1
|
Busquets O, Espinosa-Jiménez T, Ettcheto M, Olloquequi J, Bulló M, Carro E, Cantero JL, Casadesús G, Folch J, Verdaguer E, Auladell C, Camins A. JNK1 and JNK3: divergent functions in hippocampal metabolic-cognitive function. Mol Med 2022; 28:48. [PMID: 35508978 PMCID: PMC9066854 DOI: 10.1186/s10020-022-00471-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background and aim The appearance of alterations in normal metabolic activity has been increasingly considered a risk factor for the development of sporadic and late-onset neurodegenerative diseases. In this report, we induced chronic metabolic stress by feeding of a high-fat diet (HFD) in order to study its consequences in cognition. We also studied the effects of a loss of function of isoforms 1 and 3 of the c-Jun N-terminal Kinases (JNK), stress and cell death response elements. Methods Animals were fed either with conventional chow or with HFD, from their weaning until their sacrifice at 9 months. Before sacrifice, body weight, intraperitoneal glucose and insulin tolerance test (IP-GTT and IP‑ITT) were performed to evaluate peripheral biometrics. Additionally, cognitive behavioral tests and analysis of spine density were performed to assess cognitive function. Molecular studies were carried out to confirm the effects of metabolic stressors in the hippocampus relative to cognitive loss. Results Our studies demonstrated that HFD in Jnk3−/− lead to synergetic responses. Loss of function of JNK3 led to increased body weight, especially when exposed to an HFD and they had significantly decreased response to insulin. These mice also showed increased stress in the endoplasmic reticulum and diminished cognitive capacity. However, loss of function of JNK1 promoted normal or heightened energetic metabolism and preserved cognitive function even when chronically metabolically stressed. Conclusions Downregulation of JNK3 does not seem to be a suitable target for the modulation of energetic-cognitive dysregulations while loss of function of JNK1 seems to promote a good metabolic-cognitive profile, just like resistance to the negative effects of chronic feeding with HFD. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00471-y.
Collapse
Affiliation(s)
- Oriol Busquets
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, 08028, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Medicine and Health Sciences Faculty, University Rovira i Virgili, 43201, Reus, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Institut de Neurociències, University of Barcelona, 08035, Barcelona, Spain.,Dominick P. Purpura Department of Neurosciences, Albert Einstein College of Medicine, New York City, 10461, USA
| | - Triana Espinosa-Jiménez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, 08028, Barcelona, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Institut de Neurociències, University of Barcelona, 08035, Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, 08028, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Medicine and Health Sciences Faculty, University Rovira i Virgili, 43201, Reus, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Institut de Neurociències, University of Barcelona, 08035, Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Mònica Bulló
- Department of Biochemistry and Biotechnology, Medicine and Health Sciences Faculty, University Rovira i Virgili, 43201, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Sant Joan de Reus, 43204, Reus, Spain.,CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - José Luis Cantero
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Laboratory of Functional Neuroscience, Pablo de Olavide University, 41013, Seville, Spain
| | - Gemma Casadesús
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Jaume Folch
- Department of Biochemistry and Biotechnology, Medicine and Health Sciences Faculty, University Rovira i Virgili, 43201, Reus, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ester Verdaguer
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Institut de Neurociències, University of Barcelona, 08035, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, University of Barcelona, 08028, Barcelona, Spain
| | - Carme Auladell
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Institut de Neurociències, University of Barcelona, 08035, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, University of Barcelona, 08028, Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, University of Barcelona, 08028, Barcelona, Spain. .,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain. .,Institut de Neurociències, University of Barcelona, 08035, Barcelona, Spain.
| |
Collapse
|
2
|
Mooldijk SS, Ikram MK, Ikram MA. Adiponectin, leptin and resistin and the risk of dementia. J Gerontol A Biol Sci Med Sci 2021; 77:1245-1249. [PMID: 34525197 PMCID: PMC9159665 DOI: 10.1093/gerona/glab267] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 02/04/2023] Open
Abstract
Background Adipokines are hormones secreted by adipose tissue with roles in energy homeostasis and regulation of metabolism. Their dysregulation is suggested to contribute to the increased risk of dementia seen with midlife obesity, but longitudinal studies investigating this are scarce. We determined the association between plasma levels of adiponectin, leptin, and resistin with the risk of dementia. Methods We performed a case–cohort study embedded in the prospective, population-based Rotterdam Study. Plasma levels of the adiponectin, leptin, and resistin were measured at baseline (1997–1999) in a random subcohort of 945 participants without dementia, and additionally in 177 participants, who were diagnosed with dementia during follow-up (until January 1, 2018). Results Higher levels of leptin and resistin were associated with a decreased risk of dementia (adjusted hazard ratio [95% confidence interval] per SD increase of log-transformed values: 0.85 [0.72–1.00] for leptin; 0.82 [0.71–0.95] for resistin). The association of leptin with dementia was further modified by body mass index and by APOE ε4 carrier status. Adiponectin levels were not associated with the risk of dementia. Conclusions These findings support the hypothesis that adipokines have a role in the pathophysiology of dementia. Future studies are warranted to confirm the findings and to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Sanne S Mooldijk
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Wu C, Yu P, Sun R. Adipose tissue and age‑dependent insulin resistance: New insights into WAT browning (Review). Int J Mol Med 2021; 47:71. [PMID: 33693956 PMCID: PMC7952244 DOI: 10.3892/ijmm.2021.4904] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Insulin resistance (IR) is defined as impaired insulin function, reduced glucose uptake and increased glucose production, which can result in type II diabetes, metabolic syndrome and even bone metabolic disorders. A possible reason for the increasing incidence of IR is population aging. Adipose tissue (AT) is an important endocrine organ that serves a crucial role in whole-body energy homeostasis. AT can be divided into white AT (WAT), beige AT and brown AT (BAT). Several mechanisms have been previously associated with age-dependent IR in WAT. However, BAT, a metabolically active tissue, controls the levels of plasma glucose and triglyceride metabolism. Therefore, the present review aimed to summarize the mechanisms of age-dependent IR induced by AT and to determine the role of WAT browning in achieving positive therapeutic outcomes in age-dependent IR.
Collapse
Affiliation(s)
- Chuanlong Wu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Pei Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ruixin Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
4
|
Dake MD, De Marco M, Blackburn DJ, Wilkinson ID, Remes A, Liu Y, Pikkarainen M, Hallikainen M, Soininen H, Venneri A. Obesity and Brain Vulnerability in Normal and Abnormal Aging: A Multimodal MRI Study. J Alzheimers Dis Rep 2021; 5:65-77. [PMID: 33681718 PMCID: PMC7903016 DOI: 10.3233/adr-200267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: How the relationship between obesity and MRI-defined neural properties varies across distinct stages of cognitive impairment due to Alzheimer’s disease is unclear. Objective: We used multimodal neuroimaging to clarify this relationship. Methods: Scans were acquired from 47 patients clinically diagnosed with mild Alzheimer’s disease dementia, 68 patients with mild cognitive impairment, and 57 cognitively healthy individuals. Voxel-wise associations were run between maps of gray matter volume, white matter integrity, and cerebral blood flow, and global/visceral obesity. Results: Negative associations were found in cognitively healthy individuals between obesity and white matter integrity and cerebral blood flow of temporo-parietal regions. In mild cognitive impairment, negative associations emerged in frontal, temporal, and brainstem regions. In mild dementia, a positive association was found between obesity and gray matter volume around the right temporoparietal junction. Conclusion: Obesity might contribute toward neural tissue vulnerability in cognitively healthy individuals and mild cognitive impairment, while a healthy weight in mild Alzheimer’s disease dementia could help preserve brain structure in the presence of age and disease-related weight loss.
Collapse
Affiliation(s)
- Manmohi D Dake
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Matteo De Marco
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| | | | - Iain D Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Anne Remes
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Yawu Liu
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Maria Pikkarainen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Merja Hallikainen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Hilkka Soininen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Cheng Y, Buchan M, Vitanova K, Aitken L, Gunn-Moore FJ, Ramsay RR, Doherty G. Neuroprotective actions of leptin facilitated through balancing mitochondrial morphology and improving mitochondrial function. J Neurochem 2020; 155:191-206. [PMID: 32157699 DOI: 10.1111/jnc.15003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction has a recognised role in the progression of Alzheimer's disease (AD) pathophysiology. Cerebral perfusion becomes increasingly inefficient throughout ageing, leading to unbalanced mitochondrial dynamics. This effect is exaggerated by amyloid β (Aβ) and phosphorylated tau, two hallmark proteins of AD pathology. A neuroprotective role for the adipose-derived hormone, leptin, has been demonstrated in neuronal cells. However, its effects with relation to mitochondrial function in AD remain largely unknown. To address this question, we have used both a glucose-serum-deprived (CGSD) model of ischaemic stroke in SH-SY5Y cells and a Aβ1-42 -treatment model of AD in differentiated hippocampal cells. Using a combination of 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and MitoRed staining techniques, we show that leptin prevents depolarisation of the mitochondrial membrane and excessive mitochondrial fragmentation induced by both CGSD and Aβ1-42 . Thereafter, we used ELISAs and a number of activity assays to reveal the biochemical underpinnings of these processes. Specifically, leptin was seen to inhibit up-regulation of the mitochondrial fission protein Fis1 and down-regulation of the mitochondrial fusion protein, Mfn2. Furthermore, leptin was seen to up-regulate the expression and activity of the antioxidant enzyme, monoamine oxidase B. Herein we provide the first demonstration that leptin is sufficient to protect against aberrant mitochondrial dynamics and resulting loss of function induced by both CGSD and Aβ1-42 . We conclude that the established neuroprotective actions of leptin may be facilitated through regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Ying Cheng
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Matthew Buchan
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Karina Vitanova
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Laura Aitken
- School of Biology, University of St Andrews, St Andrews, UK
| | | | - Rona R Ramsay
- School of Biology, University of St Andrews, St Andrews, UK
| | - Gayle Doherty
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
6
|
Gilbert T, Roche S, Blond E, Bar JY, Drai J, Cuerq C, Haution-Bitker M, Ecochard R, Bonnefoy M. Association between Peripheral Leptin and Adiponectin Levels and Cognitive Decline in Patients with Neurocognitive Disorders ≥65 Years. J Alzheimers Dis 2019; 66:1255-1264. [PMID: 30400097 PMCID: PMC6294588 DOI: 10.3233/jad-180533] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is evidence that adipokines have roles in brain functioning and cognitive decline. OBJECTIVE Assess the role of leptin and adiponectin levels in predicting changes in neuro-cognitive disorders (NCD). METHODS The study included 205 patients over 65 years of age presenting for a one-day hospitalization for current assessment of cognitive function. Peripheral blood leptin and adiponectin levels were measured at admission. Demographic variables, body mass index (BMI), and history of hypertension were also recorded. Cognitive function was assessed by the Mini-Mental State Examination (MMSE) at admission and at later scheduled visits over a median follow-up period of 14.5 months. Conventional univariate comparisons were made between diagnosis groups (Alzheimer's disease (AD), mild NCD, vascular/mixed dementia). Changes in MMSE scores over time were examined with regard to the above variables using a linear mixed model. RESULTS The mean BMI was significantly lower (by 2 kg/m2, p = 0.01) in patients with AD than in patients with either mild-NCD or vascular/mixed dementia. Leptin levels were significantly higher (p = 0.043) and adiponectin levels significantly lower (p = 0.045) in patients with mild-NCD than in patients with major-NCD (AD or vascular/mixed dementia). However, the mixed model suggested no influence of the baseline levels of these two biomarkers on the course of cognitive decline. CONCLUSION The present study confirms the associations between leptin and adiponectin and AD or AD-related disorders but did not confirm that these peptides may be used as predictive biomarkers of cognitive decline.
Collapse
Affiliation(s)
- Thomas Gilbert
- Service de Médecine Gériatrique, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France.,Université Claude Bernard Lyon 1, Lyon, France.,Health Services and Performance Research HESPER EA7425, Lyon, France
| | - Sylvain Roche
- Université Lyon 1, Villeurbanne, France.,Service de Biostatistique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France.,CNRS UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique Santé, Villeurbanne, France
| | - Emilie Blond
- Service de Biochimie et de Biologie Moléculaire, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Jean-Yves Bar
- Service de Médecine Gériatrique, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Jocelyne Drai
- Service de Biochimie et de Biologie Moléculaire, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France.,INSERM U1060. Laboratoire CarMeN cardiovasculaire, métabolisme, diabétologie et nutrition, Pierre-Bénite, France
| | - Charlotte Cuerq
- Service de Biochimie et de Biologie Moléculaire, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France.,INSERM U1060. Laboratoire CarMeN cardiovasculaire, métabolisme, diabétologie et nutrition, Pierre-Bénite, France
| | - Marine Haution-Bitker
- Service de Médecine Gériatrique, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - René Ecochard
- Université Lyon 1, Villeurbanne, France.,Service de Biostatistique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France.,CNRS UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique Santé, Villeurbanne, France
| | - Marc Bonnefoy
- Service de Médecine Gériatrique, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France.,Université Claude Bernard Lyon 1, Lyon, France.,INSERM U1060. Laboratoire CarMeN cardiovasculaire, métabolisme, diabétologie et nutrition, Pierre-Bénite, France
| |
Collapse
|
7
|
Uranga RM, Keller JN. The Complex Interactions Between Obesity, Metabolism and the Brain. Front Neurosci 2019; 13:513. [PMID: 31178685 PMCID: PMC6542999 DOI: 10.3389/fnins.2019.00513] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
Obesity is increasing at unprecedented levels globally, and the overall impact of obesity on the various organ systems of the body is only beginning to be fully appreciated. Because of the myriad of direct and indirect effects of obesity causing dysfunction of multiple tissues and organs, it is likely that there will be heterogeneity in the presentation of obesity effects in any given population. Taken together, these realities make it increasingly difficult to understand the complex interplay between obesity effects on different organs, including the brain. The focus of this review is to provide a comprehensive view of metabolic disturbances present in obesity, their direct and indirect effects on the different organ systems of the body, and to discuss the interaction of these effects in the context of brain aging and the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Romina María Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Jeffrey Neil Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| |
Collapse
|
8
|
Metzler-Baddeley C, Mole JP, Leonaviciute E, Sims R, Kidd EJ, Ertefai B, Kelso-Mitchell A, Gidney F, Fasano F, Evans J, Jones DK, Baddeley RJ. Sex-specific effects of central adiposity and inflammatory markers on limbic microstructure. Neuroimage 2019; 189:793-803. [PMID: 30735826 PMCID: PMC6435101 DOI: 10.1016/j.neuroimage.2019.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
Midlife obesity is a risk factor of late onset Alzheimer's disease (LOAD) but why this is the case remains unknown. As systemic inflammation is involved in both conditions, obesity-related neuroinflammation may contribute to damage in limbic structures important in LOAD. Here, we investigated the hypothesis that systemic inflammation would mediate central obesity related effects on limbic tissue microstructure in 166 asymptomatic individuals (38-71 years old). We employed MRI indices sensitive to myelin and neuroinflammation [macromolecular proton fraction (MPF) and kf] from quantitative magnetization transfer (qMT) together with indices from neurite orientation dispersion and density imaging (NODDI) to investigate the effects of central adiposity on the fornix, parahippocampal cingulum, uncinate fasciculus (compared with whole brain white matter and corticospinal tract) and the hippocampus. Central obesity was assessed with the Waist Hip Ratio (WHR) and abdominal visceral and subcutaneous fat area fractions (VFF, SFF), and systemic inflammation with blood plasma concentrations of leptin, adiponectin, C-reactive protein and interleukin 8. Men were significantly more centrally obese and had higher VFF than women. Individual differences in WHR and in VFF were negatively correlated with differences in fornix MPF and kf, but not with any differences in neurite microstructure. In women, age mediated the effects of VFF on fornix MPF and kf, whilst in men differences in the leptin and adiponectin ratio fully mediated the effect of WHR on fornix MPF. These results suggest that visceral fat related systemic inflammation may damage myelin-related properties of the fornix, a key limbic structure known to be involved in LOAD.
Collapse
Affiliation(s)
- Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK.
| | - Jilu P Mole
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Erika Leonaviciute
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Rebecca Sims
- Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Emma J Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Benyamin Ertefai
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Aurora Kelso-Mitchell
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Florence Gidney
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Fabrizio Fasano
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK; Siemens Healthcare, Head Office, Sir William Siemens Square, Surrey, GU16 8QD, UK
| | - John Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK; School of Psychology, Faculty of Health Sciences, Australian Catholic University, Melbourne, Victoria 3065, Australia
| | - Roland J Baddeley
- Experimental Psychology, University of Bristol, 12a Priory Road, BS8 1TU, UK
| |
Collapse
|
9
|
Mancuso P, Bouchard B. The Impact of Aging on Adipose Function and Adipokine Synthesis. Front Endocrinol (Lausanne) 2019; 10:137. [PMID: 30915034 PMCID: PMC6421296 DOI: 10.3389/fendo.2019.00137] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/13/2019] [Indexed: 02/04/2023] Open
Abstract
During the last 40 years, there has been a world-wide increase in both the prevalence of obesity and an increase in the number of persons over the age of 60 due to a decline in deaths from infectious disease and the nutrition transition in low and middle income nations. While the increase in the elderly population indicates improvements in global public health, this population may experience a diminished quality of life due to the negative impacts of obesity on age-associated inflammation. Aging alters adipose tissue composition and function resulting in insulin resistance and ectopic lipid storage. A reduction in brown adipose tissue activity, declining sex hormones levels, and abdominal adipose tissue expansion occur with advancing years through the redistribution of lipids from the subcutaneous to the visceral fat compartment. These changes in adipose tissue function and distribution influence the secretion of adipose tissue derived hormones, or adipokines, that promote a chronic state of low-grade systemic inflammation. Ultimately, obesity accelerates aging by enhancing inflammation and increasing the risk of age-associated diseases. The focus of this review is the impact of aging on adipose tissue distribution and function and how these effects influence the elaboration of pro and anti-inflammatory adipokines.
Collapse
Affiliation(s)
- Peter Mancuso
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- Graduate Program in Immunology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Peter Mancuso
| | - Benjamin Bouchard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Mora-Muñoz L, Guerrero-Naranjo A, Rodríguez-Jimenez EA, Mastronardi CA, Velez-van-Meerbeke A. Leptin: role over central nervous system in epilepsy. BMC Neurosci 2018; 19:51. [PMID: 30185147 PMCID: PMC6126011 DOI: 10.1186/s12868-018-0453-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/29/2018] [Indexed: 02/05/2023] Open
Abstract
Adipose tissue is a dynamic organ with different effects on the body. Many of these effects are mediated by leptin, a hormone strongly involved in regulation of feeding and energy metabolism. It has an important role as a mediator of neuronal excitatory activity and higher brain functions. The aim of this study was to review the association between leptin and cerebral neuronal function, in particular its anticonvulsant or convulsant effects and the possible therapeutic role for treating epilepsy. For this purpose, the databases Pubmed, Science Direct, Elsevier, ResearchGate and Scielo were searched to identify experimental studies, reviews and systematic review articles, published in English, Spanish or Portuguese. Experimental studies and the presence of leptin receptors in nervous system sites other than the hypothalamus suggest an influence on higher brain functions. Indeed several animal studies have demonstrated a role of these channels in epileptiform activity as both anticonvulsive and convulsive effects have been found. The reason for these discrepancies is unclear but provides clear evidence of a potential role of leptin and leptin therapy in epileptiform activity. The association between leptin and brain function demonstrates the importance of peripheral metabolic hormones on central nervous system and opens a new way for the development of novel therapeutic interventions in diseases like epilepsy. Nevertheless further investigations are important to clarify the dynamics and diverse actions of leptin on excitatory regulation in the brain.
Collapse
Affiliation(s)
- Laura Mora-Muñoz
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Cra 24 No 63C-69, Bogotá, Colombia
| | | | | | | | - Alberto Velez-van-Meerbeke
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Cra 24 No 63C-69, Bogotá, Colombia.
| |
Collapse
|
11
|
Zafar A, Khatri IA. An overview of complications affecting the Central Nervous System following bariatric surgery. ACTA ACUST UNITED AC 2018; 23:4-12. [PMID: 29455214 PMCID: PMC6751905 DOI: 10.17712/nsj.2018.1.20170316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bariatric surgery has been considered as an effective treatment for morbid obesity. Apart from procedures related complications, a broad spectrum of neurological disorders affecting any part of neuraxis has been reported following BS. Central nervous system complications, although less common than peripheral nervous system complications, carry significant morbidity and potential mortality. Encephalopathy, behavioral and psychiatric disorders, myelopathy and optic neuropathy are the most frequently reported CNS complications. Early detection and prompt management may improve or completely reverse these neurological complications. It is essential that the treating physicians must be aware of their clinical manifestations and management, so early diagnosis and treatment can prevent patients from suffering significant neurological deficits and even death. This review discusses the clinical manifestations of these complications in detail which will help concerned physician in earlier recognition and hence prevent the delay in specific treatment.
Collapse
Affiliation(s)
- Azra Zafar
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia. E-mail:
| | | |
Collapse
|
12
|
Dinesh Yadav DM, Muralidhar MN, Prasad SMVK, Rajender Rao K. Pre-pubertal diet restriction reduces reactive oxygen species and restores fertility in male WNIN/Obese rat. Andrologia 2017; 50. [DOI: 10.1111/and.12849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- D. M. Dinesh Yadav
- Molecular Genetics; National Centre for Laboratory Animal Sciences; National Institute of Nutrition; Hyderabad Telangana India
| | - M. N. Muralidhar
- Molecular Genetics; National Centre for Laboratory Animal Sciences; National Institute of Nutrition; Hyderabad Telangana India
| | - S. M. V. K. Prasad
- Molecular Genetics; National Centre for Laboratory Animal Sciences; National Institute of Nutrition; Hyderabad Telangana India
| | - K. Rajender Rao
- Molecular Genetics; National Centre for Laboratory Animal Sciences; National Institute of Nutrition; Hyderabad Telangana India
| |
Collapse
|
13
|
Baek HK, Kim PS, Song JA, Choi DH, Kim DE, Oh SI, Park SK, Kim SJ, Song KD, Hwang IK, Seo HS, Yi SS. Neuronal maturation in the hippocampal dentate gyrus via chronic oral administration of Artemisa annua extract is independent of cyclooxygenase 2 signaling pathway in diet-induced obesity mouse model. J Vet Sci 2017; 18:119-127. [PMID: 27515272 PMCID: PMC5489458 DOI: 10.4142/jvs.2017.18.2.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/21/2016] [Accepted: 07/21/2016] [Indexed: 11/23/2022] Open
Abstract
Recently, we reported that Artemisia annua (AA) has anti-adipogenic properties in vitro and in vivo. Reduction of adipogenesis by AA treatment may dampen systemic inflammation and protect neurons from cytokine-induced damage. Therefore, the present study was undertaken to assess whether AA increases neuronal maturation by reducing inflammatory responses, such as those mediated by cyclooxygenase 2 (COX-2). Mice were fed normal chow or a high-fat diet with or without chronic daily oral administration of AA extract (0.2 g/10 mL/kg) for 4 weeks; then, changes in their hippocampal dentate gyri were measured via immunohistochemistry/immunofluorescence staining for bromodexoxyuridine, doublecortin, and neuronal nuclei, markers of neuronal maturation, and quantitative western blotting for COX-2 and Iba-1, in order to assess correlations between systemic inflammation (interleukin-6) and food type. Additionally, we tested the effect of AA in an Alzheimer's disease model of Caenorhabditis elegans and uncovered a potential benefit. The results show that chronic AA dosing significantly increases neuronal maturation, particularly in the high-fat diet group. This effect was seen in the absence of any changes in COX-2 levels in mice given the same type of food, pointing to the possibility of alternate anti-inflammatory pathways in the stimulation of neurogenesis and neuro-maturation in a background of obesity.
Collapse
Affiliation(s)
- Hye Kyung Baek
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Pan Soo Kim
- Biocenter, Gyeonggi Institute of Science and Technology Promotion (GSTEP), Suwon 16229, Korea
| | - Ji Ae Song
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Dong-Hwa Choi
- Biocenter, Gyeonggi Institute of Science and Technology Promotion (GSTEP), Suwon 16229, Korea
| | - Do Eun Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Seung Il Oh
- Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Sang-Kyu Park
- Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| | - Sung-Jo Kim
- Department of Biotechnology, Hoseo University, Asan 31499, Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, College of Agricultural Life Science, ChonBuk National University, Jeonju 54896, Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hyung Seok Seo
- Department of Health Science, Konyang University, Nonsan 32992, Korea
| | - Sun Shin Yi
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
14
|
Ronan L, Alexander-Bloch AF, Wagstyl K, Farooqi S, Brayne C, Tyler LK, Fletcher PC. Obesity associated with increased brain age from midlife. Neurobiol Aging 2016; 47:63-70. [PMID: 27562529 PMCID: PMC5082766 DOI: 10.1016/j.neurobiolaging.2016.07.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 01/30/2023]
Abstract
Common mechanisms in aging and obesity are hypothesized to increase susceptibility to neurodegeneration, however, direct evidence in support of this hypothesis is lacking. We therefore performed a cross-sectional analysis of magnetic resonance image-based brain structure on a population-based cohort of healthy adults. Study participants were originally part of the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) and included 527 individuals aged 20-87 years. Cortical reconstruction techniques were used to generate measures of whole-brain cerebral white-matter volume, cortical thickness, and surface area. Results indicated that cerebral white-matter volume in overweight and obese individuals was associated with a greater degree of atrophy, with maximal effects in middle-age corresponding to an estimated increase of brain age of 10 years. There were no similar body mass index-related changes in cortical parameters. This study suggests that at a population level, obesity may increase the risk of neurodegeneration.
Collapse
Affiliation(s)
- Lisa Ronan
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK.
| | | | - Konrad Wagstyl
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK
| | - Sadaf Farooqi
- Department of Clinical Biochemistry, Institute of Metabolic Sciences, Cambridge, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Lorraine K Tyler
- MRC Cognition and Brain Sciences Unit, Cambridge Center for Ageing and Neuroscience (Cam-CAN), Cambridge, UK
| | - Paul C Fletcher
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK
| |
Collapse
|
15
|
Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G. Therapies for Prevention and Treatment of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2589276. [PMID: 27547756 PMCID: PMC4980501 DOI: 10.1155/2016/2589276] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/31/2016] [Accepted: 06/05/2016] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia associated with a progressive neurodegenerative disorder, with a prevalence of 44 million people throughout the world in 2015, and this figure is estimated to double by 2050. This disease is characterized by blood-brain barrier disruption, oxidative stress, mitochondrial impairment, neuroinflammation, and hypometabolism; it is related to amyloid-β peptide accumulation and tau hyperphosphorylation as well as a decrease in acetylcholine levels and a reduction of cerebral blood flow. Obesity is a major risk factor for AD, because it induces adipokine dysregulation, which consists of the release of the proinflammatory adipokines and decreased anti-inflammatory adipokines, among other processes. The pharmacological treatments for AD can be divided into two categories: symptomatic treatments such as acetylcholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists and etiology-based treatments such as secretase inhibitors, amyloid binders, and tau therapies. Strategies for prevention of AD through nonpharmacological treatments are associated with lifestyle interventions such as exercise, mental challenges, and socialization as well as caloric restriction and a healthy diet. AD is an important health issue on which all people should be informed so that prevention strategies that minimize the risk of its development may be implemented.
Collapse
Affiliation(s)
- J. Mendiola-Precoma
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| | - L. C. Berumen
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| | - K. Padilla
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| | - G. Garcia-Alcocer
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| |
Collapse
|
16
|
Mellendijk L, Wiesmann M, Kiliaan AJ. Impact of Nutrition on Cerebral Circulation and Cognition in the Metabolic Syndrome. Nutrients 2015; 7:9416-39. [PMID: 26580647 PMCID: PMC4663605 DOI: 10.3390/nu7115477] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/12/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of Metabolic Syndrome (MetS), defined as the clustering of abdominal obesity, dyslipidemia, hypertension, and hyperglycemia, appears to be driving the global epidemics cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). Nutrition has a major impact on MetS and plays an important role in the prevention, development, and treatment of its features. Structural and functional alterations in the vasculature, associated with MetS, might form the link between MetS and the increased risk of developing CVD and T2DM. Not only does the peripheral vasculature seem to be affected, but the syndrome has a profound impact on the cerebral circulation and thence brain structure as well. Furthermore, strong associations are shown with stroke, cognitive impairment, and dementia. In this review the impact of nutrition on the individual components of MetS, the effects of MetS on peripheral and cerebral vasculature, and its consequences for brain structure and function will be discussed.
Collapse
Affiliation(s)
- Laura Mellendijk
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6500 HB, The Netherlands.
| | - Maximilian Wiesmann
- Department of Anatomy & Geriatric Medicine, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6500 HB, The Netherlands.
| | - Amanda J Kiliaan
- Department of Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6500 HB, The Netherlands.
| |
Collapse
|
17
|
Leptin as a Neuroprotector and a Central Nervous System Functional Stability Factor. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0120-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Arnoldussen IAC, Kiliaan AJ, Gustafson DR. Obesity and dementia: adipokines interact with the brain. Eur Neuropsychopharmacol 2014; 24:1982-99. [PMID: 24704273 PMCID: PMC4169761 DOI: 10.1016/j.euroneuro.2014.03.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/11/2014] [Indexed: 12/20/2022]
Abstract
Obesity is a pandemic and a serious global health concern. Obesity is a risk factor for multiple conditions and contributes to multi-morbidities, resulting in increased health costs and millions of deaths each year. Obesity has been associated with changes in brain structure, cognitive deficits, dementia and Alzheimer׳s disease. Adipokines, defined as hormones, cytokines and peptides secreted by adipose tissue, may have more widespread influence and functionality in the brain than previously thought. In this review, six adipokines, and their actions in the obese and non-obese conditions will be discussed. Included are: plasminogen activator inhibitor-1 (PAI-1), interleukin-6 (IL-6), tumor necrosis factors alpha (TNF-α), angiotensinogen (AGT), adiponectin and leptin. Their functionality in the periphery, their ability to cross the blood brain barrier (BBB) and their influence on dementia processes within the brain will be discussed.
Collapse
Affiliation(s)
- Ilse A C Arnoldussen
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Geert Grooteplein Noord 21, 6525 EZ Nijmegen, The Netherlands.
| | - Amanda J Kiliaan
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Geert Grooteplein Noord 21, 6525 EZ Nijmegen, The Netherlands.
| | - Deborah R Gustafson
- Department of Neurology, State University of New York-Downstate Medical Center, 450 Clarkson Avenue, Box 1213, Brooklyn, NY11203, USA; UMS 011 Inserm Versailles Saint Quentin, France; Section for Psychiatry and Neurochemistry, Neuropsychiatric Epidemiology Unit, Sahlgrenska Academy at University of Gothenburg, Institute for Neuroscience and Physiology, NeuroPsychiatric Epidemiology Unit, Wallinsgatan 6, 431 41 Gothenburg, Sweden.
| |
Collapse
|
19
|
Clinicotherapeutic Potential of Leptin in Alzheimer’s Disease and Parkinson’s Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/181325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic neurodegenerative diseases are a group of devastating neurological disorders that result in significant morbidity and mortality in the elderly population worldwide. Recent researches have shown some interesting associations of the classical antiobesity hormone leptin with two most important neurodegenerative diseases—Alzheimer’s disease (AD) and Parkinson’s disease (PD). Although several clinical studies have found the procognitive and memory-enhancing role of this peptide hormone in leptin-deficient patients, surprisingly it has not been used in any clinical trials involving patients with developing or full-blown neurodegenerative conditions. This review article is an attempt to bring together the existing information about the clinical associations of leptin with AD and PD. It starts with the basic understanding of leptin action in the brain and its derangements in these diseases and eventually discusses the potential of this hormone as a neuroprotective agent in clinical scenario.
Collapse
|
20
|
Kalashikam RR, Battula KK, Kirlampalli V, Friedman JM, Nappanveettil G. Obese locus in WNIN/obese rat maps on chromosome 5 upstream of leptin receptor. PLoS One 2013; 8:e77679. [PMID: 24204914 PMCID: PMC3804619 DOI: 10.1371/journal.pone.0077679] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022] Open
Abstract
WNIN/Obese (WNIN/Ob) rat a new mutant model of metabolic syndrome was identified in 1996 from an inbred Wistar rat strain, WNIN. So far several papers are published on this model highlighting its physical, biochemical and metabolic traits. WNIN/Ob is leptin resistant with unaltered leptin or its receptor coding sequences - the two well-known candidate genes for obesity. Genotyping analysis of F2 progeny (raised from WNIN/Ob × Fisher - 344) in the present study localized the mutation to a recombinant region of 14.15cM on chromosome 5. This was further corroborated by QTL analysis for body weight, which narrowed this region to 4.43 cM with flanking markers D5Rat256 & D5Wox37. Interval mapping of body weight QTL shows that the LOD score peak maps upstream of leptin receptor and shows an additive effect suggesting this as a novel mutation and signifying the model as a valuable resource for studies on obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Rajender Rao Kalashikam
- Molecular Genetics, National Centre for Laboratory Animal Science (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
| | - Kiran Kumar Battula
- Molecular Genetics, National Centre for Laboratory Animal Science (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
| | - Veerababu Kirlampalli
- Molecular Genetics, National Centre for Laboratory Animal Science (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
| | - Jeffrey M. Friedman
- Molecular Genetics Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, New York, United States of America
- * E-mail: (JMF); (GN)
| | - Giridharan Nappanveettil
- Molecular Genetics, National Centre for Laboratory Animal Science (NCLAS), National Institute of Nutrition (NIN), Hyderabad, India
- * E-mail: (JMF); (GN)
| |
Collapse
|
21
|
Nguyen M, Yang E, Neelkantan N, Mikhaylova A, Arnold R, Poudel MK, Stewart AM, Kalueff AV. Developing 'integrative' zebrafish models of behavioral and metabolic disorders. Behav Brain Res 2013; 256:172-87. [PMID: 23948218 DOI: 10.1016/j.bbr.2013.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 02/09/2023]
Abstract
Recently, the pathophysiological overlap between metabolic and mental disorders has received increased recognition. Zebrafish (Danio rerio) are rapidly becoming a popular model organism for translational biomedical research due to their genetic tractability, low cost, quick reproductive cycle, and ease of behavioral, pharmacological or genetic manipulation. High homology to mammalian physiology and the availability of well-developed assays also make the zebrafish an attractive organism for studying human disorders. Zebrafish neurobehavioral and endocrine phenotypes show promise for the use of zebrafish in studies of stress, obesity and related behavioral and metabolic disorders. Here, we discuss the parallels between zebrafish and other model species in stress and obesity physiology, as well as outline the available zebrafish models of weight gain, metabolic deficits, feeding, stress, anxiety and related behavioral disorders. Overall, zebrafish demonstrate a strong potential for modeling human behavioral and metabolic disorders, and their comorbidity.
Collapse
Affiliation(s)
- Michael Nguyen
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA; Thomas Jefferson High School for Science and Technology, 6560 Braddock Road, Alexandria, VA 22312, USA
| | | | | | | | | | | | | | | |
Collapse
|