1
|
Elwan AG, Mohamed TM, Beltagy DM, El Gamal DM. The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma. BMC Pharmacol Toxicol 2025; 26:3. [PMID: 39754228 PMCID: PMC11697747 DOI: 10.1186/s40360-024-00823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/10/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells. METHODS The particle size of NARNPs was determined by transmission electron microscopy and scanning electron microscopy analysis. NARNP is characterized by Fourier transform infrared spectroscopy and X-ray diffraction. Study the cytotoxic effects of various doses of naringenin, NARNPs and DOX on HepG2 and WI38 cell lines after 24 h and 48 h using the MTT assay. Flow cytometric analysis was used to study the apoptotic cells. The study also examined the expression of apoptotic proteins (p53) and autophagy-related genes ATG5, LC3 after treatment with naringenin, NARNPs, doxorubicin, and their combinations in HepG2 cells. RESULTS The particle size of NARNPs was determined by transmission electron microscopy and scanning electron microscopy analysis, showing mean diameters of 54.96 ± 18.6 nm and 31.79 ± 6.8 nm, respectively. Fourier transform infrared spectroscopy confirmed successful conjugation between naringenin and NARNPs. NARNPs were in an amorphous state that was determined by X-ray diffraction. The IC50 values were determined as 22.32 µg/ml for naringenin, 1.6 µg/ml for NARNPs and 0.46 µg/ml for doxorubicin. Flow cytometric analysis showed that NARNPs induced late apoptosis in 56.1% of HepG2 cells and had no cytotoxic effect on WI38 cells with 97% viable cells after 48 h of incubation. NARNPs induced cell cycle arrest in the Go/G1 and G2/M phases in HepG2 cells. The results showed increased expression of ATG5, LC3, and p53 in HepG2 cells treated with IC50 concentrations after 48 h of incubation. NARNPs enhanced the cytotoxic effect of doxorubicin in HepG2 cells but decreased the cytotoxic effect of doxorubicin in WI38 cells. CONCLUSIONS The study demonstrated that NARNPs effectively inhibit cell proliferation and induce apoptosis in human hepatocellular carcinoma cells. Importantly, NARNPs showed no cytotoxic effects on normal cells, indicating their potential as a promising therapy for hepatocarcinogenesis. Combining NARNPs with chemotherapy drugs could present a novel approach for treating human cancers.
Collapse
Affiliation(s)
- Aya G Elwan
- Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Tarek M Mohamed
- Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Doha M Beltagy
- Biochemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Doaa M El Gamal
- Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Seethaler B, Basrai M, Neyrinck AM, Vetter W, Delzenne NM, Kiechle M, Bischoff SC. Effect of the Mediterranean diet on the faecal long-chain fatty acid composition and intestinal barrier integrity: an exploratory analysis of the randomised controlled LIBRE trial. Br J Nutr 2024; 132:1-9. [PMID: 39431570 PMCID: PMC11617107 DOI: 10.1017/s0007114524001788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 10/22/2024]
Abstract
We recently showed that adherence to the Mediterranean diet increased the proportion of plasma n-3 PUFA, which was associated with an improved intestinal barrier integrity. In the present exploratory analysis, we assessed faecal fatty acids in the same cohort, aiming to investigate possible associations with intestinal barrier integrity. Women from the Lifestyle Intervention Study in Women with Hereditary Breast and Ovarian Cancer (LIBRE) randomised controlled trial, characterised by an impaired intestinal barrier integrity, followed either a Mediterranean diet (intervention group, n 33) or a standard diet (control group, n 35). At baseline (BL), month 3 (V1) and month 12 (V2), plasma lipopolysaccharide-binding protein, faecal zonulin and faecal fatty acids were measured. In the intervention group, faecal proportions of palmitoleic acid (16:1, n-7) and arachidonic acid (20:4, n-6) decreased, while the proportion of linoleic acid (18:2, n-6) and α linoleic acid (18:3, n-3) increased (BL-V1 and BL-V2, all P < 0·08). In the control group, faecal proportions of palmitic acid and arachidic acid increased, while the proportion of linoleic acid decreased (BL-V1, all P < 0·05). The decrease in the proportion of palmitoleic acid correlated with the decrease in plasma lipopolysaccharide-binding protein (ΔV1-BL r = 0·72, P < 0·001; ΔV2-BL r = 0·39, P < 0·05) and correlated inversely with adherence to the Mediterranean diet (Mediterranean diet score; ΔV1-BL r = -0·42, P = 0·03; ΔV2-BL r = -0·53, P = 0·005) in the intervention group. Our data show that adherence to the Mediterranean diet induces distinct changes in the faecal fatty acid composition. Furthermore, our data indicate that the faecal proportion of palmitoleic acid, but not faecal n-3 PUFA, is associated with intestinal barrier integrity in the intervention group.
Collapse
Affiliation(s)
- Benjamin Seethaler
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Maryam Basrai
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Audrey M. Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Walter Vetter
- Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Marion Kiechle
- Department of Gynecology, Center for Hereditary Breast and Ovarian Cancer, Klinikum Rechts der Isar, Technical University Munich and Comprehensive Cancer Center Munich, Munich, Germany
| | - Stephan C. Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
3
|
Mao Y, Wang J, Wang Y, Fu Z, Dong L, Liu J. Hypoxia induced exosomal Circ-ZNF609 promotes pre-metastatic niche formation and cancer progression via miR-150-5p/VEGFA and HuR/ZO-1 axes in esophageal squamous cell carcinoma. Cell Death Discov 2024; 10:133. [PMID: 38472174 DOI: 10.1038/s41420-024-01905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Exosomes derived from cancer are regarded as significant mediators of cancer-host crosstalk. Hypoxia, on the other hand, is one of the essential characteristics of solid tumors. This research set out to discover how circulating exosomes from hypoxic esophageal squamous cell carcinoma (ESCC) contribute to the formation of metastatic niches and distant metastasis. First, we noticed that human umbilical vein endothelial cells (HUVECs) had their tight connections disrupted and the expression of proteins involved in angiogenesis boosted by ESCC hypoxic exosomes. Hypoxia significantly induced Circ-ZNF609 expression in exosomes from ESCC, which was then internalized by HUVECs, as determined by circular RNA screening. High Circ-ZNF609 expression in HUVECs facilitated angiogenesis and vascular permeability, thereby promoting pre-metastatic niche formation, and enhancing distant metastasis in vitro and in vivo. Exosomal Circ-ZNF609 activated vascular endothelial growth factor A (VEGFA) mechanistically by sponging miR-150-5p. Exosomal Circ-ZNF609 also interacted with HuR and inhibited HuR binding to ZO-1, Claudin-1, and Occludin mRNAs, thereby reducing their translation. Collectively, our findings identified an essential function for exosomal Circ-ZNF609 from ESCC cells, suggesting the potential therapeutic value of exosomes for ESCC patients.
Collapse
Affiliation(s)
- Yu Mao
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China.
- Key Laboratory of Research on Molecular Mechanism of Gastrointestinal Tumors in Qinhuangdao, Qinhuangdao, Hebei, China.
| | - Jiahao Wang
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Yimin Wang
- Key Laboratory of Research on Molecular Mechanism of Gastrointestinal Tumors in Qinhuangdao, Qinhuangdao, Hebei, China
- Department of General Surgery, First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Zhanzhao Fu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Lixin Dong
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jia Liu
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
4
|
Huang J, Tang X, Yang Z, Chen J, Wang K, Shi C, Liu Z, Wu M, Du Q. Enhancing oral delivery and anticancer efficacy of 7-ethyl-10-hydroxycamptothecin through self-assembled micelles of deoxycholic acid grafted N'-nonyl-trimethyl chitosan. Colloids Surf B Biointerfaces 2024; 234:113736. [PMID: 38215603 DOI: 10.1016/j.colsurfb.2023.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
Irinotecan (CPT-11) is used as a first or second-line chemotherapy drug for the treatment and management of colorectal cancers. In vitro studies have shown that 7-ethyl-10-hydroxycamptothecin (SN38), the active metabolite of CPT-11, displays promising anticancer efficacy. However, its poor aqueous solubility and hydrolytic degradation result in its lower oral bioavailability and impracticable clinical application. To overcome these limitations, a novel amphiphilic chitosan derivative, deoxycholic acid decorated N'-nonyl-trimethyl chitosan, was synthesized. Nano-micelles loaded with SN38 were subsequently prepared to enhance the bioavailability and anti-tumor efficacy of the drug through oral administration. The nano-micelles demonstrated improved dilution stability, enhanced greater mucosal adherence, significant P-gp efflux inhibition, and increased drug transport in the intestine by paracellular and transcellular pathways. Consequently, both the in vivo pharmacokinetic profile and therapeutic efficacy of SN38 against cancer were substantially improved via the micellar system. Thus, the developed polymeric micelles can potentially enhance the SN38 oral absorption for cancer therapy, offering prospective avenues for further exploration.
Collapse
Affiliation(s)
- Jie Huang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao Tang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ziqiong Yang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jianqiu Chen
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Kun Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chengnan Shi
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zihan Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ming Wu
- Institute of Pediatrics, Xuzhou Medical University, Xuzhou, China
| | - Qian Du
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
5
|
Seethaler B, Lehnert K, Yahiaoui-Doktor M, Basrai M, Vetter W, Kiechle M, Bischoff SC. Omega-3 polyunsaturated fatty acids improve intestinal barrier integrity-albeit to a lesser degree than short-chain fatty acids: an exploratory analysis of the randomized controlled LIBRE trial. Eur J Nutr 2023; 62:2779-2791. [PMID: 37318580 PMCID: PMC10468946 DOI: 10.1007/s00394-023-03172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/04/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE Adherence to the Mediterranean diet is associated with beneficial health effects, including gastrointestinal disorders. Preclinical studies suggest that omega-3 polyunsaturated fatty acids (n-3 PUFAs), found in Mediterranean foods like nuts and fish, improve intestinal barrier integrity. Here, we assessed possible effects of n-3 PUFAs on barrier integrity in a randomized controlled trial. METHODS We studied 68 women from the open-label LIBRE trial (clinicaltrials.gov: NCT02087592) who followed either a Mediterranean diet (intervention group, IG) or a standard diet (control group, CG). Study visits comprised baseline, month 3, and month 12. Barrier integrity was assessed by plasma lipopolysaccharide binding protein (LBP) and fecal zonulin; fatty acids by gas chromatography with mass spectrometry. Median and interquartile ranges are shown. RESULTS Adherence to the Mediterranean diet increased the proportion of the n-3 docosahexaenoic acid (DHA) (IG + 1.5% [0.9;2.5, p < 0.001]/ + 0.3% [- 0.1;0.9, p < 0.050] after 3/12 months; CG + 0.9% [0.5;1.6, p < 0.001]/ ± 0%) and decreased plasma LBP (IG - 0.3 µg/ml [- 0.6;0.1, p < 0.010]/ - 0.3 µg/ml [- 1.1; - 0.1, p < 0.001]; CG - 0.2 µg/ml [- 0.8; - 0.1, p < 0.001]/ ± 0 µg/ml) and fecal zonulin levels (IG - 76 ng/mg [- 164; - 12, p < 0.010]/ - 74 ng/mg [- 197;15, p < 0.001]; CG - 59 ng/mg [- 186;15, p < 0.050]/ + 10 ng/mg [- 117;24, p > 0.050]). Plasma DHA and LBP (R2: 0.14-0.42; all p < 0.070), as well as plasma DHA and fecal zonulin (R2: 0.18-0.48; all p < 0.050) were found to be inversely associated in bi- and multivariate analyses. Further multivariate analyses showed that the effect of DHA on barrier integrity was less pronounced than the effect of fecal short-chain fatty acids on barrier integrity. CONCLUSIONS Our data show that n-3 PUFAs can improve intestinal barrier integrity. TRIAL REGISTRATION NUMBER The trial was registered prospectively at ClinicalTrials.gov (reference: NCT02087592).
Collapse
Affiliation(s)
- Benjamin Seethaler
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany
| | - Katja Lehnert
- Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Maryam Yahiaoui-Doktor
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Maryam Basrai
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Marion Kiechle
- Department of Gynecology, Center for Hereditary Breast and Ovarian Cancer, Klinikum Rechts der Isar, Technical University Munich and Comprehensive Cancer Center Munich, Munich, Germany
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany.
| |
Collapse
|
6
|
Ortiz-Soto G, Babilonia-Díaz NS, Lacourt-Ventura MY, Rivera-Rodríguez DM, Quiñones-Rodríguez JI, Colón-Vargas M, Almodóvar-Rivera I, Ferrer-Torres LE, Suárez-Arroyo IJ, Martínez-Montemayor MM. Metadherin Regulates Inflammatory Breast Cancer Invasion and Metastasis. Int J Mol Sci 2023; 24:4694. [PMID: 36902125 PMCID: PMC10002532 DOI: 10.3390/ijms24054694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Inflammatory breast cancer (IBC) is one of the most lethal subtypes of breast cancer (BC), accounting for approximately 1-5% of all cases of BC. Challenges in IBC include accurate and early diagnosis and the development of effective targeted therapies. Our previous studies identified the overexpression of metadherin (MTDH) in the plasma membrane of IBC cells, further confirmed in patient tissues. MTDH has been found to play a role in signaling pathways related to cancer. However, its mechanism of action in the progression of IBC remains unknown. To evaluate the function of MTDH, SUM-149 and SUM-190 IBC cells were edited with CRISPR/Cas9 vectors for in vitro characterization studies and used in mouse IBC xenografts. Our results demonstrate that the absence of MTDH significantly reduces IBC cell migration, proliferation, tumor spheroid formation, and the expression of NF-κB and STAT3 signaling molecules, which are crucial oncogenic pathways in IBC. Furthermore, IBC xenografts showed significant differences in tumor growth patterns, and lung tissue revealed epithelial-like cells in 43% of wild-type (WT) compared to 29% of CRISPR xenografts. Our study emphasizes the role of MTDH as a potential therapeutic target for the progression of IBC.
Collapse
Affiliation(s)
- Gabriela Ortiz-Soto
- Department of Biochemistry, Universidad Central del Caribe-School of Medicine, Bayamón, PR 00960, USA
| | - Natalia S. Babilonia-Díaz
- Department of Biochemistry, Universidad Central del Caribe-School of Medicine, Bayamón, PR 00960, USA
| | | | | | - Jailenne I. Quiñones-Rodríguez
- Department of Clinical Anatomy, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
- Department of Anatomy and Cell Biology, School of Medicine, Universidad Central del Caribe, Bayamón, PR 00960, USA
| | - Mónica Colón-Vargas
- Department of Mathematical Sciences, University of Puerto Rico at Mayagüez, Mayagüez, PR 00681, USA
| | - Israel Almodóvar-Rivera
- Department of Mathematical Sciences, University of Puerto Rico at Mayagüez, Mayagüez, PR 00681, USA
| | - Luis E. Ferrer-Torres
- Department of Pathology and Laboratory Medicine, Hospital Interamericano de Medicina Avanzada (H.I.M.A.)—San Pablo Caguas, Caguas, PR 00725, USA
- Department of Immunopathology, Hato Rey Pathology Associates Inc. (HRPLABS), San Juan, PR 00936, USA
| | - Ivette J. Suárez-Arroyo
- Department of Biochemistry, Universidad Central del Caribe-School of Medicine, Bayamón, PR 00960, USA
| | | |
Collapse
|
7
|
Carvalho Leão MH, Costa ML, Mermelstein C. Epithelial-to-mesenchymal transition as a learning paradigm of cell biology. Cell Biol Int 2023; 47:352-366. [PMID: 36411367 DOI: 10.1002/cbin.11967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a complex biological process that occurs during normal embryogenesis and in certain pathological conditions, particularly in cancer. EMT can be viewed as a cell biology-based process, since it involves all the cellular components, including the plasma membrane, cytoskeleton and extracellular matrix, endoplasmic reticulum, Golgi apparatus, lysosomes, and mitochondria, as well as cellular processes, such as regulation of gene expression and cell cycle, adhesion, migration, signaling, differentiation, and death. Therefore, we propose that EMT could be used to motivate undergraduate medical students to learn and understand cell biology. Here, we describe and discuss the involvement of each cellular component and process during EMT. To investigate the density with which different cell biology concepts are used in EMT research, we apply a bibliometric approach. The most frequent cell biology topics in EMT studies were regulation of gene expression, cell signaling, cell cycle, cell adhesion, cell death, cell differentiation, and cell migration. Finally, we suggest that the study of EMT could be incorporated into undergraduate disciplines to improve cell biology understanding among premedical, medical and biomedical students.
Collapse
Affiliation(s)
| | - Manoel Luis Costa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Khalid MAU, Kim KH, Chethikkattuveli Salih AR, Hyun K, Park SH, Kang B, Soomro AM, Ali M, Jun Y, Huh D, Cho H, Choi KH. High performance inkjet printed embedded electrochemical sensors for monitoring hypoxia in a gut bilayer microfluidic chip. LAB ON A CHIP 2022; 22:1764-1778. [PMID: 35244110 DOI: 10.1039/d1lc01079d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sensing devices have shown tremendous potential for monitoring state-of-the-art organ chip devices. However, challenges like miniaturization while maintaining higher performance, longer operating times for continuous monitoring, and fabrication complexities limit their use. Herein simple, low-cost, and solution-processible inkjet dispenser printing of embedded electrochemical sensors for dissolved oxygen (DO) and reactive oxygen species (ROS) is proposed for monitoring developmental (initially normoxia) and induced hypoxia in a custom-developed gut bilayer microfluidic chip platform for 6 days. The DO sensors showed a high sensitivity of 31.1 nA L mg-1 with a limit of detection (LOD) of 0.67 mg L-1 within the 0-9 mg L-1 range, whereas the ROS sensor had a higher sensitivity of 1.44 nA μm-1 with a limit of detection of 1.7 μm within the 0-300 μm range. The dynamics of the barrier tight junctions are quantified with the help of an in-house developed trans-epithelial-endothelial electrical impedance (TEEI) sensor. Immunofluorescence staining was used to evaluate the expressions of HIF-1α and tight junction protein (TJP) ZO-1. This platform can also be used to enhance bioavailability assays, drug transport studies under an oxygen-controlled environment, and even other barrier organ models, as well as for various applications like toxicity testing, disease modeling and drug screening.
Collapse
Affiliation(s)
- Muhammad Asad Ullah Khalid
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
- School of Mechanical Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul 156-756, Republic of Korea
| | - Kyung Hwan Kim
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| | | | - Kinam Hyun
- BioSpero, Inc., Jeju-do, Republic of Korea
| | | | - Bohye Kang
- BioSpero, Inc., Jeju-do, Republic of Korea
| | - Afaque Manzoor Soomro
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
- Department of Electrical Engineering, Sukkur IBA University, Sukkur, Sindh, Pakistan
| | - Muhsin Ali
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
| | - Yesl Jun
- Center for Bio Platform Technology, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Republic of Korea.
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
| | - Heeyeong Cho
- Center for Bio Platform Technology, Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Republic of Korea.
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Republic of Korea.
- BioSpero, Inc., Jeju-do, Republic of Korea
| |
Collapse
|
9
|
Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers 2021; 9:1943274. [PMID: 34241579 DOI: 10.1080/21688370.2021.19432749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Oropharyngeal, airway, intestinal, and genital mucosal epithelia are the main portals of entry for the majority of human pathogenic viruses. To initiate systemic infection, viruses must first be transmitted across the mucosal epithelium and then spread across the body. However, mucosal epithelia have well-developed tight junctions, which have a strong barrier function that plays a critical role in preventing the spread and dissemination of viral pathogens. Viruses can overcome these barriers by disrupting the tight junctions of mucosal epithelia, which facilitate paracellular viral penetration and initiate systemic disease. Disruption of tight and adherens junctions may also release the sequestered viral receptors within the junctional areas, and liberation of hidden receptors may facilitate viral infection of mucosal epithelia. This review focuses on possible molecular mechanisms of virus-associated disruption of mucosal epithelial junctions and its role in transmucosal viral transmission and spread.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers 2021; 9:1943274. [PMID: 34241579 DOI: 10.1080/21688370.2021.1943274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Oropharyngeal, airway, intestinal, and genital mucosal epithelia are the main portals of entry for the majority of human pathogenic viruses. To initiate systemic infection, viruses must first be transmitted across the mucosal epithelium and then spread across the body. However, mucosal epithelia have well-developed tight junctions, which have a strong barrier function that plays a critical role in preventing the spread and dissemination of viral pathogens. Viruses can overcome these barriers by disrupting the tight junctions of mucosal epithelia, which facilitate paracellular viral penetration and initiate systemic disease. Disruption of tight and adherens junctions may also release the sequestered viral receptors within the junctional areas, and liberation of hidden receptors may facilitate viral infection of mucosal epithelia. This review focuses on possible molecular mechanisms of virus-associated disruption of mucosal epithelial junctions and its role in transmucosal viral transmission and spread.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Mehrpour Layeghi S, Arabpour M, Shakoori A, Naghizadeh MM, Mansoori Y, Tavakkoly Bazzaz J, Esmaeili R. Expression profiles and functional prediction of long non-coding RNAs LINC01133, ZEB1-AS1 and ABHD11-AS1 in the luminal subtype of breast cancer. J Transl Med 2021; 19:364. [PMID: 34446052 PMCID: PMC8390237 DOI: 10.1186/s12967-021-03026-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background Luminal breast cancer (BC) is the most frequent subtype accounting for more than 70% of BC. LncRNAs, a class of non-coding RNAs with more than 200 nucleotides, are involved in a variety of cellular processes and biological functions. Abberant expression is related to the development of various cancers, such as breast cancer. LINC01133, ZEB1-AS1, and ABHD11-AS1 were reported to be dysregulated in different cancers. However, their expression level in luminal BC remains poorly known. The aim of the present study was to evaluate the potential roles of these lncRNAs in BC, especially in luminal subtypes. Methods A comprehensive analysis was performed using the Lnc2Cancer database to identify novel cancer-associated lncRNA candidates. After conducting a literature review, three novel lncRNAs named LINC01133, ZEB1-AS1, and ABHD11-AS1 were chosen as target genes of the present study. Quantitative real‐time polymerase chain reaction (qRT-PCR) was used to evaluate the expression level of the mentioned lncRNAs in both luminal BC tissues and cell lines. Then, the correlation of the three mentioned lncRNAs expression with clinicopathological characteristics of the patients was studied. Moreover, several datasets were used to discover the potential roles and functions of LINC01133, ZEB1-AS1 and ABHD11-AS1 in luminal subtype of BC. Results According to the qRT-PCR assay, the expression levels of LINC01133 and ZEB1-AS1 were decreased in luminal BC tissues and cell lines. On the other hand, ABHD11-AS1 was upregulated in the above-mentioned samples. The expression levels of LINC01133, ZEB1-AS1, and ABHD11-AS1 were not associated with any of the clinical features. Also, the results obtained from the bioinformatics analyses were consistent with qRT-PCR data. Functional annotation of the co-expressed genes with the target lncRNAs, protein–protein interactions and significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways across luminal BC were also obtained using bioinformatics analysis. Conclusions Taken together, our findings disclosed the dysregulation of LINC01133, ZEB1-AS1, and ABHD11-AS1 in luminal BC. It was revealed that LINC01133 and ZEB1-AS1 expression was significantly downregulated in luminal BC tissues and cell lines, while ABHD11-AS1 was upregulated considerably in the mentioned tissues and cell lines. Also, bioinformatics and systems biology analyses have helped to identify the possible role of these lncRNAs in luminal BC. However, further analysis is needed to confirm the current findings. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03026-7.
Collapse
Affiliation(s)
- Sepideh Mehrpour Layeghi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maedeh Arabpour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shakoori
- Medical Genetic Ward, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Tavakkoly Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
12
|
Lu Y, Dang Q, Bo Y, Su X, Wang L, Sun J, Wei J, Quan C, Li Y. The Expression of CLDN6 in Hepatocellular Carcinoma Tissue and the Effects of CLDN6 on Biological Phenotypes of Hepatocellular Carcinoma Cells. J Cancer 2021; 12:5454-5463. [PMID: 34405008 PMCID: PMC8364659 DOI: 10.7150/jca.55727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 07/01/2021] [Indexed: 11/23/2022] Open
Abstract
CLDN6, a member of claudin (CLDN) family, was found to be a breast cancer suppressor gene in our early experiments. However, CLDN6 was highly expressed in human hepatocellular carcinoma (hHCC) (TCGA database), and the role of CLDN6 in hHCC is still unclear. To investigate the expression of CLDN6, immunohistochemical staining was performed in hHCC tissues. As a result, hHCC tissues highly expressed CLDN6, and the expression was related to the degree of tumor's differentiation. To research the role of CLDN6 in hHCC cells, CLDN6 was silenced in HepG2 and Hep3B cells which highly expressed CLDN6 through liposome transfection. Results showed that after silencing of CLDN6, the proliferation, migration and invasion abilities of hHCC cells were inhibited. Meanwhile, the expression of E-cadherin was upregulated, and the expression of N-cadherin and Vimentin was downregulated. All the results above indicated that CLDN6 promoted the development of hHCC, and could be a potential target for the treatment of it.
Collapse
Affiliation(s)
- Yan Lu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China.,The Department of Anatomy, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Qihua Dang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Yin Bo
- The Department of Pathology, Jilin Provincial Cancer Hospital, 1018 Huguang Road, Changchun, Jilin, 130021, People's Republic of China
| | - Xuejin Su
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Liping Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Jiaqi Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin, 130021, People's Republic of China
| |
Collapse
|
13
|
Jotatsu T, Izumi H, Morimoto Y, Yatera K. Selection of microRNAs in extracellular vesicles for diagnosis of malignant pleural mesothelioma by in vitro analysis. Oncol Rep 2020; 44:2198-2210. [PMID: 33000251 PMCID: PMC7551269 DOI: 10.3892/or.2020.7778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a malignant tumor which is a challenge for diagnosis and is associated with a poor patient prognosis. Thus, early diagnostic interventions will improve the quality of life and life expectancy of these patients. Recently, cellular microRNAs (miRNAs) have been found to be involved in maintaining homeostasis, and abnormal miRNA expression has often been observed in various diseases including cancer. Extracellular vesicles (EVs) released by many cells contain proteins and nucleic acids. miRNAs are secreted from all cells via EVs and circulate throughout the body. In this study, culture media were passed sequentially through membrane filters 220–50 nm in size, and EVs with diameters of 50 to 220 nm (EVcap50/220) were collected. miRNAs (EV50-miRNAs) in EVcap50/220 were purified, and microarray analysis was performed. EV50-miRNA expression profiles were compared between MPM cells and a normal pleural mesothelial cell line, and six EV50-miRNAs were selected for further investigation. Of these, hsa-miR-193a-5p and hsa-miR-551b-5p demonstrated higher expression in MPM-derived EVcap50/220. These miRNAs reduced the expression of several genes involved in cell-cell interactions and cell-matrix interactions in normal pleural mesothelial cells. Our data suggest that hsa-miR-193a-5p and hsa-miR-551b-5p in EVcap50/220 could be diagnostic markers for MPM.
Collapse
Affiliation(s)
- Takanobu Jotatsu
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807‑8555, Japan
| |
Collapse
|
14
|
Li X, Li H, Liu C, Leng X, Liu T, Zhang X, Bai Q, Wang L. CLDN6-mediates SB431542 action through MMPs to regulate the invasion, migration, and EMT of breast cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1590-1600. [PMID: 32782677 PMCID: PMC7414482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Our previous research confirmed the repression of SMADs signaling pathway inhibits the invasion, migration, and EMT in breast cancer MCF-7 and SKBR-3 cell lines by DNMT1 up-regulating CLDN6, but the mechanism is unclear. Western blot was performed to detect the expression of SMAD2, SMAD3, P-SMAD2, and P-SMAD3. Then RT-PCR was carried out to examine the expression of tight junctions and cell adhesion molecule E-cadherin. According to the gene sequence of Claudin6, shRNA was linked with the green fluorescent protein-expressing eukaryotic expression vector pGC silencer TMΜ6/Neo/GFP, and it was transfected into breast cancer MCF-7 cells and SKBR-3 cells. RT-PCR and western blot were applied to verify the Claudin6 gene-silencing effect. We observed cellular morphology with inverted microscope, analyzed the capacity for clone formation, and detected transepithelial electrical resistance. The level of MMP2, and MMP9 in the cells treated with or without SB431542 and MCF-7-shGFP, MCF-7-shClaudin-6, SKBR-3-shGFP, and SKBR-3-shClaudin-6 cells pretreated with SB431542 were examined by RT-PCR and western blot. The expressions of Claudin-6, occludin, and cell adhesion molecule E-cadherin were enhanced by SB431542. SB431542 transformed mesenchymal cell morphology into epithelial cell morphology, inhibited capacity for clone formation, increased transepithelial electrical resistance, and downregulated the expression of MMP2 and MMP9. Knock down of Claudin6 can abolish SB431542 effects. We conclude that Claudin6 mediates the effects of SB431542 on the biologic phenotypes of the breast cancer cells we studied. We speculate Claudin6-mediated the SB431542 inhibition of invasion, migration, and EMT in breast cancer cells via MMP2/9.
Collapse
Affiliation(s)
- Xuesong Li
- Department of Basic Pathology, Pathology College, Qiqihar Medical University 333 Bukui North Street, Jianhua District, Qiqihar 161006, Heilongjiang Province, P. R. China
| | - Hongmei Li
- Department of Basic Pathology, Pathology College, Qiqihar Medical University 333 Bukui North Street, Jianhua District, Qiqihar 161006, Heilongjiang Province, P. R. China
| | - Chunxin Liu
- Department of Basic Pathology, Pathology College, Qiqihar Medical University 333 Bukui North Street, Jianhua District, Qiqihar 161006, Heilongjiang Province, P. R. China
| | - Xiaoning Leng
- Department of Basic Pathology, Pathology College, Qiqihar Medical University 333 Bukui North Street, Jianhua District, Qiqihar 161006, Heilongjiang Province, P. R. China
| | - Ting Liu
- Department of Basic Pathology, Pathology College, Qiqihar Medical University 333 Bukui North Street, Jianhua District, Qiqihar 161006, Heilongjiang Province, P. R. China
| | - Xiaojie Zhang
- Department of Basic Pathology, Pathology College, Qiqihar Medical University 333 Bukui North Street, Jianhua District, Qiqihar 161006, Heilongjiang Province, P. R. China
| | - Qingyang Bai
- Department of Basic Pathology, Pathology College, Qiqihar Medical University 333 Bukui North Street, Jianhua District, Qiqihar 161006, Heilongjiang Province, P. R. China
| | - Liping Wang
- Department of Basic Pathology, Pathology College, Qiqihar Medical University 333 Bukui North Street, Jianhua District, Qiqihar 161006, Heilongjiang Province, P. R. China
| |
Collapse
|
15
|
Lin Y, Zhang C, Xiang P, Shen J, Sun W, Yu H. Exosomes derived from HeLa cells break down vascular integrity by triggering endoplasmic reticulum stress in endothelial cells. J Extracell Vesicles 2020; 9:1722385. [PMID: 32128072 PMCID: PMC7034510 DOI: 10.1080/20013078.2020.1722385] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 12/23/2022] Open
Abstract
Exosomes play a critical role in intercellular communication since they contain signalling molecules and genetic materials. During tumorigenesis, tumour-derived exosomes have been demonstrated to promote tumour angiogenesis and metastasis. However, how the exosomes facilitate tumour metastasis is not clear. Here we explored the effect of HeLa cell-derived exosomes (ExoHeLa) on endothelial tight junctions (TJ) and the related mechanisms. After human umbilical vein endothelial cells (HUVEC) were treated with ExoHeLa, TJ proteins zonula occludens-1 (ZO-1) and Claudin-5 in HUVEC were significantly reduced as compared with that treated with exosomes from human cervical epithelial cells, while mRNA levels of ZO-1 and Claudin-5 remained unchanged. Consequently, permeability of endothelial monolayer was increased after the treatment with ExoHeLa. Injection of ExoHeLa into mice also increased vascular permeability and tumour metastasis in vivo. Neither knocking down of Dicer nor use of inhibitors of microRNAs targeting at mRNAs of ZO-1 and Claudin-5 could block the inhibitory effect of ExoHeLa on ZO-1 and Claudin-5. The expression of genes involved in endoplasmic reticulum (ER) stress was significantly increased in HUVECs after treated with ExoHeLa. Inhibition of ER stress by knocking down protein kinase RNA-like endoplasmic reticulum kinase prevented the down-regulation of ZO-1 and Claudin-5 by ExoHeLa. Our study found that HeLa cell-derived exosomes promote metastasis by triggering ER stress in endothelial cells and break down endothelial integrity. Such effect of exosomes is microRNA-independent.
Collapse
Affiliation(s)
- Yinuo Lin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Provincial Key Cardiovascular Research Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chi Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Provincial Key Cardiovascular Research Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pingping Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Provincial Key Cardiovascular Research Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Shen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Provincial Key Cardiovascular Research Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weijian Sun
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Provincial Key Cardiovascular Research Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Chen X, Zhang J, Dai X. DNA methylation profiles capturing breast cancer heterogeneity. BMC Genomics 2019; 20:823. [PMID: 31699026 PMCID: PMC6839140 DOI: 10.1186/s12864-019-6142-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND As one of the most described epigenetic marks in human cancers, DNA methylation plays essential roles in gene expression regulation and has been implicated in the prognosis and therapeutics of many cancers. We are motivated in this study to explore DNA methylation profiles capturing breast cancer heterogeneity to improve breast cancer prognosis at the epigenetic level. RESULTS Through comparisons on differentially methylated CpG sites among breast cancer subtypes followed by a sequential validation and functional studies using computational approaches, we propose 313 CpG, corresponding to 191 genes, whose methylation pattern identifies the triple negative breast cancer subtype, and report cell migration as represented by extracellular matrix organization and cell proliferation as mediated via MAPK and Wnt signalings are the primary factors driving breast cancer subtyping. CONCLUSIONS Our study offers novel CpGs and gene methylation patterns with translational potential on triple negative breast cancer prognosis, as well as fresh insights from the epigenetic level on breast cancer heterogeneity.
Collapse
Affiliation(s)
- Xiao Chen
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianying Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
17
|
Ivana B, Emina M, Marijana MK, Irena J, Zoran B, Radmila J. High expression of junctional adhesion molecule-A is associated with poor survival in patients with epithelial ovarian cancer. Int J Biol Markers 2019; 34:262-268. [PMID: 31190601 DOI: 10.1177/1724600819850178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Aberrant expression of different tight junction proteins, including the junctional adhesion molecule-A (JAM-A), has been frequently reported in association with tumor progression of several malignancies. To our knowledge, this is the first study examining the clinical significance of JAM-A gene expression in epithelial ovarian cancer. METHODS JAM-A expression levels in 44 epithelial ovarian cancer and 12 benign formalin-fixed paraffin-embedded samples were determined by reverse transcription quantitative polymerase chain reaction. Receiver operating characteristic (ROC) curve analysis was used to determine the diagnostic and prognostic potential of JAM-A. Associations between JAM-A expression and clinicopathological characteristics of epithelial ovarian cancer were analyzed using Fisher's exact test. The Kaplan-Meier method and univariate Cox regression analysis were used for the survival analysis. P ⩽ 0.05 was considered statistically significant. RESULTS ROC curve analyses showed that JAM-A gene expression exhibits both diagnostic and prognostic performance in epithelial ovarian cancer (area under the curve (AUC) 0.640, 95% confidence interval (CI) 0.488, 0.792, sensitivity 43.18%, specificity 100% and AUC 0.621, 95% CI 0.427, 0.816, sensitivity 52.63%, specificity 85%, respectively). JAM-A expression was significantly associated with International Federation of Gynecologists and Obstetricians (FIGO) stage (P =0.049) and the Kaplan-Meier method demonstrated that patients with high expression of JAM-A had significantly worse overall survival compared to patients with low JAM-A expression (P =0.004). Moreover, univariate Cox regression analysis showed that FIGO stage, peritoneal metastasis, residual tumor and JAM-A expression were significantly associated with reduced overall survival in epithelial ovarian cancer. CONCLUSIONS Our results indicate that high levels of JAM-A expression are associated with an advanced clinicopathological feature and may have diagnostic potential; also, it could be a predictor of poor overall survival in patients with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Boljevic Ivana
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova, Belgrade, Serbia
| | - Malisic Emina
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova, Belgrade, Serbia
| | - Milovic-Kovacevic Marijana
- Department of Medical Oncology, Institute for Oncology and Radiology of Serbia, Pasterova, Belgrade, Serbia
| | - Jovanic Irena
- Department of Pathology, Institute for Oncology and Radiology of Serbia, Pasterova, Belgrade, Serbia
| | - Bukumiric Zoran
- Institute for Medical Statistics and Informatics, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jankovic Radmila
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova, Belgrade, Serbia
| |
Collapse
|
18
|
Fouani L, Kovacevic Z, Richardson DR. Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer Treatment. Antioxid Redox Signal 2019; 30:1096-1123. [PMID: 29161883 DOI: 10.1089/ars.2017.7387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nuclear factor kappa B (NF-κB) signaling is essential under physiologically relevant conditions. However, aberrant activation of this pathway plays a pertinent role in tumorigenesis and contributes to resistance. Recent Advances: The importance of the NF-κB pathway means that its targeting must be specific to avoid side effects. For many currently used therapeutics and those under development, the ability to generate reactive oxygen species (ROS) is a promising strategy. CRITICAL ISSUES As cancer cells exhibit greater ROS levels than their normal counterparts, they are more sensitive to additional ROS, which may be a potential therapeutic niche. It is known that ROS are involved in (i) the activation of NF-κB signaling, when in sublethal amounts; and (ii) high levels induce cytotoxicity resulting in apoptosis. Indeed, ROS-induced cytotoxicity is valuable for its capabilities in killing cancer cells, but establishing the potency of ROS for effective inhibition of NF-κB signaling is necessary. Indeed, some cancer treatments, currently used, activate NF-κB and may stimulate oncogenesis and confer resistance. FUTURE DIRECTIONS Thus, combinatorial approaches using ROS-generating agents alongside conventional therapeutics may prove an effective tactic to reduce NF-κB activity to kill cancer cells. One strategy is the use of thiosemicarbazones, which form redox-active metal complexes that generate high ROS levels to deliver potent antitumor activity. These agents also upregulate the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), which functions as an NF-κB signaling inhibitor. It is proposed that targeting NF-κB signaling may proffer a new therapeutic niche to improve the efficacy of anticancer regimens.
Collapse
Affiliation(s)
- Leyla Fouani
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
19
|
Bhat AA, Uppada S, Achkar IW, Hashem S, Yadav SK, Shanmugakonar M, Al-Naemi HA, Haris M, Uddin S. Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk. Front Physiol 2019; 9:1942. [PMID: 30728783 PMCID: PMC6351700 DOI: 10.3389/fphys.2018.01942] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/22/2018] [Indexed: 12/14/2022] Open
Abstract
The ability of epithelial cells to organize through cell–cell adhesion into a functioning epithelium serves the purpose of a tight epithelial protective barrier. Contacts between adjacent cells are made up of tight junctions (TJ), adherens junctions (AJ), and desmosomes with unique cellular functions and a complex molecular composition. These proteins mediate firm mechanical stability, serves as a gatekeeper for the paracellular pathway, and helps in preserving tissue homeostasis. TJ proteins are involved in maintaining cell polarity, in establishing organ-specific apical domains and also in recruiting signaling proteins involved in the regulation of various important cellular functions including proliferation, differentiation, and migration. As a vital component of the epithelial barrier, TJs are under a constant threat from proinflammatory mediators, pathogenic viruses and bacteria, aiding inflammation and the development of disease. Inflammatory bowel disease (IBD) patients reveal loss of TJ barrier function, increased levels of proinflammatory cytokines, and immune dysregulation; yet, the relationship between these events is partly understood. Although TJ barrier defects are inadequate to cause experimental IBD, mucosal immune activation is changed in response to augmented epithelial permeability. Thus, the current studies suggest that altered barrier function may predispose or increase disease progression and therapies targeted to specifically restore the barrier function may provide a substitute or supplement to immunologic-based therapies. This review provides a brief introduction about the TJs, AJs, structure and function of TJ proteins. The link between TJ proteins and key signaling pathways in cell proliferation, transformation, and metastasis is discussed thoroughly. We also discuss the compromised intestinal TJ integrity under inflammatory conditions, and the signaling mechanisms involved that bridge inflammation and cancer.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Srijayaprakash Uppada
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Iman W Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sheema Hashem
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | - Santosh K Yadav
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Hamda A Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.,Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha, Qatar.,Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
20
|
Claudin 1 Is Highly Upregulated by PKC in MCF7 Human Breast Cancer Cells and Correlates Positively with PKCε in Patient Biopsies. Transl Oncol 2019; 12:561-575. [PMID: 30658316 PMCID: PMC6349319 DOI: 10.1016/j.tranon.2018.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 01/04/2023] Open
Abstract
Recent studies provide compelling evidence to suggest that the tight junction protein claudin 1, aberrantly expressed in several cancer types, plays an important role in cancer progression. Dysregulation of claudin 1 has been shown to induce epithelial mesenchymal transition (EMT). Furthermore, activation of the ERK signaling pathway by protein kinase C (PKC) was shown to be necessary for EMT induction. Whether PKC is involved in regulating breast cancer progression has not been addressed. The PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA) was used to investigate the effect of PKC activity on claudin 1 transcription and protein levels, subcellular distribution, and alterations in EMT markers in human breast cancer (HBC) cell lines. As well, tissue microarray analysis (TMA) of a large cohort of invasive HBC biopsies was conducted to investigate correlations between claudin 1 and PKC isomers. TPA upregulated claudin 1 levels in all HBC cell lines analyzed. In particular, a high induction of claudin 1 protein was observed in the MCF7 cell line. TPA treatment also led to an accumulation of claudin 1 in the cytoplasm. Additionally, we demonstrated that the upregulation of claudin 1 was through the ERK signaling pathway. In patient biopsies, we identified a significant positive correlation between claudin 1, PKCα, and PKCε in ER+ tumors. A similar correlation between claudin 1 and PKCε was identified in ER- tumors, and high PKCε was associated with shorter disease-free survival. Collectively, these studies demonstrate that claudin 1 and the ERK signaling pathway are important players in HBC progression.
Collapse
|
21
|
Qiu J, Zhang W, Zang C, Liu X, Liu F, Ge R, Sun Y, Xia Q. Identification of key genes and miRNAs markers of papillary thyroid cancer. Biol Res 2018; 51:45. [PMID: 30414611 PMCID: PMC6230289 DOI: 10.1186/s40659-018-0188-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 10/03/2018] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE In this study, crucial genes and microRNAs (miRNAs) associated with the progression, staging, and prognosis of papillary thyroid cancer (PTC) were identified. METHODS Four PTC datasets, including our own mRNA-sequencing (mRNA-seq) dataset and three public datasets downloaded from Gene Expression Omnibus and The Cancer Genome Atlas, were used to analyze differentially expressed genes (DEGs) and miRNAs (DEMs) between PTC tumor tissues and paired normal tissues (control). Gene ontology (GO) terms and pathways associated with these DEGs were identified, and protein-protein interactions (PPIs) were analyzed. Additionally, an miRNA-mRNA regulatory network was constructed and the functions of DEMs were explored. Finally, miRNAs/mRNAs associated with tumor staging and prognosis were identified. The expression levels of several key genes and miRNAs were validated by qRT-PCR. RESULTS Numerous DEGs and DEMs were identified between tumor and control groups in four datasets. The DEGs were significantly enriched in cell adhesion and cancer-related GO terms and pathways. In the constructed PPI network, ITGA2, FN1, ICAM1, TIMP1 and CDH2 were hub proteins. In the miRNA-mRNA negative regulatory networks, miR-204-5p regulated the largest number of target genes, such as TNFRSF12A. miR-146b, miR-204, miR-7-2, and FN1 were associated with tumor stage in PTC, and TNFRSF12A and CLDN1 were related to prognosis. CONCLUSIONS Our results suggested the important roles of ITGA2, FN1, ICAM1, TIMP1 and CDH2 in the progression of PTC. miR-204-5p, miR-7-2, and miR-146b are potential biomarkers for PTC staging and FN1, CLDN1, and TNFRSF12A may serve as markers of prognosis in PTC.
Collapse
Affiliation(s)
- Jie Qiu
- Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266071, Shandong Province, China
| | - Wenwei Zhang
- Radiology Department, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Chuanshan Zang
- Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266071, Shandong Province, China
| | - Xiaomin Liu
- Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266071, Shandong Province, China
| | - Fuxue Liu
- Otolaryngology Head and Neck Surgery, Shaoxing Municipal Hospital, Shaoxing, 312000, Zhejiang, China
| | - Ruifeng Ge
- Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266071, Shandong Province, China
| | - Yan Sun
- Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266071, Shandong Province, China.
| | - Qingsheng Xia
- Otolaryngology Head and Neck Surgery, Qingdao Municipal Hospital, No. 5 Donghai Road, Qingdao, 266071, Shandong, China.
| |
Collapse
|
22
|
Cai J, Culley MK, Zhao Y, Zhao J. The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell 2017; 9:754-769. [PMID: 29080116 PMCID: PMC6107491 DOI: 10.1007/s13238-017-0486-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Maintenance of cell junctions plays a crucial role in the regulation of cellular functions including cell proliferation, permeability, and cell death. Disruption of cell junctions is implicated in a variety of human disorders, such as inflammatory diseases and cancers. Understanding molecular regulation of cell junctions is important for development of therapeutic strategies for intervention of human diseases. Ubiquitination is an important type of post-translational modification that primarily regulates endogenous protein stability, receptor internalization, enzyme activity, and protein-protein interactions. Ubiquitination is tightly regulated by ubiquitin E3 ligases and can be reversed by deubiquitinating enzymes. Recent studies have been focusing on investigating the effect of protein stability in the regulation of cell-cell junctions. Ubiquitination and degradation of cadherins, claudins, and their interacting proteins are implicated in epithelial and endothelial barrier disruption. Recent studies have revealed that ubiquitination is involved in regulation of Rho GTPases’ biological activities. Taken together these studies, ubiquitination plays a critical role in modulating cell junctions and motility. In this review, we will discuss the effects of ubiquitination and deubiquitination on protein stability and expression of key proteins in the cell-cell junctions, including junction proteins, their interacting proteins, and small Rho GTPases. We provide an overview of protein stability in modulation of epithelial and endothelial barrier integrity and introduce potential future search directions to better understand the effects of ubiquitination on human disorders caused by dysfunction of cell junctions.
Collapse
Affiliation(s)
- Junting Cai
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Miranda K Culley
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yutong Zhao
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jing Zhao
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
23
|
Aljameeli A, Thakkar A, Shah G. Calcitonin receptor increases invasion of prostate cancer cells by recruiting zonula occludens-1 and promoting PKA-mediated TJ disassembly. Cell Signal 2017; 36:1-13. [PMID: 28428082 DOI: 10.1016/j.cellsig.2017.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022]
Abstract
Almost all primary prostate cancers (PCs) and PC cell lines express calcitonin (CT) and/or its receptor (CTR), and their co-expression positively correlates with their invasiveness. Activation of the CT-CTR axis in non-invasive LNCaP cells induces an invasive phenotype. In contrast, silencing of CT/CTR expression in highly metastatic PC-3M cells markedly reduces their tumorigenicity and abolishes their ability to form distant metastases in nude mice. Our recent studies suggest that CTR interacts with zonula occludens 1 (ZO-1) through PDZ interaction to destabilize tight junctions and increase invasion of PC cells. Our results show that CTR activates AKAP2-anchored cAMP-dependent protein kinase A, which then phosphorylates tight junction proteins ZO-1 and claudin 3. Moreover, PKA-mediated phosphorylation of tight unction proteins required CTR-ZO-1 interaction, suggesting that the interaction may bring CTR-activated PKA in close proximity of tight junction proteins. Furthermore, inhibition of PKA activity attenuated CT-induced loss of TJ functionality and invasion, suggesting that the phosphorylation of TJ proteins is responsible for TJ disassembly. Finally, we show that the prevention of CTR-ZO-1 interaction abolishes CT-induced invasion, and can serve as a novel therapeutic tool to treat aggressive prostate cancers. In brief, the present study identifies the significance of CTR-ZO-1 interaction in progression of prostate cancer to its metastatic form.
Collapse
Affiliation(s)
- Ahmed Aljameeli
- Pharmacology, University of Louisiana College of Pharmacy, Monroe, LA 71209, USA
| | - Arvind Thakkar
- Pharmacology, University of Louisiana College of Pharmacy, Monroe, LA 71209, USA
| | - Girish Shah
- Pharmacology, University of Louisiana College of Pharmacy, Monroe, LA 71209, USA.
| |
Collapse
|
24
|
Choi I, Carey TS, Wilson CA, Knott JG. Transcription factor AP-2γ is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis. Development 2016; 139:4623-32. [PMID: 23136388 DOI: 10.1242/dev.086645] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The trophectoderm epithelium is the first differentiated cell layer to arise during mammalian development. Blastocyst formation requires the proper expression and localization of tight junction, polarity, ion gradient and H2O channel proteins in the outer cell membranes. However, the underlying transcriptional mechanisms that control their expression are largely unknown. Here, we report that transcription factor AP-2γ (Tcfap2c) is a core regulator of blastocyst formation in mice. Bioinformatics, chromatin immunoprecipitation and transcriptional analysis revealed that Tcfap2c binds and regulates a diverse group of genes expressed during blastocyst formation. RNA interference experiments demonstrated that Tcfap2c regulates genes important for tight junctions, cell polarity and fluid accumulation. Functional and ultrastructural studies revealed that Tcfap2c is necessary for tight junction assembly and paracellular sealing in trophectoderm epithelium. Aggregation of control eight-cell embryos with Tcfap2c knockdown embryos rescued blastocyst formation via direct contribution to the trophectoderm epithelium. Finally, we found that Tcfap2c promotes cellular proliferation via direct repression of p21 transcription during the morula-to-blastocyst transition. We propose a model in which Tcfap2c acts in a hierarchy to facilitate blastocyst formation through transcriptional regulation of core genes involved in tight junction assembly, fluid accumulation and cellular proliferation.
Collapse
Affiliation(s)
- Inchul Choi
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | | | | | | |
Collapse
|
25
|
Cui YF, Liu AH, An DZ, Sun RB, Shi Y, Shi YX, Shi M, Zhang Q, Wang LL, Feng Q, Pan GL, Wang Q. Claudin-4 is required for vasculogenic mimicry formation in human breast cancer cells. Oncotarget 2016; 6:11087-97. [PMID: 25871476 PMCID: PMC4484441 DOI: 10.18632/oncotarget.3571] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/22/2015] [Indexed: 11/29/2022] Open
Abstract
Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks. Claudins are aberrantly expressed in aggressive breast cancer. However, the relationship between claudins and VM formation is not clear. We examined VM in two human breast cancer cell lines with different aggressive capabilities (MDA-MB-231 and MCF-7 cells) and one human umbilical vein endothelial cell line (HUVEC). Both HUVEC and MDA-MB-231 cells formed vascular channels in Matrigel cultures, while MCF-7 cells did not. Western blot analysis revealed a possible correlation between claudin-4 and -6 expression in breast cancer cell lines and tumor aggressiveness, with protein levels correlating with the ability to form vascular channels. Treatment of MDA-MB-231 and HUVEC cells with claudin-4 monoclonal antibodies completely inhibited the ability of cells to form vascular channels. Moreover, knockdown of claudin-4 by short hairpin RNA completely inhibited tubule formation in MDA-MB-231 cells. Overexpression of claudin-4 in MCF-7 cells induced formation of vascular channels. Immunocytochemistry revealed that membranous claudin-4 protein was significantly associated with vascular channel formation. Collectively, these results indicate that claudin-4 may play a critical role in VM in human breast cancer cells, opening new opportunities to improve aggressive breast cancer therapy.
Collapse
Affiliation(s)
- Yong-Feng Cui
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - An-Heng Liu
- Cardiovascular Medicine, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Dai-Zhi An
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Ru-Bao Sun
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Yun Shi
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Yun-Xiang Shi
- Department of Physiology, BaoTou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Miao Shi
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Qiang Zhang
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Li-Li Wang
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Qiong Feng
- Department of Physiology, BaoTou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Gui-Lan Pan
- Department of Physiology, BaoTou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Qiang Wang
- Center of Hygiene Assessment and Research, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Alan E, Liman N. Involution dependent changes in distribution and localization of bax, survivin, caspase-3, and calpain-1 in the rat endometrium. Microsc Res Tech 2016; 79:285-97. [DOI: 10.1002/jemt.22629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/06/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine; University of Erciyes; Kayseri Turkey
| | - Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine; University of Erciyes; Kayseri Turkey
| |
Collapse
|
27
|
Short KR, Kasper J, van der Aa S, Andeweg AC, Zaaraoui-Boutahar F, Goeijenbier M, Richard M, Herold S, Becker C, Scott DP, Limpens RWAL, Koster AJ, Bárcena M, Fouchier RAM, Kirkpatrick CJ, Kuiken T. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur Respir J 2016; 47:954-66. [PMID: 26743480 DOI: 10.1183/13993003.01282-2015] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/03/2015] [Indexed: 01/25/2023]
Abstract
A major cause of respiratory failure during influenza A virus (IAV) infection is damage to the epithelial-endothelial barrier of the pulmonary alveolus. Damage to this barrier results in flooding of the alveolar lumen with proteinaceous oedema fluid, erythrocytes and inflammatory cells. To date, the exact roles of pulmonary epithelial and endothelial cells in this process remain unclear.Here, we used an in vitro co-culture model to understand how IAV damages the pulmonary epithelial-endothelial barrier. Human epithelial cells were seeded on the upper half of a transwell membrane while human endothelial cells were seeded on the lower half. These cells were then grown in co-culture and IAV was added to the upper chamber.We showed that the addition of IAV (H1N1 and H5N1 subtypes) resulted in significant barrier damage. Interestingly, we found that, while endothelial cells mounted a pro-inflammatory/pro-coagulant response to a viral infection in the adjacent epithelial cells, damage to the alveolar epithelial-endothelial barrier occurred independently of endothelial cells. Rather, barrier damage was associated with disruption of tight junctions amongst epithelial cells, and specifically with loss of tight junction protein claudin-4.Taken together, these data suggest that maintaining epithelial cell integrity is key in reducing pulmonary oedema during IAV infection.
Collapse
Affiliation(s)
- Kirsty R Short
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Jennifer Kasper
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Stijn van der Aa
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Arno C Andeweg
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Marco Goeijenbier
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Susanne Herold
- University of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University of Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Christin Becker
- University of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University of Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ronald W A L Limpens
- Dept of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, The Netherlands
| | - Abraham J Koster
- Dept of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, The Netherlands
| | - Montserrat Bárcena
- Dept of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ron A M Fouchier
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Thijs Kuiken
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
28
|
Leech AO, Cruz RGB, Hill ADK, Hopkins AM. Paradigms lost-an emerging role for over-expression of tight junction adhesion proteins in cancer pathogenesis. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:184. [PMID: 26366401 DOI: 10.3978/j.issn.2305-5839.2015.08.01] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022]
Abstract
Tight junctions (TJ) are multi-protein complexes located at the apicalmost tip of the lateral membrane in polarised epithelial and endothelial cells. Their principal function is in mediating intercellular adhesion and polarity. Accordingly, it has long been a paradigm that loss of TJ proteins and consequent deficits in cell-cell adhesion are required for tumour cell dissemination in the early stages of the invasive/metastatic cascade. However it is becoming increasingly apparent that TJ proteins play important roles in not just adhesion but also intracellular signalling events, activation of which can contribute to, or even drive, tumour progression and metastasis. In this review, we shall therefore highlight cases wherein the gain of TJ proteins has been associated with signals promoting tumour progression. We will also discuss the potential of overexpressed TJ proteins to act as therapeutic targets in cancer treatment. The overall purpose of this review is not to disprove the fact that loss of TJ-based adhesion contributes to the progression of several cancers, but rather to introduce the growing body of evidence that gain of TJ proteins may have adhesion-independent consequences for promoting progression in other cancers.
Collapse
Affiliation(s)
- Astrid O Leech
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rodrigo G B Cruz
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Arnold D K Hill
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ann M Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
29
|
YANG JIMIN, KIM WOOJEAN, JUN HYOUNGOH, LEE EUNJU, LEE KYEONGWON, JEONG JAEYEON, LEE SAEWON. Hypoxia-induced fibroblast growth factor 11 stimulates capillary-like endothelial tube formation. Oncol Rep 2015; 34:2745-51. [DOI: 10.3892/or.2015.4223] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/06/2015] [Indexed: 11/05/2022] Open
|
30
|
Rousseau A, Tomasetto C, Alpy F. [TRAF4, a multifaceted protein involved in carcinoma progression]. Biol Aujourdhui 2015; 208:299-310. [PMID: 25840457 DOI: 10.1051/jbio/2014026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Indexed: 06/04/2023]
Abstract
Eukaryotic epithelial cells form a sheet of contiguous cells, called epithelium, by means of the establishment of well-developed junctional complexes. These junctional complexes ensure the cell cohesion in the tissue and separate the plasma membrane into an apical and a basolateral compartment. This apicobasal polarity, which is crucial for both the architecture and the function of epithelia, is mainly maintained by tight junctions (TJS). Indeed, TJS weakening or loss disrupts the integrity of the epithelium, a process participating to the formation and progression of carcinomas. It has recently been shown that TRAF4, a protein dynamically localized in TJS and commonly overexpressed in carcinomas, plays a variety of functions in tumor progression. Here, we review recent data implicating TRAF4 in carcinogenesis. First, the conserved TRAF proteins family will be presented, and then the molecular mechanism addressing TRAF4 to TJS which involves lipid binding by the TRAF domain will be described. The various roles of TRAF4 in carcinogenesis will be discussed. Finally, we will highlight the ability of all TRAF proteins to bind lipids and discuss its potential functional relevance.
Collapse
Affiliation(s)
- Adrien Rousseau
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génomique Fonctionnelle et Cancer, 1 rue Laurent Fries, 67404 Illkirch, France - Institut National de la Santé et de la Recherche Médicale (INSERM), U 964, 67404 Illkirch, France - Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France - Université de Strasbourg, 67404 Illkirch, France
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génomique Fonctionnelle et Cancer, 1 rue Laurent Fries, 67404 Illkirch, France - Institut National de la Santé et de la Recherche Médicale (INSERM), U 964, 67404 Illkirch, France - Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France - Université de Strasbourg, 67404 Illkirch, France
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génomique Fonctionnelle et Cancer, 1 rue Laurent Fries, 67404 Illkirch, France - Institut National de la Santé et de la Recherche Médicale (INSERM), U 964, 67404 Illkirch, France - Centre National de la Recherche Scientifique (CNRS), UMR 7104, 67404 Illkirch, France - Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
31
|
Kern U, Wischnewski V, Biniossek ML, Schilling O, Reinheckel T. Lysosomal protein turnover contributes to the acquisition of TGFβ-1 induced invasive properties of mammary cancer cells. Mol Cancer 2015; 14:39. [PMID: 25744631 PMCID: PMC4339013 DOI: 10.1186/s12943-015-0313-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022] Open
Abstract
Background Normal epithelial cells and carcinoma cells can acquire invasiveness by epithelial-to-mesenchymal transition (EMT), a process of considerable cellular remodeling. The endosomal/lysosomal compartment is a principal site of intracellular protein degradation. Lysosomal cathepsin proteases are secreted during cancer progression. The established pro-metastatic role of specific cysteine cathepsins has until now been ascribed to their contribution to extracellular matrix remodeling. We hypothesized that cysteine cathepsins affect transforming growth factor β-1 (TGFβ-1)-induced EMT of normal and malignant mammary epithelial cells. Methods The role of lysosomal proteolysis in TGFβ-1-induced EMT and invasion was investigated in a normal and a novel malignant murine mammary epithelial cell line. The contribution of cysteine cathepsins was determined by addition of the general cysteine cathepsin inhibitor E64d. Hallmarks of EMT were analyzed by molecular- and cell-biologic analyses including real-time cell migration/invasion assays. A quantitative proteome comparison using stable isotopic labeling with amino acids in culture (SILAC) showed the effect of E64d on TGFβ-1 induced proteome changes. Lysosomal patterning and junctional adhesion molecule A (Jam-a) localization and abundance were analyzed by immunofluorescence. Results We found increased lysosome activity during EMT of malignant mammary epithelial cells. Cysteine cathepsin inhibition had no effect on the induction of the TGFβ-1-induced EMT program on transcriptional level. Protease inhibition did not affect invasion of TGFβ-1 treated normal mammary epithelial cells, but reduced the invasion of murine breast cancer cells. Remarkably, reduced invasion was also evident if E64d was removed 24 h before the invasion assay in order to allow for recovery of cathepsin activity. Proteome analyses revealed a high abundance of lysosomal enzymes and lysosome-associated proteins in cancer cells treated with TGFβ-1 and E64d. An accumulation of those proteins and of lysosomal vesicles was further confirmed by independent methods. Interestingly, E64d caused lysosomal accumulation of Jam-a, a tight junction component facilitating epithelial cell-cell adhesion. Conclusion Our results demonstrate an important role of lysosomal proteolysis in cellular remodeling during EMT and a pivotal contribution of lysosomal cysteine cathepsins to TGFβ-1 induced acquisition of breast cancer cell invasiveness. These findings provide an additional rationale to use cathepsin inhibitors to stall tumor metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0313-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ursula Kern
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, Freiburg, D-79104, Germany. .,Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany. .,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.
| | - Vladimir Wischnewski
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, Freiburg, D-79104, Germany.
| | - Martin L Biniossek
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, Freiburg, D-79104, Germany.
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, Freiburg, D-79104, Germany. .,BIOSS Centre for Biological Signalling Studies, Freiburg, Germany.
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 17, Freiburg, D-79104, Germany. .,BIOSS Centre for Biological Signalling Studies, Freiburg, Germany. .,German Cancer Consortium (DKTK), Freiburg, Germany.
| |
Collapse
|
32
|
Zhao C, Lu F, Chen H, Zhao X, Sun J, Chen H. Dysregulation of JAM-A plays an important role in human tumor progression. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7242-7248. [PMID: 25400822 PMCID: PMC4230059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Junctional adhesion molecule A (JAM-A) is a transmembrane protein that belongs to the immunoglobulin (Ig) superfamily. Evidence determines that JAM-A plays a role in numerous cellular processes, including tight junction assembly, leukocyte migration, platelet activation, angiogenesis and virus binding. Recent research suggests that JAM-A is dysregulated in various cancers and is vital for tumor progression. JAM-A is implicated in carcinogenesis via different signal pathways such as TGF-β1 signaling. Furthermore, JAM-A expression in cancers is usually associated with certain outcome of patients and might be a prognostic indicator. In this review, the correlation between JAM-A expression and human cancers will be described.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan UniversityWuhan 430071, P. R. China
| | - Funian Lu
- Department of Pathology, School of Basic Medical Science, Wuhan UniversityWuhan 430071, P. R. China
| | - Hongxia Chen
- Department of Pathology, School of Basic Medical Science, Wuhan UniversityWuhan 430071, P. R. China
| | - Xianda Zhao
- Department of Pathology, School of Basic Medical Science, Wuhan UniversityWuhan 430071, P. R. China
| | - Jun Sun
- Department of Pathology, Maternal and Child Health Hospital of Hubei ProvinceWuhan 430072, P. R. China
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Science, Wuhan UniversityWuhan 430071, P. R. China
| |
Collapse
|
33
|
Drug repositioning discovery for early- and late-stage non-small-cell lung cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:193817. [PMID: 25210704 PMCID: PMC4156989 DOI: 10.1155/2014/193817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/07/2014] [Accepted: 07/12/2014] [Indexed: 12/30/2022]
Abstract
Drug repositioning is a popular approach in the pharmaceutical industry for identifying potential new uses for existing drugs and accelerating the development time. Non-small-cell lung cancer (NSCLC) is one of the leading causes of death worldwide. To reduce the biological heterogeneity effects among different individuals, both normal and cancer tissues were taken from the same patient, hence allowing pairwise testing. By comparing early- and late-stage cancer patients, we can identify stage-specific NSCLC genes. Differentially expressed genes are clustered separately to form up- and downregulated communities that are used as queries to perform enrichment analysis. The results suggest that pathways for early- and late-stage cancers are different. Sets of up- and downregulated genes were submitted to the cMap web resource to identify potential drugs. To achieve high confidence drug prediction, multiple microarray experimental results were merged by performing meta-analysis. The results of a few drug findings are supported by MTT assay or clonogenic assay data. In conclusion, we have been able to assess the potential existing drugs to identify novel anticancer drugs, which may be helpful in drug repositioning discovery for NSCLC.
Collapse
|
34
|
Zangari J, Partisani M, Bertucci F, Milanini J, Bidaut G, Berruyer-Pouyet C, Finetti P, Long E, Brau F, Cabaud O, Chetaille B, Birnbaum D, Lopez M, Hofman P, Franco M, Luton F. EFA6B Antagonizes Breast Cancer. Cancer Res 2014; 74:5493-506. [DOI: 10.1158/0008-5472.can-14-0298] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Huang JY, Xu YY, Sun Z, Wang ZN, Zhu Z, Song YX, Luo Y, Zhang X, Xu HM. Low junctional adhesion molecule A expression correlates with poor prognosis in gastric cancer. J Surg Res 2014; 192:494-502. [PMID: 25033702 DOI: 10.1016/j.jss.2014.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/07/2014] [Accepted: 06/13/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND The aberrant expression of junctional adhesion molecule A (JAM-A), which has a close correlation with the development, progression, metastasis, and prognosis of cancer, has been frequently reported. However, neither JAM-A expression nor its correlation with clinicopathologic variables and patient survival has been defined in gastric cancers. Moreover, little is known about the role of JAM-A in gastric cancer progression. We carried out the present study to investigate the prognostic value of JAM-A expression in gastric cancer patients. Furthermore, the biological roles of JAM-A in gastric cancer progression were also investigated. METHODS We determined JAM-A expression in 167 primary gastric cancer tissues and 94 matched adjacent non-tumor tissues by immunohistochemistry. Transwell migration assays and matrigel invasion assays were used to explore the role of JAM-A in gastric cancer cells migration and invasion. CCK-8 assays were used to examine the effect of JAM-A on the proliferation of gastric cancer cells. RESULTS JAM-A was downregulated in gastric cancer tissues. Low JAM-A expression was significantly associated with tumor size, lymphatic vessel invasion, lymph node metastasis, and TNM stage. Low JAM-A expression was also significantly associated with poor disease-specific survival in gastric cancer patients. Multivariate analysis demonstrated low JAM-A expression as an independent factor predicting poor survival. In addition, JAM-A had the effect on inhibition of gastric cancer cells migration and invasion. However, JAM-A had no significant effects on proliferation of gastric cancer cells. CONCLUSIONS Low JAM-A expression correlates with poor clinical outcome and promotes cell migration and invasion in gastric cancer.
Collapse
Affiliation(s)
- Jin-Yu Huang
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying-Ying Xu
- Department of Breast Surgery, First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Zhe Sun
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhen-Ning Wang
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Zhu
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yong-Xi Song
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Luo
- The Research Center for Medical Genomics and MOH Key Laboratory of Cell Biology, China Medical University, Shenyang City, China
| | - Xue Zhang
- The Research Center for Medical Genomics and MOH Key Laboratory of Cell Biology, China Medical University, Shenyang City, China
| | - Hui-Mian Xu
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
36
|
Nicolson GL. The Fluid—Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40years. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1451-66. [DOI: 10.1016/j.bbamem.2013.10.019] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/08/2013] [Accepted: 10/18/2013] [Indexed: 12/21/2022]
|
37
|
Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, Yu Y, Chow A, O'Connor STF, Chin AR, Yen Y, Wang Y, Marcusson EG, Chu P, Wu J, Wu X, Li AX, Li Z, Gao H, Ren X, Boldin MP, Lin PC, Wang SE. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 2014; 25:501-15. [PMID: 24735924 PMCID: PMC4016197 DOI: 10.1016/j.ccr.2014.03.007] [Citation(s) in RCA: 1139] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/23/2013] [Accepted: 03/07/2014] [Indexed: 12/11/2022]
Abstract
Cancer-secreted microRNAs (miRNAs) are emerging mediators of cancer-host crosstalk. Here we show that miR-105, which is characteristically expressed and secreted by metastatic breast cancer cells, is a potent regulator of migration through targeting the tight junction protein ZO-1. In endothelial monolayers, exosome-mediated transfer of cancer-secreted miR-105 efficiently destroys tight junctions and the integrity of these natural barriers against metastasis. Overexpression of miR-105 in nonmetastatic cancer cells induces metastasis and vascular permeability in distant organs, whereas inhibition of miR-105 in highly metastatic tumors alleviates these effects. miR-105 can be detected in the circulation at the premetastatic stage, and its levels in the blood and tumor are associated with ZO-1 expression and metastatic progression in early-stage breast cancer.
Collapse
Affiliation(s)
- Weiying Zhou
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA; Department of Pharmacology, College of Pharmacy, The Third Military Medical University, Chongqing, 400038, China
| | - Miranda Y Fong
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Yongfen Min
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - George Somlo
- Department of Medical Oncology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Liang Liu
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA; Department of Biotherapy and Key Laboratory of Cancer Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Melanie R Palomares
- Department of Medical Oncology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA; Department of Population Sciences, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Yang Yu
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA; Department of Biotherapy and Key Laboratory of Cancer Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Amy Chow
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | | | - Andrew R Chin
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA; City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, CA 91010, USA
| | - Yun Yen
- Department of Molecular Pharmacology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA; Core of Translational Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Yafan Wang
- Core of Translational Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Eric G Marcusson
- Oncology and Basic Mechanisms, Regulus Therapeutics, San Diego, CA 92121, USA
| | - Peiguo Chu
- Department of Pathology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Jun Wu
- Department of Comparative Medicine, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Xiwei Wu
- Core of Integrative Genomics, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Arthur Xuejun Li
- Department of Information Science, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Zhuo Li
- Core of Electron Microscopy, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Hanlin Gao
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA; Core of Integrative Genomics, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | - Xiubao Ren
- Department of Biotherapy and Key Laboratory of Cancer Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Mark P Boldin
- Department of Molecular and Cellular Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA
| | | | - Shizhen Emily Wang
- Department of Cancer Biology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
38
|
Stelwagen K, Singh K. The role of tight junctions in mammary gland function. J Mammary Gland Biol Neoplasia 2014; 19:131-8. [PMID: 24249583 DOI: 10.1007/s10911-013-9309-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/29/2013] [Indexed: 10/26/2022] Open
Abstract
Tight junctions (TJ) are cellular structures that facilitate cell-cell communication and are important in maintaining the three-dimensional structure of epithelia. It is only during the last two decades that the molecular make-up of TJ is becoming unravelled, with two major transmembrane-spanning structural protein families, called occludin and claudins, being the true constituents of the TJ. These TJ proteins are linked via specific scaffolding proteins to the cell's cytoskeleton. In the mammary gland TJ between adjacent secretory epithelial cells are formed during lactogenesis and are instrumental in establishing and maintaining milk synthesis and secretion, whereas TJ integrity is compromised during mammary involution and also as result of mastitis and periods of mammary inflamation (including mastitis). They prevent the paracellular transport of ions and small molecules between the blood and milk compartments. Formation of intact TJ at the start of lactation is important for the establishment of the lactation. Conversely, loss of TJ integrity has been linked to reduced milk secretion and mammary function and increased paracellular transport of blood components into the milk and vice versa. In addition to acting as a paracellular barrier, the TJ is increasingly linked to playing an active role in intracellular signalling. This review focusses on the role of TJ in mammary function of the normal, non-malignant mammary gland, predominantly in ruminants, the major dairy producing species.
Collapse
Affiliation(s)
- Kerst Stelwagen
- SciLactis Ltd, Waikato Innovation Park, Hamilton, 3240, New Zealand,
| | | |
Collapse
|
39
|
Abstract
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
40
|
Owens MB, Hill AD, Hopkins AM. Ductal barriers in mammary epithelium. Tissue Barriers 2013; 1:e25933. [PMID: 24665412 PMCID: PMC3783220 DOI: 10.4161/tisb.25933] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 12/12/2022] Open
Abstract
Tissue barriers play an integral role in the biology and pathobiology of mammary ductal epithelium. In normal breast physiology, tight and adherens junctions undergo dynamic changes in permeability in response to hormonal and other stimuli, while several of their proteins are directly involved in mammary tumorigenesis. This review describes first the structure of mammary ductal epithelial barriers and their role in normal mammary development, examining the cyclical changes in response to puberty, pregnancy, lactation and involution. It then examines the role of adherens and tight junctions and the participation of their constituent proteins in mammary tumorigenic functions such as migration, invasion and metastasis. Finally, it discusses the potential of these adhesion proteins as both prognostic biomarkers and potential therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Mark B Owens
- Department of Surgery; Royal College of Surgeons in Ireland; Dublin, Ireland
| | - Arnold Dk Hill
- Department of Surgery; Royal College of Surgeons in Ireland; Dublin, Ireland
| | - Ann M Hopkins
- Department of Surgery; Royal College of Surgeons in Ireland; Dublin, Ireland
| |
Collapse
|
41
|
Tyrosine kinase inhibitors (TKIs) in human and pet tumours with special reference to breast cancer: a comparative review. Crit Rev Oncol Hematol 2013; 88:293-308. [PMID: 23768779 DOI: 10.1016/j.critrevonc.2013.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/27/2013] [Accepted: 05/17/2013] [Indexed: 12/13/2022] Open
Abstract
Tyrosine kinase receptors (TKRs) play a key role in tumour cell proliferation and survival since they are involved in endothelial cell activation leading to tumour neoangiogenesis. In particular, vascular endothelial growth factor receptors (VEGFRs), platelet-derived growth factor receptor (PDGFR), stem cell factor receptor (c-KitR), and colony-stimulating factor 1 (CSF-1) are overexpressed or constitutively activated in human and pet malignancies. A variety of small molecule inhibitors targeting specific tyrosine kinases (known as tyrosine kinase inhibitors or TKIs) have recently been approved, or are under investigation, for the treatment of human cancer. TKI application in animal cancer is however relatively recent. This review aims to illustrate the major aspects of tyrosine kinase dysfunctions, with special regard to human and animal cancer of the mammary gland, providing an update on the background of the anti-angiogenic and anti-neoplastic properties of TKIs in human and veterinary cancer.
Collapse
|
42
|
|
43
|
Abstract
Tight junctions consist of many proteins, including transmembrane and associated cytoplasmic proteins, which act to provide a barrier regulating transport across epithelial and endothelial tissues. These junctions are dynamic structures that are able to maintain barrier function during tissue remodelling and rapidly alter it in response to extracellular signals. Individual components of tight junctions also show dynamic behaviour, including migration within the junction and exchange in and out of the junctions. In addition, it is becoming clear that some tight junction proteins undergo continuous endocytosis and recycling back to the plasma membrane. Regulation of endocytic trafficking of junctional proteins may provide a way of rapidly remodelling junctions and will be the focus of this chapter.
Collapse
|
44
|
Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene 2012; 32:4873-82. [PMID: 23160379 DOI: 10.1038/onc.2012.505] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/13/2012] [Accepted: 09/21/2012] [Indexed: 12/13/2022]
Abstract
Claudins (CLDNs) are a family of integral membrane proteins central to the formation of tight junctions, structures that are involved in paracellular transport and cellular growth and differentiation, and are critical for the maintenance of cellular polarity. Recent studies have provided evidence that CLDNs are aberrantly expressed in diverse types of human cancers, including hepatocellular carcinomas (HCCs). However, little is known about how CLDN expression is involved in cancer progression. In this study, we show that CLDN1 has a causal role in the epithelial-mesenchymal transition (EMT) in human liver cells, and that the c-Abl-Ras-Raf-1-ERK1/2 signaling axis is critical for the induction of malignant progression by CLDN1. Overexpression of CLDN1 induced expression of the EMT-regulating transcription factors Slug and Zeb1, and thereby led to repression of E-cadherin, β-catenin expression, enhanced expression of N-cadherin and Vimentin, a loss of cell adhesion, and increased cell motility in normal liver cells and HCC cells. In line with these findings, inhibition of either c-Abl or ERK clearly attenuated CLDN1-induced EMT, as evidenced by a reversal of N-cadherin and E-cadherin expression patterns, and restored normal motility. Collectively, these results indicate that CLDN1 is necessary for the induction of EMT in human liver cells, and that activation of the c-Abl-Ras-Raf-1-ERK1/2 signaling pathway is required for CLDN1-induced acquisition of the malignant phenotype. The present observations suggest that CLDN1 could be exploited as a biomarker for liver cancer metastasis and might provide a pivotal point for therapeutic intervention in HCC.
Collapse
|
45
|
Mack NA, Porter AP, Whalley HJ, Schwarz JP, Jones RC, Khaja ASS, Bjartell A, Anderson KI, Malliri A. β2-syntrophin and Par-3 promote an apicobasal Rac activity gradient at cell-cell junctions by differentially regulating Tiam1 activity. Nat Cell Biol 2012; 14:1169-80. [PMID: 23103911 PMCID: PMC3498067 DOI: 10.1038/ncb2608] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/25/2012] [Indexed: 12/20/2022]
Abstract
Although Rac and its activator Tiam1 are known to stimulate cell-cell adhesion, the mechanisms regulating their activity in cell-cell junction formation are poorly understood. Here, we identify β2-syntrophin as a Tiam1 interactor required for optimal cell-cell adhesion. We show that during tight-junction (TJ) assembly β2-syntrophin promotes Tiam1-Rac activity, in contrast to the function of the apical determinant Par-3 whose inhibition of Tiam1-Rac activity is necessary for TJ assembly. We further demonstrate that β2-syntrophin localizes more basally than Par-3 at cell-cell junctions, thus generating an apicobasal Rac activity gradient at developing cell-cell junctions. Targeting active Rac to TJs shows that this gradient is required for optimal TJ assembly and apical lumen formation. Consistently, β2-syntrophin depletion perturbs Tiam1 and Rac localization at cell-cell junctions and causes defects in apical lumen formation. We conclude that β2-syntrophin and Par-3 fine-tune Rac activity along cell-cell junctions controlling TJ assembly and the establishment of apicobasal polarity.
Collapse
Affiliation(s)
- Natalie A Mack
- Cell Signalling Group, Cancer Research UK Paterson Institute for Cancer Research, The University of Manchester, Manchester M20 4BX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
47
|
Korompay A, Borka K, Lotz G, Somorácz A, Törzsök P, Erdélyi-Belle B, Kenessey I, Baranyai Z, Zsoldos F, Kupcsulik P, Bodoky G, Schaff Z, Kiss A. Tricellulin expression in normal and neoplastic human pancreas. Histopathology 2012; 60:E76-86. [PMID: 22394074 DOI: 10.1111/j.1365-2559.2012.04189.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIMS Tricellulin is a member of the family of tight junction proteins, which are found concentrated mainly at tricellular contacts. Altered expression of several tight junction components has been observed during carcinogenesis. In the present study, we have analysed the expression of tricellulin in normal human pancreas, and in primary exocrine and endocrine pancreatic tumours. METHODS AND RESULTS A total of 96 cases were studied: 20 normal pancreas, 58 pancreatic ductal adenocarcinomas, 15 pancreatic endocrine neoplasms, and three acinar cell carcinomas. Immunohistochemistry (analysed by digital morphometry), immunofluorescence, western blot analysis and reverse transcription polymerase chain reaction were performed. Tricellulin was localized apically in normal ducts and acini as intensive, spotty immunopositivity at tricellular contacts, whereas weaker signals were observed at the junction between two cells. Islets of Langerhans were negative. Well-differentiated ductal adenocarcinomas significantly overexpressed tricellulin as compared with poorly differentiated adenocarcinomas. Acinar cell carcinomas expressed tricellulin in tumour cells. All endocrine tumours were tricellulin-negative. CONCLUSIONS This is the first report to describe the tricellulin expression profile in normal and neoplastic human pancreas. Both normal and neoplastic pancreatic exocrine tissues expressed tricellulin, whereas no expression was seen in normal or neoplastic endocrine cells. Tricellulin expression in pancreatic ductal adenocarcinomas showed a significant negative correlation with the degree of differentiation.
Collapse
Affiliation(s)
- Anna Korompay
- 2nd Department of Pathology, Semmelweis University, Uzsoki Hospital, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dukes JD, Whitley P, Chalmers AD. The PIKfyve inhibitor YM201636 blocks the continuous recycling of the tight junction proteins claudin-1 and claudin-2 in MDCK cells. PLoS One 2012; 7:e28659. [PMID: 22396724 PMCID: PMC3291620 DOI: 10.1371/journal.pone.0028659] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/12/2011] [Indexed: 11/18/2022] Open
Abstract
Tight junctions mediate the intercellular diffusion barrier found in epithelial tissues but they are not static complexes; instead there is rapid movement of individual proteins within the junctions. In addition some tight junction proteins are continuously being endocytosed and recycled back to the plasma membrane. Understanding the dynamic behaviour of tight junctions is important as they are altered in a range of pathological conditions including cancer and inflammatory bowel disease. In this study we investigate the effect of treating epithelial cells with a small molecule inhibitor (YM201636) of the lipid kinase PIKfyve, a protein which is involved in endocytic trafficking. We show that MDCK cells treated with YM201636 accumulate the tight junction protein claudin-1 intracellularly. In contrast YM201636 did not alter the localization of other junction proteins including ZO-1, occludin and E-cadherin. A biochemical trafficking assay was used to show that YM201636 inhibited the endocytic recycling of claudin-1, providing an explanation for the intracellular accumulation. Claudin-2 was also found to constantly recycle in confluent MDCK cells and treatment with YM201636 blocked this recycling and caused accumulation of intracellular claudin-2. However, claudin-4 showed negligible endocytosis and no detectable intracellular accumulation occurred following treatment with YM201636, suggesting that not all claudins show the same rate of endocytic trafficking. Finally, we show that, consistent with the defects in claudin trafficking, incubation with YM201636 delayed formation of the epithelial permeability barrier. Therefore, YM201636 treatment blocks the continuous recycling of claudin-1/claudin-2 and delays epithelial barrier formation.
Collapse
Affiliation(s)
| | - Paul Whitley
- Department of Biology and Biochemistry, Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
- * E-mail: (PW); (ADC)
| | - Andrew D. Chalmers
- Department of Biology and Biochemistry, Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
- * E-mail: (PW); (ADC)
| |
Collapse
|
49
|
Tőkés AM, Szász AM, Juhász E, Schaff Z, Harsányi L, Molnár IA, Baranyai Z, Besznyák I, Zaránd A, Salamon F, Kulka J. Expression of tight junction molecules in breast carcinomas analysed by array PCR and immunohistochemistry. Pathol Oncol Res 2011; 18:593-606. [PMID: 22193974 DOI: 10.1007/s12253-011-9481-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 11/17/2011] [Indexed: 01/05/2023]
Abstract
In the past few decades an enormous amount of data became known to clarify the molecular composition and architecture of tight junctions (TJs). Despite the efforts, the expression and function of several TJ genes and proteins in breast carcinoma are still not known and some of the data are contradictory. The expression of forty-four TJ associated genes was examined at mRNA level in eighteen invasive ductal breast carcinoma samples and corresponding normal breast tissues by using low density array PCR. Expressions of claudins (CLDNs) 5, 10, 16, 17, and 18, and ZO-1, ZO-2 were evaluated by immunohistochemistry as well. Using immunohistochemical phenotype as a surrogate for the genetic subtype, 11 luminal A, 3 luminal B, 3 triple negative and one HER2+ cases were included. Ten genes were significantly downregulated in tumors compared with normal breast tissues (CLDNs 5, 10, 16, 18, 19, CTNNAL1, JAM-B, ZO-1, ZO-2 and PARD3), whereas one gene (CLDN17) was significantly up-regulated in tumors when compared with normal breast. At protein level CLDNs 5, 10, 16, 18, ZO-1 and ZO-2 were downregulated in tumors as compared with normal breast tissue. CLDN17 showed variable expression in tumor tissues in comparison to normal breast. In the single HER2+ tumor when compared with the other subtypes CLDNs 5, 16, 17, 18, CTNNAL1, JAM-B, ZO-1, ZO-2 and PARD3 genes were found to be upregulated. We found altered TJ genes and proteins whose expression has not yet been associated with breast carcinoma. Our findings show a tendency of TJ genes and proteins to be downregulated in breast cancer. Further studies are necessary to examine whether the downregulation of the above mentioned TJ associated genes and proteins may contribute to the malignant progression of invasive ductal breast carcinomas.
Collapse
Affiliation(s)
- Anna-Mária Tőkés
- 2nd Department of Pathology, Semmelweis University, Ulloi ut 93, 1091 Budapest, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|