1
|
Jeong YH, Li W, Yang HJ, Kim SG, Choi HM, Choi JG, Oh YC. Ethyl Acetate Fraction of Chestnut Honey Attenuates Scopolamine-Induced Cognitive Impairment in Mice and Glutamate-Induced Neurotoxicity in HT22 Cells. Antioxidants (Basel) 2024; 13:1346. [PMID: 39594488 PMCID: PMC11591166 DOI: 10.3390/antiox13111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Chestnut honey has various benefits, such as antioxidative, anti-inflammatory, immunomodulatory, antibacterial, and antiviral effects. However, the effects of chestnut honey or the ethyl acetate fraction of chestnut honey (EACH) on neurodegenerative diseases and their related cognitive impairment and neurotoxicity have not yet been established. Therefore, in this study, we investigated the mitigating effect of the EACH on scopolamine (SCO)-injected cognitive decline in mice and glutamate-exposed neurotoxicity in HT22 cells. EACH administration significantly reversed SCO-induced cognitive decline in mice, as demonstrated through the Morris water maze and passive avoidance tests. The EACH treatment showed a significant alleviation effect by recovering more than 80% of the cell viability decrease induced by glutamate exposure in the HT22 neuronal cell model. Furthermore, the EACH significantly reduced reactive oxygen species accumulation, lactate dehydrogenase release, mitochondrial depolarization, and neuronal apoptosis. The EACH regulated the level of apoptosis-related proteins, induced the nuclear translocation of nuclear factor-E2-related factor 2 (Nrf-2) and the expression of related antioxidant proteins, and induced the phosphorylation of tropomyosin-related kinase receptor B (TrkB)/cAMP-calcium response element-binding protein (CREB) and the expression of brain-derived neurotrophic factor. These data indicate that the EACH can prevent neurons from oxidative damage and improve cognitive dysfunction by activating Nrf-2 and TrkB/CREB signaling pathways. Therefore, the EACH demonstrates potential therapeutic value in mitigating oxidative stress-induced neurotoxicity, cognitive decline, and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun Hee Jeong
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (W.L.); (H.J.Y.)
| | - Wei Li
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (W.L.); (H.J.Y.)
| | - Hye Jin Yang
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (W.L.); (H.J.Y.)
| | - Se-Gun Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-G.K.); (H.M.C.)
| | - Hong Min Choi
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea; (S.-G.K.); (H.M.C.)
| | - Jang-Gi Choi
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (W.L.); (H.J.Y.)
| | - You-Chang Oh
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70, Cheomdanro, Dong-gu, Daegu 41062, Republic of Korea; (Y.H.J.); (W.L.); (H.J.Y.)
| |
Collapse
|
2
|
Helli B, Navabi SP, Hosseini SA, Sabahi A, Khorsandi L, Amirrajab N, Mahdavinia M, Rahmani S, Dehghani MA. The Protective Effects of Syringic Acid on Bisphenol A-Induced Neurotoxicity Possibly Through AMPK/PGC-1α/Fndc5 and CREB/BDNF Signaling Pathways. Mol Neurobiol 2024; 61:7767-7784. [PMID: 38430353 DOI: 10.1007/s12035-024-04048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Bisphenol A (BPA), an endocrine disruptor, is commonly used to produce epoxy resins and polycarbonate plastics. Continuous exposure to BPA may contribute to the development of diseases in humans and seriously affect their health. Previous research suggests a significant relationship between the increased incidence of neurological diseases and the level of BPA in the living environment. Syringic acid (SA), a natural derivative of gallic acid, has recently considered much attention due to neuromodulator activity and its anti-oxidant, anti-apoptotic, and anti-inflammatory effects. Therefore, in this study, we aimed to investigate the effects of SA on oxidative stress, apoptosis, memory and locomotor disorders, and mitochondrial function, and to identify the mechanisms related to Alzheimer's disease (AD) in the brain of rats receiving high doses of BPA. For this purpose, male Wistar rats received BPA (50, 100, and 200 mg/kg) and SA (50 mg/kg) for 21 days. The results showed that BPA exposure significantly altered the rats' neurobehavioral responses. Additionally, BPA, by increasing the level of ROS, and MDA level, increased the level of oxidative stress while reducing the level of antioxidant enzymes, such as SOD, CAT, GPx, and mitochondrial GSH. The administration of BPA at 200 mg/kg significantly decreased the expression of ERRα, TFAM, irisin, PGC-1α, Bcl-2, and FNDC5, while it increased the expression of TrkB, cytochrome C, caspase 3, and Bax. Moreover, the Western blotting results showed that BPA increased the levels of P-AMPK, GSK3b, p-tau, and Aβ, while it decreased the levels of PKA, P-PKA, Akt, BDNF, CREB, P-CREB, and PI3K. Meanwhile, SA at 50 mg/kg reversed the behavioral, biochemical, and molecular changes induced by high doses of BPA. Overall, BPA could lead to the development of AD by affecting the mitochondria-dependent apoptosis pathway, as well as AMPK/PGC-1α/FNDC5 and CREB/BDNF/TrkB signaling pathways, and finally, by increasing the expression of tau and Aβ proteins. In conclusion, SA, as an antioxidant, significantly reduced the toxicity of BPA.
Collapse
Affiliation(s)
- Bizhan Helli
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Sabahi
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasrin Amirrajab
- Department of Laboratory Sciences' School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sohrab Rahmani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Dehghani
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Burmistrov DE, Gudkov SV, Franceschi C, Vedunova MV. Sex as a Determinant of Age-Related Changes in the Brain. Int J Mol Sci 2024; 25:7122. [PMID: 39000227 PMCID: PMC11241365 DOI: 10.3390/ijms25137122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The notion of notable anatomical, biochemical, and behavioral distinctions within male and female brains has been a contentious topic of interest within the scientific community over several decades. Advancements in neuroimaging and molecular biological techniques have increasingly elucidated common mechanisms characterizing brain aging while also revealing disparities between sexes in these processes. Variations in cognitive functions; susceptibility to and progression of neurodegenerative conditions, notably Alzheimer's and Parkinson's diseases; and notable disparities in life expectancy between sexes, underscore the significance of evaluating aging within the framework of gender differences. This comprehensive review surveys contemporary literature on the restructuring of brain structures and fundamental processes unfolding in the aging brain at cellular and molecular levels, with a focus on gender distinctions. Additionally, the review delves into age-related cognitive alterations, exploring factors influencing the acceleration or deceleration of aging, with particular attention to estrogen's hormonal support of the central nervous system.
Collapse
Affiliation(s)
- Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova St., 119991 Moscow, Russia;
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
4
|
Turovsky EA, Baryshev AS, Plotnikov EY. Selenium Nanoparticles in Protecting the Brain from Stroke: Possible Signaling and Metabolic Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:160. [PMID: 38251125 PMCID: PMC10818530 DOI: 10.3390/nano14020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Strokes rank as the second most common cause of mortality and disability in the human population across the world. Currently, available methods of treating or preventing strokes have significant limitations, primarily the need to use high doses of drugs due to the presence of the blood-brain barrier. In the last decade, increasing attention has been paid to the capabilities of nanotechnology. However, the vast majority of research in this area is focused on the mechanisms of anticancer and antiviral effects of nanoparticles. In our opinion, not enough attention is paid to the neuroprotective mechanisms of nanomaterials. In this review, we attempted to summarize the key molecular mechanisms of brain cell damage during ischemia. We discussed the current literature regarding the use of various nanomaterials for the treatment of strokes. In this review, we examined the features of all known nanomaterials, the possibility of which are currently being studied for the treatment of strokes. In this regard, the positive and negative properties of nanomaterials for the treatment of strokes have been identified. Particular attention in the review was paid to nanoselenium since selenium is a vital microelement and is part of very important and little-studied proteins, e.g., selenoproteins and selenium-containing proteins. An analysis of modern studies of the cytoprotective effects of nanoselenium made it possible to establish the mechanisms of acute and chronic protective effects of selenium nanoparticles. In this review, we aimed to combine all the available information regarding the neuroprotective properties and mechanisms of action of nanoparticles in neurodegenerative processes, especially in cerebral ischemia.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Alexey S. Baryshev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991 Moscow, Russia;
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
5
|
Khidr HY, Hassan NF, Abdelrahman SS, El-Ansary MR, El-Yamany MF, Rabie MA. Formoterol attenuated mitochondrial dysfunction in rotenone-induced Parkinson's disease in a rat model: Role of PINK-1/PARKIN and PI3K/Akt/CREB/BDNF/TrKB axis. Int Immunopharmacol 2023; 125:111207. [PMID: 37956489 DOI: 10.1016/j.intimp.2023.111207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
β2-adrenoreceptors (β2AR have been identified recently as regulators of the α-synuclein gene (SNCA), one of the key milieus endorsed in injury of dopamine neurons in Parkinson's disease (PD). Accumulation of α-synuclein leads to mitochondrial dysfunction via downregulation of mitophagy proteins (PINK-1 and PARKIN) and inhibition of mitochondria biogenesis (PGC-1α) along with an increase in the master inflammatory regulator NF-κB p65 production that provokes neurodegeneration and diminishes neuroprotective signaling pathway (PI3k/Akt/CREB/BDNF). Recently, formoterol exhibited a promising neuroprotective effect against neurodegenerative conditions associated with brain inflammation. Therefore, the present investigation aims to unveil the possible neuroprotective activity of formoterol, β2AR agonist, against rotenone-induced PD in rats. Rats received rotenone (1.5 mg/kg; s.c.) every other day for 3 weeks and cured with formoterol (25 μg/kg/day; i.p.) 1 hr. after rotenone administration, starting from day 11. Formoterol treatment succeeded in upregulating β2-adrenoreceptor expression in PD rats and preserving the function and integrity of dopaminergic neurons as witnessed by enhancement of muscular performance in tests, open field, grip strength-meter, and Rotarod, besides the increment in substantia nigra and striatal tyrosine hydroxylase immunoexpression. In parallel, formoterol boosted mitophagy by activation of PINK1 and PARKIN and preserved mitochondrial membrane potential. Additionally, formoterol stimulated the neuro-survival signaling axis via stimulation of PI3k/pS473-Akt/pS133-CREB/BDNF cascade to attenuate neuronal loss. Noteworthy formoterol reduces neuro-inflammatory status by decreasing NFκBp65 immunoexpression and TNF-α content. Finally, formoterol's potential as a stimulant therapy of mitophagy via the PINK1/PARKIN axis and regulation of mitochondrial biogenesis by increasing PGC-1α to maintain mitochondrial homeostasis along with stimulation of PI3k/Akt/CREB/BDNF axis.
Collapse
Affiliation(s)
- Haneen Y Khidr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - S S Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| |
Collapse
|
6
|
Khan A, Park JS, Kang MH, Lee HJ, Ali J, Tahir M, Choe K, Kim MO. Caffeic Acid, a Polyphenolic Micronutrient Rescues Mice Brains against Aβ-Induced Neurodegeneration and Memory Impairment. Antioxidants (Basel) 2023; 12:1284. [PMID: 37372012 DOI: 10.3390/antiox12061284] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress plays an important role in cognitive dysfunctions and is seen in neurodegeneration and Alzheimer's disease (AD). It has been reported that the polyphenolic compound caffeic acid possesses strong neuroprotective and antioxidant effects. The current study was conducted to investigate the therapeutic potential of caffeic acid against amyloid beta (Aβ1-42)-induced oxidative stress and memory impairments. Aβ1-42 (5 μL/5 min/mouse) was administered intracerebroventricularly (ICV) into wild-type adult mice to induce AD-like pathological changes. Caffeic acid was administered orally at 50 mg/kg/day for two weeks to AD mice. Y-maze and Morris water maze (MWM) behavior tests were conducted to assess memory and cognitive abilities. Western blot and immunofluorescence analyses were used for the biochemical analyses. The behavioral results indicated that caffeic acid administration improved spatial learning, memory, and cognitive abilities in AD mice. Reactive oxygen species (ROS) and lipid peroxidation (LPO) assays were performed and showed that the levels of ROS and LPO were markedly reduced in the caffeic acid-treated mice, as compared to Aβ-induced AD mice brains. Moreover, the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were regulated with the administration of caffeic acid, compared to the Aβ-injected mice. Next, we checked the expression of ionized calcium-binding adaptor molecule 1 (Iba-1), glial fibrillary acidic proteins (GFAP), and other inflammatory markers in the experimental mice, which suggested enhanced expression of these markers in AD mice brains, and were reduced with caffeic acid treatment. Furthermore, caffeic acid enhanced synaptic markers in the AD mice model. Additionally, caffeic acid treatment also decreased Aβ and BACE-1 expression in the Aβ-induced AD mice model.
Collapse
Affiliation(s)
- Amjad Khan
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Hwa Kang
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeon Jin Lee
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jawad Ali
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Muhammad Tahir
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229ER Maastricht, The Netherlands
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
7
|
Rahman MM, Islam MR, Supti FA, Dhar PS, Shohag S, Ferdous J, Shuvo SK, Akter A, Hossain MS, Sharma R. Exploring the Therapeutic Effect of Neurotrophins and Neuropeptides in Neurodegenerative Diseases: at a Glance. Mol Neurobiol 2023:10.1007/s12035-023-03328-5. [PMID: 37052791 DOI: 10.1007/s12035-023-03328-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/22/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatema Akter Supti
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Ocean Science, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka, 1216, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
8
|
Mohamed YT, Salama A, Rabie MA, Abd El Fattah MA. Neuroprotective effect of secukinumab against rotenone induced Parkinson's disease in rat model: Involvement of IL-17, HMGB-1/TLR4 axis and BDNF/TrKB cascade. Int Immunopharmacol 2023; 114:109571. [PMID: 36527875 DOI: 10.1016/j.intimp.2022.109571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Neuroinflammatory status produced via activation of toll like receptor-4 (TLR-4) and interleukin-17 receptor (IL-17R) is one of the principal mechanisms involved in dopaminergic neuronal loss in Parkinson's disease (PD). Activation of TLR-4 and IL-17R stimulates reactive oxygen species (ROS) and proinflammatory cytokines (IL-17, IL-1β, TNFα, IL-6) production that augments neurodegeneration and reduces neuro-survival axis (TrKB/Akt/CREB/BDNF). So, reducing IL-17-driven neuroinflammation via secukinumab, monoclonal antibody against IL-17A, may be one of therapeutic approach for PD. Moreover, the aim was extended to delineate the possible neuroprotective mechanism involved against neuronal loss in rotenone induced PD in rats. Rats received 11 subcutaneous injection of rotenone (1.5 mg/kg) every other day for 21 consecutive days and treated with 2 subcutaneous injections of secukinumab (15 mg/kg) on day 9 and 15, one hour after rotenone administration. Treatment with secukinumab improved motor impairment and muscle incoordination induced by rotenone, as verified by open field and rotarod tests. Moreover, secukinumab attenuated neuronal loss and improve histopathological profile. Noteworthy, secukinumab reduces neuro-inflammatory status by hindering the interaction between IL and 17A and IL-17RA together with inhibiting the activation of TLR-4 and its downstream cascade including pS536-NFκB p65, IL-1β and HMGB-1. Additionally, secukinumab stimulated neuro-survival signalling cascade via activation pY515-TrKB receptor and triggered upsurge in its downstream targets (pS473-Akt/pS133-CREB/BDNF). Furthermore, secukinumab increased striatal tyrosine hydroxylase immunoexpression, the rate limiting step in dopamine biosynthesis, to guard against dopaminergic neuronal loss. In conclusion, secukinumab exerts a neuroprotective effect against rotenone induced neuronal loss via inhibition IL17A/IL17RA interaction and HMGB-1/TLR-4/NF-κBp65/IL1β signalling cascade, together with activation of TrKB/ Akt/CREB/BDNF axis.
Collapse
Affiliation(s)
- Yara T Mohamed
- Maintenance & Calibration unit, Technical Support Department, National Organization of Research & Biologicals, Egyptian Drug Authority, Giza, Egypt
| | - Abeer Salama
- Department of Pharmacology, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mai A Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Involvement of the G-Protein-Coupled Estrogen Receptor-1 (GPER) Signaling Pathway in Neurodegenerative Disorders: A Review. Cell Mol Neurobiol 2022:10.1007/s10571-022-01301-9. [DOI: 10.1007/s10571-022-01301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022]
|
10
|
Kim H, Yoo J, Han K, Park MJ, Kim HS, Baek J, Jeon HJ. Female reproductive factors are associated with the risk of newly diagnosed bipolar disorder in postmenopausal women. J Psychiatr Res 2022; 153:82-89. [PMID: 35809405 DOI: 10.1016/j.jpsychires.2022.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/13/2022] [Accepted: 06/24/2022] [Indexed: 11/27/2022]
Abstract
Changes in the levels of female sex hormones are associated with mood disorders in middle-aged women. This study investigated the association between female reproductive factors and the development of newly diagnosed bipolar disorder (BD). We used a South Korean nationwide medical records database. Postmenopausal women aged 40 or older who underwent health examinations were identified and followed for the occurrence of BD. We identified female reproductive factors including the age at menarche and menopause, parity, history of breastfeeding, oral contraceptive (OC) use, and hormone therapy (HT), and investigated their association with the occurrence of newly diagnosed BD. During an average of 8.32 years (SD 0.83) of follow-up, the incidence of BD was 0.50 per 1000 person-years in postmenopausal women. Compared to women with menopause at an age of 40 years or younger, those with menopause at an age of 45 years or older showed decreased risks of BD. Compared to women who had never breastfed, those who had breastfed for more than 12 months showed a decreased risk of BD. Compared to women who never received HT, those who received HT showed an increased risk of BD in a time-dependent manner. Among postmenopausal women, later menopause and breastfeeding for more than one year were associated with a decreased risk of BD occurrence, and receiving HT was associated with an increased risk.
Collapse
Affiliation(s)
- Hyewon Kim
- Department of Psychiatry, Hanyang University Hospital, Seoul, South Korea
| | - Juhwan Yoo
- Department of Biomedicine & Health Science, The Catholic University of Korea, Seoul, South Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, South Korea
| | - Mi Jin Park
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Soo Kim
- Department of Psychiatry, Dong-A University Hospital, Busan, South Korea
| | - Jihyun Baek
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences & Technology, Department of Medical Device Management & Research, and Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea.
| |
Collapse
|
11
|
Influence of N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine on the Expression of Neurotrophic Factors in Neuronal Differentiated Cultures of Human Induced Pluripotent Stem Cells under Conditions of Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11010142. [PMID: 35052646 PMCID: PMC8773408 DOI: 10.3390/antiox11010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/27/2023] Open
Abstract
Oxidative stress (OS) is implicated in the pathogenesis of several neurodegenerative diseases. We have previously shown that N-acyl dopamines (N-ADA and N-DDA) protect the neural cells of healthy donors and patients with Parkinson’s disease from OS. In this study, we assessed the effects of N-acyl dopamines on the expression of neurotrophic factors in human-induced pluripotent stem cell-derived neuronal cultures enriched with dopaminergic neurons under conditions of OS induced by hydrogen peroxide. We showed that hydrogen peroxide treatment increased BDNF but not GDNF mRNA levels, while it did not affect the secretion of corresponding proteins into the culture medium of these cells. Application of N-acyl dopamines promoted BDNF release into the culture medium. Under conditions of OS, N-DDA also increased TRKB, TRKC and RET mRNA levels. Furthermore, N-acyl dopamines prevented cell death 24 h after OS induction and promoted the expression of antioxidant enzymes GPX1, GPX7, SOD1, SOD2 and CAT, as well as reduced the BAX/BCL2 mRNA ratio. These findings indicate that stimulation of the expression of neurotrophic factors and their receptors may underlie the neuroprotective effects of N-acyl dopamines in human neurons.
Collapse
|
12
|
HINT1 deficiency in aged mice reduces anxiety-like and depression-like behaviours and enhances cognitive performances. Exp Gerontol 2022; 159:111683. [PMID: 34995725 DOI: 10.1016/j.exger.2021.111683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/27/2022]
Abstract
Histidine triad nucleotide-binding protein 1 (HINT1) is regarded as a haplo-insufficient tumour suppressor and is closely associated with many neuropsychiatric disorders, including major depressive disorders. In addition, HINT1 knockout (KO) mice exhibit anxiolytic-like behaviour, antidepression-like behaviour, and enhanced cognitive performance in several studies. However, it is still unclear whether aging contributes to these changes in the emotion and cognition of HINT1 KO mice. This study examined the role of aging in anxiety-like and depression-like behaviours and cognition behaviours in aged HINT1 KO mice compared with young HINT1 KO mice and their wild-type littermates, along with a number of molecular biological methods. In a battery of behavioural tests, aged wild-type mice showed increased anxiety-like and depression-like behaviours and decreased cognitive performance, along with lower expression levels of glutathione peroxidase, enhanced amount of malondialdehyde, and decreased expression levels of brain-derived neurotrophic factor and tyrosine kinase B in the hippocampus and PFC compared to young wild-type mice. HINT1 KO mice showed reduced anxiety-like and depression-like behaviours and enhanced cognitive performance compared to age-matched wild-type mice. In addition, HINT1 KO mice also showed increased GSH-Px and superoxide dismutase, and decreased malondialdehyde, together with enhanced BDNF and Trk-B expression in the hippocampus and PFC. However, when compared with young HINT1 KO mice, aged HINT1 KO mice did not show increased anxiety-like and depression-like behaviours. And there are no differences in the expression level of superoxide dismutase, malondialdehyde, BDNF, and Trk-B between aged and young HINT1 KO mice. In summary, HINT1 deficiency can counteract age-related emotion and cognition dysfunction.
Collapse
|
13
|
You YX, Shahar S, Mohamad M, Rajab NF, Che Din N, Lau HJ, Abdul Hamid H. Is There Any Relationship Between Biochemical Indices and Anthropometric Measurements With Dorsolateral Prefrontal Cortex Activation Among Older Adults With Mild Cognitive Impairment? Front Hum Neurosci 2022; 15:765451. [PMID: 35046782 PMCID: PMC8762169 DOI: 10.3389/fnhum.2021.765451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Working memory is developed in one region of the brain called the dorsolateral prefrontal cortex (DLPFC). The dysfunction of this region leads to synaptic neuroplasticity impairment. It has been reported that several biochemical parameters and anthropometric measurements play a vital role in cognition and brain health. This study aimed to investigate the relationships between cognitive function, serum biochemical profile, and anthropometric measurements using DLPFC activation. A cross-sectional study was conducted among 35 older adults (≥60 years) who experienced mild cognitive impairment (MCI). For this purpose, we distributed a comprehensive interview-based questionnaire for collecting sociodemographic information from the participants and conducting cognitive tests. Anthropometric values were measured, and fasting blood specimens were collected. We investigated their brain activation using the task-based functional MRI (fMRI; N-back), specifically in the DLPFC region. Positive relationships were observed between brain-derived neurotrophic factor (BDNF) (β = 0.494, p < 0.01) and Mini-Mental State Examination (MMSE) (β = 0.698, p < 0.01); however, negative relationships were observed between serum triglyceride (β = −0.402, p < 0.05) and serum malondialdehyde (MDA) (β = −0.326, p < 0.05) with right DLPFC activation (R2 = 0.512) while the participants performed 1-back task after adjustments for age, gender, and years of education. In conclusion, higher serum triglycerides, higher oxidative stress, and lower neurotrophic factor were associated with lower right DLPFC activation among older adults with MCI. A further investigation needs to be carried out to understand the causal-effect mechanisms of the significant parameters and the DLPFC activation so that better intervention strategies can be developed for reducing the risk of irreversible neurodegenerative diseases among older adults with MCI.
Collapse
Affiliation(s)
- Yee Xing You
- Dietetics Program and Center for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Suzana Shahar
- Dietetics Program and Center for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Suzana Shahar,
| | - Mazlyfarina Mohamad
- Diagnostic Imaging and Radiotherapy Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Biomedical Sciences Program and Center for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Normah Che Din
- Health Psychology Program, Centre of Rehabilitation and Special Needs, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hui Jin Lau
- Nutritional Sciences Program and Center for Healthy Aging and Wellness (H-Care), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hamzaini Abdul Hamid
- Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Potential Roles of Sestrin2 in Alzheimer's Disease: Antioxidation, Autophagy Promotion, and Beyond. Biomedicines 2021; 9:biomedicines9101308. [PMID: 34680426 PMCID: PMC8533411 DOI: 10.3390/biomedicines9101308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common age-related neurodegenerative disease. It presents with progressive memory loss, worsens cognitive functions to the point of disability, and causes heavy socioeconomic burdens to patients, their families, and society as a whole. The underlying pathogenic mechanisms of AD are complex and may involve excitotoxicity, excessive generation of reactive oxygen species (ROS), aberrant cell cycle reentry, impaired mitochondrial function, and DNA damage. Up to now, there is no effective treatment available for AD, and it is therefore urgent to develop an effective therapeutic regimen for this devastating disease. Sestrin2, belonging to the sestrin family, can counteract oxidative stress, reduce activity of the mammalian/mechanistic target of rapamycin (mTOR), and improve cell survival. It may therefore play a crucial role in neurodegenerative diseases like AD. However, only limited studies of sestrin2 and AD have been conducted up to now. In this article, we discuss current experimental evidence to demonstrate the potential roles of sestrin2 in treating neurodegenerative diseases, focusing specifically on AD. Strategies for augmenting sestrin2 expression may strengthen neurons, adapting them to stressful conditions through counteracting oxidative stress, and may also adjust the autophagy process, these two effects together conferring neuronal resistance in cases of AD.
Collapse
|
15
|
Kochi C, Salvi A, Atrooz F, Salim S. Simulated vehicle exhaust exposure induces sex-dependent behavioral deficits in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103660. [PMID: 33865999 DOI: 10.1016/j.etap.2021.103660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Chronic exposure to vehicle exhaust emissions are known to cause several adverse health effects. In this study, we examined the impact of several parameters of behavioral, cardiovascular and biochemical functions upon exposure of pro-oxidants CO2, NO2 and CO (simulated vehicle exhaust exposure: SVEE) in male and female rats. Adult rats were subjected to SVEE or ambient air in whole body chambers (5 h/day, 2 weeks). Male, but not female, rats developed memory deficits, and exhibited anxiety- and depression-like behavior, accompanied with significantly high levels of serum corticosterone, oxidative stress, and inflammatory markers (CRP and TNFα), associated with lower levels of total antioxidant capacity, glutathione, glyoxalase and superoxide dismutase (SOD) activities. Brain region-specific downregulation of Cu/Zn SOD, Mn SOD, GSR, PKCα, ERK1/2, CaMKIV, CREB, BDNF and NMDAR subunit protein expression were also observed in male, but not female, rats. Blood pressure, heart rate and eGFR were not negatively impacted by SVEE. Our results suggest that SVEE, through its pro-oxidant content, induces oxido-inflammation in susceptible brain regions in a sex-dependent manner.
Collapse
Affiliation(s)
- Camila Kochi
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| | - Ankita Salvi
- Translational Medicine Department, QPS, LLC, Newark, DE, United States
| | - Fatin Atrooz
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, United States
| | - Samina Salim
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX, United States.
| |
Collapse
|
16
|
Zhao Y, Dong Y, Ge Q, Cui P, Sun N, Lin S. Neuroprotective effects of NDEELNK from sea cucumber ovum against scopolamine-induced PC12 cell damage through enhancing energy metabolism and upregulation of the PKA/BDNF/NGF signaling pathway. Food Funct 2021; 12:7676-7687. [PMID: 34259275 DOI: 10.1039/d1fo00631b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of the study was to evaluate the neuroprotective function of sea cucumber ovum peptide-derived NDEELNK and explore the underlying molecular mechanisms. NDEELNK exerted the neuroprotective effect by improving the acetylcholine (ACh) level and reducing the acetylcholinesterase (AChE) activity in PC12 cells. By molecular docking, we confirmed that the NDEELNK backbone and AChE interacted through hydrophobic and hydrogen bonds in contact with the amino acid residues of the cavity wall. NDEELNK increased superoxide dismutase (SOD) activity and decreased reactive oxygen species (ROS) production, thereby reducing mitochondrial dysfunction and enhancing energy metabolism. Our results demonstrated that NDEELNK supplementation alleviated scopolamine-induced PC12 cell damage by improving the cholinergic system, increasing energy metabolism and upregulating the expression of phosphorylated protein kinase A (p-PKA), brain-derived neurotrophic factor (BNDF) and nerve growth factor (NGF) signaling proteins in in vitro experiments. These results demonstrated that the sea cucumber ovum peptide-derived NDEELNK might play a protective role in PC12 cells.
Collapse
Affiliation(s)
- Yue Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | | | | | | | | | | |
Collapse
|
17
|
Anand SK, Sahu MR, Mondal AC. Induction of oxidative stress and apoptosis in the injured brain: potential relevance to brain regeneration in zebrafish. Mol Biol Rep 2021; 48:5099-5108. [PMID: 34165768 DOI: 10.1007/s11033-021-06506-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/17/2021] [Indexed: 01/11/2023]
Abstract
Recent findings suggest a significant role of the brain-derived neurotrophic factor (BDNF) as a mediator of brain regeneration following a stab injury in zebrafish. Since BDNF has been implicated in many physiological processes, we hypothesized that these processes are affected by brain injury in zebrafish. Hence, we examined the impact of stab injury on oxidative stress and apoptosis in the adult zebrafish brain. Stab wound injury (SWI) was induced in the right telencephalic hemisphere of the adult zebrafish brain and examined at different time points. The biochemical variables of oxidative stress insult and transcript levels of antioxidant genes were assessed to reflect upon the oxidative stress levels in the brain. Immunohistochemistry was performed to detect the levels of early apoptotic marker protein cleaved caspase-3, and the transcript levels of pro-apoptotic and anti-apoptotic genes were examined to determine the effect of SWI on apoptosis. The activity of antioxidant enzymes, the level of lipid peroxidation (LPO) and reduced glutathione (GSH) were significantly increased in the injured fish brain. SWI also enhanced the expression of cleaved caspase-3 protein and apoptosis-related gene transcripts. Our results indicate induction of oxidative stress and apoptosis in the telencephalon of adult zebrafish brain by SWI. These findings contribute to the overall understanding of the pathophysiology of traumatic brain injury and adult neurogenesis in the zebrafish model and raise new questions about the compensatory physiological mechanisms in response to traumatic brain injury in the adult zebrafish brain.
Collapse
Affiliation(s)
- Surendra Kumar Anand
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
18
|
Bustamante-Barrientos FA, Méndez-Ruette M, Ortloff A, Luz-Crawford P, Rivera FJ, Figueroa CD, Molina L, Bátiz LF. The Impact of Estrogen and Estrogen-Like Molecules in Neurogenesis and Neurodegeneration: Beneficial or Harmful? Front Cell Neurosci 2021; 15:636176. [PMID: 33762910 PMCID: PMC7984366 DOI: 10.3389/fncel.2021.636176] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Estrogens and estrogen-like molecules can modify the biology of several cell types. Estrogen receptors alpha (ERα) and beta (ERβ) belong to the so-called classical family of estrogen receptors, while the G protein-coupled estrogen receptor 1 (GPER-1) represents a non-classical estrogen receptor mainly located in the plasma membrane. As estrogen receptors are ubiquitously distributed, they can modulate cell proliferation, differentiation, and survival in several tissues and organs, including the central nervous system (CNS). Estrogens can exert neuroprotective roles by acting as anti-oxidants, promoting DNA repair, inducing the expression of growth factors, and modulating cerebral blood flow. Additionally, estrogen-dependent signaling pathways are involved in regulating the balance between proliferation and differentiation of neural stem/progenitor cells (NSPCs), thus influencing neurogenic processes. Since several estrogen-based therapies are used nowadays and estrogen-like molecules, including phytoestrogens and xenoestrogens, are omnipresent in our environment, estrogen-dependent changes in cell biology and tissue homeostasis have gained attention in human health and disease. This article provides a comprehensive literature review on the current knowledge of estrogen and estrogen-like molecules and their impact on cell survival and neurodegeneration, as well as their role in NSPCs proliferation/differentiation balance and neurogenesis.
Collapse
Affiliation(s)
- Felipe A Bustamante-Barrientos
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Maxs Méndez-Ruette
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Patricia Luz-Crawford
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisco J Rivera
- Laboratory of Stem Cells and Neuroregeneration, Faculty of Medicine, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Carlos D Figueroa
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Luis Federico Bátiz
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
19
|
Uddin MS, Al Mamun A, Kabir MT, Ahmad J, Jeandet P, Sarwar MS, Ashraf GM, Aleya L. Neuroprotective role of polyphenols against oxidative stress-mediated neurodegeneration. Eur J Pharmacol 2020; 886:173412. [DOI: 10.1016/j.ejphar.2020.173412] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
|
20
|
Seizure-Induced Oxidative Stress in Status Epilepticus: Is Antioxidant Beneficial? Antioxidants (Basel) 2020; 9:antiox9111029. [PMID: 33105652 PMCID: PMC7690410 DOI: 10.3390/antiox9111029] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a common neurological disorder which affects patients physically and mentally and causes a real burden for the patient, family and society both medically and economically. Currently, more than one-third of epilepsy patients are still under unsatisfied control, even with new anticonvulsants. Other measures may be added to those with drug-resistant epilepsy. Excessive neuronal synchronization is the hallmark of epileptic activity and prolonged epileptic discharges such as in status epilepticus can lead to various cellular events and result in neuronal damage or death. Unbalanced oxidative status is one of the early cellular events and a critical factor to determine the fate of neurons in epilepsy. To counteract excessive oxidative damage through exogenous antioxidant supplements or induction of endogenous antioxidative capability may be a reasonable approach for current anticonvulsant therapy. In this article, we will introduce the critical roles of oxidative stress and further discuss the potential use of antioxidants in this devastating disease.
Collapse
|
21
|
Sprouse J, Sampath C, Gangula PR. Role of sex hormones and their receptors on gastric Nrf2 and neuronal nitric oxide synthase function in an experimental hyperglycemia model. BMC Gastroenterol 2020; 20:313. [PMID: 32967621 PMCID: PMC7513483 DOI: 10.1186/s12876-020-01453-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/15/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastroparesis, a condition of abnormal gastric emptying, is most commonly observed in diabetic women. To date, the role of ovarian hormones and/or gastric hormone receptors on regulating nitrergic-mediated gastric motility remains inconclusive. AIM The purpose of this study is to investigate whether sex hormones/their receptors can attenuate altered Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), neuronal Nitric Oxide Synthase (nNOS) expression and nitrergic relaxation in gastric neuromuscular tissues exposed to in-vitro hyperglycemia (HG). METHODS Gastric neuromuscular sections from adult female C57BL/6 J mice were incubated in normoglycemic (NG, 5 mM) or hyperglycemic (30 mM or 50 mM) conditions in the presence or absence of selective estrogen receptor (ER) agonists (ERα /PPT or ERβ: DPN); or non-selective sex hormone receptor antagonists (ER/ICI 182,780, or progesterone receptor (PR)/ RU486) for 48 h. mRNA, protein expression and nitrergic relaxation of circular gastric neuromuscular strips were assessed. RESULTS Our findings in HG, compared to NG, demonstrate a significant reduction in ER, Nrf2, and nNOS expression in gastric specimens. In addition, in-vitro treatment with sex hormones and/or their agonists significantly (*p < 0.05) restored Nrf2/nNOSα expression and total nitrite production. Conversely, ER, but not PR, antagonist significantly reduced Nrf2/nNOSα expression and nitrergic relaxation. CONCLUSIONS Our data suggest that ER's can regulate nitrergic function by improving Nrf2/nNOS expression in experimental hyperglycemia.
Collapse
Affiliation(s)
- Jeremy Sprouse
- School of Graduate Studies, Meharry Medical College, Nashville, TN, 37208, USA.,Department of ODS & Research, School of Dentistry, Nashville, TN, 37208, USA
| | - Chethan Sampath
- Department of ODS & Research, School of Dentistry, Nashville, TN, 37208, USA
| | - Pandu R Gangula
- Department of ODS & Research, School of Dentistry, Nashville, TN, 37208, USA.
| |
Collapse
|
22
|
Gamache J, Yun Y, Chiba-Falek O. Sex-dependent effect of APOE on Alzheimer's disease and other age-related neurodegenerative disorders. Dis Model Mech 2020; 13:dmm045211. [PMID: 32859588 PMCID: PMC7473656 DOI: 10.1242/dmm.045211] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The importance of apolipoprotein E (APOE) in late-onset Alzheimer's disease (LOAD) has been firmly established, but the mechanisms through which it exerts its pathogenic effects remain elusive. In addition, the sex-dependent effects of APOE on LOAD risk and endophenotypes have yet to be explained. In this Review, we revisit the different aspects of APOE involvement in neurodegeneration and neurological diseases, with particular attention to sex differences in the contribution of APOE to LOAD susceptibility. We discuss the role of APOE in a broader range of age-related neurodegenerative diseases, and summarize the biological factors linking APOE to sex hormones, drawing on supportive findings from rodent models to identify major mechanistic themes underlying the exacerbation of LOAD-associated neurodegeneration and pathology in the female brain. Additionally, we list sex-by-genotype interactions identified across neurodegenerative diseases, proposing APOE variants as a shared etiology for sex differences in the manifestation of these diseases. Finally, we present recent advancements in 'omics' technologies, which provide a new platform for more in-depth investigations of how dysregulation of this gene affects the development and progression of neurodegenerative diseases. Collectively, the evidence summarized in this Review highlights the interplay between APOE and sex as a key factor in the etiology of LOAD and other age-related neurodegenerative diseases. We emphasize the importance of careful examination of sex as a contributing factor in studying the underpinning genetics of neurodegenerative diseases in general, but particularly for LOAD.
Collapse
Affiliation(s)
- Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Young Yun
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
23
|
El Morsy EM, Ahmed M. Protective effects of lycopene on hippocampal neurotoxicity and memory impairment induced by bisphenol A in rats. Hum Exp Toxicol 2020; 39:1066-1078. [PMID: 32153214 DOI: 10.1177/0960327120909882] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is used to produce polycarbonate plastic and epoxy resins which are used in many consumer products. Most people encounter BPA in their daily routines. However, it has been heavily reported that BPA has a neurotoxic effect. The present study aimed to investigate the effect of lycopene on cognitive deficits induced by a high dose of BPA focusing on mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, oxidative stress, apoptosis, and memory retrieval in adult male rats. Therefore, 72 rats were divided into four groups: control group, BPA group (50 mg/kg body weight (bw)) 3 days a week for 42 days, lycopene group (10 mg/kg bw) daily for 42 days, and lycopene + BPA group. Concurrent treatment of lycopene with BPA improved the learning and cognition memory in Morris water maze and novel object recognition tests along with an increase in acetylcholine esterase activity as well as inhibition of oxidative stress by restoring reduced glutathione and suppressing malondialdehyde hippocampal level to their normal levels. Mechanistically, lycopene upregulated the protein expression of tyrosine receptor kinase B, which resulted in an upsurge in its downstream cascades MAPK/ERK1/2/cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway in the hippocampus of BPA-intoxicated rats. Furthermore, concurrent treatment of lycopene with BPA prevented apoptosis by marked decrease in Bcl-2 associated X protein (Bax) gene expression and caspase 3 activity while restoring B-cell leukemia/lymphoma-2 (Bcl-2) gene expression. In conclusion, the present study provided evidence that lycopene exerted a neuroprotective effect against BPA intoxication in hippocampi of rats via its antioxidant properties, activation of MAPK/ERK pathway, and inhibiting a neuronal apoptosis which reflected on improving the learning and cognition memory.
Collapse
Affiliation(s)
- E M El Morsy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Helwan, Cairo, Egypt
| | - Mae Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt
| |
Collapse
|
24
|
Sprouse JC, Sampath C, Gangula PR. Supplementation of 17β-Estradiol Normalizes Rapid Gastric Emptying by Restoring Impaired Nrf2 and nNOS Function in Obesity-Induced Diabetic Ovariectomized Mice. Antioxidants (Basel) 2020; 9:E582. [PMID: 32635208 PMCID: PMC7402187 DOI: 10.3390/antiox9070582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Gastroparesis (Gp) is a multifactorial condition commonly observed in females and is characterized by delayed or rapid gastric emptying (GE). The role of ovarian hormones on GE in the pathogenesis of obesity induced type 2 diabetes mellitus (T2DM) is completely unknown. The aims of our study are to investigate whether supplementation of 17β-estradiol (E2) or progesterone (P4) restores impaired nuclear factor erythroid 2-related factor 2 (Nrf2, an oxidative stress-responsive transcription factor) and nitric oxide (NO)-mediated gastric motility in ovariectomized (OVX) mice consuming a high-fat diet (HFD, a model of T2DM). Groups of OVX+HFD mice were administered daily subcutaneous doses of either E2 or P4 for 12 weeks. The effects of E2 and P4 on body weight, metabolic homeostasis, solid GE, gastric antrum NO-mediated relaxation, total nitrite levels, neuronal nitric oxide synthase (nNOSα), and its cofactor expression levels were assessed in OVX+HFD mice. HFD exacerbated hyperglycemia and insulinemia while accelerating GE (p < 0.05) in OVX mice. Exogenous E2, but not P4, attenuated rapid gastric emptying and restored gastric nitrergic relaxation, total nitrite levels, nNOSα, and cofactor expression via normalizing Nrf2-Phase II enzymes, inflammatory response, and mitogen-activated protein kinase (MAPK) protein expression in OVX+HFD mice. We conclude that E2 is beneficial in normalizing metabolic homeostasis and gastric emptying in obese, diabetic OVX mice consuming a fat-rich diet.
Collapse
Affiliation(s)
- Jeremy C. Sprouse
- School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA;
| | - Chethan Sampath
- Department of ODS & Research, School of Dentistry, Nashville, TN 37208, USA;
| | - Pandu R. Gangula
- Department of ODS & Research, School of Dentistry, Nashville, TN 37208, USA;
| |
Collapse
|
25
|
Zhang CQ, Yi S, Chen BB, Cui PP, Wang Y, Li YZ. mTOR/NF-κB signaling pathway protects hippocampal neurons from injury induced by intermittent hypoxia in rats. Int J Neurosci 2020; 131:994-1003. [PMID: 32378972 DOI: 10.1080/00207454.2020.1766460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To expound the roles of mTOR and NF-kB signaling pathway in intermittent hypoxia (IH)-induced damage of hippocampal neurons. METHODS For rat experiments, mTOR inhibitor (Rapamycin, Rapa) and NF-κB signaling inhibitor (ammonium pyrrolidine dithiocarbamate, PDTC) were applied to inhibit mTOR and NF-κB signaling, respectively. For neuron experiments, hippocampal neurons from rat were successfully cultured. Different concentrations of Rapa and PDTC were added to the cultured hippocampal neurons. Rat or primary hippocampal neurons were exposed to normoxic or IH conditions after administration of Rapa and PDTC. The effects of Rapa and PDTC administration on learning and memory ability of rats and hippocampal injury after IH exposure were assayed by Morris water maze and H&E staining. Electron microscope was utilized to examine primary hippocampal neuron ultrastructure changes after IH exposure and Rapa or PDTC administration. The expressions of NF-κB-p65, IκBα, IKKβ, BDNF, TNF-α, IL-1β, PSD-95 and SYN in hippocampal neurons were examined. RESULTS Compared with normal control rats or neurons, IH-treated group had elevated expression levels of NF-kB, TNF-α and IL-1β and suppressed expression level of BDNF, PSD-95 and SYN. These results were reversed upon pre-treatment with Rapa and PDTC. Furthermore, IκBα and IKKβ expressions were down-regulated in IH group. No notable difference was manifested in PDTC pre-treatment group, while a prominent increase was shown after Rapa pre-administration. CONCLUSION The administration of PDTC and Rapa could prevent IH-induced hippocampal neuron impairment, indicating that inhibition of the mTOR and NF-κB pathway may likely act as a therapeutic target for obstructive sleep apnea.
Collapse
Affiliation(s)
- Chu-Qin Zhang
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.,Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Song Yi
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Bo-Bei Chen
- Department of Otorhinolaryngology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Pan-Pan Cui
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yan Wang
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yan-Zhong Li
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
26
|
Tiron A, Ristescu I, Postu PA, Tiron CE, Zugun-Eloae F, Grigoras I. Long-Term Deleterious Effects of Short-term Hyperoxia on Cancer Progression-Is Brain-Derived Neurotrophic Factor an Important Mediator? An Experimental Study. Cancers (Basel) 2020; 12:cancers12030688. [PMID: 32183322 PMCID: PMC7140073 DOI: 10.3390/cancers12030688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/28/2022] Open
Abstract
Perioperative factors promoting cancer recurrence and metastasis are under scrutiny. While oxygen toxicity is documented in several acute circumstances, its implication in tumor evolution is poorly understood. We investigated hyperoxia long-term effects on cancer progression and some underlying mechanisms using both in vitro and in vivo models of triple negative breast cancer (TNBC). We hypothesized that high oxygen exposure, even of short duration, may have long-term effects on cancer growth. Considering that hyperoxic exposure results in reactive oxygen species (ROS) formation, increased oxidative stress and increased Brain-Derived Neurotrophic Factor (BDNF) expression, BDNF may mediate hyperoxia effects offering cancer cells a survival advantage by increased angiogenesis and epithelial mesenchymal transition (EMT). Human breast epithelial MCF10A, human MDA-MB-231 and murine 4T1 TNBC were investigated in 2D in vitro system. Cells were exposed to normoxia or hyperoxia (40%, 60%, 80% O2) for 6 h. We evaluated ROS levels, cell viability and the expression of BDNF, HIF-1α, VEGF-R2, Vimentin and E-Cadherin by immunofluorescence. The in vivo model consisted of 4T1 inoculation in Balb/c mice and tumor resection 2 weeks after and 6 h exposure to normoxia or hyperoxia (40%, 80% O2). We measured lung metastases and the same molecular markers, immediately and 4 weeks after surgery. The in vitro study showed that short-term hyperoxia exposure (80% O2) of TNBC cells increases ROS, increases BDNF expression and that promotes EMT and angiogenesis. The in vivo data indicates that perioperative hyperoxia enhances metastatic disease and this effect could be BDNF mediated.
Collapse
Affiliation(s)
- Adrian Tiron
- TRANSCEND Research Centre, Regional Institute of Oncology, 700483 Iasi, Romania; (A.T.); (P.A.P.); (F.Z.-E.)
| | - Irina Ristescu
- Department of Anaesthesia and Intensive Care, School of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.R.); (I.G.)
- Department of Anaesthesia and Intensive Care, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Paula A. Postu
- TRANSCEND Research Centre, Regional Institute of Oncology, 700483 Iasi, Romania; (A.T.); (P.A.P.); (F.Z.-E.)
| | - Crina E. Tiron
- TRANSCEND Research Centre, Regional Institute of Oncology, 700483 Iasi, Romania; (A.T.); (P.A.P.); (F.Z.-E.)
- Correspondence:
| | - Florin Zugun-Eloae
- TRANSCEND Research Centre, Regional Institute of Oncology, 700483 Iasi, Romania; (A.T.); (P.A.P.); (F.Z.-E.)
- Department of Immunology, School of Medicine, “Grigore T Popa” University of Medicine and Pharmacy, 700400 Iasi, Romania
| | - Ioana Grigoras
- Department of Anaesthesia and Intensive Care, School of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (I.R.); (I.G.)
- Department of Anaesthesia and Intensive Care, Regional Institute of Oncology, 700483 Iasi, Romania
| |
Collapse
|
27
|
Yan Y, Yang H, Xie Y, Ding Y, Kong D, Yu H. Research Progress on Alzheimer's Disease and Resveratrol. Neurochem Res 2020; 45:989-1006. [PMID: 32162143 DOI: 10.1007/s11064-020-03007-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), a common irreversible neurodegenerative disease characterized by amyloid-β plaques, neurofibrillary tangles, and changes in tau phosphorylation, is accompanied by memory loss and symptoms of cognitive dysfunction. Increases in disease incidence due to the ageing of the population have placed a great burden on society. To date, the mechanism of AD and the identities of adequate drugs for AD prevention and treatment have eluded the medical community. It has been confirmed that phytochemicals have certain neuroprotective effects against AD. For example, some progress has been made in research on the use of resveratrol, a natural polyphenolic phytochemical, for the prevention and treatment of AD in recent years. Elucidation of the pathogenesis of AD will create a solid foundation for drug treatment. In addition, research on resveratrol, including its mechanism of action, the roles of signalling pathways and its therapeutic targets, will provide new ideas for AD treatment, which is of great significance. In this review, we discuss the possible relationships between AD and the following factors: synapses, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs), silent information regulator 1 (SIRT1), and estrogens. We also discuss the findings of previous studies regarding these relationships in the context of AD treatment and further summarize research progress related to resveratrol treatment.
Collapse
Affiliation(s)
- Yan Yan
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Huihuang Yang
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuxun Xie
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Yuanlin Ding
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Danli Kong
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| | - Haibing Yu
- The Department of Epidemiology and Health Statistics, Public Health School of Guangdong Medical University, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
28
|
Tsuchimine S, Matsuno H, O'Hashi K, Chiba S, Yoshimura A, Kunugi H, Sohya K. Comparison of physiological and behavioral responses to chronic restraint stress between C57BL/6J and BALB/c mice. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30341-7. [PMID: 32070493 DOI: 10.1016/j.bbrc.2020.02.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 01/22/2023]
Abstract
Rodent models of chronic restraint stress (CRS) are often used as simple models of depressive disorder. However, these models of stress have been mainly developed in rats, and the behavioral phenotypes of CRS models are still controversial. In this study, we compared the physiological and behavioral responses of C57BL/6J (B6) and BALB/c mice, which are commonly used in genetic and behavioral studies, to CRS. In addition to measuring physiological parameters and the levels of corticosterone (a stress hormone) in response to stress, we also examined changes in the levels of testosterone (an anti-stress hormone), which have rarely been studied in stressed mice. The mice were exposed to CRS for 6 h a day for 21 days. In both B6 and BALB/c mice, CRS elicited several physiological stress responses, including decreased body weight gain and changes in the tissue weights of stress-related organs. Accumulated corticosterone in the hair was measured, and BALB/c mice had significantly greater levels than control mice and B6 mice after CRS. On the other hand, in the case of accumulated testosterone in the hair, both B6 mice and BALB/c mice showed significantly higher concentrations than control mice, but the degree of change was not different between the two strains. In the sucrose preference test, BALB/c mice, but not B6 mice, showed anhedonia-like behavior after CRS. However, neither strain showed depressive-like behavior in the forced swim or tail suspension test. Our results show that the physiological and behavioral stress responses of BALB/c mice are greater than those of B6 mice, although anti-stress responses to CRS are similar in both strains. This suggests that BALB/c mice are likely to be advantageous for use as a CRS-induced depression model.
Collapse
Affiliation(s)
- Shoko Tsuchimine
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Hitomi Matsuno
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kazunori O'Hashi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Shuichi Chiba
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan; Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Aya Yoshimura
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan; Education and Research Facility of Animal Models for Human Diseases, Research Promotion and Support Headquarters, Fujita Health University, 1-98 Kutsukakecho Dengakugakubo, Toyoake, Aichi, 470-1192, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kazuhiro Sohya
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
29
|
Balmus IM, Alexa AI, Ciuntu RE, Danielescu C, Stoica B, Cojocaru SI, Ciobica A, Cantemir A. Oxidative stress markers dynamics in keratoconus patients' tears before and after corneal collagen crosslinking procedure. Exp Eye Res 2019; 190:107897. [PMID: 31836491 DOI: 10.1016/j.exer.2019.107897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
Keratoconus (KC) is a controversial ophthalmological disease, often considered both multifactorial and multigenic with poor or not entirely understood etiopathogenesis. Corneal collagen crosslinking (CXL) procedure is the most common surgical therapy for KC which both slows corneal thinning and halts disease progression. While extensive studies provide consistent evidence on systemic oxidative stress in KC patients and animal models, little is known on the tear fluid oxidative stress markers such as antioxidant enzymes activity or lipid peroxidation markers. Also, little is known considering the oxidative status dynamics following CXL. In this way, we aimed to evaluate three oxidative stress markers in the tears of KC patients before and after CXL procedure. Total superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymatic activity and malondiladehyde (MDA) levels were assessed from the tears of 20 kC patients who received the recommendation for CXL procedure. Significantly decreased SOD activity (p = 0.0014) was observed in KC patients tears, as compared to age and sex-matched controls which could lead to significant lipid peroxidation boost (p < 0.001). Significantly higher GPx enzyme activity was observed in KC patients, as compared to control (p < 0.001), suggesting a compensatory response to intense lipid peroxidation. Following CXL, SOD activity significantly decreases and GPx activity extensively increases, as compared to baseline KC levels and controls (p < 0.001). This work provides additional evidence on oxidative stress status in the tears of KC considering general oxidative stress markers dynamics both before and after the CXL procedure. We also demonstrated that the CXL procedure could have further relevance in the management of this disorder.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Department of Interdisciplinary Research in Science, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, no. 11, 700506, Iasi, Romania.
| | - Anisia Iuliana Alexa
- Department of Ophthalmology, Faculty of Medicine, "Gr. T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Roxana-Elena Ciuntu
- Department of Ophthalmology, Faculty of Medicine, "Gr. T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Ciprian Danielescu
- Department of Ophthalmology, Faculty of Medicine, "Gr. T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Bogdan Stoica
- "Gr. T. Popa" University of Medicine and Pharmacy, Department of Biochemistry, Iasi, Romania.
| | - Sabina Ioana Cojocaru
- Department of Biochemistry, "Alexandru Ioan Cuza" University of Iasi, Iasi, Romania.
| | - Alin Ciobica
- "Alexandru Ioan Cuza" University of Iasi, Faculty of Biology, Department of Research, Iasi, Romania.
| | | |
Collapse
|
30
|
Kelicen-Ugur P, Cincioğlu-Palabıyık M, Çelik H, Karahan H. Interactions of Aromatase and Seladin-1: A Neurosteroidogenic and Gender Perspective. Transl Neurosci 2019; 10:264-279. [PMID: 31737354 PMCID: PMC6843488 DOI: 10.1515/tnsci-2019-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022] Open
Abstract
Aromatase and seladin-1 are enzymes that have major roles in estrogen synthesis and are important in both brain physiology and pathology. Aromatase is the key enzyme that catalyzes estrogen biosynthesis from androgen precursors and regulates the brain’s neurosteroidogenic activity. Seladin-1 is the enzyme that catalyzes the last step in the biosynthesis of cholesterol, the precursor of all hormones, from desmosterol. Studies indicated that seladin-1 is a downstream mediator of the neuroprotective activity of estrogen. Recently, we also showed that there is an interaction between aromatase and seladin-1 in the brain. Therefore, the expression of local brain aromatase and seladin-1 is important, as they produce neuroactive steroids in the brain for the protection of neuronal damage. Increasing steroid biosynthesis specifically in the central nervous system (CNS) without affecting peripheral hormone levels may be possible by manipulating brain-specific promoters of steroidogenic enzymes. This review emphasizes that local estrogen, rather than plasma estrogen, may be responsible for estrogens’ protective effects in the brain. Therefore, the roles of aromatase and seladin-1 and their interactions in neurodegenerative events such as Alzheimer’s disease (AD), ischemia/reperfusion injury (stroke), and epilepsy are also discussed in this review.
Collapse
Affiliation(s)
- Pelin Kelicen-Ugur
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Mehtap Cincioğlu-Palabıyık
- Turkish Medicines and Medical Devices Agency (TITCK), Department of Regulatory Affairs, Division of Pharmacological Assessment, Ankara, Turkey
| | - Hande Çelik
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Sıhhiye Ankara Turkey
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
31
|
Fermented rice peptides attenuate scopolamine-induced memory impairment in mice by regulating neurotrophic signaling pathways in the hippocampus. Brain Res 2019; 1720:146322. [DOI: 10.1016/j.brainres.2019.146322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/22/2019] [Accepted: 07/02/2019] [Indexed: 11/23/2022]
|
32
|
Chen SD, Yang JL, Lin TK, Yang DI. Emerging Roles of Sestrins in Neurodegenerative Diseases: Counteracting Oxidative Stress and Beyond. J Clin Med 2019; 8:jcm8071001. [PMID: 31324048 PMCID: PMC6678886 DOI: 10.3390/jcm8071001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022] Open
Abstract
Low levels of reactive oxygen species (ROS) are critical for the operation of regular neuronal function. However, heightened oxidative stress with increased contents of oxidation markers in DNA, lipids, and proteins with compromised antioxidant capacity may play a harmful role in the brain and may be implicated in the pathophysiology of neurodegenerative diseases. Sestrins, a family of evolutionarily-conserved stress-inducible proteins, are actively regulated by assorted stresses, such as DNA damage, hypoxia, and oxidative stress. Three highly homologous genes that encode sestrin1, sestrin2, and sestrin3 proteins exist in the genomes of vertebrates. Under stressful conditions, sestrins are activated with versatile functions to cope with different types of stimuli. A growing body of evidence suggests that sestrins, especially sestrin2, can counteract oxidative stress, lessen mammalian/mechanistic target of rapamycin (mTOR) expression, and promote cell survival, thereby playing a critical role in aging-related disorders including neurodegeneration. Strategies capable of augmenting sestrin expression may; thus, facilitate cell adaptation to stressful conditions or environments through stimulation of antioxidant response and autophagy process, which may carry clinical significance in neurodegenerative diseases.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan
- Institute for Translation Research in Biomedicine; Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan
| | - Jenq-Lin Yang
- Institute for Translation Research in Biomedicine; Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang-Ming University, Taipei 11221, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
- Taipei City Hospital, Taipei 10629, Taiwan.
| |
Collapse
|
33
|
Thakare VN, Patil RR, Suralkar AA, Dhakane VD, Patel BM. Protocatechuic acid attenuate depressive-like behavior in olfactory bulbectomized rat model: behavioral and neurobiochemical investigations. Metab Brain Dis 2019; 34:775-787. [PMID: 30848471 DOI: 10.1007/s11011-019-00401-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
Abstract
The main objective of the present study is to investigate potential effects of PCA in OBX induced depressive-like behavior in rat model. PCA was administered at a dose of 100 mg/kg and 200 mg/kg, by per oral in OBX and sham operated rats. Behavioral (ambulatory and rearing activity and immobility time), neurochemical [serotonin (5-HT), dopamine (DA), norepinephrine (NE) and brain derived neurotrophic factor (BDNF) expression], biochemical (MDA formation, IL-6, TNF-α and antioxidants) changes in hippocampus and cerebral cortex along with serum corticosterone were investigated. Experimental findings reveals that OBX subjected rats showed alteration in behaviors like, increase in immobility time, ambulatory and rearing behaviors significantly, reduced BDNF level, 5-HT, DA,NE and antioxidant parameters along with increased serum corticosterone, MDA formation, IL-6, and TNF-α in hippocampus and cerebral cortex compared to sham operated rats. Administration of PCA significantly attenuated behavioral and neurobiochemical alterations, thus, its antidepressant-like activity is largely mediated through modulation of neurotransmitter, endocrine and immunologic systems, mainly by improvements of BDNF, 5-HT, DA, NE, reduced MDA, IL-6, and TNF-α in hippocampus and cerebral cortex.
Collapse
Affiliation(s)
- Vishnu N Thakare
- Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala, Maharashtra, 410401, India
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Rajesh R Patil
- Department of Pharmacology, Sinhgad Institute of Pharmaceutical Sciences, Lonavala, Maharashtra, 410401, India
| | - Anupama A Suralkar
- Department of Pharmacology, Smt. Kashibai Navale College of Pharmacy, Kondhawa, Pune, Maharashtra, 411048, India
| | - Valmik D Dhakane
- Research and Development, Astec Life Sciences, Mumbai, Maharashtra, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
34
|
Li M, Zhu Y, Peng W, Wang H, Yuan Y, Gu X. Achyranthes bidentata Polypeptide Protects Schwann Cells From Apoptosis in Hydrogen Peroxide-Induced Oxidative Stress. Front Neurosci 2018; 12:868. [PMID: 30555292 PMCID: PMC6284036 DOI: 10.3389/fnins.2018.00868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Abstract
ABPPk, the active ingredient separated from Achyranthes bidentata polypeptides, is a traditional Chinese medicine with multiple pharmaceutical properties. In this study, we investigated the molecular mechanisms of ABPPk in protecting Schwann cells (SCs) from H2O2-induced cell apoptosis. The viability of SCs pretreated with ABPPk was elevated significantly by MTT assay estimation. Meanwhile, the apoptosis of SCs was reduced which was showed in flow cytometry and transferase-mediated dUTP nick end labeling analysis. Furthermore, the addition of ABPPk also increased the activities of SOD and GSH accompanied with a decrease in MDA and LDH activities. According to Western blot analysis, the upregulation of Bcl-2, also downregulation of Bax and cleaved caspase-3 were demonstrated in SCs which was ABPPk pretreated. Further research showed that PI3K/AKT and ERK1/2 pathways in SCs have been activated after pretreatment of ABPPk. Collectively, results in our study suggested that ABPPk protected SCs from H2O2-induced oxidative damage by reducing the expression of apoptotic molecules and enhancing the activities of antioxidant enzymes, which inhibited the apoptosis of SCs modulated by PI3K/AKT and ERK1/2 signaling pathways. In our perspectives, ABPPk as an active factor with its antioxidative activities has potential and promising therapeutic effects in the prevention of neurologic disorders.
Collapse
Affiliation(s)
- Meiyuan Li
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ye Zhu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenqiang Peng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Yuan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovatioin Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
35
|
Wnuk A, Rzemieniec J, Litwa E, Lasoń W, Kajta M. Prenatal exposure to benzophenone-3 (BP-3) induces apoptosis, disrupts estrogen receptor expression and alters the epigenetic status of mouse neurons. J Steroid Biochem Mol Biol 2018; 182:106-118. [PMID: 29704544 DOI: 10.1016/j.jsbmb.2018.04.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022]
Abstract
Current evidence indicates that benzophenone-3 (BP-3) can pass through the placental and blood-brain barriers and thus can likely affect infant neurodevelopment. Despite widespread exposure, data showing the effects of BP-3 on the developing nervous system are scarce. This study revealed for the first time that prenatal exposure to BP-3 led to apoptosis and neurotoxicity, altered the levels of estrogen receptors (ERs) and changed the epigenetic status of mouse neurons. In the present study, subcutaneous injections of pregnant mice with BP-3 at 50 mg/kg, which is an environmentally relevant dose, evoked activation of caspase-3 and lactate dehydrogenase (LDH) release as well as substantial loss of mitochondrial membrane potential in neocortical cells of their embryonic offspring. Apoptosis-focused microarray analysis of neocortical cells revealed up-regulation of 22 genes involved in apoptotic cell death. This effect was supported by increased BAX and CASP3 mRNA and protein levels, as evidenced by qPCR, ELISAs and western blots. BP-3-induced apoptosis and neurotoxicity were accompanied by decreases in the mRNA and protein expression levels of ESR1 and ESR2 (also known as ERα and ERβ), with a simultaneous increase in GPER1 (also known as GPR30) expression. In addition to the demonstration that treatment of pregnant mice with BP-3 induced apoptosis, caused neurotoxicity and altered ERs expression levels in neocortical cells of their embryonic offspring, we showed that prenatal administration of BP-3 inhibited global DNA methylation as well as reduced DNMTs activity. BP-3 also caused specific hypomethylation of the genes Gper1 and Bax, an effect that was accompanied by increased mRNA and protein expression levels. In addition, BP-3 caused hypermethylation of the genes Esr1, Esr2 and Bcl2, which could explain the reduced mRNA and protein levels of the estrogen receptors. This study demonstrated for the first time that prenatal exposure to BP-3 caused severe neuronal apoptosis that was accompanied by impaired ESR1/ESR2 expression, enhanced GPER1 expression, global DNA hypomethylation and altered methylation statuses of apoptosis-related and ERs genes. We suggest that the effects of BP-3 in embryonic neurons may be the fetal basis of the adult onset of nervous system disease.
Collapse
Affiliation(s)
- Agnieszka Wnuk
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Joanna Rzemieniec
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Ewa Litwa
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Władysław Lasoń
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland
| | - Małgorzata Kajta
- Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, 31-343 Krakow, Smetna Street 12, Poland.
| |
Collapse
|
36
|
Angiotensin 1-7 ameliorates 6-hydroxydopamine lesions in hemiparkinsonian rats through activation of MAS receptor/PI3K/Akt/BDNF pathway and inhibition of angiotensin II type-1 receptor/NF-κB axis. Biochem Pharmacol 2018; 151:126-134. [DOI: 10.1016/j.bcp.2018.01.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/30/2018] [Indexed: 11/18/2022]
|
37
|
Koh EJ, Kim KJ, Song JH, Choi J, Lee HY, Kang DH, Heo HJ, Lee BY. Spirulina maxima Extract Ameliorates Learning and Memory Impairments via Inhibiting GSK-3β Phosphorylation Induced by Intracerebroventricular Injection of Amyloid-β 1-42 in Mice. Int J Mol Sci 2017; 18:ijms18112401. [PMID: 29137190 PMCID: PMC5713369 DOI: 10.3390/ijms18112401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022] Open
Abstract
Spirulina maxima, a microalga containing high levels of protein and many polyphenols, including chlorophyll a and C-phycocyanin, has antioxidant and anti-inflammatory therapeutic effects. However, the mechanisms where by Spirulina maxima ameliorates cognitive disorders induced by amyloid-β 1–42 (Aβ1–42) are not fully understood. In this study, we investigated whether a 70% ethanol extract of Spirulina maxima (SM70EE) ameliorated cognitive impairments induced by an intracerebroventricular injection of Aβ1–42 in mice. SM70EE increased the step-through latency time in the passive avoidance test and decreased the escape latency time in the Morris water maze test in Aβ1–42-injected mice. SM70EE reduced hippocampal Aβ1–42 levels and inhibited amyloid precursor protein processing-associated factors in Aβ1–42-injected mice. Additionally, acetylcholinesterase activity was suppressed by SM70EE in Aβ1–42-injected mice. Hippocampal glutathione levels were examined to determine the effects of SM70EE on oxidative stress in Aβ1–42-injected mice. SM70EE increased the levels of glutathione and its associated factors that were reduced in Aβ1–42-injected mice. SM70EE also promoted activation of the brain-derived neurotrophic factor/phosphatidylinositol-3 kinase/serine/threonine protein kinase signaling pathway and inhibited glycogen synthase kinase-3β phosphorylation. These findings suggested that SM70EE ameliorated Aβ1–42-induced cognitive impairments by inhibiting the increased phosphorylation of glycogen synthase kinase-3β caused by intracerebroventricular injection of Aβ1–42 in mice.
Collapse
Affiliation(s)
- Eun-Jeong Koh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi 13488, Korea.
| | - Kui-Jin Kim
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi 13488, Korea.
| | - Ji-Hyeon Song
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi 13488, Korea.
| | - Jia Choi
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi 13488, Korea.
| | - Hyeon Yong Lee
- Department of Food Science and Engineering, Seowon University, Cheongju 28674, Korea.
| | - Do-Hyung Kang
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Korea.
| | - Ho Jin Heo
- Division of Applied Life Science, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi 13488, Korea.
| |
Collapse
|
38
|
Spirulina maxima Extract Prevents Neurotoxicity via Promoting Activation of BDNF/CREB Signaling Pathways in Neuronal Cells and Mice. Molecules 2017; 22:molecules22081363. [PMID: 28817076 PMCID: PMC6151979 DOI: 10.3390/molecules22081363] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 12/02/2022] Open
Abstract
Spirulina maxima is a microalgae which contains flavonoids and other polyphenols. Although Spirulina maxima 70% ethanol extract (SM70EE) has diverse beneficial effects, its effects on neurotoxicity have not been fully understood. In this study, we investigated the neuroprotective effects of SM70EE against trimethyltin (TMT)-induced neurotoxicity in HT-22 cells. SM70EE inhibited the cleavage of poly-ADP ribose polymerase (PARP). Besides, ROS production was decreased by down-regulating oxidative stress-associated enzymes. SM70EE increased the factors of brain-derived neurotrophic factor (BDNF)/cyclic AMP-responsive element-binding protein (CREB) signalling pathways. Additionally, acetylcholinesterase (AChE) was suppressed by SM70EE. Furthermore, we investigated whether SM70EE prevents cognitive deficits against scopolamine-induced neurotoxicity in mice by applying behavioral tests. SM70EE increased step-through latency time and decreased the escape latency time. Therefore, our data suggest that SM70EE may prevent TMT neurotoxicity through promoting activation of BDNF/CREB neuroprotective signaling pathways in neuronal cells. In vivo study, SM70EE would prevent cognitive deficits against scopolamine-induced neurotoxicity in mice.
Collapse
|
39
|
Cabrera-Pedraza VR, de Jesús Gómez-Villalobos M, de la Cruz F, Aguilar-Alonso P, Zamudio S, Flores G. Pregnancy improves cognitive deficit and neuronal morphology atrophy in the prefrontal cortex and hippocampus of aging spontaneously hypertensive rats. Synapse 2017; 71:e21991. [DOI: 10.1002/syn.21991] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/24/2017] [Accepted: 07/02/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Verónica R. Cabrera-Pedraza
- Instituto de Fisiología; Benemérita Universidad Autónoma de Puebla; Puebla Pue México
- Depto. de Fisiología; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional; Cdmx México
| | | | - Fidel de la Cruz
- Depto. de Fisiología; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional; Cdmx México
| | | | - Sergio Zamudio
- Depto. de Fisiología; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional; Cdmx México
| | - Gonzalo Flores
- Instituto de Fisiología; Benemérita Universidad Autónoma de Puebla; Puebla Pue México
| |
Collapse
|
40
|
Venkatesh Gobi V, Rajasankar S, Ramkumar M, Dhanalakshmi C, Manivasagam T, Justin Thenmozhi A, Essa MM, Chidambaram R, Kalandar A. Agaricus blazei extract abrogates rotenone-induced dopamine depletion and motor deficits by its anti-oxidative and anti-inflammatory properties in Parkinsonic mice. Nutr Neurosci 2017. [DOI: 10.1080/1028415x.2017.1337290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | - Muthu Ramkumar
- Department of Anatomy, Bharath University, Selaiyur, Chennai, Tamil Nadu 600073, India
| | - Chinnasamy Dhanalakshmi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
- Food and Brain Research Foundation, Chennai, Tamil Nadu 600094, India
| | - Ranganathan Chidambaram
- Department of Radiology, Sri Lakshminarayana Institute of Medical Sciences, Puducherry, India
| | - Ameer Kalandar
- College of Health and Medical Science, Haramaya University, Dire Dawa, Ethiopia
| |
Collapse
|
41
|
17β-Estradiol via SIRT1/Acetyl-p53/NF-kB Signaling Pathway Rescued Postnatal Rat Brain Against Acute Ethanol Intoxication. Mol Neurobiol 2017; 55:3067-3078. [PMID: 28466267 DOI: 10.1007/s12035-017-0520-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
Growing evidences reveal that 17β-estradiol has a wide variety of neuroprotective potential. Recently, it has been shown that 17β-estradiol can limit ethanol-induced neurotoxicity in neonatal rats. Whether it can stimulate SIRT1 signaling against ethanol intoxicity in developing brain remain elusive. Here, we report for the first time that 17β-estradiol activated SIRT1 to deacetylate p53 proteins against acute ethanol-induced oxidative stress, neuroinflammation, and neurodegeneration. A single subcutaneous injection of ethanol-induced oxidative stress triggered phospho c-jun N terminal kinase (p-JNK) and phospho mammalian target of rapamycin (p-mTOR) accompanied by neuroinflammation and widespread neurodegeneration. In contrast, 17β-estradiol cotreatment positively regulated SIRT1, inhibited p53 acetylation, reactive oxygen species (ROS) production, p-JNK, and p-mTOR activation and reduced neuroinflammation and neuronal cell death in the postnatal rat brain. Interestingly, SIRT1 inhibition with its inhibitor, i.e., EX527 further enhanced ethanol intoxication and also abolished the beneficial effects of 17β-estradiol against ethanol in the young rat's brain. Indeed, 17β-estradiol treatment increased the cell viability (HT22 cells), inhibited ROS production via the SIRT1/Acetyl-p53 pathway, and reduced the nuclear translocation of phospho-nuclear factor kappa B (p-NF-kB) in the BV2 microglia cells. Taken together, these results show that 17β-estradiol can be used as a potential neuroprotective agent against acute ethanol intoxication.
Collapse
|
42
|
Chen SD, Wu CL, Hwang WC, Yang DI. More Insight into BDNF against Neurodegeneration: Anti-Apoptosis, Anti-Oxidation, and Suppression of Autophagy. Int J Mol Sci 2017; 18:ijms18030545. [PMID: 28273832 PMCID: PMC5372561 DOI: 10.3390/ijms18030545] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023] Open
Abstract
In addition to its well-established neurotrophic action, brain-derived neurotrophic factor (BDNF) also possesses other neuroprotective effects including anti-apoptosis, anti-oxidation, and suppression of autophagy. We have shown before that BDNF triggers multiple mechanisms to confer neuronal resistance against 3-nitropropionic acid (3-NP)-induced mitochondrial dysfunction in primary rat cortical cultures. The beneficial effects of BDNF involve the induction of anti-oxidative thioredoxin with the resultant expression of anti-apoptotic B-cell lymphoma 2 (Bcl-2) as well as erythropoietin (EPO)-dependent stimulation of sonic hedgehog (SHH). We further revealed that BDNF may bring the expression of sulfiredoxin, an ATP-dependent antioxidant enzyme, to offset mitochondrial inhibition in cortical neurons. Recently, we provided insights into another novel anti-oxidative mechanism of BDNF, which involves the augmentation of sestrin2 expression to endow neuronal resistance against oxidative stress induced by 3-NP; BDNF induction of sestrin2 entails the activation of a pathway involving nitric oxide (NO), cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG), and nuclear factor-κB (NF-κB). Apart from anti-apoptosis and anti-oxidation, we demonstrated in our most recent study that BDNF may activate the mammalian target of rapamycin (mTOR) with resultant activation of transcription factor c-Jun, thereby stimulating the expression of p62/sequestosome-1 to suppress heightened autophagy as a result of 3-NP exposure. Together, our results provide in-depth insight into multi-faceted protective mechanisms of BDNF against mitochondrial dysfunction commonly associated with the pathogenesis of many chronic neurodegenerative disorders. Delineation of the protective signaling pathways elicited by BDNF would endow a rationale to develop novel therapeutic regimens to halt or prevent the progression of neurodegeneration.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chia-Lin Wu
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11221, Taiwan.
- Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Wei-Chao Hwang
- Department of Neurology, Taipei City Hospital, Taipei 11221, Taiwan.
| | - Ding-I Yang
- Institute of Brain Science and Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| |
Collapse
|
43
|
Chen L, Peng Z, Nüssler AK, Liu L, Yang W. Current and prospective sights in mechanism of deoxynivalenol-induced emesis for future scientific study and clinical treatment. J Appl Toxicol 2017; 37:784-791. [DOI: 10.1002/jat.3433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Andreas K. Nüssler
- Department of Traumatology, BG Trauma Center; University of Tübingen; Schnarrenbergstr. 95 72076 Tübingen Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| |
Collapse
|
44
|
Belaïch R, Boujraf S, Benzagmout M, Maaroufi M, Housni A, Batta F, Tizniti S, Magoul R, Sqalli T. Indices of adrenal deficiency involved in brain plasticity and functional control reorganization in hemodialysis patients with polysulfone membrane: BOLD-fMRI study. J Integr Neurosci 2016; 15:191-203. [PMID: 27301905 DOI: 10.1142/s0219635216500126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This work purpose was to estimate the implication of suspected adrenal function deficiencies, which was influenced by oxidative stress (OS) that are generating brain plasticity, and reorganization of the functional control. This phenomenon was revealed in two-hemodialysis patients described in this paper. Blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI) revealed a significant activation of the motor cortex. Hemodialysis seems to originate an inflammatory state of the cerebral tissue reflected by increased OS, while expected to decrease since hemodialysis eliminates free radicals responsible for OS. Considering adrenal function deficiencies, sensitivity to OS and assessed hyponatremia and hypercalcemia, adrenal function deficiencies is strongly suspected in both patients. This probably contributes to amplify brain plasticity and a reorganization of functional control after hemodialysis that is compared to earlier reported studies. Brain plasticity and functional control reorganization was revealed by BOLD-fMRI with a remarkable sensitivity. Brain plastic changes are originated by elevated OS associating indices of adrenal function deficiencies. These results raise important issues about adrenal functional deficiencies impact on brain plasticity in chronic hemodialysis-patients. This motivates more global studies of plasticity induced factors in this category of patients including adrenal functional deficiencies and OS.
Collapse
Affiliation(s)
- Rachida Belaïch
- * Department of Biophysics and Clinical MRI Methods, Faculty of Medicine of Fez; Fez, Morocco.,† The Clinical Neuroscience Laboratory, Faculty of Medicine of Fez; Fez, Morocco
| | - Saïd Boujraf
- * Department of Biophysics and Clinical MRI Methods, Faculty of Medicine of Fez; Fez, Morocco.,† The Clinical Neuroscience Laboratory, Faculty of Medicine of Fez; Fez, Morocco
| | - Mohammed Benzagmout
- † The Clinical Neuroscience Laboratory, Faculty of Medicine of Fez; Fez, Morocco
| | - Mustapha Maaroufi
- † The Clinical Neuroscience Laboratory, Faculty of Medicine of Fez; Fez, Morocco.,‡ Department of Radiology and Clinical Imaging, University Hospital of Fez; Fez, Morocco
| | - Abdelkhalek Housni
- † The Clinical Neuroscience Laboratory, Faculty of Medicine of Fez; Fez, Morocco
| | - Fatima Batta
- * Department of Biophysics and Clinical MRI Methods, Faculty of Medicine of Fez; Fez, Morocco.,† The Clinical Neuroscience Laboratory, Faculty of Medicine of Fez; Fez, Morocco.,§ Department of Nephrology, University Hospital of Fez, Fez, Morocco
| | - Siham Tizniti
- † The Clinical Neuroscience Laboratory, Faculty of Medicine of Fez; Fez, Morocco.,‡ Department of Radiology and Clinical Imaging, University Hospital of Fez; Fez, Morocco
| | - Rabia Magoul
- ¶ Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences Dhar El Mahraz, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | - Tarik Sqalli
- § Department of Nephrology, University Hospital of Fez, Fez, Morocco
| |
Collapse
|
45
|
Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:388-93. [PMID: 27279982 PMCID: PMC4887711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditions. Lately, there has been growing evidence that changes in the cerebral neurotrophic support and especially in the BDNF expression and its engagement with ROS might be important in various disorders and neurodegenerative diseases. Hence, we aimed to investigate protective effects of BDNF against stress-induced oxidative damage. MATERIALS AND METHODS Five- to six-month-old male wild-type and BDNF knock-down mice were used in this study. Activities of catalase (CAT) and superoxide dismutase (SOD) enzymes, and the amount of malondialdehyde (MDA) were assessed in the cerebral homogenates of studied groups in response to acute restraint stress. RESULTS Exposing to acute physiological stress led to significant elevation in the markers of oxidative stress in the cerebral cortexes of experimental groups. CONCLUSION As BDNF-deficient mice were observed to be more susceptible to stress-induced oxidative damage, it can be suggested that there is a direct interplay between oxidative stress indicators and BDNF levels in the brain.
Collapse
|
46
|
PFOS Disturbs BDNF-ERK-CREB Signalling in Association with Increased MicroRNA-22 in SH-SY5Y Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:302653. [PMID: 26649298 PMCID: PMC4662996 DOI: 10.1155/2015/302653] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
Perfluorooctane sulfonate (PFOS), a ubiquitous environmental pollutant, is neurotoxic to mammalian species. However, the underlying mechanism of its neurotoxicity was unclear. We hypothesized that PFOS suppresses BDNF expression to produce its neurotoxic effects by inhibiting the ERK-CREB pathway. SH-SY5Y human neuroblastoma cells were exposed to various concentrations of PFOS to examine the role of the BDNF-ERK-CREB signalling pathway in PFOS-induced apoptosis and cytotoxicity. Furthermore, to ascertain the mechanism by which PFOS reduces BDNF signalling, we examined the expression levels of miR-16 and miR-22, which potentially regulate BDNF mRNA translation at the posttranscriptional level. Results indicated that PFOS significantly decreased cell viability and induced apoptosis in SH-SY5Y cells. In addition, BDNF and pERK protein levels decreased after PFOS treatment; however, pCREB protein levels were significantly elevated in PFOS treated groups. TrkB protein expression increased in the 10 μM and 50 μM PFOS groups and significantly decreased in the 100 μM PFOS group. Our results demonstrated that PFOS exposure decreased miR-16 expression and increased miR-22 expression, which may represent a possible mechanism by which PFOS decreases BDNF protein levels. PFOS may inhibit BDNF-ERK-CREB signalling by increasing miR-22 levels, which may, in part, explain the mechanism of PFOS neurotoxicity.
Collapse
|
47
|
Son SW, Lee JS, Kim HG, Kim DW, Ahn YC, Son CG. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model. J Neurochem 2015; 136:106-17. [PMID: 26385432 DOI: 10.1111/jnc.13371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Seung-Wan Son
- Department of Biomedical Engineering; College of Health Science; Korea University; Seongbuk-Gu Seoul Korea
| | - Jin-Seok Lee
- Liver and Immunology Research Center; Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University; Jung-gu Daejeon South Korea
| | - Hyeong-Geug Kim
- Liver and Immunology Research Center; Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University; Jung-gu Daejeon South Korea
| | - Dong-Woon Kim
- Department of Anatomy; Brain Research Institute; Chungnam National University School of Medicine; Daejeon South Korea
| | - Yo-Chan Ahn
- Department of Health Service Management; Daejeon University; Dong-gu Daejeon Korea
| | - Chang-Gue Son
- Department of Biomedical Engineering; College of Health Science; Korea University; Seongbuk-Gu Seoul Korea
- Liver and Immunology Research Center; Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University; Jung-gu Daejeon South Korea
| |
Collapse
|
48
|
Yin X, Zhang X, Lv C, Li C, Yu Y, Wang X, Han F. Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia. Sci Rep 2015; 5:14507. [PMID: 26419512 PMCID: PMC4588513 DOI: 10.1038/srep14507] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/26/2015] [Indexed: 11/09/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) is a serious consequence of obstructive sleep apnoea (OSA) and has deleterious effects on central neurons and neurocognitive functions. This study examined if protocatechuic acid (PCA) could improve learning and memory functions of rats exposed to CIH conditions and explore potential mechanisms. Neurocognitive functions were evaluated in male SD rats by step-through passive avoidance test and Morris water maze assay following exposure to CIH or room air conditions. Ultrastructure changes were investigated with transmission electron microscopy, and neuron apoptosis was confirmed by TUNEL assays. Ultrastructure changes were investigated with transmission electron microscope and neuron apoptosis was confirmed by TUNEL assays. The effects of PCA on oxidative stress, apoptosis, and brain IL-1β levels were investigated. Expression of Bcl-2, Bax, Cleaved Caspase-3, c-fos, SYN, BDNF and pro-BDNF were also studied along with JNK, P38 and ERK phosphorylation to elucidate the molecular mechanisms of PCA action. PCA was seen to enhance learning and memory ability, and alleviate oxidative stress, apoptosis and glial proliferation following CIH exposure in rats. In addition, PCA administration also decreased the level of IL-1β in brain and increased the expression of BDNF and SYN. We conclude that PCA administration will ameliorate CIH-induced cognitive dysfunctions.
Collapse
Affiliation(s)
- Xue Yin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, 264003, China.,Department of respiration, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xiuli Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Changjun Lv
- Department of respiration, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Chunli Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, 264003, China.,Department of respiration, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yan Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Xiaozhi Wang
- Department of respiration, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Fang Han
- Department of respiration, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| |
Collapse
|
49
|
Abstract
Gastroparesis is a highly prevalent chronic disorder of the stomach, which is characterized by delayed gastric emptying and accompanied by a series of upper gastrointestinal symptoms. Diabetic gastroparesis (DGP) is one of the severe complications of diabetes, seriously affecting the patient's quality of life. At present, the pathogenesis of DGP is still unclear. The majority of DGP patients are women, and women's symptoms change with the fluctuation of the level of estrogen. Therefore, we speculate that estrogen may play an vital role in the stomach motility. Gastric emptying is an objective index for the diagnosis of gastroparesis. This article reviews the role of estrogen in DGP and the possible mechanisms.
Collapse
|
50
|
Moghimi E, Solomon JA, Gianforcaro A, Hamadeh MJ. Dietary Vitamin D3 Restriction Exacerbates Disease Pathophysiology in the Spinal Cord of the G93A Mouse Model of Amyotrophic Lateral Sclerosis. PLoS One 2015; 10:e0126355. [PMID: 26020962 PMCID: PMC4447353 DOI: 10.1371/journal.pone.0126355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/22/2015] [Indexed: 12/11/2022] Open
Abstract
Background Dietary vitamin D3 (D3) restriction reduces paw grip endurance and motor performance in G93A mice, and increases inflammation and apoptosis in the quadríceps of females. ALS, a neuromuscular disease, causes progressive degeneration of motor neurons in the brain and spinal cord. Objective We analyzed the spinal cords of G93A mice following dietary D3 restriction at 2.5% the adequate intake (AI) for oxidative damage (4-HNE, 3-NY), antioxidant enzymes (SOD2, catalase, GPx1), inflammation (TNF-α, IL-6, IL-10), apoptosis (bax/bcl-2 ratio, cleaved/pro-caspase 3 ratio), neurotrophic factor (GDNF) and neuron count (ChAT, SMI-36/SMI-32 ratio). Methods Beginning at age 25 d, 42 G93A mice were provided food ad libitum with either adequate (AI;1 IU D3/g feed; 12 M, 11 F) or deficient (DEF; 0.025 IU D3/g feed; 10 M, 9 F) D3. At age 113 d, the spinal cords were analyzed for protein content. Differences were considered significant at P ≤ 0.10, since this was a pilot study. Results DEF mice had 16% higher 4-HNE (P = 0.056), 12% higher GPx1 (P = 0.057) and 23% higher Bax/Bcl2 ratio (P = 0.076) vs. AI. DEF females had 29% higher GPx1 (P = 0.001) and 22% higher IL-6 (P = 0.077) vs. AI females. DEF males had 23% higher 4-HNE (P = 0.066) and 18% lower SOD2 (P = 0.034) vs. AI males. DEF males had 27% lower SOD2 (P = 0.004), 17% lower GPx1 (P = 0.070), 29% lower IL-6 (P = 0.023) and 22% lower ChAT (P = 0.082) vs. DEF females. Conclusion D3 deficiency exacerbates disease pathophysiology in the spinal cord of G93A mice, the exact mechanisms are sex-specific. This is in accord with our previous results in the quadriceps, as well as functional and disease outcomes.
Collapse
Affiliation(s)
- Elnaz Moghimi
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Jesse A. Solomon
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Alexandro Gianforcaro
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Mazen J. Hamadeh
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|