaelyan
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stanislav A Evlashin
- Center for Materials Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Vladimir A Lazarev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Bauman Moscow State Technical University, Moscow, Russia
| | - Alexey V Lychagin
- Department of Trauma, Orthopedics and Disaster Surgery, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Clinical Smart Nanotechnologies, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeny A Shirshin
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Hossain S, Kim KD. Non-Invasive In Vivo Estimation of HbA1c Using Monte Carlo Photon Propagation Simulation: Application of Tissue-Segmented 3D MRI Stacks of the Fingertip and Wrist for Wearable Systems. SENSORS (BASEL, SWITZERLAND) 2023; 23:540. [PMID: 36617136 PMCID: PMC9824266 DOI: 10.3390/s23010540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The early diagnosis of diabetes mellitus in normal people or maintaining stable blood sugar concentrations in diabetic patients requires frequent monitoring of the blood sugar levels. However, regular monitoring of the sugar levels is problematic owing to the pain and inconvenience associated with pricking the fingertip or using minimally invasive patches. In this study, we devise a noninvasive method to estimate the percentage of the in vivo glycated hemoglobin (HbA1c) values from Monte Carlo photon propagation simulations, based on models of the wrist using 3D magnetic resonance (MR) image data. The MR image slices are first segmented for several different tissue types, and the proposed Monte Carlo photon propagation system with complex composite tissue support is then used to derive several models for the fingertip and wrist sections with different wavelengths of light sources and photodetector arrangements. The Pearson r values for the estimated percent HbA1c values are 0.94 and 0.96 for the fingertip transmission- and reflection-type measurements, respectively. This is found to be the best among the related studies. Furthermore, a single-detector multiple-source arrangement resulted in a Pearson r value of 0.97 for the wrist. The Bland-Altman bias values were found to be -0.003 ± 0.36, 0.01 ± 0.25, and 0.01 ± 0.21, for the two fingertip and wrist models, respectively, which conform to the standards of the current state-of-the-art invasive point-of-care devices. The implementation of these algorithms will be a suitable alternative to the invasive state-of-the-art methods.
Collapse
Affiliation(s)
- Shifat Hossain
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Ki-Doo Kim
- Department of Electronics Engineering, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
6
|
Seong M, Oh Y, Park HJ, Choi WS, Kim JG. Use of Hypoxic Respiratory Challenge for Differentiating Alzheimer's Disease and Wild-Type Mice Non-Invasively: A Diffuse Optical Spectroscopy Study. BIOSENSORS 2022; 12:1019. [PMID: 36421136 PMCID: PMC9688818 DOI: 10.3390/bios12111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease is one of the most critical brain diseases. The prevalence of the disease keeps rising due to increasing life spans. This study aims to examine the use of hemodynamic signals during hypoxic respiratory challenge for the differentiation of Alzheimer's disease (AD) and wild-type (WT) mice. Diffuse optical spectroscopy, an optical system that can non-invasively monitor transient changes in deoxygenated (ΔRHb) and oxygenated (ΔOHb) hemoglobin concentrations, was used to monitor hemodynamic reactivity during hypoxic respiratory challenges in an animal model. From the acquired signals, 13 hemodynamic features were extracted from each of ΔRHb and -ΔOHb (26 features total) for more in-depth analyses of the differences between AD and WT. The hemodynamic features were statistically analyzed and tested to explore the possibility of using machine learning (ML) to differentiate AD and WT. Among the twenty-six features, two features of ΔRHb and one feature of -ΔOHb showed statistically significant differences between AD and WT. Among ML techniques, a naive Bayes algorithm achieved the best accuracy of 84.3% when whole hemodynamic features were used for differentiation. While further works are required to improve the approach, the suggested approach has the potential to be an alternative method for the differentiation of AD and WT.
Collapse
Affiliation(s)
- Myeongsu Seong
- School of Information Science and Technology, Nantong University, Nantong 226019, China
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226019, China
| | - Yoonho Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyung Joon Park
- School of Biological Sciences and Technology, College of Natural Sciences, College of Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Won-Seok Choi
- School of Biological Sciences and Technology, College of Natural Sciences, College of Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
7
|
Combined Non-Invasive Optical Oximeter and Flowmeter with Basic Metrological Equipment. PHOTONICS 2022. [DOI: 10.3390/photonics9060392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Optical non-invasive diagnostic methods and equipment are used today in many medical disciplines. However, there is still no generally accepted and unifying engineering theory of such systems. Today, they are developed most empirically and do not always have the desired effectiveness in clinics. Among reasons for their insufficient clinical efficiency, we can claim the limited set of measured parameters, the poorly substantiated technical design parameters, and the lack of metrological certification, which all together lead to large uncertainties and inaccuracies in diagnostic data. The purpose of this study is to develop a new instrument for non-invasive optical oximetry by means of substantiating and creating amore informative tissue oximeter with an enhanced number of measured parameters and equipped with the basic metrological tools—imitational measures. The combination of two related optical diagnostic techniques—a tissue oximetry, including a cerebral one, and a fluctuation flowmetry on a single hardware platform—was used. Theoretical modeling of light transport in tissues was applied to substantiate the main technical design parameters of the device. For each measuring channel, relevant imitation measures for metrological verification and adjustment have been proposed. Some common principles for the operation of such equipment are described in the article, as well.
Collapse
|
8
|
Song X, Guo Y, Li H, Chen C, Lee JH, Zhang Y, Schmidt Z, Wang X. Mesoscopic landscape of cortical functions revealed by through-skull wide-field optical imaging in marmoset monkeys. Nat Commun 2022; 13:2238. [PMID: 35474064 PMCID: PMC9042927 DOI: 10.1038/s41467-022-29864-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
The primate cerebral cortex is organized into specialized areas representing different modalities and functions along a continuous surface. The functional maps across the cortex, however, are often investigated a single modality at a time (e.g., audition or vision). To advance our understanding of the complex landscape of primate cortical functions, here we develop a polarization-gated wide-field optical imaging method for measuring cortical functions through the un-thinned intact skull in awake marmoset monkeys (Callithrix jacchus), a primate species featuring a smooth cortex. Using this method, adjacent auditory, visual, and somatosensory cortices are noninvasively parcellated in individual subjects with detailed tonotopy, retinotopy, and somatotopy. An additional pure-tone-responsive tonotopic gradient is discovered in auditory cortex and a face-patch sensitive to motion in the lower-center visual field is localized near an auditory region representing frequencies of conspecific vocalizations. This through-skull landscape-mapping approach provides new opportunities for understanding how the primate cortex is organized and coordinated to enable real-world behaviors.
Collapse
Affiliation(s)
- Xindong Song
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Yueqi Guo
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Hongbo Li
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Chenggang Chen
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Jong Hoon Lee
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Yang Zhang
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Zachary Schmidt
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Xiaoqin Wang
- grid.21107.350000 0001 2171 9311Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
9
|
Optical and thermal fields induced in the bone marrow by external laser irradiation. Lasers Med Sci 2021; 37:1245-1253. [PMID: 34347196 DOI: 10.1007/s10103-021-03380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
In regenerative medicine, the problem of growing mesenchymal stem cells from the bone marrow often arises. In such cases is important that the number of initial cells was large enough and their proliferative activity was high. We believe that this problem can be solved by short-term heating of local areas of the bone marrow in vivo with laser radiation. In this regard, it is of interest to study the optical and temperature fields induced inside the tubular bone under external laser irradiation. In this work, we obtained experimental data on the spatial distribution of temperature in the bone marrow of the rat femur in vitro under external exposure to laser radiation with wavelengths of 970 and 1940 nm. Radiation delivery was carried out using an optical fiber which tip contacted the surface of the femur bone. A thin thermocouple was used to measure the temperature in a local area of the bone marrow. By moving the optical fiber tip discretely along the longitudinal axis of the bone, and the thermocouple in the perpendicular direction, the spatial temperature distributions in dynamics were measured. Similarly, the spatial distributions of the laser radiation intensity were measured by replacing thermocouple with optical fiber probe. A thermal camera was used to control the temperature of the bone surface near the tip of the fiber. It was shown that the marrow could be heated from the outside by about 5-10 °C during 10 s without significant overheating of the bone tissue. The data obtained make it possible to estimate the volume of the bone marrow heated by the laser to a predetermined temperature and to make a reasonable choice of laser exposure modes to stimulate the proliferative activity of bone marrow mesenchymal stem cells in vivo.
Collapse
|
10
|
Yu T, Li D, Zhu D. Tissue Optical Clearing for Biomedical Imaging: From In Vitro to In Vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 3233:217-255. [PMID: 34053030 DOI: 10.1007/978-981-15-7627-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This chapter firstly gives a brief introduction to mechanisms of tissue optical clearing techniques, from the physical mechanism to chemical mechanism, which is the most important foundation to develop tissue optical clearing methods. During the past years, in vitro and in vivo tissue optical clearing methods were developed. In vitro tissue optical clearing techniques, including the solvent-based clearing methods and the hydrophilic reagents-based clearing methods, combined with labeling technique and advanced microscopy, can be applied to image 3D microstructure of tissue blocks or whole organs such as brain and spinal cord with high resolution. In vivo skin or skull optical clearing, promise various optical imaging techniques to detect cutaneous or cortical cell and vascular structure and function without surgical window.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Wang Y, Xi L. Chronic cranial window for photoacoustic imaging: a mini review. Vis Comput Ind Biomed Art 2021; 4:15. [PMID: 34037873 PMCID: PMC8155166 DOI: 10.1186/s42492-021-00081-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/27/2021] [Indexed: 12/31/2022] Open
Abstract
Photoacoustic (PA) microscopy is being increasingly used to visualize the microcirculation of the brain cortex at the micron level in living rodents. By combining it with long-term cranial window techniques, vasculature can be monitored over a period of days extending to months through a field of view. To fulfill the requirements of long-term in vivo PA imaging, the cranial window must involve a simple and rapid surgical procedure, biological compatibility, and sufficient optical-acoustic transparency, which are major challenges. Recently, several cranial window techniques have been reported for longitudinal PA imaging. Here, the development of chronic cranial windows for PA imaging is reviewed and its technical details are discussed, including window installation, imaging quality, and longitudinal stability.
Collapse
Affiliation(s)
- Yongchao Wang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
12
|
Molbay M, Kolabas ZI, Todorov MI, Ohn T, Ertürk A. A guidebook for DISCO tissue clearing. Mol Syst Biol 2021; 17:e9807. [PMID: 33769689 PMCID: PMC7995442 DOI: 10.15252/msb.20209807] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Histological analysis of biological tissues by mechanical sectioning is significantly time-consuming and error-prone due to loss of important information during sample slicing. In the recent years, the development of tissue clearing methods overcame several of these limitations and allowed exploring intact biological specimens by rendering tissues transparent and subsequently imaging them by laser scanning fluorescence microscopy. In this review, we provide a guide for scientists who would like to perform a clearing protocol from scratch without any prior knowledge, with an emphasis on DISCO clearing protocols, which have been widely used not only due to their robustness, but also owing to their relatively straightforward application. We discuss diverse tissue-clearing options and propose solutions for several possible pitfalls. Moreover, after surveying more than 30 researchers that employ tissue clearing techniques in their laboratories, we compiled the most frequently encountered issues and propose solutions. Overall, this review offers an informative and detailed guide through the growing literature of tissue clearing and can help with finding the easiest way for hands-on implementation.
Collapse
Affiliation(s)
- Muge Molbay
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)Helmholtz CenterNeuherberg, MunichGermany
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig‐Maximilians‐University MunichMunichGermany
- Munich Medical Research School (MMRS)MunichGermany
| | - Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)Helmholtz CenterNeuherberg, MunichGermany
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig‐Maximilians‐University MunichMunichGermany
- Graduate School for Systemic Neurosciences (GSN)MunichGermany
| | - Mihail Ivilinov Todorov
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)Helmholtz CenterNeuherberg, MunichGermany
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig‐Maximilians‐University MunichMunichGermany
- Graduate School for Systemic Neurosciences (GSN)MunichGermany
| | - Tzu‐Lun Ohn
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)Helmholtz CenterNeuherberg, MunichGermany
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig‐Maximilians‐University MunichMunichGermany
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM)Helmholtz CenterNeuherberg, MunichGermany
- Institute for Stroke and Dementia ResearchKlinikum der Universität MünchenLudwig‐Maximilians‐University MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
13
|
Bryanskaya EO, Novikova IN, Dremin VV, Gneushev RY, Bibikova OA, Dunaev AV, Artyushenko VG. Optical Diagnostics of the Maxillary Sinuses by Digital Diaphanoscopy Technology. Diagnostics (Basel) 2021; 11:diagnostics11010077. [PMID: 33418891 PMCID: PMC7825049 DOI: 10.3390/diagnostics11010077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/03/2023] Open
Abstract
The work is devoted to the development of a scientific and technical basis for instrument implementation of a digital diaphanoscopy technology for the diagnosis of maxillary sinus inflammatory diseases taking into account the anatomical features of patients (differences in skin structure, skull bone thickness, and sinus size), the optical properties of exercised tissues, and the age and gender characteristics of patients. The technology is based on visualization and analysis of scattering patterns of low-intensity radiation as it passes through the maxillary sinuses. The article presents the experimental data obtained using the digital diaphanoscopy method and the results of numerical simulation of the optical radiation passage through the study area. The experimental setup has been modernized through the installation of a a device for controlling the LED applicator brightness. The approach proposed may have considerable promise for creating diagnostic criteria for various pathological changes and can be used to assess the differences in the optical and anatomical features of males and females.
Collapse
Affiliation(s)
- Ekaterina O. Bryanskaya
- R&D Center of Biomedical Photonics, Orel State University, Orel 302026, Russia; (I.N.N.); (V.V.D.); (R.Y.G.); (A.V.D.)
- Correspondence: ; Tel.: +7-980-366-29-12
| | - Irina N. Novikova
- R&D Center of Biomedical Photonics, Orel State University, Orel 302026, Russia; (I.N.N.); (V.V.D.); (R.Y.G.); (A.V.D.)
| | - Viktor V. Dremin
- R&D Center of Biomedical Photonics, Orel State University, Orel 302026, Russia; (I.N.N.); (V.V.D.); (R.Y.G.); (A.V.D.)
- College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
| | - Roman Yu. Gneushev
- R&D Center of Biomedical Photonics, Orel State University, Orel 302026, Russia; (I.N.N.); (V.V.D.); (R.Y.G.); (A.V.D.)
| | | | - Andrey V. Dunaev
- R&D Center of Biomedical Photonics, Orel State University, Orel 302026, Russia; (I.N.N.); (V.V.D.); (R.Y.G.); (A.V.D.)
| | | |
Collapse
|
14
|
Li DY, Zheng Z, Yu TT, Tang BZ, Fei P, Qian J, Zhu D. Visible-near infrared-II skull optical clearing window for in vivo cortical vasculature imaging and targeted manipulation. JOURNAL OF BIOPHOTONICS 2020; 13:e202000142. [PMID: 32589789 DOI: 10.1002/jbio.202000142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Skull optical clearing window permits us to perform in vivo cortical imaging without craniotomy, but mainly limits to visible (vis)-near infrared (NIR)-I light imaging. If the skull optical clearing window is available for NIR-II, the imaging depth will be further enhanced. Herein, we developed a vis-NIR-II skull optical clearing agents with deuterium oxide instead of water, which could make the skull transparent in the range of visible to NIR-II. Using a NIR-II excited third harmonic generation microscope, the cortical vasculature of mice could be clearly distinguished even at the depth of 650 μm through the vis-NIR-II skull clearing window. The imaging depth after clearing is close to that without skull, and increases by three times through turbid skull. Furthermore, the new skull optical clearing window promises to realize NIR-II laser-induced targeted injury of cortical single vessel. This work enhances the ability of NIR-II excited nonlinear imaging techniques for accessing to cortical neurovasculature in deep tissue.
Collapse
Affiliation(s)
- Dong-Yu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Zheng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Ting-Ting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ben-Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Division of Life Science, State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Peng Fei
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Lee SY, Zheng C, Brothers R, Buckley EM. Small separation frequency-domain near-infrared spectroscopy for the recovery of tissue optical properties at millimeter depths. BIOMEDICAL OPTICS EXPRESS 2019; 10:5362-5377. [PMID: 31646051 PMCID: PMC6788586 DOI: 10.1364/boe.10.005362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 05/27/2023]
Abstract
Millimeter-depth sensitivity with frequency domain near-infrared spectroscopy has been challenging due to the breakdown of the diffusion equation for source-detection separations < 1cm. To overcome this challenge, we employ a Monte-Carlo lookup table-based inverse algorithm to fit small separation (3-6 mm) frequency-domain near-infrared spectroscopy (FDNIRS) data for absorption and reduced scattering coefficients. We verify this small separation FDNIRS method through a series of in vitro and in vivo studies. In vitro, we observed a root mean squared percent error (RMSE) in estimation of the reduced scattering coefficient and absorption coefficient of 2.8% and 7.6%, respectively, in liquid phantoms consisting of Intralipid and Indian ink, and a RMSE in estimation of oxygen saturation and total hemoglobin concentrations of 7.8 and 11.2%, respectively, in blood-mixed liquid phantoms. Next, we demonstrate one particularly valuable in vivo application of this technique wherein we non-invasively measure the optical properties of the mouse brain (n = 4). We find that the measured resting state cerebral oxygen saturation and hemoglobin concentration are consistent with literature reported values, and we observe expected trends during a hyper-/hypoxia challenge that qualitatively mimic changes in partial pressure of oxygen (pO2) measured simultaneously with an invasive pO2 sensor. Further, through simulations of the mouse head geometry, we demonstrate that the skull and scalp exert minimal influence on the estimate oxygen saturation, while leading to small but systematic underestimation of total hemoglobin concentration. In total, these results demonstrate the robustness of small separation FDNIRS to assess tissue optical properties at millimeter depth resolution.
Collapse
Affiliation(s)
- Seung Yup Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
| | - Corey Zheng
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rowan Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr., Atlanta, GA 30322, USA
- Children’s Research Scholar, Children’s Healthcare of Atlanta, 2015 Uppergate Dr., Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Next-generation imaging of the skeletal system and its blood supply. Nat Rev Rheumatol 2019; 15:533-549. [PMID: 31395974 DOI: 10.1038/s41584-019-0274-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Bone is organized in a hierarchical 3D architecture. Traditionally, analysis of the skeletal system was based on bone mass assessment by radiographic methods or on the examination of bone structure by 2D histological sections. Advanced imaging technologies and big data analysis now enable the unprecedented examination of bone and provide new insights into its 3D macrostructure and microstructure. These technologies comprise ex vivo and in vivo methods including high-resolution computed tomography (CT), synchrotron-based imaging, X-ray microscopy, ultra-high-field magnetic resonance imaging (MRI), light-sheet fluorescence microscopy, confocal and intravital two-photon imaging. In concert, these techniques have been used to detect and quantify a novel vascular system of trans-cortical vessels in bone. Furthermore, structures such as the lacunar network, which harbours and connects osteocytes, become accessible for 3D imaging and quantification using these methods. Next-generation imaging of the skeletal system and its blood supply are anticipated to contribute to an entirely new understanding of bone tissue composition and function, from macroscale to nanoscale, in health and disease. These insights could provide the basis for early detection and precision-type intervention of bone disorders in the future.
Collapse
|
17
|
Chen Y, Liu S, Liu H, Tong S, Tang H, Zhang C, Yan S, Li H, Yang G, Zhu D, Wang K, Wang P. Coherent Raman Scattering Unravelling Mechanisms Underlying Skull Optical Clearing for Through-Skull Brain Imaging. Anal Chem 2019; 91:9371-9375. [DOI: 10.1021/acs.analchem.9b02624] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yage Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaojun Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hongji Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Shen Tong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Huajun Tang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chao Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shuai Yan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Haozheng Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guang Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ke Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ping Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong, University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
18
|
Cano-Velázquez MS, Davoodzadeh N, Halaney D, Jonak CR, Binder DK, Hernández-Cordero J, Aguilar G. Enhanced near infrared optical access to the brain with a transparent cranial implant and scalp optical clearing. BIOMEDICAL OPTICS EXPRESS 2019; 10:3369-3379. [PMID: 31467783 PMCID: PMC6706046 DOI: 10.1364/boe.10.003369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/12/2019] [Accepted: 05/29/2019] [Indexed: 06/10/2023]
Abstract
We report on the enhanced optical transmittance in the NIR wavelength range (900 to 2400 nm) offered by a transparent Yttria-stabilized zirconia (YSZ) implant coupled with optical clearing agents (OCAs). The enhancement in optical access to the brain is evaluated upon comparing ex-vivo transmittance measurements of mice native skull and the YSZ cranial implant with scalp and OCAs. An increase in transmittance of up to 50% and attenuation lengths of up to 2.4 mm (i.e., a five-fold increase in light penetration) are obtained with the YSZ implant and the OCAs. The use of this ceramic implant and the biocompatible optical clearing agents offer attractive features for NIR optical techniques for brain theranostics.
Collapse
Affiliation(s)
| | - Nami Davoodzadeh
- Department of Mechanical Engineering, University of California, Riverside, CA,
USA
| | - David Halaney
- Department of Mechanical Engineering, University of California, Riverside, CA,
USA
| | - Carrie R. Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA,
USA
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA,
USA
| | - Juan Hernández-Cordero
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México
| | - Guillermo Aguilar
- Department of Mechanical Engineering, University of California, Riverside, CA,
USA
| |
Collapse
|
19
|
Sdobnov AY, Lademann J, Darvin ME, Tuchin VV. Methods for Optical Skin Clearing in Molecular Optical Imaging in Dermatology. BIOCHEMISTRY (MOSCOW) 2019; 84:S144-S158. [PMID: 31213200 DOI: 10.1134/s0006297919140098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This short review describes recent progress in using optical clearing (OC) technique in skin studies. Optical clearing is an efficient tool for enhancing the probing depth and data quality in multiphoton microscopy and Raman spectroscopy. Here, we discuss the main mechanisms of OC, its safety, advantages, and limitations. The data on the OC effect on the skin water content are presented. It was demonstrated that 70% glycerol and 100% OmnipaqueTM 300 reduce the water content in the skin. Both OC agents (OCAs) significantly affect the strongly bound and weakly bound water. However, OmnipaqueTM 300 causes considerably less skin dehydration than glycerol. In addition, the results of examination of the OC effect on autofluorescence in two-photon excitation and background fluorescence in Raman scattering at different skin depths are presented. It is shown that OmnipaqueTM 300 is a promising OCA due to its ability to reduce background fluorescence in the upper skin layers. The possibility of multimodal imaging combining optical methods and OC technique is discussed.
Collapse
Affiliation(s)
- A Yu Sdobnov
- Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, 90570, Finland. .,Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, 410012, Russia
| | - J Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - M E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany
| | - V V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, 410012, Russia.,Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, Russian Academy of Sciences, Saratov, 410028, Russia.,Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia.,Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
20
|
Tissue Transparency In Vivo. Molecules 2019; 24:molecules24132388. [PMID: 31261621 PMCID: PMC6651221 DOI: 10.3390/molecules24132388] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
In vivo tissue transparency in the visible light spectrum is beneficial for many research applications that use optical methods, whether it involves in vivo optical imaging of cells or their activity, or optical intervention to affect cells or their activity deep inside tissues, such as brain tissue. The classical view is that a tissue is transparent if it neither absorbs nor scatters light, and thus absorption and scattering are the key elements to be controlled to reach the necessary transparency. This review focuses on the latest genetic and chemical approaches for the decoloration of tissue pigments to reduce visible light absorption and the methods to reduce scattering in live tissues. We also discuss the possible molecules involved in transparency.
Collapse
|
21
|
Jing D, Yi Y, Luo W, Zhang S, Yuan Q, Wang J, Lachika E, Zhao Z, Zhao H. Tissue Clearing and Its Application to Bone and Dental Tissues. J Dent Res 2019; 98:621-631. [PMID: 31009584 DOI: 10.1177/0022034519844510] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Opaqueness of animal tissue can be attributed mostly to light absorption and light scattering. In most noncleared tissue samples, confocal images can be acquired at no more than a 100-µm depth. Tissue-clearing techniques have emerged in recent years in the neuroscience field. Many tissue-clearing methods have been developed, and they all follow similar working principles. During the tissue-clearing process, chemical or physical treatments are applied to remove components blocking or scattering the light. Finally, samples are immersed in a designated clearing medium to achieve a uniform refractive index and to gain transparency. Once the transparency is reached, images can be acquired even at several millimeters of depth with high resolution. Tissue clearing has become an essential tool for neuroscientists to investigate the neural connectome or to analyze spatial information of various types of brain cells. Other than neural science research, tissue-clearing techniques also have applications for bone research. Several methods have been developed for clearing bones. Clearing treatment enables 3-dimensional imaging of bones without sectioning and provides important new insights that are difficult or impossible to acquire with conventional approaches. Application of tissue-clearing technique on dental research remains limited. This review will provide an overview of the recent literature related to the methods and application of various tissue-clearing methods. The following aspects will be covered: general principles for the tissue-clearing technique, current available methods for clearing bones and teeth, general principles of 3-dimensional imaging acquisition and data processing, applications of tissue clearing on studying biological processes within bones and teeth, and future directions for 3-dimensional imaging.
Collapse
Affiliation(s)
- D Jing
- 1 Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA.,2 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Y Yi
- 1 Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA.,2 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - W Luo
- 1 Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| | - S Zhang
- 2 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Q Yuan
- 2 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - J Wang
- 2 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - E Lachika
- 3 Intelligent Imaging Innovations (3i), Denver, CO, USA
| | - Z Zhao
- 2 State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - H Zhao
- 1 Department of Restorative Sciences, School of Dentistry, Texas A&M University, Dallas, TX, USA
| |
Collapse
|
22
|
Bashkatov AN, Berezin KV, Dvoretskiy KN, Chernavina ML, Genina EA, Genin VD, Kochubey VI, Lazareva EN, Pravdin AB, Shvachkina ME, Timoshina PA, Tuchina DK, Yakovlev DD, Yakovlev DA, Yanina IY, Zhernovaya OS, Tuchin VV. Measurement of tissue optical properties in the context of tissue optical clearing. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-31. [PMID: 30141286 DOI: 10.1117/1.jbo.23.9.091416] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/30/2018] [Indexed: 05/05/2023]
Abstract
Nowadays, dynamically developing optical (photonic) technologies play an ever-increasing role in medicine. Their adequate and effective implementation in diagnostics, surgery, and therapy needs reliable data on optical properties of human tissues, including skin. This paper presents an overview of recent results on the measurements and control of tissue optical properties. The issues reported comprise a brief review of optical properties of biological tissues and efficacy of optical clearing (OC) method in application to monitoring of diabetic complications and visualization of blood vessels and microcirculation using a number of optical imaging technologies, including spectroscopic, optical coherence tomography, and polarization- and speckle-based ones. Molecular modeling of immersion OC of skin and specific technique of OC of adipose tissue by its heating and photodynamic treatment are also discussed.
Collapse
Affiliation(s)
- Alexey N Bashkatov
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Kirill V Berezin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Konstantin N Dvoretskiy
- Saratov State Medical University, Subdivision of Medical and Biological Physics, Saratov, Russia
| | - Maria L Chernavina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Elina A Genina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Vadim D Genin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Vyacheslav I Kochubey
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Ekaterina N Lazareva
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
- Immanuel Kant Baltic Federal University, Center for Functionalized Magnetic Materials, Kaliningrad, Russia
| | - Alexander B Pravdin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Marina E Shvachkina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Polina A Timoshina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Daria K Tuchina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry D Yakovlev
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Dmitry A Yakovlev
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Irina Yu Yanina
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
| | - Olga S Zhernovaya
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
| | - Valery V Tuchin
- Saratov State University, Research-Educational Institute of Optics and Biophotonics, Saratov, Russia
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, Tomsk, Russia
- Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
23
|
Sdobnov AY, Darvin ME, Genina EA, Bashkatov AN, Lademann J, Tuchin VV. Recent progress in tissue optical clearing for spectroscopic application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:216-229. [PMID: 29433855 DOI: 10.1016/j.saa.2018.01.085] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 05/03/2023]
Abstract
This paper aims to review recent progress in optical clearing of the skin and over naturally turbid biological tissues and blood using this technique in vivo and in vitro with multiphoton microscopy, confocal Raman microscopy, confocal microscopy, NIR spectroscopy, optical coherence tomography, and laser speckle contrast imaging. Basic principles of the technique, its safety, advantages and limitations are discussed. The application of optical clearing agent on a tissue allows for controlling the optical properties of tissue. Optical clearing-induced reduction of tissue scattering significantly facilitates the observation of deep-located tissue regions, at the same time improving the resolution and image contrast for a variety of optical imaging methods suitable for clinical applications, such as diagnostics and laser treatment of skin diseases, mucosal tumor imaging, laser disruption of pathological abnormalities, etc.
Collapse
Affiliation(s)
- A Yu Sdobnov
- Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu 90570, Finland; Research-Educational Institute of Optics and Biophotonics, Saratov State University (National Research University of Russia), Astrakhanskaya 83, 410012 Saratov, Russian Federation.
| | - M E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - E A Genina
- Research-Educational Institute of Optics and Biophotonics, Saratov State University (National Research University of Russia), Astrakhanskaya 83, 410012 Saratov, Russian Federation; Interdisciplinary Laboratory of Biophotonics, Tomsk State University (National Research University of Russia), Lenin's av. 36, 634050 Tomsk, Russian Federation
| | - A N Bashkatov
- Research-Educational Institute of Optics and Biophotonics, Saratov State University (National Research University of Russia), Astrakhanskaya 83, 410012 Saratov, Russian Federation; Interdisciplinary Laboratory of Biophotonics, Tomsk State University (National Research University of Russia), Lenin's av. 36, 634050 Tomsk, Russian Federation
| | - J Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - V V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University (National Research University of Russia), Astrakhanskaya 83, 410012 Saratov, Russian Federation; Interdisciplinary Laboratory of Biophotonics, Tomsk State University (National Research University of Russia), Lenin's av. 36, 634050 Tomsk, Russian Federation; Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control RAS, Rabochaya 24, 410028 Saratov, Russian Federation
| |
Collapse
|
24
|
Landry TG, Earle G, Brown JA, Bance ML. Real-time intracochlear imaging of automated cochlear implant insertions in whole decalcified cadaver cochleas using ultrasound. Cochlear Implants Int 2018; 19:255-267. [DOI: 10.1080/14670100.2018.1460024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Thomas G. Landry
- Division of Otolaryngology, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Guy Earle
- Division of Otolaryngology, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | - Jeremy A. Brown
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Manohar L. Bance
- Department of Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Molecular modeling of immersion optical clearing of biological tissues. J Mol Model 2018; 24:45. [DOI: 10.1007/s00894-018-3584-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|
26
|
Greenbaum A, Chan KY, Dobreva T, Brown D, Balani DH, Boyce R, Kronenberg HM, McBride HJ, Gradinaru V. Bone CLARITY: Clearing, imaging, and computational analysis of osteoprogenitors within intact bone marrow. Sci Transl Med 2017; 9:9/387/eaah6518. [DOI: 10.1126/scitranslmed.aah6518] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/23/2017] [Indexed: 12/14/2022]
|
27
|
Soleimanzad H, Gurden H, Pain F. Errata: Optical properties of mice skull bone in the 455- to 705-nm range. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:10503. [PMID: 28399197 DOI: 10.1117/1.jbo.22.1.010503] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/04/2017] [Indexed: 05/25/2023]
Affiliation(s)
- Haleh Soleimanzad
- Université Paris Sud, Université Paris Saclay, CNRS UMR8165, Bat 440, Orsay F-91405, France
| | - Hirac Gurden
- Université Paris Diderot, CNRS UMR8251, Bat Buffon, Paris F-75205, France
| | - Frédéric Pain
- Université Paris Sud, Université Paris Saclay, CNRS UMR8165, Bat 440, Orsay F-91405, France
| |
Collapse
|
28
|
Chang CH, Myers EM, Kennelly MJ, Fried NM. Optical clearing of vaginal tissues, ex vivo, for minimally invasive laser treatment of female stress urinary incontinence. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:18002. [PMID: 28301637 PMCID: PMC5228554 DOI: 10.1117/1.jbo.22.1.018002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/22/2016] [Indexed: 05/12/2023]
Abstract
Near-infrared laser energy in conjunction with applied tissue cooling is being investigated for thermal remodeling of the endopelvic fascia during minimally invasive treatment of female stress urinary incontinence. Previous computer simulations of light transport, heat transfer, and tissue thermal damage have shown that a transvaginal approach is more feasible than a transurethral approach. However, results were suboptimal, and some undesirable thermal insult to the vaginal wall was still predicted. This study uses experiments and computer simulations to explore whether application of an optical clearing agent (OCA) can further improve optical penetration depth and completely preserve the vaginal wall during subsurface treatment of the endopelvic fascia. Several different mixtures of OCA’s were tested, and 100% glycerol was found to be the optimal agent. Optical transmission studies, optical coherence tomography, reflection spectroscopy, and computer simulations [including Monte Carlo (MC) light transport, heat transfer, and Arrhenius integral model of thermal damage] using glycerol were performed. The OCA produced a 61% increase in optical transmission through porcine vaginal wall at 37°C after 30 min. The MC model showed improved energy deposition in endopelvic fascia using glycerol. Without OCA, 62%, 37%, and 1% of energy was deposited in vaginal wall, endopelvic fascia, and urethral wall, respectively, compared with 50%, 49%, and 1% using OCA. Use of OCA also resulted in 0.5-mm increase in treatment depth, allowing potential thermal tissue remodeling at a depth of 3 mm with complete preservation of the vaginal wall.
Collapse
Affiliation(s)
- Chun-Hung Chang
- University of North Carolina at Charlotte, Department of Physics and Optical Science, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Erinn M. Myers
- Carolinas Medical Center, Women's Center for Pelvic Health, 2001 Vail Avenue, Suite 360, Charlotte, North Carolina 28207, United States
| | - Michael J. Kennelly
- Carolinas Medical Center, Women's Center for Pelvic Health, 2001 Vail Avenue, Suite 360, Charlotte, North Carolina 28207, United States
| | - Nathaniel M. Fried
- University of North Carolina at Charlotte, Department of Physics and Optical Science, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
- Carolinas Medical Center, Women's Center for Pelvic Health, 2001 Vail Avenue, Suite 360, Charlotte, North Carolina 28207, United States
| |
Collapse
|
29
|
Steinberg I, Turko N, Levi O, Gannot I, Eyal A. Quantitative study of optical and mechanical bone status using multispectral photoacoustics. JOURNAL OF BIOPHOTONICS 2016; 9:924-33. [PMID: 26487250 DOI: 10.1002/jbio.201500206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/03/2015] [Accepted: 09/21/2015] [Indexed: 05/17/2023]
Abstract
Osteoporosis is a major public health problem worldwide. Here, we present a quantitative multispectral photoacoustic method for the evaluation of bone pathologies which has significant advantages over pure ultrasonic or pure optical methods as it provides both molecular information and bone mechanical status. This is enabled via a simultaneous measurement of the bone's optical properties as well as the speed of sound and ultrasonic attenuation in the bone. To test the method's quantitative predictions, a combined ultrasonic and photoacoustic system was developed. Excitation was performed optically via a portable triple laser-diode system and acoustically via a single element transducer. Additional dual transducers were used for detecting the acoustic waves that were generated by the two modalities. Both temporal and spectral parameters were compared between different excitation wavelengths and measurement modalities. Short photoacoustic excitation wavelengths allowed sensing of the cortical layer while longer wavelengths produced results which were compatible with the quantitative ultrasound measurements.
Collapse
Affiliation(s)
- Idan Steinberg
- The Laboratory for Optics and Lasers in Medicine, Dept. of BME, Tel-Aviv University, Israel, Haim Levanon St., Tel Aviv, P.O. Box 39040, Tel Aviv, 6997801, Israel.
- The Laboratory for Optics and Photonics, School of EE, Tel-Aviv University, Israel, Haim Levanon St., Tel Aviv, P.O. Box 39040, Tel Aviv, 6997801, Israel.
| | - Nir Turko
- The Biomedical Optical Microscopy, Nanoscopy and Interferometry Research Group, Dept. of BME, Tel-Aviv University, Israel, Haim Levanon St., Tel Aviv, P.O. Box 39040, Tel Aviv, 6997801, Israel
| | - Omri Levi
- The Laboratory for Optics and Photonics, School of EE, Tel-Aviv University, Israel, Haim Levanon St., Tel Aviv, P.O. Box 39040, Tel Aviv, 6997801, Israel
| | - Israel Gannot
- The Laboratory for Optics and Lasers in Medicine, Dept. of BME, Tel-Aviv University, Israel, Haim Levanon St., Tel Aviv, P.O. Box 39040, Tel Aviv, 6997801, Israel
- Dept. of ECE, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Avishay Eyal
- The Laboratory for Optics and Photonics, School of EE, Tel-Aviv University, Israel, Haim Levanon St., Tel Aviv, P.O. Box 39040, Tel Aviv, 6997801, Israel
| |
Collapse
|
30
|
Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods 2016; 13:859-67. [PMID: 27548807 DOI: 10.1038/nmeth.3964] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023]
Abstract
Recent tissue-clearing approaches have become important alternatives to standard histology approaches. However, light scattering in thick tissues and the size restrictions on samples that can be imaged with standard light-sheet microscopy pose limitations for analyzing large samples such as an entire rodent body. We developed 'ultimate DISCO' (uDISCO) clearing to overcome these limitations in volumetric imaging. uDISCO preserves fluorescent proteins over months and renders intact organs and rodent bodies transparent while reducing their size up to 65%. We used uDISCO to image neuronal connections and vasculature from head to toe over 7 cm and to perform unbiased screening of transplanted stem cells within the entire body of adult mice. uDISCO is compatible with diverse labeling methods and archival human tissue, and it can readily be used in various biomedical applications to study organization of large organ systems throughout entire organisms.
Collapse
|
31
|
Wróbel MS, Popov AP, Bykov AV, Tuchin VV, Jędrzejewska-Szczerska M. Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering. BIOMEDICAL OPTICS EXPRESS 2016; 7:2088-94. [PMID: 27375928 PMCID: PMC4918566 DOI: 10.1364/boe.7.002088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/16/2016] [Accepted: 04/28/2016] [Indexed: 05/03/2023]
Abstract
We present an alternative to the conventional approach, phantoms without scattering nanoparticles, where scattering is achieved by the material itself: spherical cavities trapped in a silicone matrix. We describe the properties and fabrication of novel optical phantoms based on a silicone elastomer polydimethylsiloxane (PDMS) and glycerol mixture. Optical properties (absorption coefficient µa , reduced scattering coefficient µs' , and anisotropy factor g) of the fabricated phantoms were retrieved from spectrophotometric measurements (in the 400-1100 nm wavelength range) using the inverse adding-doubling method. The internal structure of the phantoms was studied under a scanning electron microscope, and the chemical composition was assessed by Raman spectroscopy. Composition of the phantom material is reported along with the full characterization of the produced phantoms and ways to control their parameters.
Collapse
Affiliation(s)
- Maciej S. Wróbel
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Alexey P. Popov
- University of Oulu, Faculty of Information Technology and Electrical Engineering, Optoelectronics and Measurement Techniques Laboratory, P.O. Box 4500, FI-90014 Oulu, Finland
| | - Alexander V. Bykov
- University of Oulu, Faculty of Information Technology and Electrical Engineering, Optoelectronics and Measurement Techniques Laboratory, P.O. Box 4500, FI-90014 Oulu, Finland
| | - Valery V. Tuchin
- University of Oulu, Faculty of Information Technology and Electrical Engineering, Optoelectronics and Measurement Techniques Laboratory, P.O. Box 4500, FI-90014 Oulu, Finland
- Saratov National Research State University, Research-Education Institute of Optics and Biophotonics, 410012 Saratov, Russia
- Institute of Precision Mechanics and Control of Russian Academy of Sciences, 410028 Saratov, Russia
- National Research Tomsk State University, Laboratory of Biophotonics, 634050 Tomsk, Russia
| | - Małgorzata Jędrzejewska-Szczerska
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
32
|
Berke IM, Miola JP, David MA, Smith MK, Price C. Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing. PLoS One 2016; 11:e0150268. [PMID: 26930293 PMCID: PMC4773178 DOI: 10.1371/journal.pone.0150268] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/11/2016] [Indexed: 12/17/2022] Open
Abstract
In situ, cells of the musculoskeletal system reside within complex and often interconnected 3-D environments. Key to better understanding how 3-D tissue and cellular environments regulate musculoskeletal physiology, homeostasis, and health is the use of robust methodologies for directly visualizing cell-cell and cell-matrix architecture in situ. However, the use of standard optical imaging techniques is often of limited utility in deep imaging of intact musculoskeletal tissues due to the highly scattering nature of biological tissues. Drawing inspiration from recent developments in the deep-tissue imaging field, we describe the application of immersion based optical clearing techniques, which utilize the principle of refractive index (RI) matching between the clearing/mounting media and tissue under observation, to improve the deep, in situ imaging of musculoskeletal tissues. To date, few optical clearing techniques have been applied specifically to musculoskeletal tissues, and a systematic comparison of the clearing ability of optical clearing agents in musculoskeletal tissues has yet to be fully demonstrated. In this study we tested the ability of eight different aqueous and non-aqueous clearing agents, with RIs ranging from 1.45 to 1.56, to optically clear murine knee joints and cortical bone. We demonstrated and quantified the ability of these optical clearing agents to clear musculoskeletal tissues and improve both macro- and micro-scale imaging of musculoskeletal tissue across several imaging modalities (stereomicroscopy, spectroscopy, and one-, and two-photon confocal microscopy) and investigational techniques (dynamic bone labeling and en bloc tissue staining). Based upon these findings we believe that optical clearing, in combination with advanced imaging techniques, has the potential to complement classical musculoskeletal analysis techniques; opening the door for improved in situ investigation and quantification of musculoskeletal tissues.
Collapse
Affiliation(s)
- Ian M. Berke
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Joseph P. Miola
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Michael A. David
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Melanie K. Smith
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Christopher Price
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
33
|
Susaki E, Ueda H. Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. Cell Chem Biol 2016; 23:137-157. [DOI: 10.1016/j.chembiol.2015.11.009] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 12/29/2022]
|
34
|
Stritzel J, Rahlves M, Roth B. Refractive-index measurement and inverse correction using optical coherence tomography. OPTICS LETTERS 2015; 40:5558-5561. [PMID: 26625050 DOI: 10.1364/ol.40.005558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We describe a novel technique for determination of the refractive index of hard biological tissue as well as nonopaque technical samples based on optical coherence tomography (OCT). Our method relies on an inverse refractive-index correction (I-RIC), which matches a measured feature geometry distorted due to refractive-index boundaries to its real geometry. For known feature geometry, the refractive index can be determined with high precision from the best match between the distorted and corrected images. We provide experimental data for refractive-index measurements on a polymethylmethacrylate (PMMA) and on an ex vivo porcine cranial-bone, which are compared to reference measurements and previously published data. Our method is potentially capable of in vivo measurements on rigid biological tissue such as bone as, for example, is required to improve guidance in robot-aided surgical interventions and also for retrieving complex refractive-index profiles of compound materials.
Collapse
|
35
|
Treweek JB, Chan KY, Flytzanis NC, Yang B, Deverman BE, Greenbaum A, Lignell A, Xiao C, Cai L, Ladinsky MS, Bjorkman PJ, Fowlkes CC, Gradinaru V. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat Protoc 2015; 10:1860-1896. [PMID: 26492141 PMCID: PMC4917295 DOI: 10.1038/nprot.2015.122] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1-2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks.
Collapse
Affiliation(s)
- Jennifer B Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Ken Y Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Nicholas C Flytzanis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Alon Greenbaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Antti Lignell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Cheng Xiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Long Cai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Charless C Fowlkes
- Department of Computer Science, University of California, Irvine, California, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
36
|
Hardisty MR, Kienle DF, Kuhl TL, Stover SM, Fyhrie DP. Strain-induced optical changes in demineralized bone. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:35001. [PMID: 24604533 PMCID: PMC3945466 DOI: 10.1117/1.jbo.19.3.035001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/07/2014] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
Bone "stress-whitens," becoming visibly white during mechanical loading, immediately prior to failure. Stress-whitening is known to make materials tougher by dissipating mechanical energy. A greater understanding of stress-whitening, both an optical and mechanical phenomenon, may help explain age-related increases in fracture risk that occur without changes in bone mineralization. In this work, we directly measure the optical properties of demineralized bone as a function of deformation and immersing fluid (with different hydrogen-bonding potentials, water, and ethanol). The change in refractive index of demineralized bone was linear: with deformation and not applied force. Changes in refractive index were likely due to pushing low-refractive-index fluid out of specimens and secondarily due to changes in the refractive index of the collagenous phase. Results were consistent with stress-whitening of demineralized bone previously observed. In ethanol, the refractive index values were lower and less sensitive to deformation compared with deionized water, corroborating the sensitivity to fluid hydration. Differences in refractive index were consistent with structural changes in the collagenous phase such as densification that may also occur under mechanical loading. Understanding bone quality, particularly stress-whitening investigated here, may lead to new therapeutic targets and noninvasive methods to assess bone quality.
Collapse
Affiliation(s)
- Michael R. Hardisty
- University of California-Davis, School of Medicine, Lawrence J. Ellison Musculoskeletal Research Laboratory, Department of Orthopaedic Surgery, Sacramento, California, 95817
- University of California-Davis, Biomedical Engineering Graduate Group, Davis, California, 95616
| | - Daniel F. Kienle
- University of California-Davis, Department of Chemical Engineering and Materials Science, Biomedical Engineering Graduate Group, Davis, California, 95616
| | - Tonya L. Kuhl
- University of California-Davis, Biomedical Engineering Graduate Group, Davis, California, 95616
- University of California-Davis, Department of Chemical Engineering and Materials Science, Biomedical Engineering Graduate Group, Davis, California, 95616
| | - Susan M. Stover
- University of California-Davis, Biomedical Engineering Graduate Group, Davis, California, 95616
- University of California-Davis, School of Veterinary Medicine, JD Wheat Veterinary Orthopedic Research Laboratory, Biomedical Engineering Graduate Group, Davis, 95616
| | - David P. Fyhrie
- University of California-Davis, Biomedical Engineering Graduate Group, Davis, California, 95616
- University of California-Davis, Department of Biomedical Engineering, Davis, California, 95616
| |
Collapse
|
37
|
Wissel T, Bruder R, Schweikard A, Ernst F. Estimating soft tissue thickness from light-tissue interactions--a simulation study. BIOMEDICAL OPTICS EXPRESS 2013; 4:1176-1187. [PMID: 23847741 PMCID: PMC3704097 DOI: 10.1364/boe.4.001176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 06/09/2013] [Indexed: 06/02/2023]
Abstract
Immobilization and marker-based motion tracking in radiation therapy often cause decreased patient comfort. However, the more comfortable alternative of optical surface tracking is highly inaccurate due to missing point-to-point correspondences between subsequent point clouds as well as elastic deformation of soft tissue. In this study, we present a proof of concept for measuring subcutaneous features with a laser scanner setup focusing on the skin thickness as additional input for high accuracy optical surface tracking. Using Monte-Carlo simulations for multi-layered tissue, we show that informative features can be extracted from the simulated tissue reflection by integrating intensities within concentric ROIs around the laser spot center. Training a regression model with a simulated data set identifies patterns that allow for predicting skin thickness with a root mean square error of down to 18 µm. Different approaches to compensate for varying observation angles were shown to yield errors still below 90 µm. Finally, this initial study provides a very promising proof of concept and encourages research towards a practical prototype.
Collapse
Affiliation(s)
- Tobias Wissel
- Institute for Robotics and Cognitive Systems, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
- Graduate School for Computing in Medicine and Life Sciences, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Ralf Bruder
- Institute for Robotics and Cognitive Systems, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Achim Schweikard
- Institute for Robotics and Cognitive Systems, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Floris Ernst
- Institute for Robotics and Cognitive Systems, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| |
Collapse
|
38
|
Barrett D, Gonzalez-Lima F. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience 2013. [DOI: 10.1016/j.neuroscience.2012.11.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
39
|
Allen TJ, Hall A, Dhillon AP, Owen JS, Beard PC. Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400 nm wavelength range. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:061209. [PMID: 22734739 DOI: 10.1117/1.jbo.17.6.061209] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spectroscopic photoacoustic imaging has the potential to discriminate between normal and lipid-rich atheromatous areas of arterial tissue by exploiting the differences in the absorption spectra of lipids and normal arterial tissue in the 740 to 1400 nm wavelength range. Identification of regions of high lipid concentration would be useful to identify plaques that are likely to rupture (vulnerable plaques). To demonstrate the feasibility of visualizing lipid-rich plaques, samples of human aortas were imaged in forward mode, at wavelengths of 970 and 1210 nm. It was shown that the structure of the arterial wall and the boundaries of lipid-rich plaques obtained from the photoacoustic images were in good agreement with histology. The presence of lipids was also confirmed by comparing the photoacoustic spectra (740 to 1400 nm) obtained in a region within the plaque to the spectral signature of lipids. Furthermore, a lipid-rich plaque was successfully imaged while illuminating the sample through 2.8 mm of blood demonstrating the possibility of implementing the photoacoustic technique in vivo.
Collapse
Affiliation(s)
- Thomas J Allen
- University College London, Department of Medical Physics and Bioengineering, Gower Street, WC1E 6BT London, United Kingdom.
| | | | | | | | | |
Collapse
|
40
|
Renaud R, Martin C, Gurden H, Pain F. Multispectral reflectance imaging of brain activation in rodents: methodological study of the differential path length estimations and first in vivo recordings in the rat olfactory bulb. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:016012. [PMID: 22352662 DOI: 10.1117/1.jbo.17.1.016012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Dynamic maps of relative changes in blood volume and oxygenation following brain activation are obtained using multispectral reflectance imaging. The technique relies on optical absorption modifications linked to hemodynamic changes. The relative variation of hemodynamic parameters can be quantified using the modified Beer-Lambert Law if changes in reflected light intensities are recorded at two wavelengths or more and the differential path length (DP) is known. The DP is the mean path length in tissues of backscattered photons and varies with wavelength. It is usually estimated using Monte Carlo simulations in simplified semi-infinite homogeneous geometries. Here we consider the use of multilayered models of the somatosensory cortex (SsC) and olfactory bulb (OB), which are common physiological models of brain activation. Simulations demonstrate that specific DP estimation is required for SsC and OB, specifically for wavelengths above 600 nm. They validate the hypothesis of a constant path length during activation and show the need for specific DP if imaging is performed in a thinned-skull preparation. The first multispectral reflectance imaging data recorded in vivo during OB activation are presented, and the influence of DP on the hemodynamic parameters and the pattern of oxymetric changes in the activated OB are discussed.
Collapse
Affiliation(s)
- Rémi Renaud
- Université Paris-Sud, CNRS UMR8165, Orsay F-91405, France
| | | | | | | |
Collapse
|
41
|
Abstract
In this article, we discuss the optical immersion method based on refractive index matching of scatterers (e.g., collagen, elastin fibers, cells and cell compartments) and the ground material (interstitial fluid and/or cytoplasm) of tissue and blood under the action of exogenous optical clearing agents. We analyze the optical clearing of fibrous and cell-structured tissues and blood from the point of view of receiving more valuable, normally hidden, information from spectroscopic and polarization measurements, confocal microscopy, optical coherence and optical projection tomography, as well as from nonlinear spectroscopies, such as two-photon fluorescence and second-harmonic generation techniques. Some important applications of the immersion technique to glucose sensing, drug delivery monitoring, improvements of image contrast and imaging depth, nondistortive delivery of laser radiation and precision tissue laser photodisruption, among others, are also described.
Collapse
Affiliation(s)
- Elina A Genina
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, 410012 Saratov, Russia
| | | | | |
Collapse
|
42
|
Abi-Haidar D, Olivier T. Confocal reflectance and two-photon microscopy studies of a songbird skull for preparation of transcranial imaging. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:034038. [PMID: 19566330 DOI: 10.1117/1.3155522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We present experiments and analyses of confocal reflectance and two-photon microscopy studies of zebra finch skull samples. The thin and hollow structure of these birds' skulls is quite translucent, which can allow in vivo transcranial two-photon imaging for brain activation monitoring. However, the skull structure is also quite complex, with high refractive index changes on a macroscopic scale. These studies aim at exploring the geometrical and scattering properties of these skull samples with the use of several confocal microscopy contrasts. Moreover, the study of the axial reflectance exponential decay is used to estimate the scattering coefficients of the bone. Finally, two-photon imaging experiments of a fluorescent object located beneath the skull are carried out. It reveals that two-photon fluorescence can be collected through the skull with a strong signal. It also reveals that the spatial resolution loss is quite high and cannot be fully explained by the bulk scattering properties of the bone, but also by the presence of the high refractive index inhomogeneity of this pneumatic skull structure. Even if the optical properties of the skull are different during in vivo experiments, these preliminary studies are aimed at preparing and optimizing transcranial brain activation monitoring experiments on songbirds.
Collapse
|