1
|
Agrawal M, Mani A. Integrative in silico approaches to analyse microRNA-mediated responses in human diseases. J Gene Med 2024; 26:e3734. [PMID: 39197943 DOI: 10.1002/jgm.3734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Advancements in sequencing technologies have facilitated omics level information generation for various diseases in human. High-throughput technologies have become a powerful tool to understand differential expression studies and transcriptional network analysis. An understanding of complex transcriptional networks in human diseases requires integration of datasets representing different RNA species including microRNA (miRNA) and messenger RNA (mRNA). This review emphasises on conceptual explanation of generalized workflow and methodologies to the miRNA mediated responses in human diseases by using different in silico analysis. Although, there have been many prior explorations in miRNA-mediated responses in human diseases, the advantages, limitations and overcoming the limitation through different statistical techniques have not yet been discussed. This review focuses on miRNAs as important gene regulators in human diseases, methodologies for miRNA-target gene prediction and data driven methods for enrichment and network analysis for miRnome-targetome interactions. Additionally, it proposes an integrative workflow to analyse structural components of networks obtained from high-throughput data. This review explains how to apply the existing methods to analyse miRNA-mediated responses in human diseases. It addresses unique characteristics of different analysis, its limitations and its statistical solutions influencing the choice of methods for the analysis through a workflow. Moreover, it provides an overview of promising common integrative approaches to comprehend miRNA-mediated gene regulatory events in biological processes in humans. The proposed methodologies and workflow shall help in the analysis of multi-source data to identify molecular signatures of various human diseases.
Collapse
Affiliation(s)
- Meghna Agrawal
- Department of Biotechnology, Motilal Nehru Institute of Technology Allahabad, Prayagraj, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
2
|
Do VQ, Hoang-Thi C, Pham TT, Bui NL, Kim DT, Chu DT. Computational tools supporting known miRNA identification. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:225-242. [PMID: 38360000 DOI: 10.1016/bs.pmbts.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The study of small RNAs is a field that is expanding quickly. Other functional short RNA molecules other than microRNAs, and gene expression regulators, have been found in animals and plants. MicroRNAs play a significant role in host-microbe interactions, and parasite microRNAs may affect the host's innate immunity. Furthermore, short RNAs are intriguing non-invasive biomarker possibilities because they can be found in physiological fluids. These trends suggest that for many researchers, quick and simple techniques for expression profiling and subsequent downstream analysis of miRNA-seq data are crucial. We selected sRNAtoolbox to make integrated sRNA research easier. Each tool can be used separately or to explore and analyze sRNAbench results in further depth. A special focus was placed on the tools' usability. We review available miRNA research tools to have an overview of the evaluation of the tools. Mainly we evaluate the tool sRNAtoolbox.
Collapse
Affiliation(s)
- Van-Quy Do
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam; Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Chuc Hoang-Thi
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam; Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Thanh-Truong Pham
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam; Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Nhat-Le Bui
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam; Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Thai Kim
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Dinh-Toi Chu
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam; Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
3
|
Yu T, Li X, Coates BS, Zhang Q, Siegfried BD, Zhou X. microRNA profiling between Bacillus thuringiensis Cry1Ab-susceptible and -resistant European corn borer, Ostrinia nubilalis (Hübner). INSECT MOLECULAR BIOLOGY 2018; 27:279-294. [PMID: 29451334 DOI: 10.1111/imb.12376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transgenic maize hybrids that express insecticidal Bacillus thuringiensis (Bt) crystalline (Cry) protein toxins effectively protect against the European corn borer, Ostrinia nubilalis, a devastating maize pest. Field monitoring and laboratory selections have detected varying levels of O. nubilalis resistance to Cry1Ab toxin. MicroRNAs (miRNAs) are short noncoding RNAs that are involved in post-transcriptional gene regulation. Their potential roles in the evolution of Bt resistance, however, remain largely unknown. Sequencing of small RNA libraries from the midgut of Cry1Ab-susceptible and resistant O. nubilalis larvae resulted in the discovery of 277 miRNAs, including 248 conserved and 29 novel. Comparative analyses of miRNA expression profiles between the laboratory strains predicted 26 and nine significantly up- and down-regulated transcripts, respectively, in the midgut of Cry1Ab resistant larvae. Amongst 15 differentially regulated miRNAs examined by quantitative real-time PCR, nine (60%) were validated as cosegregating with Cry1Ab resistance in a backcross progeny. Differentially expressed miRNAs were predicted to affect transcripts involved in cell membrane components with functions in metabolism and binding, and the putative Bt-resistance genes aminopeptidase N and cadherin. These results lay the foundation for future investigation of the potential role of miRNAs in the evolution of Bt resistance.
Collapse
Affiliation(s)
- T Yu
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - X Li
- Department of Entomology, University of Kentucky, Lexington, KY, USA
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - B-S Coates
- Corn Insects & Crop Genetics Research Unit, USDA-ARS, Ames, IA, USA
| | - Q Zhang
- Department of Entomology, University of Kentucky, Lexington, KY, USA
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - B-D Siegfried
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - X Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
4
|
Yang Q, Cao W, Wang Z, Zhang B, Liu J. Regulation of cancer immune escape: The roles of miRNAs in immune checkpoint proteins. Cancer Lett 2018; 431:73-84. [PMID: 29800685 DOI: 10.1016/j.canlet.2018.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/01/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
Immune checkpoint proteins (ICPs) are regulators of immune system. The ICP dysregulation silences the host immune response to cancer-specific antigens, contributing to the occurrence and progress of various cancers. MiRNAs are regulatory molecules and function in mRNA silencing and post-transcriptional regulation of gene expression. MiRNAs that modulate the immunity via ICPs have received increasing attention. Many studies have shown that the expressions of ICPs are directly or indirectly repressed by miRNAs in multiple types of cancers. MiRNAs are also subject to regulation by ICPs. In this review, recent studies of the relationship between miRNAs and ICPs (including the PD-1, PD-L1, CTLA-4, ICOS, B7-1, B7-2, B7-H2, B7-H3, CD27, CD70, CD40, and CD40L) in cancer immune escape are comprehensively discussed, which provide critical detailed mechanistic insights into the functions of the miRNA-ICP axes and their effects on immune escape, and will be beneficial for the potential applications of immune checkpoint therapy and miRNA-based guidance for personalized medicine as well as for predicting the prognosis.
Collapse
Affiliation(s)
- Qin Yang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China; School of Medical Laboratory, Shao Yang University, Hunan Province, 422000, China
| | - Wenjie Cao
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China; Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, 410013, China
| | - Zi Wang
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China; Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Zhang
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, 410013, China.
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
5
|
Liu CC, Cheng JT, Li TY, Tan PH. Integrated analysis of microRNA and mRNA expression profiles in the rat spinal cord under inflammatory pain conditions. Eur J Neurosci 2017; 46:2713-2728. [DOI: 10.1111/ejn.13745] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Chien Cheng Liu
- Department of Biological Sciences; National Sun Yat-sen University; No. 70 Lienhai Rd. Gushan Dist. Kaohsiung City 80424 Taiwan
- Department of Anesthesiology; E-Da Hospital/I-Shou University; Kaohsiung City Taiwan
| | - Jiin Tsuey Cheng
- Department of Biological Sciences; National Sun Yat-sen University; No. 70 Lienhai Rd. Gushan Dist. Kaohsiung City 80424 Taiwan
| | - Tien Yui Li
- Department of Anesthesiology; E-Da Hospital/I-Shou University; Kaohsiung City Taiwan
| | - Ping Heng Tan
- Department of Anesthesiology; Chi Mei Medical Center; No. 901 Zhonghua Rd. Yongkang Dist. Tainan City 71004 Taiwan
| |
Collapse
|
6
|
İnal B, Büyük İ, İlhan E, Aras S. Genome-wide analysis of Phaseolus vulgaris C2C2-YABBY transcription factors under salt stress conditions. 3 Biotech 2017; 7:302. [PMID: 28955602 DOI: 10.1007/s13205-017-0933-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/29/2017] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to identify and characterize the C2C2-YABBY family of genes by a genome-wide scale in common bean. Various in silico approaches were used for the study and the results were confirmed through common molecular biology techniques. Quantitative real-time PCR (qPCR) analysis was performed for identified putative PvulYABBY genes in leaf and root tissues of two common bean cultivars, namely Yakutiye and Zulbiye under salt stress condition. Eight candidate PvulYABBY proteins were discovered and the length of these proteins ranged from 173 to 256 amino acids. The isoelectric points (pIs) of YABBY proteins were between 5.18 and 9.34 and ranged from acidic to alkaline, and the molecular weight of PvulYABBYs were between 18978.4 and 28916.8 Da. Three segmentally duplicated gene couples among the identified eight PvulYABBY genes were detected. These segmentally duplicated gene couples were PvulYABBY-1/PvulYABBY-3, PvulYABBY-5/PvulYABBY-7 and PvulYABBY-6/PvulYABBY-8. The predicted number of exons among the PvulYABBY genes varied from 6 to 8 exons. Additionally, all genes found included introns within ORFs. PvulYABBY-2, -4, -5 and -7 genes were targeted by miRNAs of five plant species and a total of five miRNA families (miR5660, miR1157, miR5769, miR5286 and miR8120) were detected. According to RNA-seq analysis, all genes were up- or down-regulated except for PvulYABBY-1 and PvulYABBY-6 after salt stress treatment in leaf and root tissues of common bean. According to the qPCR analysis, six out of eight genes were expressed in the leaves but only four out of eight genes were expressed in the roots and these genes exhibited tissue- and cultivar-specific expression patterns.
Collapse
|
7
|
Felli C, Baldassarre A, Masotti A. Intestinal and Circulating MicroRNAs in Coeliac Disease. Int J Mol Sci 2017; 18:ijms18091907. [PMID: 28878141 PMCID: PMC5618556 DOI: 10.3390/ijms18091907] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play a key role in the pathogenesis of autoimmune and gastrointestinal diseases. Previous studies have revealed that miRNAs are dysregulated in intestinal biopsies of patients affected by coeliac disease (CD). Combined bioinformatics analyses of miRNA expression profiles and mRNA target genes as classified by Gene Ontology, are powerful tools to investigate the functional role of miRNAs in coeliac disease. However, little is still known about the function of circulating miRNAs, their expression level compared to tissue miRNAs, and whether the mechanisms of post-transcriptional regulation are the same of tissue miRNAs. In any case, if we assume that a cell-cell communication process has to occur, and that circulating miRNAs are delivered to recipient cells, we can derive useful information by performing target predictions. Interestingly, all of the mRNA targets of dysregulated miRNAs reported in the literature (i.e., miR-31-5p, miR-192, miR-194, miR-449a and miR-638) belong to several important biological processes, such as Wnt signaling, cell proliferation and differentiation, and adherens junction pathways. Although we think that these predictions have to be necessarily confirmed by “wet-lab” data, the miRNAs dysregulated during the development of CD could be potentially involved in the pathogenesis of coeliac disease and their correlation with circulating miRNAs offers new possibilities to use them as disease biomarkers.
Collapse
Affiliation(s)
- Cristina Felli
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, V.le di San Paolo 15, 00146 Rome, Italy.
| | - Antonella Baldassarre
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, V.le di San Paolo 15, 00146 Rome, Italy.
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, V.le di San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
8
|
Computational Prediction of MicroRNA Target Genes, Target Prediction Databases, and Web Resources. Methods Mol Biol 2017; 1617:109-122. [PMID: 28540680 DOI: 10.1007/978-1-4939-7046-9_8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNA (miRNA) mediated silencing and repression of mRNA molecules requires complementary base pairing between the "seed" region of the miRNA and the "seed match" region of target mRNAs. While this mechanism is fairly well understood, accurate prediction of valid miRNA targets remains challenging due to factors such as imperfect sequence specificity, target site availability, and the thermodynamic stability of the mRNA structure itself. As knowledge of what genes are being targeted by each miRNA is arguably the most important facet of miRNA biology, many approaches have been developed to address the need for reliable prediction and ranking of putative targets, with most using a combination of various strategies such as evolutionary conservation, statistical inference, and distinct features of the target sequences themselves. This chapter reviews the pros and cons of a number of different prediction algorithms, showcases some databases that store experimentally validated miRNA targets, and also provides a case study that profiles some of the potential microRNA-mRNA interactions predicted by each methodology for various human genes.
Collapse
|
9
|
Chen J, Zheng Y, Qin L, Wang Y, Chen L, He Y, Fei Z, Lu G. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis. BMC PLANT BIOLOGY 2016; 16:80. [PMID: 27068118 PMCID: PMC4828810 DOI: 10.1186/s12870-016-0770-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/06/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs), a class of non-coding small RNAs (sRNAs), regulate various biological processes. Although miRNAs have been identified and characterized in several plant species, miRNAs in Asparagus officinalis have not been reported. As a dioecious plant with homomorphic sex chromosomes, asparagus is regarded as an important model system for studying mechanisms of plant sex determination. RESULTS Two independent sRNA libraries from male and female asparagus plants were sequenced with Illumina sequencing, thereby generating 4.13 and 5.88 million final clean reads, respectively. Both libraries predominantly contained 24-nt sRNAs, followed by 21-nt sRNAs. Further analysis identified 154 conserved miRNAs, which belong to 26 families, and 39 novel miRNA candidates seemed to be specific to asparagus. Comparative profiling revealed that 63 miRNAs exhibited significant differential expression between male and female plants, which was confirmed by real-time quantitative PCR analysis. Among them, 37 miRNAs were significantly up-regulated in the female library, whereas the others were preferentially expressed in the male library. Furthermore, 40 target mRNAs representing 44 conserved and seven novel miRNAs were identified in asparagus through high-throughput degradome sequencing. Functional annotation showed that these target mRNAs were involved in a wide range of developmental and metabolic processes. CONCLUSIONS We identified a large set of conserved and specific miRNAs and compared their expression levels between male and female asparagus plants. Several asparagus miRNAs, which belong to the miR159, miR167, and miR172 families involved in reproductive organ development, were differentially expressed between male and female plants, as well as during flower development. Consistently, several predicted targets of asparagus miRNAs were associated with floral organ development. These findings suggest the potential roles of miRNAs in sex determination and reproductive developmental processes in asparagus.
Collapse
Affiliation(s)
- Jingli Chen
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| | - Yi Zheng
- />Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, New York 14853 USA
| | - Li Qin
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| | - Yan Wang
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| | - Lifei Chen
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| | - Yanjun He
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| | - Zhangjun Fei
- />Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, New York 14853 USA
- />USDA Robert W. Holley Center for Agriculture and Health, Tower Road Ithaca, New York, 14853 USA
| | - Gang Lu
- />Key Laboratory of Horticultural Plant Growth, Development and Biotechnology, Agricultural Ministry of China, Department of Horticulture, Zhejiang University, Hangzhou, 310058 PR China
| |
Collapse
|
10
|
Muhammad SA, Fatima N, Syed NIH, Wu X, Yang XF, Chen JY. MicroRNA Expression Profiling of Human Respiratory Epithelium Affected by Invasive Candida Infection. PLoS One 2015; 10:e0136454. [PMID: 26313489 PMCID: PMC4551683 DOI: 10.1371/journal.pone.0136454] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/03/2015] [Indexed: 11/18/2022] Open
Abstract
Invasive candidiasis is potentially life-threatening systemic fungal infection caused by Candida albicans (C. albicans). Candida enters the blood stream and disseminate throughout the body and it is often observed in hospitalized patients, immunocompromised individuals or those with chronic diseases. This infection is opportunistic and risk starts with the colonization of C. albicans on mucocutaneous surfaces and respiratory epithelium. MicroRNAs (miRNAs) are small non-coding RNAs which are involved in the regulation of virtually every cellular process. They regulate and control the levels of mRNA stability and post-transcriptional gene expression. Aberrant expression of miRNAs has been associated in many disease states, and miRNA-based therapies are in progress. In this study, we investigated possible variations of miRNA expression profiles of respiratory epithelial cells infected by invasive Candida species. For this purpose, respiratory epithelial tissues of infected individuals from hospital laboratory were accessed before their treatment. Invasive Candida infection was confirmed by isolation of Candia albicans from the blood cultures of the same infected individuals. The purity of epithelial tissues was assessed by flow cytometry (FACSCalibur cytometer; BD Biosciences, Heidelberg, Germany) using statin antibody (S-44). TaqMan quantitative real-time PCR (in a TaqMan Low Density Array format) was used for miRNA expression profiling. MiRNAs investigated, the levels of expression of 55 miRNA were significantly altered in infected tissues. Some miRNAs showed dramatic increase (miR-16-1) or decrease of expression (miR-17-3p) as compared to control. Gene ontology enrichment analysis of these miRNA-targeted genes suggests that Candidal infection affect many important biological pathways. In summary, disturbance in miRNA expression levels indicated the change in cascade of pathological processes and the regulation of respiratory epithelial functions following invasive Candidal infection. These findings contribute to our understanding of host cell response to Candidal systemic infections.
Collapse
Affiliation(s)
- Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University (BZU), Multan, Pakistan
| | - Nighat Fatima
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | | | - Xiaogang Wu
- Institute for Systems Biology (ISB), Seattle, WA, United States of America
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Jake Y Chen
- Indiana Center for Systems Biology and Personalized Medicine, Indiana University-Purdue University, Indianapolis, IN, United States of America; School of Informatics and Computing, Indiana University, Indianapolis, IN, United States of America; Department of Computer and Information Science, School of Science Purdue University, Indianapolis, IN, United States of America; Institute of Biopharmaceutical Informatics and Technology, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
11
|
Song J, Lee JE. miR-155 is involved in Alzheimer's disease by regulating T lymphocyte function. Front Aging Neurosci 2015; 7:61. [PMID: 25983691 PMCID: PMC4415416 DOI: 10.3389/fnagi.2015.00061] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 04/09/2015] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is considered the most common cause of sporadic dementia. In AD, adaptive and innate immune responses play a crucial role in clearance of amyloid beta and maintenance of cognitive functions. In addition to other changes in the immune system, AD alters the T-cell responses that affect activation of glial cells, neuronal cells, macrophages, and secretion of pro-inflammatory cytokines. These changes in the immune system influence AD pathogenesis. Micro-RNA (miRNA)-155 is a multifunctional miRNA with a distinct expression profile. It is involved in diverse physiological and pathological mechanisms, such as immunity and inflammation. Recent studies indicate that miR-155 regulates T-cell functions during inflammation. In this article, we summarize recent studies describing the therapeutic potential of miR-155 via regulation of T cells in AD. Further, we propose that regulation of miR-155 might be a new protective approach against AD pathogenesis.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine Seoul, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine Seoul, South Korea ; Brain Korea 21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine Seoul, South Korea
| |
Collapse
|
12
|
Barichievy S, Naidoo J, Mhlanga MM. Non-coding RNAs and HIV: viral manipulation of host dark matter to shape the cellular environment. Front Genet 2015; 6:108. [PMID: 25859257 PMCID: PMC4374539 DOI: 10.3389/fgene.2015.00108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
On October 28th 1943 Winston Churchill said “we shape our buildings, and afterward our buildings shape us” (Humes, 1994). Churchill was pondering how and when to rebuild the British House of Commons, which had been destroyed by enemy bombs on May 10th 1941. The old House had been small and insufficient to hold all its members, but was restored to its original form in 1950 in order to recapture the “convenience and dignity” that the building had shaped into its parliamentary members. The circular loop whereby buildings or dwellings are shaped and go on to shape those that reside in them is also true of pathogens and their hosts. As obligate parasites, pathogens need to alter their cellular host environments to ensure survival. Typically pathogens modify cellular transcription profiles and in doing so, the pathogen in turn is affected, thereby closing the loop. As key orchestrators of gene expression, non-coding RNAs provide a vast and extremely precise set of tools for pathogens to target in order to shape the cellular environment. This review will focus on host non-coding RNAs that are manipulated by the infamous intracellular pathogen, the human immunodeficiency virus (HIV). We will briefly describe both short and long host non-coding RNAs and discuss how HIV gains control of these factors to ensure widespread dissemination throughout the host as well as the establishment of lifelong, chronic infection.
Collapse
Affiliation(s)
- Samantha Barichievy
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa ; Discovery Sciences, Research & Development, AstraZeneca, Mölndal Sweden
| | - Jerolen Naidoo
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa
| | - Musa M Mhlanga
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa ; Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon Portugal
| |
Collapse
|
13
|
Han K, Li J, Zhao H, Liang P, Huang X, Zheng L, Li Y, Yang T, Wang L. Identification of the typical miRNAs and target genes in hepatocellular carcinoma. Mol Med Rep 2014; 10:229-35. [PMID: 24789420 DOI: 10.3892/mmr.2014.2194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 02/06/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to identify miRNAs that were differentially expressed in hepatocellular carcinoma (HCC) by comparing normal and cancer tissue samples and to analyze the correlation of the target genes and HCC. The gene expression profile of GSE31383 was downloaded from the Gene Expression Omnibus database, including 19 samples, 9 normal and 10 from HCC tissue samples. The differentially‑expressed miRNAs were identified with packages in R language and further analyzed using bioinformatics methods. Firstly, the verified targets of miRNAs were integrated in two miRNA databases: miRecords and miRTarBase, and the targets of the differentially‑expressed miRNAs were obtained. The software STRING was then used to construct the interaction network of target genes. Finally, a functional enrichment analysis of the genes in the interaction network was conducted using the software Gestalt. Typical miR‑224 and miR‑214 were identified by comparing normal and cancer samples, each of which obtained 14 and 8 target genes, respectively. The functional enrichment analysis of the targets in the two groups highlighted the intracellular signaling cascade. In conclusion, the featured miRNAs (the upregulated miRNA‑224 and downregulated miRNA‑214) and their target genes are significant in the occurrence and development of HCC, which is likely to be significant for the identification of therapeutic targets and biomarkers to aid in the treatment of HCC.
Collapse
Affiliation(s)
- Keqiang Han
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Hongzhi Zhao
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Ping Liang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Xiaobing Huang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Yuming Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Tonghan Yang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| | - Liang Wang
- Department of Hepatobiliary Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
14
|
MicroRNAs in nonalcoholic fatty liver disease: novel biomarkers and prognostic tools during the transition from steatosis to hepatocarcinoma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:741465. [PMID: 24745023 PMCID: PMC3972908 DOI: 10.1155/2014/741465] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/11/2014] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a metabolic-related disorder ranging from steatosis to steatohepatitis, which may progress to cirrhosis and hepatocellular carcinoma (HCC). The influence of NAFLD on HCC development has drawn attention in recent years. HCC is one of the most common malignant tumors and the third highest cause of cancer-related death. HCC is frequently diagnosed late in the disease course, and patient's prognosis is usually poor. Early diagnosis and identification of the correct stage of liver damage during NAFLD progression can contribute to more effective therapeutic interventions, improving patient outcomes. Therefore, scientists are always searching for new sensitive and reliable markers that could be analysed through minimally invasive tests. MicroRNAs are short noncoding RNAs that act as posttranscriptional regulators of gene expression. Several studies identified specific miRNA expression profiles associated to different histological features of NAFLD. Thus, miRNAs are receiving growing attention as useful noninvasive diagnostic markers to follow the progression of NAFLD and to identify novel therapeutic targets. This review focuses on the current knowledge of the miRNAs involved in NAFLD and related HCC development, highlighting their diagnostic and prognostic value for the screening of NAFLD patients.
Collapse
|
15
|
Chen X, Shen L, Chou HH. MicroRNA-target binding structures mimic microRNA duplex structures in humans. PLoS One 2014; 9:e88806. [PMID: 24551166 PMCID: PMC3923817 DOI: 10.1371/journal.pone.0088806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Traditionally, researchers match a microRNA guide strand to mRNA sequences using sequence comparisons to predict its potential target genes. However, many of the predictions can be false positives due to limitations in sequence comparison alone. In this work, we consider the association of two related RNA structures that share a common guide strand: the microRNA duplex and the microRNA-target binding structure. We have analyzed thousands of such structure pairs and found many of them share high structural similarity. Therefore, we conclude that when predicting microRNA target genes, considering just the microRNA guide strand matches to gene sequences may not be sufficient--the microRNA duplex structure formed by the guide strand and its companion passenger strand must also be considered. We have developed software to translate RNA binding structure into encoded representations, and we have also created novel automatic comparison methods utilizing such encoded representations to determine RNA structure similarity. Our software and methods can be utilized in the other RNA secondary structure comparisons as well.
Collapse
Affiliation(s)
- Xi Chen
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Lu Shen
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hui-Hsien Chou
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- Department of Computer Science, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
16
|
The miRNA-mediated cross-talk between transcripts provides a novel layer of posttranscriptional regulation. ADVANCES IN GENETICS 2014; 85:149-99. [PMID: 24880735 DOI: 10.1016/b978-0-12-800271-1.00003-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Endogenously expressed transcripts that are posttranscriptionally regulated by the same microRNAs (miRNAs) will, in principle, compete for the binding of their shared small noncoding RNA regulators and modulate each other's abundance. Recently, the levels of some coding as well as noncoding transcripts have indeed been found to be regulated in this way. Transcripts that engage in such regulatory interactions are referred to as competitive endogenous RNAs (ceRNAs). This novel layer of posttranscriptional regulation has been shown to contribute to diverse aspects of organismal and cellular biology, despite the number of functionally characterized ceRNAs being as yet relatively low. Importantly, increasing evidence suggests that the dysregulation of some ceRNA interactions is associated with disease etiology, most preeminently with cancer. Here we review how posttranscriptional regulation by miRNAs contributes to the cross-talk between transcripts and review examples of known ceRNAs by highlighting the features underlying their interactions and what might be their biological relevance.
Collapse
|
17
|
ElHefnawi M, Soliman B, Abu-Shahba N, Amer M. An integrative meta-analysis of microRNAs in hepatocellular carcinoma. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:354-67. [PMID: 24287119 PMCID: PMC4357785 DOI: 10.1016/j.gpb.2013.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 09/14/2013] [Accepted: 11/14/2013] [Indexed: 02/08/2023]
Abstract
We aimed to shed new light on the roles of microRNAs (miRNAs) in liver cancer using an integrative in silico bioinformatics analysis. A new protocol for target prediction and functional analysis is presented and applied to the 26 highly differentially deregulated miRNAs in hepatocellular carcinoma. This framework comprises: (1) the overlap of prediction results by four out of five target prediction tools, including TargetScan, PicTar, miRanda, DIANA-microT and miRDB (combining machine-learning, alignment, interaction energy and statistical tests in order to minimize false positives), (2) evidence from previous microarray analysis on the expression of these targets, (3) gene ontology (GO) and pathway enrichment analysis of the miRNA targets and their pathways and (4) linking these results to oncogenesis and cancer hallmarks. This yielded new insights into the roles of miRNAs in cancer hallmarks. Here we presented several key targets and hundreds of new targets that are significantly enriched in many new cancer-related hallmarks. In addition, we also revealed some known and new oncogenic pathways for liver cancer. These included the famous MAPK, TGFβ and cell cycle pathways. New insights were also provided into Wnt signaling, prostate cancer, axon guidance and oocyte meiosis pathways. These signaling and developmental pathways crosstalk to regulate stem cell transformation and implicate a role of miRNAs in hepatic stem cell deregulation and cancer development. By analyzing their complete interactome, we proposed new categorization for some of these miRNAs as either tumor-suppressors or oncomiRs with dual roles. Therefore some of these miRNAs may be addressed as therapeutic targets or used as therapeutic agents. Such dual roles thus expand the view of miRNAs as active maintainers of cellular homeostasis.
Collapse
Affiliation(s)
- Mahmoud ElHefnawi
- Centre of Excellence for Advanced Sciences, Informatics and Systems Department, National Research Centre, Cairo 12622, Egypt.
| | - Bangli Soliman
- Centre of Excellence for Advanced Sciences, Informatics and Systems Department, National Research Centre, Cairo 12622, Egypt
| | - Nourhan Abu-Shahba
- Stem Cells Research Group, Centre of Excellence for Advanced Sciences, Medical Molecular Genetics Department, National Research Centre, Cairo 12622, Egypt
| | - Marwa Amer
- Biology Department, American University in Cairo (AUC), New Cairo 11211, Egypt; Faculty of Biotechnology, Misr University for Science and Technology (MUST), 6th of October City 16432, Egypt
| |
Collapse
|
18
|
Lemaire J, Mkannez G, Guerfali FZ, Gustin C, Attia H, Sghaier RM, Dellagi K, Laouini D, Renard P. MicroRNA expression profile in human macrophages in response to Leishmania major infection. PLoS Negl Trop Dis 2013; 7:e2478. [PMID: 24098824 PMCID: PMC3789763 DOI: 10.1371/journal.pntd.0002478] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 08/30/2013] [Indexed: 12/31/2022] Open
Abstract
Background Leishmania (L.) are intracellular protozoan parasites able to survive and replicate in the hostile phagolysosomal environment of infected macrophages. They cause leishmaniasis, a heterogeneous group of worldwide-distributed affections, representing a paradigm of neglected diseases that are mainly embedded in impoverished populations. To establish successful infection and ensure their own survival, Leishmania have developed sophisticated strategies to subvert the host macrophage responses. Despite a wealth of gained crucial information, these strategies still remain poorly understood. MicroRNAs (miRNAs), an evolutionarily conserved class of endogenous 22-nucleotide non-coding RNAs, are described to participate in the regulation of almost every cellular process investigated so far. They regulate the expression of target genes both at the levels of mRNA stability and translation; changes in their expression have a profound effect on their target transcripts. Methodology/Principal Findings We report in this study a comprehensive analysis of miRNA expression profiles in L. major-infected human primary macrophages of three healthy donors assessed at different time-points post-infection (three to 24 h). We show that expression of 64 out of 365 analyzed miRNAs was consistently deregulated upon infection with the same trends in all donors. Among these, several are known to be induced by TLR-dependent responses. GO enrichment analysis of experimentally validated miRNA-targeted genes revealed that several pathways and molecular functions were disturbed upon parasite infection. Finally, following parasite infection, miR-210 abundance was enhanced in HIF-1α-dependent manner, though it did not contribute to inhibiting anti-apoptotic pathways through pro-apoptotic caspase-3 regulation. Conclusions/Significance Our data suggest that alteration in miRNA levels likely plays an important role in regulating macrophage functions following L. major infection. These results could contribute to better understanding of the dynamics of gene expression in host cells during leishmaniasis. Leishmania parasites belong to different species, each one characterized by specific vectors and reservoirs, and causes cutaneous or visceral disease(s) of variable clinical presentation and severity. In its mammalian host, the parasite is an obligate intracellular pathogen infecting the monocyte/macrophage lineage. Leishmania have developed ambiguous relationships with macrophages. Indeed, these cells are the shelter of invading parasites, where they will grow and eventually will reside in a silent state for life. But macrophages are also the cells that participate, through the induction of several pro-inflammatory mediators and antigen presentation, to shape the host immune response and ultimately kill the invader. To subvert these anti-parasite responses, Leishmania manipulate the host machinery for their own differentiation and survival. We aimed to evaluate the impact of L. major (the causative agent of zoonotic cutaneous leishmaniasis) infection on deregulation of non-coding miRNAs, a class of important regulators of gene expression. Our results revealed the implication of several miRNAs on macrophage fate upon parasite infection through regulation of different pathways, including cell death. Our findings provided a new insight for understanding mechanisms governing this miRNA deregulation by parasite infection and will help to provide clues for the development of control strategies for this disease.
Collapse
Affiliation(s)
- Julien Lemaire
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS-University of Namur, Namur, Belgium
| | - Ghada Mkannez
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Fatma Z. Guerfali
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Cindy Gustin
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS-University of Namur, Namur, Belgium
| | - Hanène Attia
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Rabiaa M. Sghaier
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | | | - Koussay Dellagi
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
- Institut de Recherche pour le Développement (IRD) et Centre de Recherche et de Veille sur les Maladies Emergentes dans l'Océan Indien (CRVOI), Sainte Clotilde, Reunion Island, France
| | - Dhafer Laouini
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
- * E-mail: , (DL); (PR)
| | - Patricia Renard
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS-University of Namur, Namur, Belgium
- * E-mail: , (DL); (PR)
| |
Collapse
|
19
|
De novo assembly of the sea cucumber Apostichopus japonicus hemocytes transcriptome to identify miRNA targets associated with skin ulceration syndrome. PLoS One 2013; 8:e73506. [PMID: 24069201 PMCID: PMC3772007 DOI: 10.1371/journal.pone.0073506] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/19/2013] [Indexed: 11/21/2022] Open
Abstract
Background Denovo transcriptome sequencing is a robust method of predicting miRNA target genes, especially samples without reference genomes. Differentially expressed miRNAs have been previously identified in hemocytes collected from healthy skin and from skin affected by skin ulceration syndrome (SUS) in Apostichopusjaponicus. Target identification for these differentially expressed miRNAs is a major challenge for this non-model organism. Methodology/Principal Findings To thoroughly understand the function of miRNAs, a normalized cDNA library was sequenced with the Illumina Hiseq2000 technology. A total of 91,098,474 clean reads corresponding to 251,148 unigenes, each with an average length of 494bp, were obtained. Blastx analysis against a nonredundant (nr) NCBI protein database revealed that in this set, 52,680 unigenes coded for 3,893 annotated proteins. Two digital gene expression (DGE) libraries from healthy and SUS samples showed that 4,858 of the unigenes were expressed at significantly different levels; 2,163 were significantly up-regulated, while 2,695 were significantly down-regulated. The computational prediction of miRNA targets from these differentially expressed genes identified 732 unigenes as the targets of 57 conserved and 8 putative novel miRNA families, including spu-miRNA-31 and spu-miRNA-2008. Conclusion This study demonstrates the feasibility of identifying miRNA targets by transcriptome analysis. The DGE assembly data represent a substantial increase in the genomic resources available for this species and will provide insights into the gene expression profile analysis and the miRNAs function annotations of further studies.
Collapse
|
20
|
Rebolledo-Mendez JD, Vaishnav RA, Cooper NG, Friedland RP. Cross-kingdom sequence similarities between human micro-RNAs and plant viruses. Commun Integr Biol 2013; 6:e24951. [PMID: 24228136 PMCID: PMC3821693 DOI: 10.4161/cib.24951] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/06/2013] [Indexed: 12/13/2022] Open
Abstract
Micro-RNAs regulate the expression of cellular and tissue phenotypes at a post-transcriptional level through a complex process involving complementary interactions between micro-RNAs and messenger-RNAs. Similar nucleotide interactions have been shown to occur as cross-kingdom events; for example, between plant viruses and plant micro-RNAs and also between animal viruses and animal micro-RNAs. In this study, this view is expanded to look for cross-kingdom similarities between plant virus and human micro-RNA sequences. A method to identify significant nucleotoide sequence similarities between plant viruses and hsa micro-RNAs was created. Initial analyses demonstrate that plant viruses contain nucleotide sequences which exactly match the seed sequences of human micro-RNAs in both parallel and anti-parallel directions. For example, the bean common mosaic virus strain NL4 from Colombia contains sequences that match exactly the seed sequence for micro-RNA of the hsa-mir-1226 in the parallel direction, which suggests a cross-kingdom conservation. Similarly, the rice yellow stunt viral cRNA contains a sequence that is an exact match in the anti-parallel direction to the seed sequence of hsa-micro-RNA let-7b. The functional implications of these results need to be explored. The finding of these cross-kingdom sequence similarities is a useful starting point in support of bench level investigations.
Collapse
Affiliation(s)
| | - Radhika A Vaishnav
- Department of Neurology; University of Louisville, KY USA
- Department of Physiology and Biophysics; University of Louisville, KY USA
| | - Nigel G Cooper
- Department of Anatomical Science and Neurobiology; University of Louisville, KY USA
| | | |
Collapse
|
21
|
Radfar H, Wong W, Morris Q. BayMiR: inferring evidence for endogenous miRNA-induced gene repression from mRNA expression profiles. BMC Genomics 2013; 14:592. [PMID: 24001276 PMCID: PMC3933272 DOI: 10.1186/1471-2164-14-592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/22/2013] [Indexed: 11/10/2022] Open
Abstract
Background Popular miRNA target prediction techniques use sequence features to determine the functional miRNA target sites. These techniques commonly ignore the cellular conditions in which miRNAs interact with their targets in vivo. Gene expression data are rich resources that can complement sequence features to take into account the context dependency of miRNAs. Results We introduce BayMiR, a new computational method, that predicts the functionality of potential miRNA target sites using the activity level of the miRNAs inferred from genome-wide mRNA expression profiles. We also found that mRNA expression variation can be used as another predictor of functional miRNA targets. We benchmarked BayMiR, the expression variation, Cometa, and the TargetScan “context scores” on two tasks: predicting independently validated miRNA targets and predicting the decrease in mRNA abundance in miRNA overexpression assays. BayMiR performed better than all other methods in both benchmarks and, surprisingly, the variation index performed better than Cometa and some individual determinants of the TargetScan context scores. Furthermore, BayMiR predicted miRNA target sets are more consistently annotated with GO and KEGG terms than similar sized random subsets of genes with conserved miRNA seed regions. BayMiR gives higher scores to target sites residing near the poly(A) tail which strongly favors mRNA degradation using poly(A) shortening. Our work also suggests that modeling multiplicative interactions among miRNAs is important to predict endogenous mRNA targets. Conclusions We develop a new computational method for predicting the target mRNAs of miRNAs. BayMiR applies a large number of mRNA expression profiles and successfully identifies the mRNA targets and miRNA activities without using miRNA expression data. The BayMiR package is publicly available and can be readily applied to any mRNA expression data sets.
Collapse
Affiliation(s)
| | | | - Quaid Morris
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Kumar P, Dezso Z, MacKenzie C, Oestreicher J, Agoulnik S, Byrne M, Bernier F, Yanagimachi M, Aoshima K, Oda Y. Circulating miRNA biomarkers for Alzheimer's disease. PLoS One 2013; 8:e69807. [PMID: 23922807 PMCID: PMC3726785 DOI: 10.1371/journal.pone.0069807] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/12/2013] [Indexed: 12/13/2022] Open
Abstract
A minimally invasive diagnostic assay for early detection of Alzheimer's disease (AD) is required to select optimal patient groups in clinical trials, monitor disease progression and response to treatment, and to better plan patient clinical care. Blood is an attractive source for biomarkers due to minimal discomfort to the patient, encouraging greater compliance in clinical trials and frequent testing. MiRNAs belong to the class of non-coding regulatory RNA molecules of ∼22 nt length and are now recognized to regulate ∼60% of all known genes through post-transcriptional gene silencing (RNAi). They have potential as useful biomarkers for clinical use because of their stability and ease of detection in many tissues, especially blood. Circulating profiles of miRNAs have been shown to discriminate different tumor types, indicate staging and progression of the disease and to be useful as prognostic markers. Recently their role in neurodegenerative diseases, both as diagnostic biomarkers as well as explaining basic disease etiology has come into focus. Here we report the discovery and validation of a unique circulating 7-miRNA signature (hsa-let-7d-5p, hsa-let-7g-5p, hsa-miR-15b-5p, hsa-miR-142-3p, hsa-miR-191-5p, hsa-miR-301a-3p and hsa-miR-545-3p) in plasma, which could distinguish AD patients from normal controls (NC) with >95% accuracy (AUC of 0.953). There was a >2 fold difference for all signature miRNAs between the AD and NC samples, with p-values<0.05. Pathway analysis, taking into account enriched target mRNAs for these signature miRNAs was also carried out, suggesting that the disturbance of multiple enzymatic pathways including lipid metabolism could play a role in AD etiology.
Collapse
Affiliation(s)
- Pavan Kumar
- Eisai Inc, Biomarkers and Personalized Medicine Core Function Unit, Eisai Product Creation Systems, Andover, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wu CT, Chiou CY, Chiu HC, Yang UC. Fine-tuning of microRNA-mediated repression of mRNA by splicing-regulated and highly repressive microRNA recognition element. BMC Genomics 2013; 14:438. [PMID: 23819653 PMCID: PMC3708814 DOI: 10.1186/1471-2164-14-438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 06/11/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND MicroRNAs are very small non-coding RNAs that interact with microRNA recognition elements (MREs) on their target messenger RNAs. Varying the concentration of a given microRNA may influence the expression of many target proteins. Yet, the expression of a specific target protein can be fine-tuned by alternative cleavage and polyadenylation to the corresponding mRNA. RESULTS This study showed that alternative splicing of mRNA is a fine-tuning mechanism in the cellular regulatory network. The splicing-regulated MREs are often highly repressive MREs. This phenomenon was observed not only in the hsa-miR-148a-regulated DNMT3B gene, but also in many target genes regulated by hsa-miR-124, hsa-miR-1, and hsa-miR-181a. When a gene contains multiple MREs in transcripts, such as the VEGF gene, the splicing-regulated MREs are again the highly repressive MREs. Approximately one-third of the analysable human MREs in MiRTarBase and TarBase can potentially perform the splicing-regulated fine-tuning. Interestingly, the high (+30%) repression ratios observed in most of these splicing-regulated MREs indicate associations with functions. For example, the MRE-free transcripts of many oncogenes, such as N-RAS and others may escape microRNA-mediated suppression in cancer tissues. CONCLUSIONS This fine-tuning mechanism revealed associations with highly repressive MRE. Since high-repression MREs are involved in many important biological phenomena, the described association implies that splicing-regulated MREs are functional. A possible application of this observed association is in distinguishing functionally relevant MREs from predicted MREs.
Collapse
Affiliation(s)
- Cheng-Tao Wu
- Institute of Biomedical Informatics, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC
- Biomedical Technology and Device Research Labs (BDL), Industrial Technology Research Institute (ITRI), No.195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu 31040, Taiwan, ROC
| | - Chien-Ying Chiou
- Center for Systems and Synthetic Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC
| | - Ho-Chen Chiu
- Institute of Biomedical Informatics, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC
| | - Ueng-Cheng Yang
- Institute of Biomedical Informatics, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC
- Center for Systems and Synthetic Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei 11221, Taiwan, ROC
- Bioinformatics Consortium of Taiwan core facility, Taipei, Taiwan, ROC
| |
Collapse
|
24
|
Rijlaarsdam MA, Rijlaarsdam DJ, Gillis AJM, Dorssers LCJ, Looijenga LHJ. miMsg: a target enrichment algorithm for predicted miR–mRNA interactions based on relative ranking of matched expression data. Bioinformatics 2013; 29:1638-46. [DOI: 10.1093/bioinformatics/btt246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
25
|
Naifang S, Minping Q, Minghua D. Integrative Approaches for microRNA Target Prediction: Combining Sequence Information and the Paired mRNA and miRNA Expression Profiles. Curr Bioinform 2013; 8:37-45. [PMID: 23467572 PMCID: PMC3583062 DOI: 10.2174/1574893611308010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/01/2012] [Accepted: 05/10/2012] [Indexed: 11/30/2022]
Abstract
Gene regulation is a key factor in gaining a full understanding of molecular biology. microRNA (miRNA), a novel class of non-coding RNA, has recently been found to be one crucial class of post-transactional regulators, and play important roles in cancer. One essential step to understand the regulatory effect of miRNAs is the reliable prediction of their target mRNAs. Typically, the predictions are solely based on the sequence information, which unavoidably have high false detection rates. Recently, some novel approaches are developed to predict miRNA targets by integrating the typical algorithm with the paired expression profiles of miRNA and mRNA. Here we review and discuss these integrative approaches and propose a new algorithm called HCTarget. Applying HCtarget to the expression data in multiple myeloma, we predict target genes for ten specific miRNAs. The experimental verification and a loss of function study validate our predictions. Therefore, the integrative approach is a reliable and effective way to predict miRNA targets, and could improve our comprehensive understanding of gene regulation.
Collapse
Affiliation(s)
- Su Naifang
- LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China ; Beijing International Center for Mathematical Research, Peking University, Beijing 100871, P.R. China
| | | | | |
Collapse
|
26
|
Abstract
microRNAs (miRNAs) are small endogenous non-coding RNAs that function as the universal specificity factors in post-transcriptional gene silencing. Discovering miRNAs, identifying their targets and further inferring miRNA functions have been a critical strategy for understanding normal biological processes of miRNAs and their roles in the development of disease. In this review, we focus on computational methods of inferring miRNA functions, including miRNA functional annotation and inferring miRNA regulatory modules, by integrating heterogeneous data sources. We also briefly introduce the research in miRNA discovery and miRNA-target identification with an emphasis on the challenges to computational biology.
Collapse
Affiliation(s)
- Bing Liu
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, University Drive, Callaghan NSW 2308, Australia.
| | | | | |
Collapse
|
27
|
Herpes simplex virus is equipped with RNA- and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunity. J Virol 2012; 86:10093-102. [PMID: 22787211 DOI: 10.1128/jvi.00930-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intrinsic immunity is a first-line intracellular defense against virus infection, and viruses have evolved mechanisms to counteract it. During herpes simplex virus (HSV) infection, nuclear domain 10 (ND10) components localize adjacent to incoming viral genomes and generate a repressive environment for viral gene expression. Here, we found that the ND10 component, alpha-thalassemia/mental retardation syndrome X-linked (ATRX) protein, is predicted to be a target of HSV-1 miR-H1 and HSV-2 miR-H6. These microRNAs (miRNAs) share a seed sequence and are abundant during lytic infection. Mimics of both miRNAs could deplete endogenous ATRX, and an miR-H1 mimic could repress the expression of a reporter linked to the 3' untranslated region of ATRX mRNA, identifying a cellular mRNA targeted by an HSV miRNA. Interestingly, ATRX protein and its mRNA were depleted in cells lytically infected with HSV, and ATRX protein was also depleted in cells infected with human cytomegalovirus. However, infection with an HSV-1 mutant lacking miR-H1 still resulted in ATRX depletion. This depletion was sensitive to a proteasome inhibitor and was largely ablated by a deletion of the gene encoding the immediate-early ICP0 protein. Additionally, a deletion of the gene encoding the tegument protein Vhs ablated most of the depletion of ATRX mRNA. Thus, HSV is equipped with multiple mechanisms to limit the expression of ATRX. As ATRX is implicated in repression of lytic viral gene expression, our results suggest roles for these different mechanisms during various phases of HSV infection.
Collapse
|
28
|
Wang H, Tan G, Dong L, Cheng L, Li K, Wang Z, Luo H. Circulating MiR-125b as a marker predicting chemoresistance in breast cancer. PLoS One 2012; 7:e34210. [PMID: 22523546 PMCID: PMC3327688 DOI: 10.1371/journal.pone.0034210] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 02/28/2012] [Indexed: 12/13/2022] Open
Abstract
Background Chemotherapy is an important component in the treatment paradigm for breast cancers. However, the resistance of cancer cells to chemotherapeutic agents frequently results in the subsequent recurrence and metastasis. Identification of molecular markers to predict treatment outcome is therefore warranted. The aim of the present study was to evaluate whether expression of circulating microRNAs (miRNAs) can predict clinical outcome in breast cancer patients treated with adjuvant chemotherapy. Methodology/Principal Findings Circulating miRNAs in blood serum prior to treatment were determined by quantitative Real-Time PCR in 56 breast cancer patients with invasive ductal carcinoma and pre-operative neoadjuvant chemotherapy. Proliferating cell nuclear antigen (PCNA) immunostaining and TUNEL were performed in surgical samples to determine the effects of chemotherapy on cancer cell proliferation and apoptosis, respectively. Among the miRNAs tested, only miR-125b was significantly associated with therapeutic response, exhibiting higher expression level in non-responsive patients (n = 26, 46%; p = 0.008). In addition, breast cancers with high miR-125b expression had higher percentage of proliferating cells and lower percentage of apoptotic cells in the corresponding surgical specimens obtained after neoadjuvant chemotherapy. Increased resistance to anticancer drug was observed in vitro in breast cancer cells with ectopic miR-125b expression; conversely, reducing miR-125b level sensitized breast cancer cells to chemotherapy. Moreover, we demonstrated that the E2F3 was a direct target of miR-125b in breast cancer cells. Conclusions/Significance These data suggest that circulating miR-125b expression is associated with chemotherapeutic resistance of breast cancer. This finding has important implications in the development of targeted therapeutics for overcoming chemotherapeutic resistance in novel anti-cancer strategies.
Collapse
Affiliation(s)
- Hongjiang Wang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Masotti A, Alisi A. Integrated bioinformatics analysis of microRNA expression profiles for an in-depth understanding of pathogenic mechanisms in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2012; 27:187-8. [PMID: 22260279 DOI: 10.1111/j.1440-1746.2011.07032.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
A probabilistic approach to microRNA-target binding. Biochem Biophys Res Commun 2011; 413:111-5. [PMID: 21875575 DOI: 10.1016/j.bbrc.2011.08.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 08/14/2011] [Indexed: 12/21/2022]
Abstract
Elucidation of microRNA activity is a crucial step in understanding gene regulation. One key problem in this effort is how to model the pairwise interactions of microRNAs with their targets. As this interaction is strongly mediated by their sequences, it is desired to set-up a probabilistic model to explain the binding preferences between a microRNA sequence and the sequence of a putative target. To this end, we introduce a new model of microRNA-target binding, which transforms an aligned duplex to a new sequence and defines the likelihood of this sequence using a Variable Length Markov Chain. It offers a complementary representation of microRNA-mRNA pairs for microRNA target prediction tools or other probabilistic frameworks of integrative gene regulation analysis. The performance of present model is evaluated by its ability to predict microRNA-target mRNA interaction given a mature microRNA sequence and a putative mRNA binding site. In regard to classification accuracy, it outperforms two recent methods based on thermodynamic stability and sequence complementarity. The experiments can also unveil the effects of base pairing types and non-seed region in duplex formation.
Collapse
|
31
|
Gonzalez-Ibeas D, Blanca J, Donaire L, Saladié M, Mascarell-Creus A, Cano-Delgado A, Garcia-Mas J, Llave C, Aranda MA. Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC Genomics 2011; 12:393. [PMID: 21812964 PMCID: PMC3163571 DOI: 10.1186/1471-2164-12-393] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/03/2011] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Melon (Cucumis melo L.) is a commercially important fruit crop that is cultivated worldwide. The melon research community has recently benefited from the determination of a complete draft genome sequence and the development of associated genomic tools, which have allowed us to focus on small RNAs (sRNAs). These are short, non-coding RNAs 21-24 nucleotides in length with diverse physiological roles. In plants, they regulate gene expression and heterochromatin assembly, and control protection against virus infection. Much remains to be learned about the role of sRNAs in melon. RESULTS We constructed 10 sRNA libraries from two stages of developing ovaries, fruits and photosynthetic cotyledons infected with viruses, and carried out high-throughput pyrosequencing. We catalogued and analysed the melon sRNAs, resulting in the identification of 26 known miRNA families (many conserved with other species), the prediction of 84 melon-specific miRNA candidates, the identification of trans-acting siRNAs, and the identification of chloroplast, mitochondrion and transposon-derived sRNAs. In silico analysis revealed more than 400 potential targets for the conserved and novel miRNAs. CONCLUSION We have discovered and analysed a large number of conserved and melon-specific sRNAs, including miRNAs and their potential target genes. This provides insight into the composition and function of the melon small RNAome, and paves the way towards an understanding of sRNA-mediated processes that regulate melon fruit development and melon-virus interactions.
Collapse
Affiliation(s)
- Daniel Gonzalez-Ibeas
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS) - CSIC, Apdo. correos 164, 30100 Espinardo (Murcia), Spain
| | - José Blanca
- Departamento de Biotecnología, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV) - UPV, Camino de Vera s/n, 46022 Valencia, Spain
| | - Livia Donaire
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas (CIB) - CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Montserrat Saladié
- IRTA, Center for Research in Agricultural Genomics CSIC-IRTA-UAB, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 (Barcelona), Spain
| | - Albert Mascarell-Creus
- Molecular Genetics Department, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 (Barcelona), Spain
| | - Ana Cano-Delgado
- Molecular Genetics Department, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 (Barcelona), Spain
| | - Jordi Garcia-Mas
- IRTA, Center for Research in Agricultural Genomics CSIC-IRTA-UAB, Campus UAB, Edifici CRAG, Bellaterra (Cerdanyola del Vallès), 08193 (Barcelona), Spain
| | - Cesar Llave
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas (CIB) - CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Miguel A Aranda
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS) - CSIC, Apdo. correos 164, 30100 Espinardo (Murcia), Spain
| |
Collapse
|
32
|
Culpan D, Kehoe PG, Love S. Tumour necrosis factor-α (TNF-α) and miRNA expression in frontal and temporal neocortex in Alzheimer's disease and the effect of TNF-α on miRNA expression in vitro. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2011; 2:156-162. [PMID: 21686130 PMCID: PMC3110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/21/2011] [Indexed: 05/30/2023]
Abstract
Micro-RNAs (miRNAs) are short non-coding RNAs capable of regulating gene expression at the translational level. A number of studies have suggested that the expression of several miRNAs is changed in AD. The pro-inflammatory cytokine tumour necrosis factor-a (TNF-α) is increased in serum and CSF in AD. We measured the expression of TNFA and several AD candidate gene-associated miRNAs (let7a/b, miR-128a/b, miR-27a/b, miR-155) in frontal and temporal neocortex from AD and control brains. The expression of these miRNAs was also measured after incubating non-differentiated (NDC) and retinoic acid -differentiated (DC) SH-SY5Y neuroblastoma cells with TNF-α. TNFA expression was similar in AD and control brains but miR-128a/b levels were significantly reduced in the temporal cortex and miR-128b in the frontal cortex in AD. MiRNA levels did not correlate with TNFA expression in brain tissue but exposure of NDC and DC SH-SY5Y cells to TNF-α caused a variable dose-dependent response in the level of some of the miRNAs studied. Our brain tissue findings argue against a role for TNF-α in influencing the expression of these miRNAs in AD.
Collapse
Affiliation(s)
- Doris Culpan
- Dementia Research Group, School of Clinical Sciences, University of Bristol, John James Buildings, Frenchay Hospital Frenchay, Bristol, BS16 1LE, United Kingdom
| | | | | |
Collapse
|
33
|
Shah MS, Schwartz SL, Zhao C, Davidson LA, Zhou B, Lupton JR, Ivanov I, Chapkin RS. Integrated microRNA and mRNA expression profiling in a rat colon carcinogenesis model: effect of a chemo-protective diet. Physiol Genomics 2011; 43:640-54. [PMID: 21406606 DOI: 10.1152/physiolgenomics.00213.2010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have recently demonstrated that nutritional bioactives (fish oil and pectin) modulate microRNA molecular switches in the colon. Since integrated analysis of microRNA and mRNA expression at an early stage of colon cancer development is lacking, in this study, four computational approaches were utilized to test the hypothesis that microRNAs and their posttranscriptionally regulated mRNA targets, i.e., both total mRNAs and actively translated mRNA transcripts, are differentially modulated by carcinogen and diet treatment. Sprague-Dawley rats were fed diets containing corn oil ± fish oil with pectin ± cellulose and injected with azoxymethane or saline (control). Colonic mucosa was assayed at an early time of cancer progression, and global gene set enrichment analysis was used to obtain those microRNAs significantly enriched by the change in expression of their putative target genes. In addition, cumulative distribution function plots and functional network analyses were used to evaluate the impact of diet and carcinogen combination on mRNA levels induced via microRNA alterations. Finally, linear discriminant analysis was used to identify the best single-, two-, and three-microRNA combinations for classifying dietary effects and colon tumor development. We demonstrate that polysomal profiling is tightly related to microRNA changes when compared with total mRNA profiling. In addition, diet and carcinogen exposure modulated a number of microRNAs (miR-16, miR-19b, miR-21, miR26b, miR27b, miR-93, and miR-203) linked to canonical oncogenic signaling pathways. Complementary gene expression analyses showed that oncogenic PTK2B, PDE4B, and TCF4 were suppressed by the chemoprotective diet at both the mRNA and protein levels.
Collapse
Affiliation(s)
- Manasvi S Shah
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
MicroRNAs (miRNAs) are ancient, short noncoding RNA molecules that regulate the transcriptome through post-transcriptional mechanisms. miRNA riboregulation is involved in a diverse range of biological processes, and misregulation is implicated in disease. It is generally thought that miRNAs function to canalize cellular outputs, for instance as “fail-safe” repressors of gene misexpression. Genomic surveys in humans have revealed reduced genetic polymorphism and the signature of negative selection for both miRNAs themselves and the target sequences to which they are predicted to bind. We investigated the evolution of miRNAs and their binding sites across cichlid fishes from Lake Malawi (East Africa), where hundreds of diverse species have evolved in the last million years. Using low-coverage genome sequence data, we identified 100 cichlid miRNA genes with mature regions that are highly conserved in other animal species. We computationally predicted target sites on the 3′-untranslated regions (3′-UTRs) of cichlid genes to which miRNAs may bind and found that these sites possessed elevated single nucleotide polymorphism (SNP) densities. Furthermore, polymorphic sites in predicted miRNA targets showed higher minor allele frequencies on average and greater genetic differentiation between Malawi lineages when compared with a neutral expectation and nontarget 3′-UTR SNPs. Our data suggest that divergent selection on miRNA riboregulation may have contributed to the diversification of cichlid species and may similarly play a role in rapid phenotypic evolution of other natural systems.
Collapse
Affiliation(s)
- Yong-Hwee E Loh
- School of Biology, Georgia Institute of Technology, Georgia, USA
| | | | | |
Collapse
|
35
|
Dhuruvasan K, Sivasubramanian G, Pellett PE. Roles of host and viral microRNAs in human cytomegalovirus biology. Virus Res 2010; 157:180-92. [PMID: 20969901 DOI: 10.1016/j.virusres.2010.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 02/02/2023]
Abstract
Human cytomegalovirus (HCMV) has a relatively large and complex genome, a protracted lytic replication cycle, and employs a strategy of replicational latency as part of its lifelong persistence in the infected host. An important form of gene regulation in plants and animals revolves around a type of small RNA known as microRNA (miRNA). miRNAs can serve as major regulators of key developmental pathways, as well as provide subtle forms of regulatory control. The human genome encodes over 900 miRNAs, and miRNAs are also encoded by some viruses, including HCMV, which encodes at least 14 miRNAs. Some of the HCMV miRNAs are known to target both viral and cellular genes, including important immunomodulators. In addition to expressing their own miRNAs, infections with some viruses, including HCMV, can result in changes in the expression of cellular miRNAs that benefit virus replication. In this review, we summarize the connections between miRNAs and HCMV biology. We describe the nature of miRNA genes, miRNA biogenesis and modes of action, methods for studying miRNAs, HCMV-encoded miRNAs, effects of HCMV infection on cellular miRNA expression, roles of miRNAs in HCMV biology, and possible HCMV-related diagnostic and therapeutic applications of miRNAs.
Collapse
Affiliation(s)
- Kavitha Dhuruvasan
- Department of Immunology and Microbiology, Wayne State University School of Medicine, 540 East Canfield Avenue, 6225 Scott Hall, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
36
|
Jin H, Tuo W, Lian H, Liu Q, Zhu XQ, Gao H. Strategies to identify microRNA targets: new advances. N Biotechnol 2010; 27:734-8. [PMID: 20888440 DOI: 10.1016/j.nbt.2010.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/23/2010] [Accepted: 09/22/2010] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) are small regulatory RNA molecules functioning to modulate gene expression at the post-transcriptional level, and playing an important role in many developmental and physiological processes. Ten thousand miRNAs have been discovered in various organisms. Although considerable progress has been made in computational methodology to identify miRNA targets, most predicted miRNA targets may be false positive. Due to the lack of effective tools to identify miRNA targets, the study of miRNAs is seriously retarded. In recent years, some molecular cloning strategies of miRNA targets have been developed, including RT-PCR using miRNAs as endogenous primers, labeled miRNA pull-down assay (LAMP) and RNA ligase-mediated amplification of cDNA end (RLM-RACE). The identified miRNA targets should be further validated via effects of miRNA alteration on the target protein levels and bioactivity. This review summarizes advances in strategies to identify miRNA targets and methods by which miRNA targets are validated.
Collapse
Affiliation(s)
- Hongtao Jin
- Institute of Military Veterinary, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130062, Jilin Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Computational Identification of Novel MicroRNAs and Their Targets in Vigna unguiculata. Comp Funct Genomics 2010. [PMID: 20811611 PMCID: PMC2929582 DOI: 10.1155/2010/128297] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 06/28/2010] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous, noncoding, short RNAs directly involved in regulating gene expression at the posttranscriptional level. High conservation of miRNAs in plant provides the foundation for identification of new miRNAs in other plant species through homology alignment. Here, previous known plant miRNAs were BLASTed against the Expressed Sequence Tag (EST) and Genomic Survey Sequence (GSS) databases of Vigna unguiculata, and according to a series of filtering criteria, a total of 47 miRNAs belonging to 13 miRNA families were identified, and 30 potential target genes of them were subsequently predicted, most of which seemed to encode transcription factors or enzymes participating in regulation of development, growth, metabolism, and other physiological processes. Overall, our findings lay the foundation for further researches of miRNAs function in Vigna unguiculata.
Collapse
|
38
|
Bak RO, Mikkelsen JG. Regulation of cytokines by small RNAs during skin inflammation. J Biomed Sci 2010; 17:53. [PMID: 20594301 PMCID: PMC2905360 DOI: 10.1186/1423-0127-17-53] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/01/2010] [Indexed: 02/08/2023] Open
Abstract
Intercellular signaling by cytokines is a vital feature of the innate immune system. In skin, an inflammatory response is mediated by cytokines and an entwined network of cellular communication between T-cells and epidermal keratinocytes. Dysregulated cytokine production, orchestrated by activated T-cells homing to the skin, is believed to be the main cause of psoriasis, a common inflammatory skin disorder. Cytokines are heavily regulated at the transcriptional level, but emerging evidence suggests that regulatory mechanisms that operate after transcription play a key role in balancing the production of cytokines. Herein, we review the nature of cytokine signaling in psoriasis with particular emphasis on regulation by mRNA destabilizing elements and the potential targeting of cytokine-encoding mRNAs by miRNAs. The proposed linkage between mRNA decay mediated by AU-rich elements and miRNA association is described and discussed as a possible general feature of cytokine regulation in skin. Moreover, we describe the latest attempts to therapeutically target cytokines at the RNA level in psoriasis by exploiting the cellular RNA interference machinery. The applicability of cytokine-encoding mRNAs as future clinical drug targets is evaluated, and advances and obstacles related to topical administration of RNA-based drugs targeting the cytokine circuit in psoriasis are described.
Collapse
Affiliation(s)
- Rasmus O Bak
- Department of Human Genetics, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
39
|
Pérez-Quintero ÁL, Neme R, Zapata A, López C. Plant microRNAs and their role in defense against viruses: a bioinformatics approach. BMC PLANT BIOLOGY 2010; 10:138. [PMID: 20594353 PMCID: PMC3017820 DOI: 10.1186/1471-2229-10-138] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 07/01/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND microRNAs (miRNAs) are non-coding short RNAs that regulate gene expression in eukaryotes by translational inhibition or cleavage of complementary mRNAs. In plants, miRNAs are known to target mostly transcription factors and are implicated in diverse aspects of plant growth and development. A role has been suggested for the miRNA pathway in antiviral defense in plants. In this work, a bioinformatics approach was taken to test whether plant miRNAs from six species could have antiviral activity by targeting the genomes of plant infecting viruses. RESULTS All plants showed a repertoire of miRNAs with potential for targeting viral genomes. The viruses were targeted by abundant and conserved miRNA families in regions coding for cylindrical inclusion proteins, capsid proteins, and nuclear inclusion body proteins. The parameters for our predicted miRNA:target pairings in the viral genomes were similar to those for validated targets in the plant genomes, indicating that our predicted pairings might behave in-vivo as natural miRNa-target pairings. Our screening was compared with negative controls comprising randomly generated miRNAs, animal miRNAs, and genomes of animal-infecting viruses. We found that plant miRNAs target plant viruses more efficiently than any other sequences, but also, miRNAs can either preferentially target plant-infecting viruses or target any virus without preference. CONCLUSIONS Our results show a strong potential for antiviral activity of plant miRNAs and suggest that the miRNA pathway may be a support mechanism to the siRNA pathway in antiviral defense.
Collapse
Affiliation(s)
- Álvaro L Pérez-Quintero
- Universidad Nacional de Colombia, Bogotá, Departamento de Biología, Oficina 222. Calle 45 Cra 30. Bogota D.C. Colombia
| | - Rafik Neme
- Universidad Nacional de Colombia, Bogotá, Departamento de Biología, Oficina 222. Calle 45 Cra 30. Bogota D.C. Colombia
| | - Andrés Zapata
- Universidad Nacional de Colombia, Bogotá, Departamento de Biología, Oficina 222. Calle 45 Cra 30. Bogota D.C. Colombia
| | - Camilo López
- Universidad Nacional de Colombia, Bogotá, Departamento de Biología, Oficina 222. Calle 45 Cra 30. Bogota D.C. Colombia
| |
Collapse
|
40
|
Dai Y, Zhou X. Computational methods for the identification of microRNA targets. ACTA ACUST UNITED AC 2010; 2:29-39. [PMID: 22162940 DOI: 10.2147/oab.s6902] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
MicroRNAs are pivotal regulators of development and cellular homeostasis. They act as post-transcriptional regulators, which control the stability and translation efficiency of their target mRNAs. The prediction of microRNA targets and detection of microRNA-mRNA regulatory modules (MRMs) are crucial components for understanding of microRNA functions. Numerous computational methods for microRNA target prediction have been developed. Computationally-predicted targets have been recently used in the integrative analysis of microRNA and mRNA expression analysis to identify microRNA targets and MRMs. In this article we review these recent developments in the integrative analysis methods. We also discuss the remaining challenges and our insights on future directions.
Collapse
Affiliation(s)
- Yang Dai
- Department of Bioengineering, Department of Computer Science, College of Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
41
|
Nelson PT, Kiriakidou M, Mourelatos Z, Tan GS, Jennings MH, Xie K, Wang WX. High-throughput experimental studies to identify miRNA targets directly, with special focus on the mammalian brain. Brain Res 2010; 1338:122-30. [PMID: 20380813 DOI: 10.1016/j.brainres.2010.03.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/24/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
We review the pertinent literature on methods used in high-throughput experimental identification of microRNA (miRNA) "targets" with emphasis on neurochemical studies. miRNAs are short regulatory noncoding RNAs that play important roles in the mammalian brain. The functions of miRNAs are related to their binding of RNAs including mRNAs. Since mammalian miRNAs tend to bind to target mRNAs via imperfect complementarity, understanding exactly which target mRNAs are recognized by which specific miRNAs is a challenge. Based on early experimental evidence, a set of "binding rules" for miRNAs has been described. These have focused on the 5' "seed" region of miRNAs binding to the 3' untranslated region of targeted mRNAs. Bioinformaticians have applied these algorithms for theoretical miRNA target prediction. To date, the different computational methods are not in agreement with each other and do not explain all miRNA targets as defined using high-throughput experimental methods. We consider these latter techniques which identify putative miRNA targets directly. Each experimental approach involves specific assumptions and potential technical pitfalls. Some of these direct experimental methods for miRNA target identification have used co-immunoprecipitation (RIP-Chip and others) and transfection-based experimental design. Topics related to experimentally identified miRNA targets are discussed, with special emphasis on studies pertinent to the mammalian brain.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Division of Neuropathology, University of Kentucky Medical Center and Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone, Lexington, KY 40536, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Backes C, Meese E, Lenhof HP, Keller A. A dictionary on microRNAs and their putative target pathways. Nucleic Acids Res 2010; 38:4476-86. [PMID: 20299343 PMCID: PMC2910047 DOI: 10.1093/nar/gkq167] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While in the last decade mRNA expression profiling was among the most popular research areas, over the past years the study of non-coding RNAs, especially microRNAs (miRNAs), has gained increasing interest. For almost 900 known human miRNAs hundreds of pretended targets are known. However, there is only limited knowledge about putative systemic effects of changes in the expression of miRNAs and their regulatory influence. We determined for each known miRNA the biochemical pathways in the KEGG and TRANSPATH database and the Gene Ontology categories that are enriched with respect to its target genes. We refer to these pathways and categories as target pathways of the corresponding miRNA. Investigating target pathways of miRNAs we found a strong relation to disease-related regulatory pathways, including mitogen-activated protein kinase (MAPK) signaling cascade, Transforming growth factor (TGF)-beta signaling pathway or the p53 network. Performing a sophisticated analysis of differentially expressed genes of 13 cancer data sets extracted from gene expression omnibus (GEO) showed that targets of specific miRNAs were significantly deregulated in these sets. The respective miRNA target analysis is also a novel part of our gene set analysis pipeline GeneTrail. Our study represents a comprehensive theoretical analysis of the relationship between miRNAs and their predicted target pathways. Our target pathways analysis provides a ‘miRNA-target pathway’ dictionary, which enables researchers to identify target pathways of differentially regulated miRNAs.
Collapse
|
43
|
Condorelli G, Latronico MVG, Dorn GW. microRNAs in heart disease: putative novel therapeutic targets? Eur Heart J 2010; 31:649-58. [PMID: 20118173 DOI: 10.1093/eurheartj/ehp573] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
microRNAs (miRs) are short, approximately 22-nucleotide-long non-coding RNAs involved in the control of gene expression. They guide ribonucleoprotein complexes that effect translational repression or messenger RNA degradation to targeted messenger RNAs. miRs were initially thought to be peculiar to the developmental regulation of the nematode worm, in which they were first described in 1993. Since then, hundreds of different miRs have been reported in diverse organisms, and many have been implicated in the regulation of physiological processes of adult animals. Of importance, misexpression of miRs has been uncovered as a pathogenic mechanism in several diseases. Here, we first outline the biogenesis and mechanism of action of miRs, and then discuss their relevance to heart biology, pathology, and medicine.
Collapse
|
44
|
Radom-Aizik S, Zaldivar F, Oliver S, Galassetti P, Cooper DM. Evidence for microRNA involvement in exercise-associated neutrophil gene expression changes. J Appl Physiol (1985) 2010; 109:252-61. [PMID: 20110541 DOI: 10.1152/japplphysiol.01291.2009] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Exercise leads to a rapid change in the profile of gene expression in circulating neutrophils. MicroRNAs (miRNAs) have been discovered to play important roles in immune function and often act to attenuate or silence gene translation. We hypothesized that miRNA expression in circulating neutrophils would be affected by brief exercise. Eleven healthy men (19-30 yr old) performed 10, 2-min bouts of cycle ergometer exercise interspersed with 1-min rest at a constant work equivalent to approximately 76% of maximal oxygen uptake (Vo(2 max)). We used the Agilent Human miRNA V2 Microarray. A conservative statistical approach was used to determine that exercise significantly altered 38 miRNAs (20 had lower expression). Using RT-PCR, we verified the expression level changes from before to after exercise of seven miRNAs. In silico analysis showed that collectively 36 miRNAs potentially targeted 4,724 genes (2 of the miRNAs had no apparent gene targets). Moreover, when we compared the gene expression changes (n = 458) in neutrophils that have been altered by exercise, as previously reported, with the miRNAs altered by exercise, we identified three pathways, Ubiquitin-mediated proteolysis, Jak-STAT signaling pathway, and Hedgehog signaling pathway, in which an interaction of miRNA and gene expression was plausible. Each of these pathways is known to play a role in key mechanisms of inflammation. Brief exercise alters miRNA profile in circulating neutrophils in humans. These data support the hypothesis that exercise-associated changes in neutrophil miRNA expression play a role in neutrophil gene expression in response to physical activity.
Collapse
Affiliation(s)
- Shlomit Radom-Aizik
- Pediatric Exercise Research Center, Department of Pediatrics, University Children's Hospital, University of California-Irvine, Orange, CA 92868, USA
| | | | | | | | | |
Collapse
|
45
|
Hulsmans M, Holvoet P. The vicious circle between oxidative stress and inflammation in atherosclerosis. FASEB J 2009; 25:2515-27. [PMID: 19968738 DOI: 10.1096/fj.11-181149] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The initial event in atherogenesis is the increased transcytosis of low density lipoprotein, and its subsequent deposition, retention and modification in the subendothelium. It is followed by the infiltration of activated inflammatory cells from the coronary circulation into the arterial wall. There they secrete reactive oxygen species (ROS) and produce oxidized lipoproteins capable of inducing endothelial cell apoptosis, and thereby plaque erosion. Activated T lymphocytes, macrophages and mast cells, accumulate in the eroded plaque where they secrete a variety of proteases capable of inducing degradation of extracellular proteins, thereby rendering the plaques more prone to rupture. This review summarizes the recent advancements in the understanding of the roles of ROS and oxidized lipoproteins in the activation of inflammatory cells and inducing signalling pathways related to cell death and apoptosis. In addition, it presents evidence that this vicious circle between oxidative stress and inflammation does not only occur in the diseased arterial wall, but also in adipose tissues. There, oxidative stress and inflammation impair adipocyte maturation resulting in defective insulin action and adipocytokine signalling. The latter is associated with increased infiltration of inflammatory cells, loss of anti-oxidant protection and cell death in the arterial wall.
Collapse
Affiliation(s)
- Maarten Hulsmans
- Atherosclerosis and Metabolism Unit, Department of Cardiovascular Diseases, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|
46
|
Yelamanchili SV, Fox HS. Defining larger roles for "tiny" RNA molecules: role of miRNAs in neurodegeneration research. J Neuroimmune Pharmacol 2009; 5:63-9. [PMID: 19757077 DOI: 10.1007/s11481-009-9172-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/25/2009] [Indexed: 12/26/2022]
Abstract
Many facets of transcriptional and translational regulation contribute to the proper functioning of the nervous system. Dysfunctional control of mRNA and protein expression can lead to neurodegenerative conditions. Recently, a new regulatory control element--small noncoding RNAs--has been found to play a significant role in many physiologic systems. Here, we review the microRNA (miRNA) field as it pertains to discovery-based and mechanistic studies on the brain and specifically in neurodegenerative disorders. Understanding the role of miRNAs in the brain will aid to open new avenues to the field of neuroscience and, importantly, neurodegenerative disease research.
Collapse
Affiliation(s)
- Sowmya V Yelamanchili
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | |
Collapse
|