1
|
Wang T, Zhou D, Hong Z. Adipose tissue in older individuals: a contributing factor to sarcopenia. Metabolism 2024; 160:155998. [PMID: 39128607 DOI: 10.1016/j.metabol.2024.155998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Sarcopenia is a geriatric syndrome characterized by a functional decline in muscle. The prevalence of sarcopenia increases with natural aging, becoming a serious health problem among elderly individuals. Therefore, understanding the pathology of sarcopenia is critical for inhibiting age-related alterations and promoting health and longevity in elderly individuals. The development of sarcopenia may be influenced by interactions between visceral and subcutaneous adipose tissue and skeletal muscle, particularly under conditions of chronic low-grade inflammation and metabolic dysfunction. This hypothesis is supported by the following observations: (i) accumulation of senescent cells in both adipose tissue and skeletal muscle with age; (ii) gut dysbiosis, characterized by an imbalance in gut microbial communities as the main trigger for inflammation, sarcopenia, and aged adipose tissue; and (iii) microbial dysbiosis, which could impact the onset or progression of a senescent state. Moreover, adipose tissue acts as an endocrine organ, releasing molecules that participate in intricate communication networks between organs. Our discussion focuses on novel adipokines and their role in regulating adipose tissue and muscle, particularly those influenced by aging and obesity, emphasizing their contributions to disease development. On the basis of these findings, we propose that age-related adipose tissue and sarcopenia are disorders characterized by chronic inflammation and metabolic dysregulation. Finally, we explore new potential therapeutic strategies involving specialized proresolving mediator (SPM) G protein-coupled receptor (GPCR) agonists, non-SPM GPCR agonists, transient receptor potential (TRP) channels, antidiabetic drugs in conjunction with probiotics and prebiotics, and compounds designed to target senescent cells and mitigate their pro-inflammatory activity.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Lu W, Feng W, Lai J, Yuan D, Xiao W, Li Y. Role of adipokines in sarcopenia. Chin Med J (Engl) 2023; 136:1794-1804. [PMID: 37442757 PMCID: PMC10406092 DOI: 10.1097/cm9.0000000000002255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 07/15/2023] Open
Abstract
ABSTRACT Sarcopenia is an age-related disease that mainly involves decreases in muscle mass, muscle strength and muscle function. At the same time, the body fat content increases with aging, especially the visceral fat content. Adipose tissue is an endocrine organ that secretes biologically active factors called adipokines, which act on local and distant tissues. Studies have revealed that some adipokines exert regulatory effects on muscle, such as higher serum leptin levels causing a decrease in muscle function and adiponectin inhibits the transcriptional activity of Forkhead box O3 (FoxO3) by activating peroxisome proliferators-activated receptor-γ coactivator -1α (PGC-1α) and sensitizing cells to insulin, thereby repressing atrophy-related genes (atrogin-1 and muscle RING finger 1 [MuRF1]) to prevent the loss of muscle mass. Here, we describe the effects on muscle of adipokines produced by adipose tissue, such as leptin, adiponectin, resistin, mucin and lipocalin-2, and discuss the importance of these adipokines for understanding the development of sarcopenia.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jieyu Lai
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Dongliang Yuan
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
3
|
Zhuang M, Jin M, Lu T, Lu L, Ainsworth BE, Liu Y, Chen N. Effects of three modes of physical activity on physical fitness and hematological parameters in older people with sarcopenic obesity: A systematic review and meta-analysis. Front Physiol 2022; 13:917525. [PMID: 36091394 PMCID: PMC9458075 DOI: 10.3389/fphys.2022.917525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: This systematic review and meta-analysis assessed the effects of three modes of physical activity (PA) (aerobic training [AT], resistance training [RT], and aerobic combined with resistance training [MT]) on body composition (body weight [BW], body mass index [BMI] and percentage of body fat [BF%]), muscle mass (skeletal muscle mass [SM], appendicular skeletal muscle mass [ASM] and appendicular skeletal muscle mass index [ASMI]), muscle strength (handgrip strength [HG] and knee extension strength [KES]), physical performance (gait speed [GS]) and hematological parameters (inflammatory markers, insulin-like growth factor 1 [IGF-1] and lipid profiles) in older people with sarcopenic obesity (SO). Methods: We searched all studies for PA effects in older people with SO from six databases published from January 2010 to November 2021. Two researchers independently screened studies, extracted data according to inclusion and exclusion criteria, and assessed the quality of included studies. Pooled analyses for pre-and post- outcome measures were performed by Review Manager 5.4. We calculated a meta-analysis with a 95% confidence interval (95% CI) and the standardized mean differences (SMD). Results: 12 studies were analyzed. There were 614 older people (84.9% female) with SO, aged 58.4 to 88.4 years. Compared with a no-PA control group, AT decreased BW (SMD = −0.64, 95% CI: −1.13 to −0.16, p = 0.009, I2 = 0%) and BMI (SMD = −0.69, 95% CI: −1.18 to −0.21, p = 0.005, I2 = 0%); RT improved BF% (SMD = −0.43, 95% CI: −0.63 to −0.22, p < 0.0001, I2 = 38%), ASMI (SMD = 0.72, 95% CI: 0.24 to 1.21, p = 0.004, I2 = 0%), ASM (SMD = −0.94, 95% CI: −1.46 to −0.42, p = 0.0004), HG (SMD = 1.06, 95% CI: 0.22 to 1.91, p = 0.01, I2 = 90%) and KES (SMD = 1.06, 95% CI: 0.73 to 1.39, p < 0.00001, I2 = 14%); MT improved BMI (SMD = −0.77, 95% CI: −1.26 to −0.28, p = 0.002, I2 = 0%), BF% (SMD = −0.54, 95% CI: −0.83 to −0.25, p = 0.0003, I2 = 0%), ASMI (SMD = 0.70, 95% CI: 0.22 to 1.19, p = 0.005, I2 = 0%) and GS (SMD = 0.71, 95% CI: 0.23 to 1.18, p = 0.004, I2 = 37%). PA increased IGF-1 (SMD = 0.38, 95% CI: 0.11 to 0.66, p = 0.006, I2 = 0%), but had no effect on inflammatory markers and lipid profiles. Conclusion: PA is an effective treatment to improve body composition, muscle mass, muscle strength, physical performance, and IGF-1 in older people with SO.
Collapse
Affiliation(s)
- Min Zhuang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Mengdie Jin
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tijiang Lu
- Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Linqian Lu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Barbara E Ainsworth
- College of Health Solutions, Arizona State University, Phoenix, AZ, United States.,School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Nan Chen
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation, Xinhua Hospital Chongming Branch, Shanghai, China.,Department of Rehabilitation, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Ding Y, Haks MC, Forn-Cuní G, He J, Nowik N, Harms AC, Hankemeier T, Eeza MNH, Matysik J, Alia A, Spaink HP. Metabolomic and transcriptomic profiling of adult mice and larval zebrafish leptin mutants reveal a common pattern of changes in metabolites and signaling pathways. Cell Biosci 2021; 11:126. [PMID: 34233759 PMCID: PMC8265131 DOI: 10.1186/s13578-021-00642-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leptin plays a critical role in the regulation of metabolic homeostasis. However, the molecular mechanism and cross talks between leptin and metabolic pathways leading to metabolic homeostasis across different species are not clear. This study aims to explore the effects of leptin in mice and zebrafish larvae by integration of metabolomics and transcriptomics. Different metabolomic approaches including mass spectrometry, nuclear magnetic resonance (NMR) and high-resolution magic-angle-spinning NMR spectrometry were used to investigate the metabolic changes caused by leptin deficiency in mutant ob/ob adult mice and lepb-/- zebrafish larvae. For transcriptome studies, deep RNA sequencing was used. RESULTS Thirteen metabolites were identified as common biomarkers discriminating ob/ob mice and lepb-/- zebrafish larvae from their respective wild type controls: alanine, citrulline, ethanolamine, glutamine, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, putrescine, serine and threonine. Moreover, we also observed that glucose and lipid levels were increased in lepb-/- zebrafish larvae compared to the lepb+/+ group. Deep sequencing showed that many genes involved in proteolysis and arachidonic acid metabolism were dysregulated in ob/ob mice heads and lepb mutant zebrafish larvae compared to their wild type controls, respectively. CONCLUSIONS Leptin deficiency leads to highly similar metabolic alterations in metabolites in both mice and zebrafish larvae. These metabolic changes show similar features as observed during progression of tuberculosis in human patients, mice and zebrafish larvae. In addition, by studying the transcriptome, we found similar changes in gene regulation related to proteolysis and arachidonic acid metabolism in these two different in vivo models.
Collapse
Affiliation(s)
- Yi Ding
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Gabriel Forn-Cuní
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Junling He
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Natalia Nowik
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.,Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Amy C Harms
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Muhamed N H Eeza
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107, Leipzig, Germany.,Institute of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103, Leipzig, Germany
| | - Jörg Matysik
- Institute of Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103, Leipzig, Germany
| | - A Alia
- Institute of Medical Physics and Biophysics, University of Leipzig, 04107, Leipzig, Germany.,Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
5
|
The Use of Natural Compounds as a Strategy to Counteract Oxidative Stress in Animal Models of Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22137009. [PMID: 34209800 PMCID: PMC8268811 DOI: 10.3390/ijms22137009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterised by insulin deficiency, resulting in hyperglycaemia, a characteristic symptom of type 2 diabetes mellitus (DM2). DM substantially affects numerous metabolic pathways, resulting in β-cell dysfunction, insulin resistance, abnormal blood glucose levels, impaired lipid metabolism, inflammatory processes, and excessive oxidative stress. Oxidative stress can affect the body’s normal physiological function and cause numerous cellular and molecular changes, such as mitochondrial dysfunction. Animal models are useful for exploring the cellular and molecular mechanisms of DM and improving novel therapeutics for their safe use in human beings. Due to their health benefits, there is significant interest in a wide range of natural compounds that can act as naturally occurring anti-diabetic compounds. Due to rodent models’ relatively similar physiology to humans and ease of handling and housing, they are widely used as pre-clinical models for studying several metabolic disorders. In this review, we analyse the currently available rodent animal models of DM and their advantages and disadvantages and highlight the potential anti-oxidative effects of natural compounds and their mechanisms of action.
Collapse
|
6
|
Skeletal Lipocalin-2 Is Associated with Iron-Related Oxidative Stress in ob/ob Mice with Sarcopenia. Antioxidants (Basel) 2021; 10:antiox10050758. [PMID: 34064680 PMCID: PMC8150392 DOI: 10.3390/antiox10050758] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 12/03/2022] Open
Abstract
Obesity and insulin resistance accelerate aging-related sarcopenia, which is associated with iron load and oxidative stress. Lipocalin-2 (LCN2) is an iron-binding protein that has been associated with skeletal muscle regeneration, but details regarding its role in obese sarcopenia remain unclear. Here, we report that elevated LCN2 levels in skeletal muscle are linked to muscle atrophy-related inflammation and oxidative stress in leptin-deficient ob/ob mice. RNA sequencing analyses indicated the LCN2 gene expression is enhanced in skeletal muscle of ob/ob mice with sarcopenia. In addition to muscular iron accumulation in ob/ob mice, expressions of iron homeostasis-related divalent metal transporter 1, ferritin, and hepcidin proteins were increased in ob/ob mice compared to lean littermates, whereas expressions of transferrin receptor and ferroportin were reduced. Collectively, these findings demonstrate that LCN2 functions as a potent proinflammatory factor in skeletal muscle in response to obesity-related sarcopenia and is thus a therapeutic candidate target for sarcopenia treatment.
Collapse
|
7
|
Kang N, Oh S, Kim HS, Ahn H, Choi J, Heo SJ, Byun K, Jeon YJ. Ishophloroglucin A, derived from Ishige okamurae, regulates high-fat-diet-induced fat accumulation via the leptin signaling pathway, associated with peripheral metabolism. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Nakanishi T, Tsujii M, Asano T, Iino T, Sudo A. Protective Effect of Edaravone Against Oxidative Stress in C2C12 Myoblast and Impairment of Skeletal Muscle Regeneration Exposed to Ischemic Injury in Ob/ob Mice. Front Physiol 2020; 10:1596. [PMID: 32009986 PMCID: PMC6974450 DOI: 10.3389/fphys.2019.01596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/19/2019] [Indexed: 12/25/2022] Open
Abstract
Background The aims of this study were to analyze the effects of the administration of edaravone on C2C12 myoblasts exposed to oxidative stress; to evaluate the skeletal muscles in ob/ob mice; and to analyze the effect of the administration of edaravone in the regeneration of skeletal muscle after ischemic injury. Methods In C2C12 myoblasts, oxidative stress was induced by the exposure to 250 μM H2O2 for 4 h with or without pretreatment of 100 μM edaravone. Thereafter, the viability and expression of TNF-α were analyzed by MTS assay and PCR, respectively. Furthermore, an in vivo study was performed on male C57/BL6-ob/ob mice (10 weeks old) and the respective control mice. The skeletal muscles of tibialis anterior and gastrocnemius were excised for histological analysis and TBARS assay after the measurement of blood flow. In addition, the regeneration of the skeletal muscles was analyzed for the expression of MyoD 7 days after the ligation of the right femoral artery. Results Edaravone significantly inhibited the reduction of the viability as well as upregulation of TNF-α expression by treatment with H2O2. In ob/ob mice, wet weight of muscles was significantly lower than that in control mice. In histology, ob/ob mice had significantly less multi-angle shaped myofibers and a significantly high level of MDA. Furthermore, MyoD expression was lower in ob/ob mice than in control mice after the ischemic injury, while edaravone (3 mg/kg) increasingly enhanced MyoD expression. Conclusion Edaravone attenuated the oxidative stress on C2C12 myoblasts, and was effective to regeneration of skeletal muscles after ischemia in ob/ob mice.
Collapse
Affiliation(s)
- Takuya Nakanishi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Masaya Tsujii
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Takahiro Asano
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Takahiro Iino
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Akihiro Sudo
- Department of Orthopaedic Surgery, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
9
|
Grzelak T, Wedrychowicz A, Grupinska J, Pelczynska M, Sperling M, Mikulska AA, Naughton V, Czyzewska K. Neuropeptide B and neuropeptide W as new serum predictors of nutritional status and of clinical outcomes in pediatric patients with type 1 diabetes mellitus treated with the use of pens or insulin pumps. Arch Med Sci 2019; 15:619-631. [PMID: 31110527 PMCID: PMC6524189 DOI: 10.5114/aoms.2018.75818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The aim of our study was to determine the relationship between neuropeptide B (NPB), neuropeptide W (NPW), nutritional and antioxidant status and selected fat- and bone-derived factors in type 1 diabetes mellitus (T1DM) treated using pens (T1DM pen group) or insulin pumps (T1DM pump group) in order to investigate the potential role of NPB and NPW in the clinical outcomes of T1DM. MATERIAL AND METHODS Fifty-eight patients with T1DM and twenty-five healthy controls (CONTR) participated in the study. Assessments of NPB, NPW, total antioxidant status (TAS), leptin, adiponectin, osteocalcin, and free soluble receptor activator for nuclear factor κB (free sRANKL) were conducted. RESULTS NPB, NPW, leptin, and TAS were lower (by 33%, p < 0.013; 34%, p < 0.008; 290%, p < 0.00004; 21%, p < 0.05; respectively), while adiponectin was by 51% higher (p < 0.006) in T1DM vs. CONTR, while osteocalcin and free sRANKL levels were similar in both groups. NPW was lower in the T1DM pen group both vs. the T1DM pump group (36% lower, p < 0.0009) and vs. the CONTR group (35% lower, p < 0.002). In the T1DM pen group, but not in the T1DM pump group or the CONTR group, the Cole index and TAS levels explain (besides NPB) the variation in NPW values. ROC curves showed that serum levels of leptin, adiponectin, NPB and NPW (but not osteocalcin or free sRANKL) were predictive indicators for T1DM. CONCLUSIONS Measurements of NPB and NPW, besides leptin and adiponectin, are worth considering in the detailed prognosis of nutritional status in T1DM, primarily in the T1DM pen-treated population.
Collapse
Affiliation(s)
- Teresa Grzelak
- Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Wedrychowicz
- Department of Pediatric and Adolescent Endocrinology, Pediatric Institute, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Grupinska
- Department of General Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Pelczynska
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcelina Sperling
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Aniceta A. Mikulska
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
- Nutrigenomics Student Research Group, Poznan University of Medical Sciences, Poznan, Poland
| | - Violetta Naughton
- Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland
| | - Krystyna Czyzewska
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
10
|
Becerril S, Rodríguez A, Catalán V, Ramírez B, Unamuno X, Gómez-Ambrosi J, Frühbeck G. iNOS Gene Ablation Prevents Liver Fibrosis in Leptin-Deficient ob/ob Mice. Genes (Basel) 2019; 10:genes10030184. [PMID: 30818874 PMCID: PMC6470935 DOI: 10.3390/genes10030184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/14/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
The role of extracellular matrix (ECM) remodeling in fibrosis progression in nonalcoholic fatty liver disease (NAFLD) is complex and dynamic, involving the synthesis and degradation of different ECM components, including tenascin C (TNC). The aim was to analyze the influence of inducible nitric oxide synthase (iNOS) deletion on inflammation and ECM remodeling in the liver of ob/ob mice, since a functional relationship between leptin and iNOS has been described. The expression of molecules involved in inflammation and ECM remodeling was analyzed in the liver of double knockout (DBKO) mice simultaneously lacking the ob and the iNOS genes. Moreover, the effect of leptin was studied in the livers of ob/ob mice and compared to wild-type rodents. Liver inflammation and fibrosis were increased in leptin-deficient mice. As expected, leptin treatment reverted the obesity phenotype. iNOS deletion in ob/ob mice improved insulin sensitivity, inflammation, and fibrogenesis, as evidenced by lower macrophage infiltration and collagen deposition as well as downregulation of the proinflammatory and profibrogenic genes including Tnc. Circulating TNC levels were also decreased. Furthermore, leptin upregulated TNC expression and release via NO-dependent mechanisms in AML12 hepatic cells. iNOS deficiency in ob/ob mice improved liver inflammation and ECM remodeling-related genes, decreasing fibrosis, and metabolic dysfunction. The activation of iNOS by leptin is necessary for the synthesis and secretion of TNC in hepatocytes, suggesting an important role of this alarmin in the development of NAFLD.
Collapse
Affiliation(s)
- Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Medical Engineering Laboratory, University of Navarra, Pamplona, Spain.
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
11
|
Pavlová T, Novák J, Zlámal F, Bienertová-Vašků J. HSPB7 gene polymorphism associated with anthropometric parameters of obesity and fat intake in a Central European population. Cent Eur J Public Health 2019; 26:272-277. [PMID: 30660137 DOI: 10.21101/cejph.a4921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Heat shock proteins act as chaperones at the molecular level and therefore they have been investigated in numerous diseases associated with oxidative stress, including obesity. The aim of this study was to investigate the possible associations of genetic variability in the 3´-untranslated region of the HSPB7 gene (rs1048261) with anthropometric and dietary parameters in a cohort of lean and obese Central European subjects. METHODS A total of 708 Central European Caucasian individuals were enrolled in this study, 415 obese subjects and 293 non-obese subjects. The rs1048261 genotypes were established using a conventional PCR-based methodology. RESULTS Significant differences were observed in the total daily fat intake between subjects with AT and TT genotypes (82.6 ± 29.2 g vs. 74.1 ± 31.3 g, p = 0.023) and also borderline significance in daily proportion of fat in the diet between AA and TT genotypes (36.0 ± 4.4% vs. 33.3 ± 5.9%, p = 0.061). Based on the linear regression model we found association between rs1048261 genotype and body fat percentage. CONCLUSIONS To the best of our knowledge, this is the first study which reports an association of defined genetic variability in the HSPB7 gene, rs1048261, with obesity and its associated anthropometric characteristics and dietary composition.
Collapse
Affiliation(s)
- Tereza Pavlová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Novák
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Filip Zlámal
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Julie Bienertová-Vašků
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
12
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
13
|
Abstract
BACKGROUND The pathogenesis of osteoarthritis (OA) is not clear; leptin may be related to its pathogenesis. METHODS We reviewed articles on leptin in OA, chondrocytes, and in vitro experiments. It is concluded that leptin may lead to OA via some signaling pathways. At the same time, the concentration of leptin in vitro experiments and OA/rheumatoid arthritis (RA) patients was summarized. RESULTS Leptin levels in serum and synovial fluid of OA/RA patients were higher than normal person. In the condition of infection and immunity, serum leptin levels in the peripheral blood significantly increase. Because of the close relationship between obesity, leptin, and OA, it is crucial to study the effects of weight loss and exercise intervention on serum leptin levels to improve the symptoms of OA patients. CONCLUSION Treatment for leptin-increased obesity may be a treatment for OA. The role of leptin in OA cannot be ignored and needs to be further studied.
Collapse
Affiliation(s)
- Moqi Yan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University
- Orthopedic Institute, Soochow University, Suzhou, China
| | - Junxin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University
- Orthopedic Institute, Soochow University, Suzhou, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University
- Orthopedic Institute, Soochow University, Suzhou, China
| | - Ye Sun
- Department of Orthopedics, The First Affiliated Hospital of Soochow University
- Orthopedic Institute, Soochow University, Suzhou, China
| |
Collapse
|
14
|
Lin YL, Wang CH, Lai YH, Kuo CH, Syu RJ, Hsu BG. Negative correlation between leptin serum levels and sarcopenia in hemodialysis patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1715-1723. [PMID: 31938275 PMCID: PMC6958142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/17/2018] [Indexed: 06/10/2023]
Abstract
Leptin is an adipokine secreted from adipocytes that mediate lipid metabolism and inflammation. This cross-sectional study evaluated association between serum leptin level and sarcopenia in chronic hemodialysis (HD) patients. Blood samples and measurement of muscle mass, handgrip strength, and gait speed were obtained from 76 chronic HD patients. We grouped participants into sarcopenia and non-sarcopenia groups according to the Asian Working Group for Sarcopenia. Eight (10.5%) of the total participants were in the sarcopenia group. Compared to the non-sarcopenia group, patients in the sarcopenia group were lower in height (P = 0.014), weighed less (P < 0.001), had lower waist circumference (P < 0.001), body mass index (BMI, P < 0.001), body fat mass (P = 0.048), serum triglyceride (P = 0.032), creatinine (P = 0.017), phosphorus (P = 0.015), leptin level (P = 0.001), appendicular skeletal muscle mass (P < 0.001), and handgrip strength (P = 0.043). However, urea reduction rate (URR, P < 0.001) and Kt/V (P < 0.001) were higher. After multivariate stepwise linear regression, lower logarithmically transformed leptin (log-leptin, β: -0.392, adjusted R2 change = 0.130, P < 0.001), lower URR (β: -2.491, adjusted R2 change = 0.054, P < 0.001)), lower handgrip strength (β: -0.243, adjusted R2 change = 0.030, P = 0.013), lower serum phosphorus level (β: -0.176, adjusted R2 change = 0.023, P = 0.036), and higher Kt/V (β: 2.878, adjusted R2 change = 0.319, P < 0.001) were the independent predictors of sarcopenia in chronic HD patients. We conclude that low serum leptin level is independently associated with sarcopenia in chronic HD patients. Further studies are needed to establish the casual relationship between circulating leptin levels and uremic sarcopenia.
Collapse
Affiliation(s)
- Yu-Li Lin
- Division of Nephrology, Buddhist Tzu Chi General HospitalHualien, Taiwan
| | - Chih-Hsien Wang
- Division of Nephrology, Buddhist Tzu Chi General HospitalHualien, Taiwan
- School of Medicine, Tzu Chi UniversityHualien, Taiwan
| | - Yu-Hsien Lai
- Division of Nephrology, Buddhist Tzu Chi General HospitalHualien, Taiwan
| | - Chiu-Huang Kuo
- Division of Nephrology, Buddhist Tzu Chi General HospitalHualien, Taiwan
| | - Ru-Jiang Syu
- Division of Nephrology, Buddhist Tzu Chi General HospitalHualien, Taiwan
| | - Bang-Gee Hsu
- Division of Nephrology, Buddhist Tzu Chi General HospitalHualien, Taiwan
- School of Medicine, Tzu Chi UniversityHualien, Taiwan
| |
Collapse
|
15
|
Dumaine JE, Ashley NT. Acute sleep fragmentation does not alter pro-inflammatory cytokine gene expression in brain or peripheral tissues of leptin-deficient mice. PeerJ 2018; 6:e4423. [PMID: 29479505 PMCID: PMC5822834 DOI: 10.7717/peerj.4423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022] Open
Abstract
Obesity and sleep fragmentation (SF) are often co-occurring pro-inflammatory conditions in patients with obstructive sleep apnea. Leptin is a peptide hormone produced by adipocytes that has anorexigenic effects upon appetite while regulating immunity. The role of leptin in mediating inflammatory responses to SF is incompletely understood. Male C57BL/6j (lean) and ob/ob mice (leptin-deficient mice exhibiting obese phenotype) were subjected to SF or control conditions for 24 h using an automated SF chamber. Trunk blood and tissue samples from the periphery (liver, spleen, fat, and heart) and brain (hypothalamus, prefrontal cortex, and hippocampus) were collected. Quantitative PCR was used to determine relative cytokine gene expression of pro-inflammatory (IL-1β, TNF-α) and anti-inflammatory (TGF-β1) cytokines. Enzyme-linked immunosorbent assay (ELISA) was used to determine serum corticosterone concentration. Ob/ob mice exhibited elevated cytokine gene expression in liver (TNF-α, TGF-β1), heart (TGF-β1), fat (TNF-α), and brain (hippocampus, hypothalamus, prefrontal cortex: IL-1β, TNF-α) compared with wild-type mice. Conversely, leptin deficiency decreased pro-inflammatory cytokine gene expression in heart (IL-1β, TNF-α). SF significantly increased IL-1β and TNF-α gene expression in fat and TGF-β1 expression in spleen relative to controls, but only in wild-type mice. SF increased basal serum corticosterone regardless of genotype. Taken together, these findings suggest that leptin deficiency affects cytokine gene expression differently in the brain compared to peripheral tissues with minimal interaction from acute SF.
Collapse
Affiliation(s)
- Jennifer E Dumaine
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| |
Collapse
|
16
|
Targeted disruption of the iNOS gene improves adipose tissue inflammation and fibrosis in leptin-deficient ob/ob mice: role of tenascin C. Int J Obes (Lond) 2018; 42:1458-1470. [PMID: 29449623 DOI: 10.1038/s41366-018-0005-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND/OBJECTIVES Obesity is related to a dynamic extracellular matrix (ECM) remodeling, which involves the synthesis and degradation of different proteins, such as tenascin C (TNC) in the adipose tissue (AT). Given the functional relationship between leptin and inducible nitric oxide synthase (iNOS), our aim was to analyze the impact of the absence of the iNOS gene in AT inflammation and ECM remodeling in ob/ob mice. SUBJECTS/METHODS The expression of genes involved in inflammation and ECM remodeling was evaluated in 10-week-old male double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes as well as in ob/ob mice classified into three groups [control, leptin-treated (1 mg kg-1 day-1) and pair-fed]. RESULTS Leptin deficiency increased inflammation and fibrosis in AT. As expected, leptin treatment improved the obesity phenotype. iNOS deficiency in ob/ob mice improved insulin sensitivity, AT inflammation, and ECM remodeling, as evidenced by lower AT macrophage infiltration and collagen deposition, a downregulation of proinflammatory and profibrogenic genes Tnf, Emr1, Hif1a, Col6a1, Col6a3, and Tnc, as well as lower circulating TNC levels. Interestingly, leptin upregulated TNC expression and release in 3T3-L1 adipocytes, and iNOS knockdown in 3T3-L1 fat cells produced a significant decrease in basal and leptin-induced Tnc expression. CONCLUSIONS Ablation of iNOS in leptin-deficient mice improved AT inflammation and ECM remodeling-related genes, attenuating fibrosis, and metabolic dysfunction. The activation of iNOS by leptin is necessary for the synthesis and secretion of TNC in adipocytes, suggesting an important role of this alarmin in the development of AT inflammation and fibrosis.
Collapse
|
17
|
|
18
|
Frühbeck G, Catalán V, Rodríguez A, Ramírez B, Becerril S, Portincasa P, Gómez-Ambrosi J. Normalization of adiponectin concentrations by leptin replacement in ob/ob mice is accompanied by reductions in systemic oxidative stress and inflammation. Sci Rep 2017; 7:2752. [PMID: 28584304 PMCID: PMC5459809 DOI: 10.1038/s41598-017-02848-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
The circulating concentrations of adiponectin, an antidiabetic adipokine, have been shown to be reduced in obesity, in relation to an increase in inflammation. The aim of the present work was to assess the effect of leptin replacement on adiponectin levels and expression as well as on markers of oxidative stress and inflammation in leptin-deficient ob/ob mice. Twelve-week-old male mice (n = 7–10 per group) were treated with either saline (wild type and ob/ob mice) or leptin (ob/ob mice) for 18 days. A third group of ob/ob mice was treated with saline and pair-fed to the amount of food consumed by the leptin-treated group. Leptin replacement restored values of adiponectin (P < 0.001), reduced circulating 8-isoprostane and serum amyloid A (SAA) levels (P < 0.05 for both), and significantly downregulated the increased gene expression of osteopontin (Spp1, P < 0.05), Saa3 (P < 0.05), Cd68 (P < 0.01), Il6 (P < 0.01) and NADPH oxidase (Nox1 and Nox2, P < 0.01) in the perirenal WAT and Spp1 (P < 0.05) in the liver of ob/ob mice. In cultured adipocytes from ob/ob mice, leptin increased (P < 0.05) the mRNA expression and secretion of adiponectin. We concluded that circulating concentrations of adiponectin are positively regulated by leptin and ameliorate obesity-associated oxidative stress and inflammation in mice.
Collapse
Affiliation(s)
- Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Policlinico Hospital, Bari, Italy
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain. .,Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
19
|
Rodríguez A, Becerril S, Ezquerro S, Méndez-Giménez L, Frühbeck G. Crosstalk between adipokines and myokines in fat browning. Acta Physiol (Oxf) 2017; 219:362-381. [PMID: 27040995 DOI: 10.1111/apha.12686] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/21/2016] [Accepted: 04/01/2016] [Indexed: 12/20/2022]
Abstract
Skeletal muscle is the largest organ determining whole-body insulin sensitivity and metabolic homoeostasis. Adaptive changes of skeletal muscle in response to physical activity include adjustments in the production and secretion of muscle-derived bioactive factors, known as myokines, such as myostatin, IL-4, IL-6, IL-7 and IL-15, myonectin, follistatin-like 1 or leukaemia inhibitory factor. These myokines not only act locally in the muscle in an autocrine/paracrine manner, but also are released to the bloodstream as endocrine factors to regulate physiological processes in other tissues. Irisin, derived from the cleavage of FNDC5 protein, constitutes a myokine that induces myogenesis and fat browning (switch of white adipocytes to brown fat-like cells) together with a concomitant increase in energy expenditure. Besides being a target for irisin actions, the adipose tissue also constitutes a production site of FNDC5. Interestingly, irisin secretion from subcutaneous and visceral fat depots is decreased by long-term exercise training and fasting, suggesting a discordant regulation of FNDC5/irisin in skeletal muscle and adipose tissue. Accordingly, our group has recently reported that the adipokine leptin differentially regulates FNDC5/irisin expression in skeletal muscle and fat, confirming the crosstalk between both tissues. Moreover, irisin secretion and function are regulated by other myokines, such as follistatin or myostatin, as well as by other adipokines, including fibroblast growth factor 21 and leptin. Taken together, myokines have emerged as novel molecular mediators of fat browning and their activity can be modulated by adipokines, confirming the crosstalk between skeletal muscle and adipose tissue to regulate thermogenesis and energy expenditure.
Collapse
Affiliation(s)
- A. Rodríguez
- Metabolic Research Laboratory; Clínica Universidad de Navarra; Pamplona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Obesity & Adipobiology Group; Instituto de Investigación Sanitaria de Navarra (IdiSNA); Pamplona Spain
| | - S. Becerril
- Metabolic Research Laboratory; Clínica Universidad de Navarra; Pamplona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Obesity & Adipobiology Group; Instituto de Investigación Sanitaria de Navarra (IdiSNA); Pamplona Spain
| | - S. Ezquerro
- Metabolic Research Laboratory; Clínica Universidad de Navarra; Pamplona Spain
| | - L. Méndez-Giménez
- Metabolic Research Laboratory; Clínica Universidad de Navarra; Pamplona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Obesity & Adipobiology Group; Instituto de Investigación Sanitaria de Navarra (IdiSNA); Pamplona Spain
| | - G. Frühbeck
- Metabolic Research Laboratory; Clínica Universidad de Navarra; Pamplona Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Obesity & Adipobiology Group; Instituto de Investigación Sanitaria de Navarra (IdiSNA); Pamplona Spain
- Department of Endocrinology & Nutrition; Clínica Universidad de Navarra; Pamplona Spain
| |
Collapse
|
20
|
Rindler PM, Cacciola A, Kinter M, Szweda LI. Catalase-dependent H2O2 consumption by cardiac mitochondria and redox-mediated loss in insulin signaling. Am J Physiol Heart Circ Physiol 2016; 311:H1091-H1096. [PMID: 27614223 DOI: 10.1152/ajpheart.00066.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/01/2016] [Indexed: 12/23/2022]
Abstract
We have recently demonstrated that catalase content in mouse cardiac mitochondria is selectively elevated in response to high dietary fat, a nutritional state associated with oxidative stress and loss in insulin signaling. Catalase and various isoforms of glutathione peroxidase and peroxiredoxin each catalyze the consumption of H2O2 Catalase, located primarily within peroxisomes and to a lesser extent mitochondria, has a low binding affinity for H2O2 relative to glutathione peroxidase and peroxiredoxin. As such, the contribution of catalase to mitochondrial H2O2 consumption is not well understood. In the current study, using highly purified cardiac mitochondria challenged with micromolar concentrations of H2O2, we found that catalase contributes significantly to mitochondrial H2O2 consumption. In addition, catalase is solely responsible for removal of H2O2 in nonrespiring or structurally disrupted mitochondria. Finally, in mice fed a high-fat diet, mitochondrial-derived H2O2 is responsible for diminished insulin signaling in the heart as evidenced by reduced insulin-stimulated Akt phosphorylation. While elevated mitochondrial catalase content (∼50%) enhanced the capacity of mitochondria to consume H2O2 in response to high dietary fat, the selective increase in catalase did not prevent H2O2-induced loss in cardiac insulin signaling. Taken together, our results indicate that mitochondrial catalase likely functions to preclude the formation of high levels of H2O2 without perturbing redox-dependent signaling.
Collapse
Affiliation(s)
- Paul M Rindler
- Affiliation: Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Angela Cacciola
- Affiliation: Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Michael Kinter
- Affiliation: Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Luke I Szweda
- Affiliation: Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
21
|
Coles CA. Adipokines in Healthy Skeletal Muscle and Metabolic Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:133-60. [DOI: 10.1007/978-3-319-27511-6_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Pandey G, Shihabudeen MS, David HP, Thirumurugan E, Thirumurugan K. Association between hyperleptinemia and oxidative stress in obese diabetic subjects. J Diabetes Metab Disord 2015; 14:24. [PMID: 25897417 PMCID: PMC4404074 DOI: 10.1186/s40200-015-0159-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/07/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Obesity is a worldwide metabolic disorder affecting all types of people. The mechanism by which increased body fat mass that leads to insulin resistance and type 2 diabetes is not yet clearly known. There is a possible crosstalk between leptin, an adipokine and insulin signaling. Leptin mediates insulin sensitivity in hepatocytes; however, its concentration has found to be increased in obese and diabetic subjects. These subjects also have high incidence of oxidative stress status. Therefore, knowing the level of leptin present in obese diabetic subjects will be informative along with its relation to oxidative stress. METHODS A small population study was performed to explore the association between leptin concentration and oxidative stress status in control and obese type 2 diabetic subjects. Oxidative stress status parameters like malondialdehyde (MDA), superoxide dismutase activity (SOD), glutathione peroxidase activity (GSH-Px), and protein carbonyl (PCO) groups content was measured spectrophotometrically in serum of 43 subjects. Serum Leptin concentration was measured by quantikine sandwich ELISA assay. RESULTS The strong positive correlation between MDA (malondialdehyde) and leptin in obese diabetic patients (ρ = 0.787, P < 0.05) suggests close association between lipid peroxidation and hyperleptinemia. In addition, observed positive correlation between protein carbonyl groups and leptin level in obese diabetic subjects (ρ = 0.599, P = 0.001) suggest that hyperleptinemia might also be associated with increased protein oxidation. In multiple logistic regression analysis, leptin has shown a significant association with obese type 2 diabetes [odds ratio (OR): 1.161, 95% confidence interval (Cl): 1.027-1.312, P < 0.05], but the significance is lost after adjusting for Age, BMI, MDA and anti-oxidant parameters. CONCLUSIONS In the subjects with both obesity and diabetes, there is a significant degree of association between hyperleptinemia and oxidative stress. This association reinforces the existing understanding that obese subjects who also have diabetes are vulnerable to cardiovascular complications driven by increased oxidative stress and hyperleptinemia.
Collapse
Affiliation(s)
- Gautam Pandey
- />Centre for Biomedical Research, School of Bio Sciences & Technology, 206, Structural Biology Lab, VIT University, Vellore, India
| | - Mohamed Sham Shihabudeen
- />Centre for Biomedical Research, School of Bio Sciences & Technology, 206, Structural Biology Lab, VIT University, Vellore, India
| | - Hansi Priscilla David
- />Centre for Biomedical Research, School of Bio Sciences & Technology, 206, Structural Biology Lab, VIT University, Vellore, India
| | | | - Kavitha Thirumurugan
- />Centre for Biomedical Research, School of Bio Sciences & Technology, 206, Structural Biology Lab, VIT University, Vellore, India
| |
Collapse
|
23
|
Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism 2015; 64:35-46. [PMID: 25497342 DOI: 10.1016/j.metabol.2014.10.015] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022]
Abstract
Obesity is a chronic disease that represents one of the most serious global health burdens associated to an excess of body fat resulting from an imbalance between energy intake and expenditure, which is regulated by environmental and genetic interactions. The adipose-derived hormone leptin acts via a specific receptor in the brain to regulate energy balance and body weight, although this protein can also elicit a myriad of actions in peripheral tissues. Obese individuals, rather than be leptin deficient, have in most cases, high levels of circulating leptin. The failure of these high levels to control body weight suggests the presence of a resistance process to the hormone that could be partly responsible of disturbances on body weight regulation. Furthermore, leptin resistance can impair physiological peripheral functions of leptin such as lipid and carbohydrate metabolism and nutrient intestinal utilization. The present document summarizes those findings regarding leptin resistance development and the role of this hormone in the development and maintenance of an obese state. Thus, we focused on the effect of the impaired leptin action on adipose tissue, liver, skeletal muscle and intestinal function and the accompanying relationships with diet-induced obesity. The involvement of some inflammatory mediators implicated in the development of obesity and their roles in leptin resistance development are also discussed.
Collapse
Affiliation(s)
- Neira Sáinz
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - Jaione Barrenetxe
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
24
|
Lucas E, Jurado-Pueyo M, Fortuño MA, Fernández-Veledo S, Vila-Bedmar R, Jiménez-Borreguero LJ, Lazcano JJ, Gao E, Gómez-Ambrosi J, Frühbeck G, Koch WJ, Díez J, Mayor F, Murga C. Downregulation of G protein-coupled receptor kinase 2 levels enhances cardiac insulin sensitivity and switches on cardioprotective gene expression patterns. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2448-56. [DOI: 10.1016/j.bbadis.2014.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/20/2022]
|
25
|
Leptin administration activates irisin-induced myogenesis via nitric oxide-dependent mechanisms, but reduces its effect on subcutaneous fat browning in mice. Int J Obes (Lond) 2014; 39:397-407. [DOI: 10.1038/ijo.2014.166] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/06/2014] [Accepted: 09/02/2014] [Indexed: 02/06/2023]
|
26
|
Abstract
In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms.
Collapse
|
27
|
de Luxán-Delgado B, Caballero B, Potes Y, Rubio-González A, Rodríguez I, Gutiérrez-Rodríguez J, Solano JJ, Coto-Montes A. Melatonin administration decreases adipogenesis in the liver of ob/ob mice through autophagy modulation. J Pineal Res 2014; 56:126-33. [PMID: 24134701 DOI: 10.1111/jpi.12104] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/15/2013] [Indexed: 01/07/2023]
Abstract
Despite efforts to curb the incidence of obesity and its comorbidities, this condition remains the fifth leading cause of death worldwide. To identify ways to reduce this global effect, we investigated the actions of daily melatonin administration on oxidative stress parameters and autophagic processes as a possible treatment of obesity in ob/ob mice. The involvement of melatonin in many physiological functions, such as the regulation of seasonal body weight variation, glucose uptake, or adiposity, and the role of this indoleamine as an essential antioxidant, has become the focus of numerous anti-obesity studies. Here, we examined the oxidative status in the livers of obese melatonin-treated and untreated mice, observing a decrease in the oxidative stress levels through elevated catalase activity. ROS-mediated autophagy was downregulated in the liver of melatonin-treated animals and was accompanied by significant accumulation of p62. Autophagy is closely associated with adipogenesis; in this study, we report that melatonin-treated obese mice also showed reduced adiposity, as demonstrated by diminished body weight and reduced peroxisome proliferator-activated receptor gamma expression. Based on these factors, it is reasonable to assume that oxidative stress and autophagy play important roles in obesity, and therefore, melatonin could be an interesting target molecule for the development of a potential therapeutic agent to curb body weight.
Collapse
Affiliation(s)
- Beatriz de Luxán-Delgado
- Department of Morphology and Cellular Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Rindler PM, Crewe CL, Fernandes J, Kinter M, Szweda LI. Redox regulation of insulin sensitivity due to enhanced fatty acid utilization in the mitochondria. Am J Physiol Heart Circ Physiol 2013; 305:H634-43. [DOI: 10.1152/ajpheart.00799.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Obesity enhances the risk for the development of type 2 diabetes and cardiovascular disease. Loss in insulin sensitivity and diminished ability of muscle to take up and use glucose are characteristics of type 2 diabetes. Paradoxically, regulatory mechanisms that promote utilization of fatty acids appear to initiate diet-induced insulin insensitivity. In this review, we discuss recent findings implicating increased mitochondrial production of the prooxidant H2O2 due to enhanced utilization of fatty acids, as a signal to diminish reliance on glucose and its metabolites for energy. In the short term, the ability to preferentially use fatty acids may be beneficial, promoting a metabolic shift that ensures use of available fat by skeletal muscle and heart while preventing intracellular glucose accumulation and toxicity. However, with prolonged consumption of high dietary fat and ensuing obesity, the near exclusive dependence on fatty acid oxidation for production of energy by the mitochondria drives insulin resistance, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Paul M. Rindler
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Clair L. Crewe
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and
| | - Jolyn Fernandes
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and
| | - Michael Kinter
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Geriatric Medicine, Reynolds Center on Aging, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Luke I. Szweda
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma; and
- Department of Geriatric Medicine, Reynolds Center on Aging, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| |
Collapse
|
29
|
Becerril S, Rodríguez A, Catalán V, Sáinz N, Ramírez B, Gómez-Ambrosi J, Frühbeck G. Transcriptional analysis of brown adipose tissue in leptin-deficient mice lacking inducible nitric oxide synthase: evidence of the role of Med1 in energy balance. Physiol Genomics 2012; 44:678-88. [PMID: 22570438 DOI: 10.1152/physiolgenomics.00039.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leptin and nitric oxide (NO) are implicated in the control of energy homeostasis. The aim of the present study was to examine the impact of the absence of the inducible NO synthase (iNOS) gene on the regulation of energy balance in ob/ob mice analyzing the changes in gene expression levels in brown adipose tissue (BAT). Double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes were generated and the expression of genes involved in energy balance including fatty acid and glucose metabolism as well as mitochondrial genes were analyzed by microarrays. DBKO mice exhibited an improvement in energy balance with a decrease in body weight (P < 0.001), total fat pads (P < 0.05), and food intake (P < 0.05), as well as an enhancement in BAT function compared with ob/ob mice. To better understand the molecular events associated with this improvement, BAT gene expression was analyzed. Of particular interest, gene expression levels of the key subunit of the Mediator complex Med1 was upregulated (P < 0.05) in DBKO mice. Real-time PCR and immunohistochemistry further confirmed this data. Med1 is implicated in adipogenesis, lipid metabolic and biosynthetic processes, glucose metabolism, and mitochondrial metabolic pathways. Med1 plays an important role in the transcriptional control of genes implicated in energy homeostasis, suggesting that the improvement in energy balance and BAT function of the DBKO mice is mediated, at least in part, through the transcription coactivator Med1.
Collapse
Affiliation(s)
- Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Role of leptin as antioxidant in obstructive sleep apnea: an in vitro study using electron paramagnetic resonance method. Sleep Breath 2012; 17:105-10. [PMID: 22307865 DOI: 10.1007/s11325-012-0656-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 01/18/2023]
Abstract
INTRODUCTION As in obstructive sleep apnea (OSA), the chronic cycles of hypoxia and reoxygenation are thought to be conducive of oxidative stress (OS) with generation of reactive oxygen species, identifying effective mechanisms of protection against oxidant-mediated tissue damage becomes of outmost importance. Leptin's role had been recently extended into that of participant to OS; while its exact role in this process is yet to be defined, elevated leptin levels correlate significantly with several indices of OSA disease severity such as nocturnal hypoxemia, possibly acting as a counteractive mechanism against the chronic intermittent hypoxia-related OS and serving as a marker of future risk of atherosclerotic disease. We therefore investigated leptin's antioxidant mechanism on superoxide (O (2) (-•) ) anions using spectrophotometry and electron paramagnetic resonance (EPR). METHODS The O (2) (-•) was generated by oxidation of xanthine (XAN) by xanthine oxidase (XO) in the presence of spin trap 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide with various concentrations of leptin (0.001, 0.01, 0.1, and 1 mg/ml) and without leptin. Signal intensity between 3,440 and 3,540 G was expressed as standard means ± SD. The activity of leptin on XO was determined by monitoring the conversion of XAN to uric acid at 293 nm using a Beckman DU 800 UV-visible spectrophotometer. RESULTS Leptin added to aqueous solutions at 0.1 and 1 mg/ml concentrations was associated with a statistically significant decrease in the EPR signal due to leptin's direct scavenging activity towards the O (2) (-•) . CONCLUSION Leptin is an antioxidant agent of possible use as a marker of OS and future risk of atherosclerotic disease in OSA.
Collapse
|