1
|
Aksoy E, Uncu AT, Filiz E, Orman Ş, Çetin D, Akbudak MA. Genes involved in mRNA surveillance are induced in Brachypodium distachyon under cadmium toxicity. Mol Biol Rep 2021; 49:5303-5313. [PMID: 34812999 DOI: 10.1007/s11033-021-06952-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cd accumulation in plant cells results in dramatic problems including oxidative stress and inhibition of vital enzymes. It also affects mineral uptakes by disrupting membrane permeability. Interaction among Cd and other plant nutrient elements changes the nutritional contents of crops and reduces their yield. METHODS AND RESULTS In the present study, Cd stress in Brachypodium distachyon led to the upregulation of some heavy metal transport genes (influx or efflux) encoding cation-efflux proteins, heavy metal-associated proteins and NRAMP proteins. The Arabidopsis orthologs of the differentially expressed B. distachyon genes (DEGs) under Cd toxicity were identified, which exhibited Bradi4g26905 was an ortholog of AtALY1-2. Detailed co-expression network and gene ontology analyses found the potential involvement of the mRNA surveillance pathway in Cd tolerance in B. distachyon. These genes were shown to be downregulated by sulfur (S) deficiency. CONCLUSIONS This is the first transcriptomic study investigating the effect of Cd toxicity in B. distachyon, a model plant for genomic studies in Poaceae (Gramineae) species. The results are expected to provide valuable information for more comprehensive research related to heavy metal toxicity in plants.
Collapse
Affiliation(s)
- Emre Aksoy
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ali Tevfik Uncu
- Department of Molecular Biology and Genetics, Necmettin Erbakan University, Konya, Turkey
| | - Ertugrul Filiz
- Department of Agricultural Production, Duzce University, Cilimli Vocational School, Duzce, Turkey
| | - Şule Orman
- Department of Soil Science and Plant Nutrition, Akdeniz University, Antalya, Turkey
| | - Durmuş Çetin
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey
| | - M Aydın Akbudak
- Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
2
|
Wen F, Ye F, Xiao Z, Liao L, Li T, Jia M, Liu X, Wu X. Genome-wide survey and expression analysis of calcium-dependent protein kinase (CDPK) in grass Brachypodium distachyon. BMC Genomics 2020; 21:53. [PMID: 31948407 PMCID: PMC6966850 DOI: 10.1186/s12864-020-6475-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/09/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Ca2+ played as a ubiquitous secondary messenger involved in plant growth, development, and responses to various environmental stimuli. Calcium-dependent protein kinases (CDPK) were important Ca2+ sensors, which could directly translate Ca2+ signals into downstream phosphorylation signals. Considering the importance of CDPKs as Ca2+ effectors for regulation of plant stress tolerance and few studies on Brachypodium distachyon were available, it was of interest for us to isolate CDPKs from B. distachyon. RESULTS A systemic analysis of 30 CDPK family genes in B. distachyon was performed. Results showed that all BdCDPK family members contained conserved catalytic Ser/Thr protein kinase domain, autoinhibitory domain, and EF-hand domain, and a variable N-terminal domain, could be divided into four subgroup (I-IV), based upon sequence homology. Most BdCDPKs had four EF-hands, in which EF2 and EF4 revealed high variability and strong divergence from EF-hand in AtCDPKs. Synteny results indicated that large number of syntenic relationship events existed between rice and B. distachyon, implying their high conservation. Expression profiles indicated that most of BdCDPK genes were involved in phytohormones signal transduction pathways and regulated physiological process in responding to multiple environmental stresses. Moreover, the co-expression network implied that BdCDPKs might be both the activator and the repressor involved in WRKY transcription factors or MAPK cascade genes mediated stress response processes, base on their complex regulatory network. CONCLUSIONS BdCDPKs might play multiple function in WRKY or MAPK mediated abiotic stresses response and phytohormone signaling transduction in B. distachyon. Our genomics analysis of BdCDPKs could provide fundamental information for further investigation the functions of CDPKs in integrating Ca2+ signalling pathways in response to environments stresses in B. distachyon.
Collapse
Affiliation(s)
- Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| | - Feng Ye
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Zhulong Xiao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Liang Liao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinsheng Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| |
Collapse
|
3
|
Wu H, Xue X, Qin C, Xu Y, Guo Y, Li X, Lv W, Li Q, Mao C, Li L, Zhao S, Qi X, An H. An Efficient System for Ds Transposon Tagging in Brachypodium distachyon. PLANT PHYSIOLOGY 2019; 180:56-65. [PMID: 30867334 PMCID: PMC6501085 DOI: 10.1104/pp.18.00875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
Transposon tagging is a powerful tool that has been widely applied in several species for insertional mutagenesis in plants. Several efforts have aimed to create transfer-DNA (T-DNA) insertional mutant populations in Brachypodium distachyon, a monocot plant used as a model system to study temperate cereals, but there has been a lack of research aimed at using transposon strategies. Here, we describe the application of a maize (Zea mays) Dissociation (Ds) transposon tagging system in B distachyon The 35S::AcTPase cassette and Ds element were constructed within the same T-DNA and transformed into B distachyon plants. The Ds element was readily transposed to other chromosomes or to the same chromosome under the function of Activator (Ac) transposase. Through homologous chromosome synapsis, recombination, and segregation, the Ds element separated from the Ac element. We selected stable Ds-only plants using G418 and GFP assays and analyzed 241 T0 lines, some of which were highly efficient at producing Ds-only progeny. Through thermal asymmetric interlaced PCR, we isolated 710 independent Ds flanking sequences from Ds-only plants. Furthermore, we identified a large collection of mutants with visible developmental phenotypes via this transposon tagging system. The system is relatively simple and rapid in comparison to traditional T-DNA insertion strategies, because once efficiency lines are obtained they can be reused to generate more lines from nontransposed plants without the use of time-consuming tissue culture steps.
Collapse
Affiliation(s)
- Hongyu Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Xiaodong Xue
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Caihua Qin
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Yi Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Yuyu Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Xiang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Qinxia Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Chuangxue Mao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Luzhao Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| | - Suzhen Zhao
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaoquan Qi
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hailong An
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong 271018, China
| |
Collapse
|
4
|
Wang Z, Wang J, Pan Y, Lei T, Ge W, Wang L, Zhang L, Li Y, Zhao K, Liu T, Song X, Zhang J, Yu J, Hu J, Wang X. Reconstruction of evolutionary trajectories of chromosomes unraveled independent genomic repatterning between Triticeae and Brachypodium. BMC Genomics 2019; 20:180. [PMID: 30845910 PMCID: PMC6407190 DOI: 10.1186/s12864-019-5566-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/25/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND After polyploidization, a genome may experience large-scale genome-repatterning, featuring wide-spread DNA rearrangement and loss, and often chromosome number reduction. Grasses share a common tetraploidization, after which the originally doubled chromosome numbers reduced to different chromosome numbers among them. A telomere-centric reduction model was proposed previously to explain chromosome number reduction. With Brachpodium as an intermediate linking different major lineages of grasses and a model plant of the Pooideae plants, we wonder whether it mediated the evolution from ancestral grass karyotype to Triticeae karyotype. RESULTS By inferring the homology among Triticeae, rice, and Brachpodium chromosomes, we reconstructed the evolutionary trajectories of the Triticeae chromosomes. By performing comparative genomics analysis with rice as a reference, we reconstructed the evolutionary trajectories of Pooideae plants, including Ae. Tauschii (2n = 14, DD), barley (2n = 14), Triticum turgidum (2n = 4x = 28, AABB), and Brachypodium (2n = 10). Their extant Pooidea and Brachypodium chromosomes were independently produced after sequential nested chromosome fusions in the last tens of millions of years, respectively, after their split from rice. More frequently than would be expected by chance, in Brachypodium, the 'invading' and 'invaded' chromosomes are homoeologs, originating from duplication of a common ancestral chromosome, that is, with more extensive DNA-level correspondence to one another than random chromosomes, nested chromosome fusion events between homoeologs account for three of seven cases in Brachypodium (P-value≈0.00078). However, this phenomenon was not observed during the formation of other Pooideae chromosomes. CONCLUSIONS Notably, we found that the Brachypodium chromosomes formed through exclusively distinctive trajectories from those of Pooideae plants, and were well explained by the telomere-centric model. Our work will contribute to understanding the structural and functional innovation of chromosomes in different Pooideae lineages and beyond.
Collapse
Affiliation(s)
- Zhenyi Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Jinpeng Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yuxin Pan
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Tianyu Lei
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Weina Ge
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Li Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Lan Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yuxian Li
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Kanglu Zhao
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Tao Liu
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China.,College of Science, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Jiaqi Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Jigao Yu
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Jingjing Hu
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xiyin Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China. .,Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
5
|
Zhou X, Wu X, Li T, Jia M, Liu X, Zou Y, Liu Z, Wen F. Identification, characterization, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon. Funct Integr Genomics 2018; 18:709-724. [PMID: 29926224 DOI: 10.1007/s10142-018-0622-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 06/03/2018] [Accepted: 06/07/2018] [Indexed: 11/30/2022]
Abstract
Auxin response factors (ARFs) are one type of essential family of transcription factors that bind with auxin response elements (AuxRE), and play vital roles in variety of plant development and physiological processes. Brachypodium distachyon, related to the major cereal grain species, were recently developed to be a good model organism for functional genomics research. So far, genome-wide overview of the ARF gene family in B. distachyon was not available. Here, a systemic analysis of ARF gene family members in B. distachyon was performed. A comprehensive overview of the characterization of the BdARFs was obtained by multiple bioinformatics analyses, including the gene and protein structure, chromosome locations, conserved motifs of proteins, phylogenetic analysis, and cis-elements in promoters of BdARF. Results showed that all BdARFs contained conserved DBD, MR, and CTD could be divided into four classes, Ia, IIa, IIb, and III. Expression profiles of BdARF genes indicated that they were expressed across various tissues and organs, which could be clustered into three main expression groups, and most of BdARF genes were involved in phytohormone signal transduction pathways and regulated physiological process in responding to multiple environmental stresses. And predicted regulatory network between B. distachyon ARFs and IAAs was also discussed. Our genomics analysis of BdARFs could yield new insights into the complexity of the control of BdARF genes and lead to potential applications in the investigation of the accurate regulatory mechanisms of ARFs in herbaceous plants.
Collapse
Affiliation(s)
- Xiaojian Zhou
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinshen Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Yulan Zou
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Zixia Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| |
Collapse
|
6
|
Application of Tissue Culture and Transformation Techniques in Model Species Brachypodium distachyon. Methods Mol Biol 2018; 1667:289-310. [PMID: 29039016 DOI: 10.1007/978-1-4939-7278-4_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Brachypodium distachyon has recently emerged as a model plant species for the grass family (Poaceae) that includes major cereal crops and forage grasses. One of the important traits of a model species is its capacity to be transformed and ease of growing both in tissue culture and in greenhouse conditions. Hence, plant transformation technology is crucial for improvements in agricultural studies, both for the study of new genes and in the production of new transgenic plant species. In this chapter, we review an efficient tissue culture and two different transformation systems for Brachypodium using most commonly preferred gene transfer techniques in plant species, microprojectile bombardment method (biolistics) and Agrobacterium-mediated transformation.In plant transformation studies, frequently used explant materials are immature embryos due to their higher transformation efficiencies and regeneration capacity. However, mature embryos are available throughout the year in contrast to immature embryos. We explain a tissue culture protocol for Brachypodium using mature embryos with the selected inbred lines from our collection. Embryogenic calluses obtained from mature embryos are used to transform Brachypodium with both plant transformation techniques that are revised according to previously studied protocols applied in the grasses, such as applying vacuum infiltration, different wounding effects, modification in inoculation and cocultivation steps or optimization of bombardment parameters.
Collapse
|
7
|
Thomas J, Bowman MJ, Vega A, Kim HR, Mukherjee A. Comparative transcriptome analysis provides key insights into gene expression pattern during the formation of nodule-like structures in Brachypodium. Funct Integr Genomics 2018; 18:315-326. [PMID: 29511998 PMCID: PMC6463493 DOI: 10.1007/s10142-018-0594-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/12/2018] [Accepted: 02/16/2018] [Indexed: 01/13/2023]
Abstract
Auxins can induce the formation of nodule-like structures (NLS) in plant roots even in the absence of rhizobia and nitrogen-fixing bacteria can colonize these structures. Interestingly, NLS can be induced in roots of both legumes and non-legumes. However, our understanding of NLS formation in non-legumes at a molecular level is limited. This study aims to investigate NLS formation at a developmental and molecular level in Brachypodium distachyon. We treated Brachypodium roots with the synthetic auxin, 2,4-D, to induce NLS at a high frequency (> 80%) under controlled conditions. A broad base and a diffuse meristem characterized these structures. Next, we performed a comprehensive RNA-sequencing experiment to identify differentially expressed genes (DEGs) in Brachypodium roots during NLS formation. We identified 618 DEGs; several of which are promising candidates for control of NLS based on their biological and molecular functions. We validated the expression pattern of several genes via RT-PCR. Next, we compared the expression profile of Brachypodium roots with rice roots during NLS formation. We identified 76 single-copy ortholog pairs in rice and Brachypodium that are both differentially expressed during this process. Some of these genes are involved in auxin signaling, root development, and legume-rhizobia symbiosis. We established an experimental system to study NLS formation in Brachypodium at a developmental and genetic level, and used RNA-sequencing analysis to understand the molecular mechanisms controlling this root organogenesis program. Furthermore, our comparative transcriptome analysis in Brachypodium and rice identified a key set of genes for further investigating this genetic pathway in grasses.
Collapse
Affiliation(s)
- Jacklyn Thomas
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Megan J Bowman
- Bioinformatics & Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Andres Vega
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Ha Ram Kim
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Arijit Mukherjee
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA.
| |
Collapse
|
8
|
Thomas J, Bowman MJ, Vega A, Kim HR, Mukherjee A. Comparative transcriptome analysis provides key insights into gene expression pattern during the formation of nodule-like structures in Brachypodium. Funct Integr Genomics 2018. [PMID: 29511998 DOI: 10.1007/s10142-10018-10594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Auxins can induce the formation of nodule-like structures (NLS) in plant roots even in the absence of rhizobia and nitrogen-fixing bacteria can colonize these structures. Interestingly, NLS can be induced in roots of both legumes and non-legumes. However, our understanding of NLS formation in non-legumes at a molecular level is limited. This study aims to investigate NLS formation at a developmental and molecular level in Brachypodium distachyon. We treated Brachypodium roots with the synthetic auxin, 2,4-D, to induce NLS at a high frequency (> 80%) under controlled conditions. A broad base and a diffuse meristem characterized these structures. Next, we performed a comprehensive RNA-sequencing experiment to identify differentially expressed genes (DEGs) in Brachypodium roots during NLS formation. We identified 618 DEGs; several of which are promising candidates for control of NLS based on their biological and molecular functions. We validated the expression pattern of several genes via RT-PCR. Next, we compared the expression profile of Brachypodium roots with rice roots during NLS formation. We identified 76 single-copy ortholog pairs in rice and Brachypodium that are both differentially expressed during this process. Some of these genes are involved in auxin signaling, root development, and legume-rhizobia symbiosis. We established an experimental system to study NLS formation in Brachypodium at a developmental and genetic level, and used RNA-sequencing analysis to understand the molecular mechanisms controlling this root organogenesis program. Furthermore, our comparative transcriptome analysis in Brachypodium and rice identified a key set of genes for further investigating this genetic pathway in grasses.
Collapse
Affiliation(s)
- Jacklyn Thomas
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Megan J Bowman
- Bioinformatics & Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Andres Vega
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Ha Ram Kim
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Arijit Mukherjee
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA.
| |
Collapse
|
9
|
Aslam R, Williams LE, Bhatti MF, Virk N. Genome-wide analysis of wheat calcium ATPases and potential role of selected ACAs and ECAs in calcium stress. BMC PLANT BIOLOGY 2017; 17:174. [PMID: 29078753 PMCID: PMC5658947 DOI: 10.1186/s12870-017-1112-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/09/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND P2- type calcium ATPases (ACAs-auto inhibited calcium ATPases and ECAs-endoplasmic reticulum calcium ATPases) belong to the P- type ATPase family of active membrane transporters and are significantly involved in maintaining accurate levels of Ca2+, Mn2+ and Zn2+ in the cytosol as well as playing a very important role in stress signaling, stomatal opening and closing and pollen tube growth. Here we report the identification and possible role of some of these ATPases from wheat. RESULTS In this study, ACA and ECA sequences of six species (belonging to Poaceae) were retrieved from different databases and a phylogenetic tree was constructed. A high degree of evolutionary relatedness was observed among P2 sequences characterized in this study. Members of the respective groups from different plant species were observed to fall under the same clade. This pattern highlights the common ancestry of P2- type calcium ATPases. Furthermore, qRT-PCR was used to analyse the expression of selected ACAs and ECAs from Triticum aestivum (wheat) under calcium toxicity and calcium deficiency. The data indicated that expression of ECAs is enhanced under calcium stress, suggesting possible roles of these ATPases in calcium homeostasis in wheat. Similarly, the expression of ACAs was significantly different in plants grown under calcium stress as compared to plants grown under control conditions. This gives clues to the role of ACAs in signal transduction during calcium stress in wheat. CONCLUSION Here we concluded that wheat genome consists of nine P2B and three P2A -type calcium ATPases. Moreover, gene loss events in wheat ancestors lead to the loss of a particular homoeolog of a gene in wheat. To elaborate the role of these wheat ATPases, qRT-PCR was performed. The results indicated that when plants are exposed to calcium stress, both P2A and P2B gene expression get enhanced. This further gives clues about the possible role of these ATPases in wheat in calcium management. These findings can be useful in future for genetic manipulations as well as in wheat genome annotation process.
Collapse
Affiliation(s)
- Roohi Aslam
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000 Pakistan
| | | | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000 Pakistan
| | - Nasar Virk
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000 Pakistan
| |
Collapse
|
10
|
Tulpan D, Leger S. The Plant Orthology Browser: An Orthology and Gene-Order Visualizer for Plant Comparative Genomics. THE PLANT GENOME 2017; 10. [PMID: 28464063 DOI: 10.3835/plantgenome2016.08.0078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Worldwide genome sequencing efforts for plants with medium and large genomes require identification and visualization of orthologous genes, while their syntenic conservation becomes the pinnacle of any comparative and functional genomics study. Using gene models for 20 fully sequenced plant genomes, including model organisms and staple crops such as Coss., (L.) Heynh., (L.) Beauv., turnip ( L.), barley ( L.), rice ( L.), sorghum [ (L.) Moench], wheat ( L.), red wild einkorn ( Tumanian ex Gandilyan), and maize ( L.), we computationally predicted 1,021,611 orthologs using stringent sequence similarity criteria. For each pair of plant species, we determined sets of conserved synteny blocks using strand orientation and physical mapping. Gene ontology (GO) annotations are added for each gene. Plant Orthology Browser (POB) includes three interconnected modules: (i) a gene-order visualization module implementing an interactive environment for exploration of gene order between any pair of chromosomes in two plant species, (ii) a synteny visualization module providing unique interactive dot plot representations of orthologous genes between a pair of chromosomes in two distinct plant species, and (iii) a search module that interconnects all modules via free-text search capability with online as-you-type suggestions and highlighting that allows exploration of the underlining information without constraint of interface-dependent search fields. The POB is a web-based orthology and annotation visualization tool, which currently supports 20 completely sequenced plant species with considerably large genomes and offers intuitive and highly interactive pairwise comparison and visualization of genomic traits via gene orthology.
Collapse
|
11
|
Gell G, Kovács K, Veres G, Korponay-Szabó IR, Juhász A. Characterization of globulin storage proteins of a low prolamin cereal species in relation to celiac disease. Sci Rep 2017; 7:39876. [PMID: 28051174 PMCID: PMC5209737 DOI: 10.1038/srep39876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022] Open
Abstract
Brachypodium distachyon, a small annual grass with seed storage globulins as primary protein reserves was used in our study to analyse the toxic nature of non-prolamin seed storage proteins related to celiac disease. The main storage proteins of B. distachyon are the 7S globulin type proteins and the 11S, 12S seed storage globulins similar to oat and rice. Immunoblot analyses using serum samples from celiac disease patients were carried out followed by the identification of immune-responsive proteins using mass spectrometry. Serum samples from celiac patients on a gluten-free diet, from patients with Crohn’s disease and healthy subjects, were used as controls. The identified proteins with intense serum-IgA reactivity belong to the 7S and 11–12S seed globulin family. Structure prediction and epitope predictions analyses confirmed the presence of celiac disease-related linear B cell epitope homologs and the presence of peptide regions with strong HLA-DQ8 and DQ2 binding capabilities. These results highlight that both MHC-II presentation and B cell response may be developed not only to prolamins but also to seed storage globulins. This is the first study of the non-prolamin type seed storage proteins of Brachypodium from the aspect of the celiac disease.
Collapse
Affiliation(s)
- Gyöngyvér Gell
- Agricultural Institute, MTA Centre for Agricultural Research, Department of Applied Genomics Martonvásár, HU 2462, Hungary
| | - Krisztina Kovács
- Agricultural Institute, MTA Centre for Agricultural Research, Department of Applied Genomics Martonvásár, HU 2462, Hungary
| | - Gábor Veres
- Semmelweis University of Medicine, 1st Department of Pediatrics, Budapest, HU 1083, Hungary
| | - Ilma R Korponay-Szabó
- Coeliac Disease Center, Heim Pál Children's Hospital, Budapest, HU 1089 and Department of Pediatrics, Clinical Center, University of Debrecen, Debrecen, Hungary
| | - Angéla Juhász
- Agricultural Institute, MTA Centre for Agricultural Research, Department of Applied Genomics Martonvásár, HU 2462, Hungary
| |
Collapse
|
12
|
Subburaj S, Chen G, Han C, Lv D, Li X, Zeller FJ, Hsam SLK, Yan Y. Molecular characterisation and evolution of HMW glutenin subunit genes in Brachypodium distachyon L. J Appl Genet 2013; 55:27-42. [PMID: 24306693 DOI: 10.1007/s13353-013-0187-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/10/2013] [Accepted: 11/19/2013] [Indexed: 01/13/2023]
Abstract
Brachypodium distachyon, a small wild grass within the Pooideae family, is a new model organism for exploring the functional genomics of cereal crops. It was shown to have close relationships to wheat, barley and rice. Here, we describe the molecular characterisation and evolutionary relationships of high molecular weight glutenin subunits (HMW-GS) genes from B. distachyon. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), high performance capillary electrophoresis (HPCE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses demonstrated that there was no HMW-GS expression in the Brachypodium grains due to the silencing of their encoding genes. Through allele-specific polymerase chain reaction (AS-PCR) amplification and cloning, a total of 13 HMW-GS encoding genes from diploid, tetraploid and hexaploid Brachypodium species were obtained, and all of them had typical structural features of y-type HMW-GS genes from common wheat and related species, particularly more similar to the 1Dy12 gene. However, the presence of an in-frame premature stop codon (TAG) at position 1521 in the coding region resulted in the conversion of all the genes to pseudogenes. Further, quantitative real-time PCR (qRT-PCR) analysis revealed that HMW-GS genes in B. distachyon displayed a similar trend, but with a low transcriptional expression profile during grain development due to the occurrence of the stop codon. Phylogenetic analysis showed that the highly conserved Glu-1-2 loci were presented in B. distachyon, which displayed close phylogenetic evolutionary relationships with Triticum and related species.
Collapse
|
13
|
Luo N, Yu X, Liu J, Jiang Y. Nucleotide diversity and linkage disequilibrium in antioxidant genes of Brachypodium distachyon. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 197:122-129. [PMID: 23116679 DOI: 10.1016/j.plantsci.2012.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 06/01/2023]
Abstract
Brachypodium distachyon (Brachypodium) is a powerful model system for studying cereal, bioenergy, forage, and turf grasses. Nucleotide diversity (π) and linkage disequilibrium (LD) in candidate genes involved in the antioxidative pathways in this species are not known. The average π for CAT encoding catalase, GPX encoding glutathione peroxidase, DHAR encoding dehydroascorbate reductase, MDHAR encoding monodehydroascorbate reductase, and APX ecoding ascorbate peroxidase was 0.0027 among 19 accessions contrasting for drought tolerance. The highest value of π was found in APX (0.0046) and the lowest π was in MDHAR (0.0006). The average single nucleotide polymorphism (SNP) frequency across these five genes was one SNP per 131 bp between two randomly sampled sequences for the five genes in the sequence length ranging from 1,447 bp to 1,701 bp. The LD decay was slow and extended to a distance of more than 1.2kb for all genes. The neighbor-joining tree analyses of DHAR, MDHAR, and CAT generally separated accessions differing in drought tolerance. The results indicate a putative role of these candidate genes in increasing general fitness of Brachypodium.
Collapse
Affiliation(s)
- Na Luo
- Institute of Botany, Jiangsu Province & Chinese Academy of Science, Nanjing 210014, China
| | | | | | | |
Collapse
|
14
|
Wang S, Wang K, Chen G, Lv D, Han X, Yu Z, Li X, Ye X, Hsam SLK, Ma W, Appels R, Yan Y. Molecular characterization of LMW-GS genes in Brachypodium distachyon L. reveals highly conserved Glu-3 loci in Triticum and related species. BMC PLANT BIOLOGY 2012; 12:221. [PMID: 23171363 PMCID: PMC3547698 DOI: 10.1186/1471-2229-12-221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/30/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND Brachypodium distachyon L. is a newly emerging model plant system for temperate cereal crop species. However, its grain protein compositions are still not clear. In the current study, we carried out a detailed proteomics and molecular genetics study on grain glutenin proteins in B. distachyon. RESULTS SDS-PAGE and RP-HPLC analysis of grain proteins showed that Brachypodium has few gliadins and high molecular weight glutenin subunits. In contrast the electrophoretic patterns for the albumin, globulin and low molecular weight glutenin subunit (LMW-GS) fractions of the grain protein were similar to those in wheat. In particular, the LMW-C type subunits in Brachypodium were more abundant than the equivalent proteins in common wheat. Southern blotting analysis confirmed that Brachypodium has 4-5 copies of LMW-GS genes. A total of 18 LMW-GS genes were cloned from Brachypodium by allele specific PCR. LMW-GS and 4 deduced amino acid sequences were further confirmed by using Western-blotting and MALDI-TOF-MS. Phylogenetic analysis indicated that Brachypodium was closer to Ae. markgrafii and Ae. umbellulata than to T. aestivum. CONCLUSIONS Brachypodium possessed a highly conserved Glu-3 locus that is closely related to Triticum and related species. The presence of LMW-GS in B. distachyon grains indicates that B. distachyon may be used as a model system for studying wheat quality attributes.
Collapse
Affiliation(s)
- Shunli Wang
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, 100081, Beijing, China
| | - Guanxing Chen
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Dongwen Lv
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Xiaofeng Han
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Zitong Yu
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Xiaohui Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, 100081, Beijing, China
| | - SLK Hsam
- Division of Plant Breeding and Applied Genetics, Technical University of Munich, D-85350, Freising-Weihenstephan, Germany
| | - Wujun Ma
- State Agriculture Biotechnology Centre, Murdoch University; Western Australian Department of Agriculture and Food, Perth, WA, 6150, Australia
| | - Rudi Appels
- State Agriculture Biotechnology Centre, Murdoch University; Western Australian Department of Agriculture and Food, Perth, WA, 6150, Australia
| | - Yueming Yan
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 100048, Beijing, China
| |
Collapse
|
15
|
Giraldo P, Rodríguez-Quijano M, Vázquez JF, Carrillo JM, Benavente E. Validation of microsatellite markers for cytotype discrimination in the model grass Brachypodium distachyon. Genome 2012; 55:523-7. [PMID: 22788413 DOI: 10.1139/g2012-039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brachypodium distachyon (L.) P. Beauv. (2n = 2x = 10) is a small annual grass species where the existence of three different cytotypes (10, 20, and 30 chromosomes) has long been regarded as a case of autopolyploid series with x = 5. However, it has been demonstrated that the cytotypes assumed to be polyploids represent two separate Brachypodium species recently named as Brachypodium stacei (2n = 2x = 20) and Brachypodium hybridum (2n = 4x = 30). The aim of this study was to find a PCR-based alternative approach that could replace standard cytotyping methods (i.e., chromosome counting and flow cytometry) to characterize each of the three Brachypodium species. We have analyzed with four microsatellite (SSR) markers 83 B. distachyon-type lines from varied locations in Spain, including the Balearic and Canary Islands. Within this set of lines, 64, 4, and 15 had 10, 20, and 30 chromosomes, respectively. The surveyed markers produced cytotype-specific SSR profiles. So, a single amplification product was generated in the diploid samples, with nonoverlapping allelic ranges between the 2n = 10 and 2n = 20 cytotypes, whereas two bands, one in the size range of each of the diploid cytotypes, were amplified in the 2n = 30 lines. Furthermore, the remarkable size difference obtained with the SSR ALB165 allowed the identification of the Brachypodium species by simple agarose gel electrophoresis.
Collapse
Affiliation(s)
- Patricia Giraldo
- Departamento de Biotecnología (Genética), Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040-Madrid, Spain.
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Cui Y, Lee MY, Huo N, Bragg J, Yan L, Yuan C, Li C, Holditch SJ, Xie J, Luo MC, Li D, Yu J, Martin J, Schackwitz W, Gu YQ, Vogel JP, Jackson AO, Liu Z, Garvin DF. Fine mapping of the Bsr1 barley stripe mosaic virus resistance gene in the model grass Brachypodium distachyon. PLoS One 2012; 7:e38333. [PMID: 22675544 PMCID: PMC3366947 DOI: 10.1371/journal.pone.0038333] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
The ND18 strain of Barley stripe mosaic virus (BSMV) infects several lines of Brachypodium distachyon, a recently developed model system for genomics research in cereals. Among the inbred lines tested, Bd3-1 is highly resistant at 20 to 25°C, whereas Bd21 is susceptible and infection results in an intense mosaic phenotype accompanied by high levels of replicating virus. We generated an F6∶7 recombinant inbred line (RIL) population from a cross between Bd3-1 and Bd21 and used the RILs, and an F2 population of a second Bd21 × Bd3-1 cross to evaluate the inheritance of resistance. The results indicate that resistance segregates as expected for a single dominant gene, which we have designated Barley stripe mosaic virus resistance 1 (Bsr1). We constructed a genetic linkage map of the RIL population using SNP markers to map this gene to within 705 Kb of the distal end of the top of chromosome 3. Additional CAPS and Indel markers were used to fine map Bsr1 to a 23 Kb interval containing five putative genes. Our study demonstrates the power of using RILs to rapidly map the genetic determinants of BSMV resistance in Brachypodium. Moreover, the RILs and their associated genetic map, when combined with the complete genomic sequence of Brachypodium, provide new resources for genetic analyses of many other traits.
Collapse
Affiliation(s)
- Yu Cui
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
- Department of Plant and Microbiology, University of California, Berkeley, California, United States of America
| | - Mi Yeon Lee
- Department of Plant and Microbiology, University of California, Berkeley, California, United States of America
| | - Naxin Huo
- USDA-ARS Western Regional Research Center, Albany, California, United States of America
| | - Jennifer Bragg
- USDA-ARS Western Regional Research Center, Albany, California, United States of America
| | - Lijie Yan
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Cheng Yuan
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Cui Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Sara J. Holditch
- Department of Plant and Microbiology, University of California, Berkeley, California, United States of America
| | - Jingzhong Xie
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Joel Martin
- US DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - Wendy Schackwitz
- US DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - Yong Qiang Gu
- USDA-ARS Western Regional Research Center, Albany, California, United States of America
| | - John P. Vogel
- USDA-ARS Western Regional Research Center, Albany, California, United States of America
| | - Andrew O. Jackson
- Department of Plant and Microbiology, University of California, Berkeley, California, United States of America
- * E-mail: (AOJ); (ZL)
| | - Zhiyong Liu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
- * E-mail: (AOJ); (ZL)
| | - David F. Garvin
- USDA-ARS Plant Science Research Unit and Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
18
|
Budak H, Akpinar A. Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 15:791-9. [PMID: 22122669 DOI: 10.1089/omi.2011.0073] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a lack of knowledge on the tissue-specific expression of miRNAs in response to dehydration stress in Brachypodium (Brachypodium distachyon (L.) Beauv), a model for temperate grass species. In this study, miRNA expression patterns of drought-tolerant Brachypodium were investigated using the miRNA microarray platform. A total of 205 miRNAs in control and 438 miRNAs in both drought-treated leaf and root tissues were expressed. Seven of the detected Brachypodium miRNAs were dehydration stress responsive. Expression levels of known drought-responsive miRNAs, miR896, and miR1867 were quantified by qRT-PCR in Brachypodium upon 4 h and 8 h dehydration stress applications. This was performed to compare drought responsiveness of miRNAs in closely related species. Target transcripts of selected drought responsive miRNAs, miR170, miR1850, miR896, miR406, miR528, miR390, were computationally predicted. Target transcript of miR896 was verified by retrieving a cleaved miR896 transcript from drought stress-treated leaf samples using a modified 5' RLM-RACE. Brachypodium dehydration responsive miRNA were also detected in barley and wild emmer wheat. Hence, the outcomes highlighted the conserved features of miRNA upon dehydration stress in Triticeae.
Collapse
Affiliation(s)
- Hikmet Budak
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.
| | | |
Collapse
|
19
|
Guillon F, Larré C, Petipas F, Berger A, Moussawi J, Rogniaux H, Santoni A, Saulnier L, Jamme F, Miquel M, Lepiniec L, Dubreucq B. A comprehensive overview of grain development in Brachypodium distachyon variety Bd21. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:739-55. [PMID: 22016425 PMCID: PMC3254678 DOI: 10.1093/jxb/err298] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 05/19/2023]
Abstract
A detailed and comprehensive understanding of seed reserve accumulation is of great importance for agriculture and crop improvement strategies. This work is part of a research programme aimed at using Brachypodium distachyon as a model plant for cereal grain development and filling. The focus was on the Bd21-3 accession, gathering morphological, cytological, and biochemical data, including protein, lipid, sugars, starch, and cell-wall analyses during grain development. This study highlighted the existence of three main developmental phases in Brachypodium caryopsis and provided an extensive description of Brachypodium grain development. In the first phase, namely morphogenesis, the embryo developed rapidly reaching its final morphology about 18 d after fertilization (DAF). Over the same period the endosperm enlarged, finally to occupy 80% of the grain volume. During the maturation phase, carbohydrates were continuously stored, mainly in the endosperm, switching from sucrose to starch accumulation. Large quantities of β-glucans accumulated in the endosperm with local variations in the deposition pattern. Interestingly, new β-glucans were found in Brachypodium compared with other cereals. Proteins (i.e. globulins and prolamins) were found in large quantities from 15 DAF onwards. These proteins were stored in two different sub-cellular structures which are also found in rice, but are unusual for the Pooideae. During the late stage of development, the grain desiccated while the dry matter remained fairly constant. Brachypodium exhibits some significant differences with domesticated cereals. Beta-glucan accumulates during grain development and this cell wall polysaccharide is the main storage carbohydrate at the expense of starch.
Collapse
Affiliation(s)
- F. Guillon
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France
| | - C. Larré
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France
| | - F. Petipas
- UMR1318 INRA-AgroParisTech, INRA, F-78026 Cedex Versailles, France
| | - A. Berger
- UMR1318 INRA-AgroParisTech, INRA, F-78026 Cedex Versailles, France
| | - J. Moussawi
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France
| | - H. Rogniaux
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France
| | - A. Santoni
- UMRLEG, INRA, F-21065 DIJON Cedex, France
| | - L. Saulnier
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44300 Nantes, France
| | - F. Jamme
- Synchrotron SOLEIL, L’Orme des Merisiers. Saint-Aubin, BP 48F-91192 Gif-sur-Yvette Cedex, France
| | - M. Miquel
- UMR1318 INRA-AgroParisTech, INRA, F-78026 Cedex Versailles, France
| | - L. Lepiniec
- UMR1318 INRA-AgroParisTech, INRA, F-78026 Cedex Versailles, France
| | - B. Dubreucq
- UMR1318 INRA-AgroParisTech, INRA, F-78026 Cedex Versailles, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Harper J, Armstead I, Thomas A, James C, Gasior D, Bisaga M, Roberts L, King I, King J. Alien introgression in the grasses Lolium perenne (perennial ryegrass) and Festuca pratensis (meadow fescue): the development of seven monosomic substitution lines and their molecular and cytological characterization. ANNALS OF BOTANY 2011; 107:1313-21. [PMID: 21486927 PMCID: PMC3101149 DOI: 10.1093/aob/mcr083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/11/2011] [Accepted: 03/02/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS To address the issues associated with food security, environmental change and bioenergy in the context of crop plants, the production, identification and evaluation of novel plant phenotypes is fundamental. One of the major routes to this end will be wide hybridization and introgression breeding. The transfer of chromosomes and chromosome segments between related species (chromosome engineering or alien introgression) also provides an important resource for determining the genetic control of target traits. However, the realization of the full potential of chromosome engineering has previously been hampered by the inability to identify and characterize interspecific introgressions accurately. METHODS Seven monosomic substitution lines have been generated comprising Festuca pratensis as the donor species and Lolium perenne as the recipient. Each of the seven lines has a different L. perenne chromosome replaced by the homoeologous F. pratensis chromosome (13 L. perenne + 1 F. pratensis chromosome). Molecular markers and genomic in situ hybridization (GISH) were used to assign the F. pratensis chromosomes introgressed in each of the monosomic substitutions to a specific linkage group. Cytological observations were also carried out on metaphase I of meiosis in each of the substitution lines. RESULTS A significant level of synteny was found at the macro-level between L. perenne and F. pratensis. The observations at metaphase I revealed the presence of a low level of interspecific chromosomal translocations between these species. DISCUSSION The isolation of the seven monosomic substitution lines provides a resource for dissecting the genetic control of important traits and for gene isolation. Parallels between the L. perenne/F. pratensis system and the Pooideae cereals such as wheat, barley, rye, oats and the model grass Brachypodium distachyon present opportunities for a comparison across the species in terms of genotype and phenotype.
Collapse
Affiliation(s)
- John Harper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Ian Armstead
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Ann Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Caron James
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Dagmara Gasior
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Maciej Bisaga
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Luned Roberts
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3HS, UK
| | - Ian King
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Julie King
- Division of Plant and Crop Sciences, School of Biosciences, The University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
21
|
Cao S, Siriwardana CL, Kumimoto RW, Holt BF. Construction of high quality Gateway™ entry libraries and their application to yeast two-hybrid for the monocot model plant Brachypodium distachyon. BMC Biotechnol 2011; 11:53. [PMID: 21595971 PMCID: PMC3239850 DOI: 10.1186/1472-6750-11-53] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/19/2011] [Indexed: 11/25/2022] Open
Abstract
Background Monocots, especially the temperate grasses, represent some of the most agriculturally important crops for both current food needs and future biofuel development. Because most of the agriculturally important grass species are difficult to study (e.g., they often have large, repetitive genomes and can be difficult to grow in laboratory settings), developing genetically tractable model systems is essential. Brachypodium distachyon (hereafter Brachypodium) is an emerging model system for the temperate grasses. To fully realize the potential of this model system, publicly accessible discovery tools are essential. High quality cDNA libraries that can be readily adapted for multiple downstream purposes are a needed resource. Additionally, yeast two-hybrid (Y2H) libraries are an important discovery tool for protein-protein interactions and are not currently available for Brachypodium. Results We describe the creation of two high quality, publicly available Gateway™ cDNA entry libraries and their derived Y2H libraries for Brachypodium. The first entry library represents cloned cDNA populations from both short day (SD, 8/16-h light/dark) and long day (LD, 20/4-h light/dark) grown plants, while the second library was generated from hormone treated tissues. Both libraries have extensive genome coverage (~5 × 107 primary clones each) and average clone lengths of ~1.5 Kb. These entry libraries were then used to create two recombination-derived Y2H libraries. Initial proof-of-concept screens demonstrated that a protein with known interaction partners could readily re-isolate those partners, as well as novel interactors. Conclusions Accessible community resources are a hallmark of successful biological model systems. Brachypodium has the potential to be a broadly useful model system for the grasses, but still requires many of these resources. The Gateway™ compatible entry libraries created here will facilitate studies for multiple user-defined purposes and the derived Y2H libraries can be immediately applied to large scale screening and discovery of novel protein-protein interactions. All libraries are freely available for distribution to the research community.
Collapse
Affiliation(s)
- Shuanghe Cao
- Department of Botany and Microbiology, University of Oklahoma, 770 Van Vleet Oval, GLCH, Room 43, Norman, OK 73019, USA
| | | | | | | |
Collapse
|
22
|
Luo N, Liu J, Yu X, Jiang Y. Natural variation of drought response in Brachypodium distachyon. PHYSIOLOGIA PLANTARUM 2011; 141:19-29. [PMID: 20875057 DOI: 10.1111/j.1399-3054.2010.01413.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Brachypodium distachyon (Brachypodium) is a temperate wild grass species and is a powerful model system for studying grain, energy, forage and turf grasses. Exploring the natural variation in the drought response of Brachypodium provides an important basis for dissecting the genetic network of drought tolerance. Two experiments were conducted in a greenhouse to assess the drought tolerance of 57 natural populations of Brachypodium. Principle component analysis revealed that reductions in chlorophyll fluorescence (Fv/Fm) and leaf water content (LWC) under drought stress explained most of the phenotypic variation, which was used to classify the tolerant and susceptible accessions. Four groups of accessions differing in drought tolerance were identified, with 3 tolerant, 16 moderately tolerant, 32 susceptible and 6 most susceptible accessions. The tolerant group had little leaf wilting and fewer reductions in Fv/Fm and LWC, while the most susceptible groups showed severe leaf wilting and more reductions in Fv/Fm and LWC. Drought stress increased total water soluble sugar (WSS) concentration, but no differences in the increased WSS were found among different groups of accessions. The large phenotypic variation of Brachypodium in response to drought stress can be used to identify genes and alleles important for the complex trait of drought tolerance.
Collapse
Affiliation(s)
- Na Luo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | |
Collapse
|
23
|
Christensen U, Alonso-Simon A, Scheller HV, Willats WGT, Harholt J. Characterization of the primary cell walls of seedlings of Brachypodium distachyon--a potential model plant for temperate grasses. PHYTOCHEMISTRY 2010; 71:62-9. [PMID: 19828160 DOI: 10.1016/j.phytochem.2009.09.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 05/22/2023]
Abstract
The genome of Brachypodium distachyon, also known as purple false brome, was fully sequenced in 2008 largely in response to the demand for a model plant for temperate grasses. A comparative study of the primary cell walls of seedlings of B. distachyon, Hordeum vulgare and Triticum aestivum was carried out. The cell walls of the three species were characterized by similar relative levels of, and developmental changes in, hemicelluloses. The occurrence of (1,3;1,4)-beta-D-glucans was correlated with phases of growth involving cell elongation. Expression profiling of the genes involved in (1,3;1,4)-beta-D-glucan synthesis (cellulose synthase-like F family (CSLF), CSLH and a putative synthase gene CSLJ) did not show a transcriptional regulation that corresponded to the abundance of (1,3;1,4)-beta-D-glucans. CSLF6 transcripts were similarly highly expressed in all three grasses, and were much more abundant than any of the other transcripts. The CSLH transcript was relatively abundant in B. distachyon but almost undetectable in the other species. The deposition of arabinoxylans increased steadily during seedling growth in all three grasses, but they became less substituted and more cross-linked into the wall matrix during cell maturation. Moreover, arabinoxylans in B. distachyon differed from the two other grasses in having a lower degree of arabinose substitution, a higher percentage of ferulic acid in form of dimers and a larger proportion of ester-linked p-coumaric acid.
Collapse
Affiliation(s)
- Ulla Christensen
- University of Copenhagen, Faculty of Life Sciences, Department of Plant Biology and Biotechnology, VKR-Centre ProActive Plants, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
24
|
Gu YQ, Ma Y, Huo N, Vogel JP, You FM, Lazo GR, Nelson WM, Soderlund C, Dvorak J, Anderson OD, Luo MC. A BAC-based physical map of Brachypodium distachyon and its comparative analysis with rice and wheat. BMC Genomics 2009; 10:496. [PMID: 19860896 PMCID: PMC2774330 DOI: 10.1186/1471-2164-10-496] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 10/27/2009] [Indexed: 11/13/2022] Open
Abstract
Background Brachypodium distachyon (Brachypodium) has been recognized as a new model species for comparative and functional genomics of cereal and bioenergy crops because it possesses many biological attributes desirable in a model, such as a small genome size, short stature, self-pollinating habit, and short generation cycle. To maximize the utility of Brachypodium as a model for basic and applied research it is necessary to develop genomic resources for it. A BAC-based physical map is one of them. A physical map will facilitate analysis of genome structure, comparative genomics, and assembly of the entire genome sequence. Results A total of 67,151 Brachypodium BAC clones were fingerprinted with the SNaPshot HICF fingerprinting method and a genome-wide physical map of the Brachypodium genome was constructed. The map consisted of 671 contigs and 2,161 clones remained as singletons. The contigs and singletons spanned 414 Mb. A total of 13,970 gene-related sequences were detected in the BAC end sequences (BES). These gene tags aligned 345 contigs with 336 Mb of rice genome sequence, showing that Brachypodium and rice genomes are generally highly colinear. Divergent regions were mainly in the rice centromeric regions. A dot-plot of Brachypodium contigs against the rice genome sequences revealed remnants of the whole-genome duplication caused by paleotetraploidy, which were previously found in rice and sorghum. Brachypodium contigs were anchored to the wheat deletion bin maps with the BES gene-tags, opening the door to Brachypodium-Triticeae comparative genomics. Conclusion The construction of the Brachypodium physical map, and its comparison with the rice genome sequence demonstrated the utility of the SNaPshot-HICF method in the construction of BAC-based physical maps. The map represents an important genomic resource for the completion of Brachypodium genome sequence and grass comparative genomics. A draft of the physical map and its comparisons with rice and wheat are available at .
Collapse
Affiliation(s)
- Yong Q Gu
- 1Genomics and Gene Discovery Research Unit, USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710,USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Filiz E, Ozdemir BS, Budak F, Vogel JP, Tuna M, Budak H. Molecular, morphological, and cytological analysis of diverse Brachypodium distachyon inbred lines. Genome 2009; 52:876-90. [DOI: 10.1139/g09-062] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brachypodium distachyon (brachypodium) is a small grass with the biological and genomic attributes necessary to serve as a model system for all grasses including small grains and grasses being developed as energy crops (e.g., switchgrass and Miscanthus ). To add natural variation to the toolkit available to plant biologists using brachypodium as a model system, it is imperative to establish extensive, well-characterized germplasm collections. The objectives of this study were to collect brachypodium accessions from throughout Turkey and then characterize the molecular (nuclear and organelle genome), morphological, and cytological variation within the collection. We collected 164 lines from 45 diverse geographic regions of Turkey and created 146 inbred lines. The majority of this material (116 of 146 inbred lines) was diploid. The similarity matrix for the diploid lines based on AFLP analysis indicated extensive diversity, with genetic distances ranging from 0.05 to 0.78. Organelle genome diversity, on the other hand, was low both among and within the lines used in this study. The geographic distribution of genotypes was not significantly correlated with either nuclear or organelle genome variation for the genotypes studied. Phenotypic characterization of the lines showed extensive variation in flowering time (7–22 weeks), seed production (4–193 seeds/plant), and biomass (15–77 g). Chromosome morphology of the collected brachypodium accessions varied from submetacentric to metacentric, except for chromosome 5, which was acrocentric. The diverse brachypodium lines developed in this study will allow experimental approaches dependent upon natural variation to be applied to this new model grass. These results will also help efforts to have a better understanding of complex large genomes (i.e., wheat, barley, and switchgrass).
Collapse
Affiliation(s)
- E. Filiz
- Sabanci University, Biological Science and Bioengineering Program, 34956, Tuzla, Istanbul, Turkey
- Igdir University, Department of Crops Science, Igdir, Turkey
- USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
- Namik Kemal University, Department of Crop Science, Tekirdag, Turkey
| | - B. S. Ozdemir
- Sabanci University, Biological Science and Bioengineering Program, 34956, Tuzla, Istanbul, Turkey
- Igdir University, Department of Crops Science, Igdir, Turkey
- USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
- Namik Kemal University, Department of Crop Science, Tekirdag, Turkey
| | - F. Budak
- Sabanci University, Biological Science and Bioengineering Program, 34956, Tuzla, Istanbul, Turkey
- Igdir University, Department of Crops Science, Igdir, Turkey
- USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
- Namik Kemal University, Department of Crop Science, Tekirdag, Turkey
| | - J. P. Vogel
- Sabanci University, Biological Science and Bioengineering Program, 34956, Tuzla, Istanbul, Turkey
- Igdir University, Department of Crops Science, Igdir, Turkey
- USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
- Namik Kemal University, Department of Crop Science, Tekirdag, Turkey
| | - M. Tuna
- Sabanci University, Biological Science and Bioengineering Program, 34956, Tuzla, Istanbul, Turkey
- Igdir University, Department of Crops Science, Igdir, Turkey
- USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
- Namik Kemal University, Department of Crop Science, Tekirdag, Turkey
| | - H. Budak
- Sabanci University, Biological Science and Bioengineering Program, 34956, Tuzla, Istanbul, Turkey
- Igdir University, Department of Crops Science, Igdir, Turkey
- USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
- Namik Kemal University, Department of Crop Science, Tekirdag, Turkey
| |
Collapse
|
26
|
Unver T, Budak H. Conserved microRNAs and their targets in model grass species Brachypodium distachyon. PLANTA 2009; 230:659-69. [PMID: 19585143 DOI: 10.1007/s00425-009-0974-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 06/18/2009] [Indexed: 05/19/2023]
Abstract
MicroRNAs are small, non-protein-coding RNAs playing regulatory functions in many organisms. Using computational approaches 26 new Brachypodium distachyon miRNAs belonging to 19 miRNA families were identified in expressed sequence tags (EST) and genomic survey sequence databases. EST revealed that predicted miRNAs are expressed in B. distachyon. Detailed nucleotide analyses showed that pre-miRNAs in B. distachyon are in the range of 63-180 nucleotides. Mature miRNAs located in the different positions of precursor RNAs are varied from 19 to 24 nucleotides in length. Quantifying RNAs using realtime PCR (qRT-PCR) analyses validated expression level differences of selected B. distachyon miRNAs. In this study, we detected that the expression level of some of the predicted miRNAs are distinct and some of them are similar in the leaf tissues. In addition, using these miRNAs as queries 27 potential target mRNAs were predicted in B. distachyon NCBI EST database and 246 target mRNA were predicted in NCBI protein-coding nucleotide (mRNA) database of all plant species. The majority of the target mRNAs encode transcription factors regulating plant development, morphology and flowering time. Other newly identified miRNAs target the mRNAs involving metabolic processes, signal transduction and stress response.
Collapse
Affiliation(s)
- Turgay Unver
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | | |
Collapse
|
27
|
Sakuma S, Pourkheirandish M, Matsumoto T, Koba T, Komatsuda T. Duplication of a well-conserved homeodomain-leucine zipper transcription factor gene in barley generates a copy with more specific functions. Funct Integr Genomics 2009; 10:123-33. [PMID: 19707806 PMCID: PMC2834773 DOI: 10.1007/s10142-009-0134-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 07/07/2009] [Accepted: 08/03/2009] [Indexed: 11/29/2022]
Abstract
Three spikelets are formed at each rachis node of the cultivated barley (Hordeum vulgare ssp. vulgare) spike. In two-rowed barley, the central one is fertile and the two lateral ones are sterile, whereas in the six-rowed type, all three are fertile. This characteristic is determined by the allelic constitution at the six-rowed spike 1 (vrs1) locus on the long arm of chromosome 2H, with the recessive allele (vrs1) being responsible for the six-rowed phenotype. The Vrs1 (HvHox1) gene encodes a homeodomain-leucine zipper (HD-Zip) transcription factor. Here, we show that the Vrs1 gene evolved in the Poaceae via a duplication, with a second copy of the gene, HvHox2, present on the short arm of chromosome 2H. Micro-collinearity and polypeptide sequences were both well conserved between HvHox2 and its Poaceae orthologs, but Vrs1 is unique to the barley tribe. The Vrs1 gene product lacks a motif which is conserved among the HvHox2 orthologs. A phylogenetic analysis demonstrated that Vrs1 and HvHox2 must have diverged after the separation of Brachypodium distachyon from the Pooideae and suggests that Vrs1 arose following the duplication of HvHox2, and acquired its new function during the evolution of the barley tribe. HvHox2 was expressed in all organs examined but Vrs1 was predominantly expressed in immature inflorescence.
Collapse
Affiliation(s)
- Shun Sakuma
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
28
|
Vogel JP, Tuna M, Budak H, Huo N, Gu YQ, Steinwand MA. Development of SSR markers and analysis of diversity in Turkish populations of Brachypodium distachyon. BMC PLANT BIOLOGY 2009; 9:88. [PMID: 19594938 PMCID: PMC2719641 DOI: 10.1186/1471-2229-9-88] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 07/13/2009] [Indexed: 05/19/2023]
Abstract
BACKGROUND Brachypodium distachyon (Brachypodium) is rapidly emerging as a powerful model system to facilitate research aimed at improving grass crops for grain, forage and energy production. To characterize the natural diversity of Brachypodium and provide a valuable new tool to the growing list of resources available to Brachypodium researchers, we created and characterized a large, diverse collection of inbred lines. RESULTS We developed 84 inbred lines from eight locations in Turkey. To enable genotypic characterization of this collection, we created 398 SSR markers from BAC end and EST sequences. An analysis of 187 diploid lines from 56 locations with 43 SSR markers showed considerable genotypic diversity. There was some correlation between SSR genotypes and broad geographic regions, but there was also a high level of genotypic diversity at individual locations. Phenotypic analysis of this new germplasm resource revealed considerable variation in flowering time, seed size, and plant architecture. The inbreeding nature of Brachypodium was confirmed by an extremely high level of homozygosity in wild plants and a lack of cross-pollination under laboratory conditions. CONCLUSION Taken together, the inbreeding nature and genotypic diversity observed at individual locations suggest a significant amount of long-distance seed dispersal. The resources developed in this study are freely available to the research community and will facilitate experimental applications based on natural diversity.
Collapse
Affiliation(s)
- John P Vogel
- USDA-ARS, Western Regional Research Center, Albany, CA, USA
| | - Metin Tuna
- Namik Kemal University, Department of Field Crops, Tekirdag, Turkey
| | - Hikmet Budak
- Sabanci University, Biological Science and Bioengineering Program, Istanbul, Turkey
| | - Naxin Huo
- USDA-ARS, Western Regional Research Center, Albany, CA, USA
| | - Yong Q Gu
- USDA-ARS, Western Regional Research Center, Albany, CA, USA
| | | |
Collapse
|
29
|
Mochida K, Yoshida T, Sakurai T, Ogihara Y, Shinozaki K. TriFLDB: a database of clustered full-length coding sequences from Triticeae with applications to comparative grass genomics. PLANT PHYSIOLOGY 2009; 150:1135-46. [PMID: 19448038 PMCID: PMC2705016 DOI: 10.1104/pp.109.138214] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 05/08/2009] [Indexed: 05/19/2023]
Abstract
The Triticeae Full-Length CDS Database (TriFLDB) contains available information regarding full-length coding sequences (CDSs) of the Triticeae crops wheat (Triticum aestivum) and barley (Hordeum vulgare) and includes functional annotations and comparative genomics features. TriFLDB provides a search interface using keywords for gene function and related Gene Ontology terms and a similarity search for DNA and deduced translated amino acid sequences to access annotations of Triticeae full-length CDS (TriFLCDS) entries. Annotations consist of similarity search results against several sequence databases and domain structure predictions by InterProScan. The deduced amino acid sequences in TriFLDB are grouped with the proteome datasets for Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and sorghum (Sorghum bicolor) by hierarchical clustering in stepwise thresholds of sequence identity, providing hierarchical clustering results based on full-length protein sequences. The database also provides sequence similarity results based on comparative mapping of TriFLCDSs onto the rice and sorghum genome sequences, which together with current annotations can be used to predict gene structures for TriFLCDS entries. To provide the possible genetic locations of full-length CDSs, TriFLCDS entries are also assigned to the genetically mapped cDNA sequences of barley and diploid wheat, which are currently accommodated in the Triticeae Mapped EST Database. These relational data are searchable from the search interfaces of both databases. The current TriFLDB contains 15,871 full-length CDSs from barley and wheat and includes putative full-length cDNAs for barley and wheat, which are publicly accessible. This informative content provides an informatics gateway for Triticeae genomics and grass comparative genomics. TriFLDB is publicly available at http://TriFLDB.psc.riken.jp/.
Collapse
|
30
|
Huo N, Vogel JP, Lazo GR, You FM, Ma Y, McMahon S, Dvorak J, Anderson OD, Luo MC, Gu YQ. Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat. PLANT MOLECULAR BIOLOGY 2009; 70:47-61. [PMID: 19184460 DOI: 10.1007/s11103-009-9456-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 01/07/2009] [Indexed: 05/22/2023]
Abstract
Brachypodium distachyon (Brachypodium) has been recently recognized as an emerging model system for both comparative and functional genomics in grass species. In this study, 55,221 repeat masked Brachypodium BAC end sequences (BES) were used for comparative analysis against the 12 rice pseudomolecules. The analysis revealed that approximately 26.4% of BES have significant matches with the rice genome and 82.4% of the matches were homologous to known genes. Further analysis of paired-end BES and approximately 1.0 Mb sequences from nine selected BACs proved to be useful in revealing conserved regions and regions that have undergone considerable genomic changes. Differential gene amplification, insertions/deletions and inversions appeared to be the common evolutionary events that caused variations of microcolinearity at different orthologous genomic regions. It was found that approximately 17% of genes in the two genomes are not colinear in the orthologous regions. Analysis of BAC sequences also revealed higher gene density (approximately 9 kb/gene) and lower repeat DNA content (approximately 13.1%) in Brachypodium when compared to the orthologous rice regions, consistent with the smaller size of the Brachypodium genome. The 119 annotated Brachypodium genes were BLASTN compared against the wheat EST database and deletion bin mapped wheat ESTs. About 77% of the genes retrieved significant matches in the EST database, while 9.2% matched to the bin mapped ESTs. In some cases, genes in single Brachypodium BACs matched to multiple ESTs that were mapped to the same deletion bins, suggesting that the Brachypodium genome will be useful for ordering wheat ESTs within the deletion bins and developing specific markers at targeted regions in the wheat genome.
Collapse
Affiliation(s)
- Naxin Huo
- Genomics and Gene Discovery Research Unit, USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gomez LD, Bristow JK, Statham ER, McQueen-Mason SJ. Analysis of saccharification in Brachypodium distachyon stems under mild conditions of hydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2008; 1:15. [PMID: 18945335 PMCID: PMC2577630 DOI: 10.1186/1754-6834-1-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 10/22/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Brachypodium distachyon constitutes an excellent model species for grasses. It is a small, easily propagated, temperate grass with a rapid life cycle and a small genome. It is a self-fertile plant that can be transformed with high efficiency using Agrobacteria and callus derived from immature embryos. In addition, considerable genetic and genomic resources are becoming available for this species in the form of mapping populations, large expressed sequence tag collections, T-DNA insertion lines and, in the near future, the complete genome sequence. The development of Brachypodium as a model species is of particular value in the areas of cell wall and biomass research, where differences between dicots and grasses are greatest. Here we explore the effect of mild conditions of pretreatment and hydrolysis in Brachypodium stem segments as a contribution for the establishment of sensitive screening of the saccharification properties in different genetic materials. RESULTS The non-cellulosic monosaccharide composition of Brachypodium is closely related to grasses of agricultural importance and significantly different from the dicot model Arabidopsis thaliana. Diluted acid pretreatment of stem segments produced significant release of sugars and negatively affected the amount of sugars obtained by enzymatic hydrolysis. Monosaccharide and oligosaccharide analysis showed that the hemicellulose fraction is the main target of the enzymatic activity under the modest hydrolytic conditions used in our assays. Scanning electron microscopy analysis of the treated materials showed progressive exposure of fibrils in the stem segments. CONCLUSION Results presented here indicate that under mild conditions cellulose and hemicellulose are hydrolysed to differing extents, with hemicellulose hydrolysis predominating. We anticipate that the sub-optimal conditions for hydrolysis identified here will provide a sensitive assay to detect variations in saccharification among Brachypodium plants, providing a useful analytical tool for identifying plants with alterations in this trait.
Collapse
Affiliation(s)
- Leonardo D Gomez
- CNAP, Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | - Jennifer K Bristow
- CNAP, Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | - Emily R Statham
- CNAP, Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | | |
Collapse
|