1
|
Martinelli S, Rolfo A, Pace C, Canu L, Nuzzo AM, Giuffrida D, Gaglioti P, Todros T. Anatomical and functional changes of the fetal adrenal gland in intrauterine growth restriction. Int J Gynaecol Obstet 2024; 166:1100-1107. [PMID: 38532440 DOI: 10.1002/ijgo.15491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE The aim of this study was to demonstrate the establishment of adrenal sparing in intrauterine growth restricted (IUGR) human fetuses. IUGR fetuses are a subgroup of small for gestational age (SGA) fetuses that are unable to reach their own growth potential because of chronic hypoxia and undernutrition. We hypothesized that in IUGR fetuses the adrenal gland is relatively larger and secretion of noradrenaline (NA), adrenaline (A), and cortisol is increased. STUDY DESIGN This is a prospective observational study including 65 singleton pregnancies (42 IUGR and 23 controls). Using two-dimensional ultrasound, we measured fetal adrenal diameters and adrenal/abdominal circumference (AD/AC) ratio between 25 and 37 weeks. We considered only one measurement per fetus. In 21 pregnancies we also measured NA, A, and cortisol levels in arterial and venous fetal cord blood collected at the time of delivery. RESULTS The AD/AC ratio was significantly higher in IUGR fetuses than in controls. Cord NA and A levels were significantly higher in IUGR fetuses than in controls. An increase in cortisol secretion in IUGR fetuses was observed but the difference was not statistically significant. CONCLUSIONS Adrenal sparing correlates with a relative increase in adrenal measurements and function.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumors, (ENS@T) Center of Excellence, Florence, Italy
| | - Alessandro Rolfo
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Carlotta Pace
- AOU Città della Salute e della Scienza, Sant' Anna Hospital, Turin, Italy
| | - Letizia Canu
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, Florence, Italy
- European Network for the Study of Adrenal Tumors, (ENS@T) Center of Excellence, Florence, Italy
| | - Anna Maria Nuzzo
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | | | - Pietro Gaglioti
- AOU Città della Salute e della Scienza, Sant' Anna Hospital, Turin, Italy
| | - Tullia Todros
- Department of Surgical Sciences, University of Turin, Turin, Italy
- AOU Città della Salute e della Scienza, Sant' Anna Hospital, Turin, Italy
| |
Collapse
|
2
|
Beer HN, Lacey TA, Gibbs RL, Most MS, Hicks ZM, Grijalva PC, Marks-Nelson ES, Schmidt TB, Petersen JL, Yates DT. Daily Eicosapentaenoic Acid Infusion in IUGR Fetal Lambs Reduced Systemic Inflammation, Increased Muscle ADRβ2 Content, and Improved Myoblast Function and Muscle Growth. Metabolites 2024; 14:340. [PMID: 38921474 PMCID: PMC11205652 DOI: 10.3390/metabo14060340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Intrauterine growth-restricted (IUGR) fetuses exhibit systemic inflammation that contributes to programmed deficits in myoblast function and muscle growth. Thus, we sought to determine if targeting fetal inflammation improves muscle growth outcomes. Heat stress-induced IUGR fetal lambs were infused with eicosapentaenoic acid (IUGR+EPA; n = 9) or saline (IUGR; n = 8) for 5 days during late gestation and compared to saline-infused controls (n = 11). Circulating eicosapentaenoic acid was 42% less (p < 0.05) for IUGR fetuses but was recovered in IUGR+EPA fetuses. The infusion did not improve placental function or fetal O2 but resolved the 67% greater (p < 0.05) circulating TNFα observed in IUGR fetuses. This improved myoblast function and muscle growth, as the 23% reduction (p < 0.05) in the ex vivo differentiation of IUGR myoblasts was resolved in IUGR+EPA myoblasts. Semitendinosus, longissimus dorsi, and flexor digitorum superficialis muscles were 24-39% lighter (p < 0.05) for IUGR but not for IUGR+EPA fetuses. Elevated (p < 0.05) IL6R and reduced (p < 0.05) β2 adrenoceptor content in IUGR muscle indicated enhanced inflammatory sensitivity and diminished β2 adrenergic sensitivity. Although IL6R remained elevated, β2 adrenoceptor deficits were resolved in IUGR+EPA muscle, demonstrating a unique underlying mechanism for muscle dysregulation. These findings show that fetal inflammation contributes to IUGR muscle growth deficits and thus may be an effective target for intervention.
Collapse
Affiliation(s)
- Haley N. Beer
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Taylor A. Lacey
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Rachel L. Gibbs
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Micah S. Most
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Zena M. Hicks
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Pablo C. Grijalva
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Eileen S. Marks-Nelson
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ty B. Schmidt
- Meat Science and Muscle Biology, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Jessica L. Petersen
- Animal Breeding and Genetics, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
3
|
Akbarinejad V, Cushman RA. Developmental programming of reproduction in the female animal. Anim Reprod Sci 2024; 263:107456. [PMID: 38503204 DOI: 10.1016/j.anireprosci.2024.107456] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Successful reproduction is a cornerstone in food animal industry in order to sustain food production for human. Therefore, various methods focusing on genetics and postnatal environment have been identified and applied to improve fertility in livestock. Yet there is evidence indicating that environmental factors during prenatal and/or neonatal life can also impact the function of reproductive system and fertility in the animals during adulthood, which is called the developmental programming of reproduction. The current review summarizes data associated with the developmental origins of reproduction in the female animals. In this regard, this review focuses on the effect of plane of nutrition, maternal body condition, hypoxia, litter size, maternal age, parity, level of milk production and milk components, lactocrine signaling, stress, thermal stress, exposure to androgens, endocrine disrupting chemicals, mycotoxins and pollutants, affliction with infection and inflammation, and maternal gut microbiota during prenatal and neonatal periods on the neuroendocrine system, puberty, health of reproductive organs and fertility in the female offspring. It is noteworthy that these prenatal and neonatal factors do not always exert their effects on the reproductive performance of the female by compromising the development of organs directly related to reproductive function such as hypothalamus, pituitary, ovary, oviduct and uterus. Since they can impair the development of non-reproductive organs and systems modulating reproductive function as well (e.g., metabolic system and level of milk yield in dairy animals). Furthermore, when these factors affect the epigenetics of the offspring, their adverse effects will not be limited to one generation and can transfer transgenerationally. Hence, pinpointing the factors influencing developmental programming of reproduction and considering them in management of livestock operations could be a potential strategy to help improve fertility in food animals.
Collapse
Affiliation(s)
- Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Robert A Cushman
- USDA, Agricultural Research Service, US. Meat Animal Research Center, Clay Center, NE 68933-0166, United States
| |
Collapse
|
4
|
Kakadia JH, Khalid MU, Heinemann IU, Han VK. AMPK-mTORC1 pathway mediates hepatic IGFBP-1 phosphorylation in glucose deprivation: a potential molecular mechanism of hypoglycemia-induced impaired fetal growth. J Mol Endocrinol 2024; 72:e230137. [PMID: 38194365 PMCID: PMC10895286 DOI: 10.1530/jme-23-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/09/2024] [Indexed: 01/10/2024]
Abstract
Mechanisms underlying limitations in glucose supply that restrict fetal growth are not well established. IGF-1 is an important regulator of fetal growth and IGF-1 bioavailability is markedly inhibited by IGFBP-1 especially when the binding protein is hyperphosphorylated. We hypothesized that the AMPK-mTORC1 pathway increases IGFBP-1 phosphorylation in response to glucose deprivation. Glucose deprivation in HepG2 cells activated AMPK and TSC2, inhibited mTORC1 and increased IGFBP-1 secretion and site-specific phosphorylation. Glucose deprivation also decreased IGF-1 bioavailability and IGF-dependent activation of IGF-1R. AICAR (an AMPK activator) activated TSC2, inhibited mTORC1, and increased IGFBP-1 secretion/phosphorylation. Further, siRNA silencing of either AMPK or TSC2 prevented mTORC1 inhibition and IGFBP-1 secretion and phosphorylation in glucose deprivation. Our data suggest that the increase in IGFBP-1 phosphorylation in response to glucose deprivation is mediated by the activation of AMPK/TSC2 and inhibition of mTORC1, providing a possible mechanistic link between glucose deprivation and restricted fetal growth.
Collapse
Affiliation(s)
- Jenica H Kakadia
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
| | - Muhammad U Khalid
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Victor K Han
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- Department of Pediatrics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Gibbs RL, Swanson RM, Beard JK, Hicks ZM, Most MS, Beer HN, Grijalva PC, Clement SM, Marks-Nelson ES, Schmidt TB, Petersen JL, Yates DT. Daily injection of the β2 adrenergic agonist clenbuterol improved poor muscle growth and body composition in lambs following heat stress-induced intrauterine growth restriction. Front Physiol 2023; 14:1252508. [PMID: 37745251 PMCID: PMC10516562 DOI: 10.3389/fphys.2023.1252508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Intrauterine growth restriction (IUGR) is associated with reduced β2 adrenergic sensitivity, which contributes to poor postnatal muscle growth. The objective of this study was to determine if stimulating β2 adrenergic activity postnatal would rescue deficits in muscle growth, body composition, and indicators of metabolic homeostasis in IUGR offspring. Methods: Time-mated ewes were housed at 40°C from day 40 to 95 of gestation to produce IUGR lambs. From birth, IUGR lambs received daily IM injections of 0.8 μg/kg clenbuterol HCl (IUGR+CLEN; n = 11) or saline placebo (IUGR; n = 12). Placebo-injected controls (n = 13) were born to pair-fed thermoneutral ewes. Biometrics were assessed weekly and body composition was estimated by ultrasound and bioelectrical impedance analysis (BIA). Lambs were necropsied at 60 days of age. Results: Bodyweights were lighter (p ≤ 0.05) for IUGR and IUGR+CLEN lambs than for controls at birth, day 30, and day 60. Average daily gain was less (p ≤ 0.05) for IUGR lambs than controls and was intermediate for IUGR+CLEN lambs. At day 58, BIA-estimated whole-body fat-free mass and ultrasound-estimated loin eye area were less (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. At necropsy, loin eye area and flexor digitorum superficialis muscles were smaller (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. Longissimus dorsi protein content was less (p ≤ 0.05) and fat-to-protein ratio was greater (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. Semitendinosus from IUGR lambs had less (p ≤ 0.05) β2 adrenoreceptor content, fewer (p ≤ 0.05) proliferating myoblasts, tended to have fewer (p = 0.08) differentiated myoblasts, and had smaller (p ≤ 0.05) muscle fibers than controls. Proliferating myoblasts and fiber size were recovered (p ≤ 0.05) in IUGR+CLEN lambs compared to IUGR lambs, but β2 adrenoreceptor content and differentiated myoblasts were not recovered. Semitendinosus lipid droplets were smaller (p ≤ 0.05) in size for IUGR lambs than for controls and were further reduced (p ≤ 0.05) in size for IUGR+CLEN lambs. Conclusion: These findings show that clenbuterol improved IUGR deficits in muscle growth and some metabolic parameters even without recovering the deficit in β2 adrenoreceptor content. We conclude that IUGR muscle remained responsive to β2 adrenergic stimulation postnatal, which may be a strategic target for improving muscle growth and body composition in IUGR-born offspring.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
6
|
White MR, Yates DT. Dousing the flame: reviewing the mechanisms of inflammatory programming during stress-induced intrauterine growth restriction and the potential for ω-3 polyunsaturated fatty acid intervention. Front Physiol 2023; 14:1250134. [PMID: 37727657 PMCID: PMC10505810 DOI: 10.3389/fphys.2023.1250134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) arises when maternal stressors coincide with peak placental development, leading to placental insufficiency. When the expanding nutrient demands of the growing fetus subsequently exceed the capacity of the stunted placenta, fetal hypoxemia and hypoglycemia result. Poor fetal nutrient status stimulates greater release of inflammatory cytokines and catecholamines, which in turn lead to thrifty growth and metabolic programming that benefits fetal survival but is maladaptive after birth. Specifically, some IUGR fetal tissues develop enriched expression of inflammatory cytokine receptors and other signaling cascade components, which increases inflammatory sensitivity even when circulating inflammatory cytokines are no longer elevated after birth. Recent evidence indicates that greater inflammatory tone contributes to deficits in skeletal muscle growth and metabolism that are characteristic of IUGR offspring. These deficits underlie the metabolic dysfunction that markedly increases risk for metabolic diseases in IUGR-born individuals. The same programming mechanisms yield reduced metabolic efficiency, poor body composition, and inferior carcass quality in IUGR-born livestock. The ω-3 polyunsaturated fatty acids (PUFA) are diet-derived nutraceuticals with anti-inflammatory effects that have been used to improve conditions of chronic systemic inflammation, including intrauterine stress. In this review, we highlight the role of sustained systemic inflammation in the development of IUGR pathologies. We then discuss the potential for ω-3 PUFA supplementation to improve inflammation-mediated growth and metabolic deficits in IUGR offspring, along with potential barriers that must be considered when developing a supplementation strategy.
Collapse
Affiliation(s)
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
7
|
Blomberg J, Luna Ramirez RI, Goyal D, Limesand SW, Goyal R. Sexual dimorphic gene expression profile of perirenal adipose tissue in ovine fetuses with growth restriction. Front Physiol 2023; 14:1179288. [PMID: 37601643 PMCID: PMC10437077 DOI: 10.3389/fphys.2023.1179288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Worldwide, fetal growth restriction (FGR) affects 7%-10% of pregnancies, or roughly 20.5 million infants, each year. FGR increases not only neonatal mortality and morbidity but also the risk of obesity in later life. Currently, the molecular mechanisms by which FGR "programs" an obese phenotype are not well understood. Studies demonstrate that FGR females are more prone to obesity compared to males; however, the molecular mechanisms that lead to the sexually dimorphic programming of FGR are not known. Thus, we hypothesized that FGR leads to the sexually dimorphic programming of preadipocytes and reduces their ability to differentiate into mature adipocytes. To test the hypothesis, we utilized a maternal hyperthermia-induced placental insufficiency to restrict fetal growth in sheep. We collected perirenal adipose tissue from near-term (∼140 days gestation) male and female FGR and normal-weight fetal lambs (N = 4 to 5 in each group), examined the preadipocytes' differentiation potential, and identified differential mRNA transcript expression in perirenal adipose tissue. Male FGR fetuses have a lower cellular density (nuclei number/unit area) compared to control male fetuses. However, no difference was observed in female FGR fetuses compared to control female fetuses. In addition, the ability of preadipocytes to differentiate into mature adipocytes with fat accumulation was impaired in male FGR fetuses, but this was not observed in female FGR fetuses. Finally, we examined the genes and pathways involved in the sexually dimorphic programming of obesity by FGR. On enrichment of differentially expressed genes in males compared to females, the Thermogenesis KEGG Pathway was downregulated, and the Metabolic and Steroid Biosynthesis KEGG pathways were upregulated. On enrichment of differentially expressed genes in male FGR compared to male control, the Steroid Biosynthesis KEGG Pathway was downregulated, and the PPAR Signaling KEGG pathway was upregulated. No pathways were altered in females in response to growth restriction in perirenal adipose tissue. Thus, the present study demonstrates a sexually dimorphic program in response to growth restriction in sheep fetal perirenal adipose tissue.
Collapse
Affiliation(s)
| | | | | | | | - Ravi Goyal
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
8
|
Posont RJ, Most MS, Cadaret CN, Marks-Nelson ES, Beede KA, Limesand SW, Schmidt TB, Petersen JL, Yates DT. Primary myoblasts from intrauterine growth-restricted fetal sheep exhibit intrinsic dysfunction of proliferation and differentiation that coincides with enrichment of inflammatory cytokine signaling pathways. J Anim Sci 2022; 100:6652330. [PMID: 35908792 PMCID: PMC9339287 DOI: 10.1093/jas/skac145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is linked to lifelong reductions in muscle mass due to intrinsic functional deficits in myoblasts, but the mechanisms underlying these deficits are not known. Our objective was to determine if the deficits were associated with changes in inflammatory and adrenergic regulation of IUGR myoblasts, as was previously observed in IUGR muscle. Primary myoblasts were isolated from IUGR fetal sheep produced by hyperthermia-induced placental insufficiency (PI-IUGR; n = 9) and their controls (n = 9) and from IUGR fetal sheep produced by maternofetal inflammation (MI-IUGR; n = 6) and their controls (n = 7). Proliferation rates were less (P < 0.05) for PI-IUGR myoblasts than their controls and were not affected by incubation with IL-6, TNF-α, norepinephrine, or insulin. IκB kinase inhibition reduced (P < 0.05) proliferation of control myoblasts modestly in basal media but substantially in TNF-α-added media and reduced (P < 0.05) PI-IUGR myoblast proliferation substantially in basal and TNF-α-added media. Proliferation was greater (P < 0.05) for MI-IUGR myoblasts than their controls and was not affected by incubation with TNF-α. Insulin increased (P < 0.05) proliferation in both MI-IUGR and control myoblasts. After 72-h differentiation, fewer (P < 0.05) PI-IUGR myoblasts were myogenin+ than controls in basal and IL-6 added media but not TNF-α-added media. Fewer (P < 0.05) PI-IUGR myoblasts were desmin+ than controls in basal media only. Incubation with norepinephrine did not affect myogenin+ or desmin+ percentages, but insulin increased (P < 0.05) both markers in control and PI-IUGR myoblasts. After 96-h differentiation, fewer (P < 0.05) MI-IUGR myoblasts were myogenin+ and desmin+ than controls regardless of media, although TNF-α reduced (P < 0.05) desmin+ myoblasts for both groups. Differentiated PI-IUGR myoblasts had greater (P < 0.05) TNFR1, ULK2, and TNF-α-stimulated TLR4 gene expression, and PI-IUGR semitendinosus muscle had greater (P < 0.05) TNFR1 and IL6 gene expression, greater (P < 0.05) c-Fos protein, and less (P < 0.05) IκBα protein. Differentiated MI-IUGR myoblasts had greater (P < 0.05) TNFR1 and IL6R gene expression, tended to have greater (P = 0.07) ULK2 gene expression, and had greater (P < 0.05) β-catenin protein and TNF-α-stimulated phosphorylation of NFκB. We conclude that these enriched components of TNF-α/TNFR1/NFκB and other inflammatory pathways in IUGR myoblasts contribute to their dysfunction and help explain impaired muscle growth in the IUGR fetus.
Collapse
Affiliation(s)
- Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Micah S Most
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Eileen S Marks-Nelson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 65721, USA
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
9
|
Vautier AN, Cadaret CN. Long-Term Consequences of Adaptive Fetal Programming in Ruminant Livestock. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.778440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental perturbations during gestation can alter fetal development and postnatal animal performance. In humans, intrauterine growth restriction (IUGR) resulting from adaptive fetal programming is known as a leading cause of perinatal morbidity and mortality and predisposes offspring to metabolic disease, however, the prevalence and impact in livestock is not characterized as well. Multiple animal models have been developed as a proxy to determine mechanistic changes that underlie the postnatal phenotype resulting from these programming events in humans but have not been utilized as robustly in livestock. While the overall consequences are similar between models, the severity of the conditions appear to be dependent on type, timing, and duration of insult, indicating that some environmental insults are of more relevance to livestock production than others. Thus far, maternofetal stress during gestation has been shown to cause increased death loss, low birth weight, inefficient growth, and aberrant metabolism. A breadth of this data comes from the fetal ruminant collected near term or shortly thereafter, with fewer studies following these animals past weaning. Consequently, even less is known about how adaptive fetal programming impacts subsequent progeny. In this review, we summarize the current knowledge of the postnatal phenotype of livestock resulting from different models of fetal programming, with a focus on growth, metabolism, and reproductive efficiency. We further describe what is currently known about generational impacts of fetal programming in production systems, along with gaps and future directions to consider.
Collapse
|
10
|
Tang C, Liang Y, Guo J, Wang M, Li M, Zhang H, Arbab AAI, Karrow NA, Yang Z, Mao Y. Effects of Seasonal Heat Stress during Late Gestation on Growth Performance, Metabolic and Immuno-Endocrine Parameters of Calves. Animals (Basel) 2022; 12:ani12060716. [PMID: 35327113 PMCID: PMC8944852 DOI: 10.3390/ani12060716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Heat stress during late gestation could affect subsequent lactation performance, resulting in damage to the immune function, health, and growth performance of calves. This study aimed to compare the effects of 33 days of summer stress (Summer group, 70.15 < THI < 74.28) with 33 days of winter during late gestation (Winter group, 57.55 < THI < 67.25) on the growth, hormones, oxidative stress, and immune function of calves. Calves (Summer, n = 28; Winter, n = 23) were separated from cows immediately after birth and fed with 2 L colostrum within 2 h and 8−10 h after birth, respectively, and weaned at 60 days of age. Bodyweight (BW) was measured at birth and weaning. Withers height (WH), body length, and chest girth were measured at birth, 30 days, and 60 days of age. The health of calves ranging in age from 1 to 7 days was recorded. Plasma interferon-γ (IFN-γ), superoxide dismutase (SOD), adrenocorticotropin (ACTH), gonadotropin-releasing hormone (GnRH), IgG, cortisol, heat shock protein 70 (Hsp70), growth hormone (GH), insulin, lipid peroxide (LPO), and tumor necrosis factor-α (TNF-α) levels were measured in calves at 0 (before colostrum feeding), 3, 7, 14, 28, and 56 days of age. The pregnancy period of the Summer group was shortened by 1.44 days. The Winter and Summer groups had the same birth weight. One week after birth, the incidence of diarrhea was 57.14% and 21.74% in Summer and Winter groups, respectively. Compared with the Winter group, TNF-α in the Summer group increased significantly before colostrum feeding. ACTH and LPO decreased significantly at 3 days of age, ACTH and TNF-α decreased significantly at 7 days of age, Hsp70 increased significantly, ACTH was significantly reduced at 14 days of age, and Hsp70 increased dramatically at 7 days of age. SOD and TNF-α increased statistically at 28 days of age, LPO decreased significantly, and IFN-γ decreased significantly at 56 days of age, while IgG and GH increased significantly. We conclude that maternal heat stress during late gestation can damage the oxidative stress and immune plasma indexes of offspring before weaning.
Collapse
Affiliation(s)
- Cheng Tang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.T.); (Y.L.); (J.G.); (M.W.); (M.L.); (H.Z.); (A.A.I.A.); (Z.Y.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yan Liang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.T.); (Y.L.); (J.G.); (M.W.); (M.L.); (H.Z.); (A.A.I.A.); (Z.Y.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Jiahe Guo
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.T.); (Y.L.); (J.G.); (M.W.); (M.L.); (H.Z.); (A.A.I.A.); (Z.Y.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Mengqi Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.T.); (Y.L.); (J.G.); (M.W.); (M.L.); (H.Z.); (A.A.I.A.); (Z.Y.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Mingxun Li
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.T.); (Y.L.); (J.G.); (M.W.); (M.L.); (H.Z.); (A.A.I.A.); (Z.Y.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Huimin Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.T.); (Y.L.); (J.G.); (M.W.); (M.L.); (H.Z.); (A.A.I.A.); (Z.Y.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Abdelaziz Adam Idriss Arbab
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.T.); (Y.L.); (J.G.); (M.W.); (M.L.); (H.Z.); (A.A.I.A.); (Z.Y.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Niel A. Karrow
- Center for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Zhangping Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.T.); (Y.L.); (J.G.); (M.W.); (M.L.); (H.Z.); (A.A.I.A.); (Z.Y.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yongjiang Mao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.T.); (Y.L.); (J.G.); (M.W.); (M.L.); (H.Z.); (A.A.I.A.); (Z.Y.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-514-8797-9307; Fax: +86-514-8735-0440
| |
Collapse
|
11
|
Jones AK, Wang D, Goldstrohm DA, Brown LD, Rozance PJ, Limesand SW, Wesolowski SR. Tissue-specific responses that constrain glucose oxidation and increase lactate production with the severity of hypoxemia in fetal sheep. Am J Physiol Endocrinol Metab 2022; 322:E181-E196. [PMID: 34957858 PMCID: PMC8816623 DOI: 10.1152/ajpendo.00382.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fetal hypoxemia decreases insulin and increases cortisol and norepinephrine concentrations and may restrict growth by decreasing glucose utilization and altering substrate oxidation. Specifically, we hypothesized that hypoxemia would decrease fetal glucose oxidation and increase lactate and pyruvate production. We tested this by measuring whole body glucose oxidation and lactate production, and molecular pathways in liver, muscle, adipose, and pancreas tissues of fetuses exposed to maternal hypoxemia for 9 days (HOX) compared with control fetal sheep (CON) in late gestation. Fetuses with more severe hypoxemia had lower whole body glucose oxidation rates, and HOX fetuses had increased lactate production from glucose. In muscle and adipose tissue, expression of the glucose transporter GLUT4 was decreased. In muscle, pyruvate kinase (PKM) and lactate dehydrogenase B (LDHB) expression was decreased. In adipose tissue, LDHA and lactate transporter (MCT1) expression was increased. In liver, there was decreased gene expression of PKLR and MPC2 and phosphorylation of PDH, and increased LDHA gene and LDH protein abundance. LDH activity, however, was decreased only in HOX skeletal muscle. There were no differences in basal insulin signaling across tissues, nor differences in pancreatic tissue insulin content, β-cell area, or genes regulating β-cell function. Collectively, these results demonstrate coordinated metabolic responses across tissues in the hypoxemic fetus that limit glucose oxidation and increase lactate and pyruvate production. These responses may be mediated by hypoxemia-induced endocrine responses including increased norepinephrine and cortisol, which inhibit pancreatic insulin secretion resulting in lower insulin concentrations and decreased stimulation of glucose utilization.NEW & NOTEWORTHY Hypoxemia lowered fetal glucose oxidation rates, based on severity of hypoxemia, and increased lactate production. This was supported by tissue-specific metabolic responses that may result from increased norepinephrine and cortisol concentrations, which decrease pancreatic insulin secretion and insulin concentrations and decrease glucose utilization. This highlights the vulnerability of metabolic pathways in the fetus and demonstrates that constrained glucose oxidation may represent an early event in response to sustained hypoxemia and fetal growth restriction.
Collapse
Affiliation(s)
- Amanda K Jones
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Dong Wang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - David A Goldstrohm
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura D Brown
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
12
|
Gibbs RL, Yates DT. The Price of Surviving on Adrenaline: Developmental Programming Responses to Chronic Fetal Hypercatecholaminemia Contribute to Poor Muscle Growth Capacity and Metabolic Dysfunction in IUGR-Born Offspring. FRONTIERS IN ANIMAL SCIENCE 2021; 2:769334. [PMID: 34966907 PMCID: PMC8713512 DOI: 10.3389/fanim.2021.769334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Maternofetal stress induces fetal programming that restricts skeletal muscle growth capacity and metabolic function, resulting in intrauterine growth restriction (IUGR) of the fetus. This thrifty phenotype aids fetal survival but also yields reduced muscle mass and metabolic dysfunction after birth. Consequently, IUGR-born individuals are at greater lifelong risk for metabolic disorders that reduce quality of life. In livestock, IUGR-born animals exhibit poor growth efficiency and body composition, making these animals more costly and less valuable. Specifically, IUGR-associated programming causes a greater propensity for fat deposition and a reduced capacity for muscle accretion. This, combined with metabolic inefficiency, means that these animals produce less lean meat from greater feed input, require more time on feed to reach market weight, and produce carcasses that are of less quality. Despite the health and economic implications of IUGR pathologies in humans and food animals, knowledge regarding their specific underlying mechanisms is lacking. However, recent data indicate that adaptive programing of adrenergic sensitivity in multiple tissues is a contributing factor in a number of IUGR pathologies including reduced muscle mass, peripheral insulin resistance, and impaired glucose metabolism. This review highlights the findings that support the role for adrenergic programming and how it relates to the lifelong consequences of IUGR, as well as how dysfunctional adrenergic signaling pathways might be effective targets for improving outcomes in IUGR-born offspring.
Collapse
Affiliation(s)
- Rachel L. Gibbs
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
13
|
Lacey TA, Gibbs RL, Most MS, Beer HN, Hicks ZM, Grijalva PC, Petersen JL, Yates DT. Decreased fetal biometrics and impaired β-cell function in IUGR fetal sheep are improved by daily ω-3 PUFA infusion. Transl Anim Sci 2021. [DOI: 10.1093/tas/txab168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Taylor A Lacey
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Rachel L Gibbs
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Micah S Most
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Haley N Beer
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Zena M Hicks
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Pablo C Grijalva
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| |
Collapse
|
14
|
Nanas I, Barbagianni M, Dadouli K, Dovolou E, Amiridis GS. Ultrasonographic findings of the corpus luteum and the gravid uterus during heat stress in dairy cattle. Reprod Domest Anim 2021; 56:1329-1341. [PMID: 34324738 DOI: 10.1111/rda.13996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
The objectives of this study were to assess alterations in, echogenic appearance, size and blood flow in the corpus luteum, the placentomes and the blood flow in umbilical and uterine arteries that heat stress can cause in cooled pregnant dairy cows. Pregnant cows were allocated in two groups and the gravid uteri, along with the ipsilateral corpora lutea were examined during the winter (group W, n = 9) or the summer (group S, n = 10). The grey-scale ultrasound and colour flow imaging of the corpus luteum and placentome were performed. In addition, the umbilical and uterine artery diameters and haemodynamic parameters in the vessels were calculated. At the time of ultrasonographic examination, cortisol concentrations were higher, and progesterone levels tended to be lower in group S compared to group W. The grey-scale ultrasound evaluation of corpora lutea and placentomes was lower in group S compared to group W. The diameter of umbilical artery and the blood volume in the vessel were less in group S than in group W. We infer that heat stress affects foetal blood supply and possibly the structure of placentomes and corpora lutea, but it differently affects the blood flow characteristics in the umbilical and uterine arteries.
Collapse
Affiliation(s)
- Ioannis Nanas
- Clinic of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Mariana Barbagianni
- Clinic of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| | - Katerina Dadouli
- Clinic of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece.,Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Eleni Dovolou
- Clinic of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece.,Department of Animal Science, University of Thessaly, Larissa, Greece
| | - Georgios S Amiridis
- Clinic of Obstetrics and Reproduction, Veterinary Faculty, University of Thessaly, Karditsa, Greece
| |
Collapse
|
15
|
Across-generation effects of maternal heat stress during late gestation on production, female fertility and longevity traits in dairy cows. J DAIRY RES 2021; 88:147-153. [PMID: 33926583 DOI: 10.1017/s0022029921000327] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This research paper focuses on time-lagged heat stress (HS) effects from an across-generation perspective. Temperature × humidity indexes (THI) from the last 8 weeks of pregnancy were associated with subsequent female offspring performances. The offspring dataset considered 172 905 Holstein dairy cows from calving years 2002-2013 from 1,968 herds, located in the German federal state of Hesse. Production traits included milk yield (MKG), protein percentage (PRO%), fat percentage (FAT%), somatic cell score (SCS) and milk urea nitrogen (MUN) from the first official test-day in first lactation. Female fertility traits were the non-return-rate after 56 d (NRR56) in heifers and the interval from calving to first insemination (ICFI) in first parity cows. Longevity traits were the length of productive life (LPL), lifetime productivity in milk yield (LTP-MKG) and milk yield per day of life (MKG-DL). The association analyzes for 10 traits combined with meteorological data from 8 single weeks before calving implied in total 80 different runs. THI ≥50 from all single 8 weeks before calving had unfavorably significant effects on FAT%, ICFI and LPL. Heat stress in terms of THI ≥60 from the last 3 weeks before calving impaired MKG. NRR56 decreased with increasing THI, as observed for all 6 weeks before calving. LTP-MKG and MKG-DL decreased due to high THI in the last 4 weeks before calving. Heat stress (THI ≥60) during late pregnancy had no significantly unfavorable impact on PRO% and MUN. Interestingly, SCS in offspring declined with increasing THI during late pregnancy. In conclusion, for most of the primary and functional traits, unfavorable impact of HS from the dry period on time-lagged performances in offspring was identified, even on longevity. From a practical perspective, our data suggest to provide HS abatement to late gestation dams to avoid long-term adverse effects on the offspring.
Collapse
|
16
|
Maternal Prenatal Hair Cortisol Is Associated with Child Wheeze among Mothers and Infants with Tobacco Smoke Exposure and Who Face High Socioeconomic Adversity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052764. [PMID: 33803272 PMCID: PMC7967280 DOI: 10.3390/ijerph18052764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022]
Abstract
The association of co-occurring prenatal stress and tobacco exposures on childhood wheezing and asthma are not well established. In this study, we compared maternal prenatal hair cortisol concentration (HCC) to the maternal report of infant wheezing (y/n) in the first year of life among mother-infant dyads exposed to tobacco smoke and socioeconomic adversity. Data were obtained from the Vitamin C to Decrease Effects of Smoking in Pregnancy on Infant Lung Function study. Maternal adversity was defined by the level of education, household income, and health insurance provider. Hair was collected at delivery, representing average circulating third-trimester cortisol levels. HCC was log transformed and dichotomized into high/low cortisol groups that were placed into a multivariate model predicting wheeze. Subjects (n = 132) were primarily White with ≤high school education and receiving government-provided health insurance. Forty-five percent of infants wheezed. Average HCC was 3.39 pg/mg hair. Women with HCC > 3.55 pg/mg were more than twice as likely to report having a child who wheezed (odds ratio 2.56, 95% confidence interval 1.22-5.40; p = 0.01), adjusting for insurance provider and maternal asthma. Among this sample of dyads with prenatal smoke exposure, elevated maternal HCC was associated with child wheeze that was not diminished after consideration of covariates.
Collapse
|
17
|
Halli K, Brügemann K, Bohlouli M, König S. Time-lagged and acute impact of heat stress on production and fertility traits in the local dual-purpose cattle breed "Rotes Höhenvieh" under pasture-based conditions. Transl Anim Sci 2020; 4:txaa148. [PMID: 33033792 PMCID: PMC7528550 DOI: 10.1093/tas/txaa148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022] Open
Abstract
Climate change causes rising temperatures and extreme weather events worldwide, with possible detrimental time-lagged and acute impact on production and functional traits of cattle kept in outdoor production systems. The aim of the present study was to infer the influence of mean daily temperature humidity index (mTHI) and number of heat stress days (nHS) from different recording periods on birth weight (BWT), 200 d- and 365 d-weight gain (200 dg, 365 dg) of calves, and on the probability of stillbirth (SB), and calving interval (CINT) of their dams. Data recording included 4,362 observations for BWT, 3,136 observations for 200 dg, 2,502 observations for 365 dg, 9,293 observations for the birth status, and 2,811 observations for CINT of the local dual-purpose cattle breed "Rotes Höhenvieh" (RHV). Trait responses on mTHI and nHS were studied via generalized linear mixed model applications with identity link functions for Gaussian traits (BWT, 200 dg, 365 dg, CINT) and logit link functions for binary SB. High mTHI and high nHS before autumn births had strongest detrimental impact on BWT across all antepartum- (a.p.) periods (34.4 ± 0.79 kg maximum). Prolonged CINT was observed when cows suffered heat stress (HS) before or after spring calvings, with maximum length of 391.6 ± 3.82 d (56 d a.p.-period). High mTHI and high nHS during the 42 d- and 56 d a.p.-period implied increased probabilities for SB. We found a significant (P < 0.05) seasonal effect on SB in model 3 across all a.p.-periods, with the highest probability in autumn (maximum of 5.4 ± 0.82% in the 7 d a.p.-period). Weight gains of calves (200 dg and 365 dg) showed strongest HS response for mTHI and nHS measurements from the long-term postnatal periods (42 d- and 56 d-periods), with minimum 200 dg of 194.2 ± 4.15 kg (nHS of 31 to 42 d in the 42 d-period) or minimum 365 dg of 323.8 ± 3.82 kg (mTHI ≥ 60 in the 42 d-period). Calves born in summer, combined with high mTHI or high nHS pre- or postnatal, had lower weight gains, compared with calves born in other calving seasons or under cooler conditions. Highest BWT, weight gains, and shortest CINT mostly were detected under cool to moderate climate conditions for mTHI, and small to moderate nHS. Results indicate acute and time-lagged HS effects and address possible HS-induced epigenetic modifications of the bovine genome across generations and limited acclimatization processes to heat, especially when heat occurs during the cooler spring and autumn months.
Collapse
Affiliation(s)
- Kathrin Halli
- Institute of Animal Breeding and Genetics, Group Animal Breeding, Justus-Liebig-University, Giessen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Group Animal Breeding, Justus-Liebig-University, Giessen, Germany
| | - Mehdi Bohlouli
- Institute of Animal Breeding and Genetics, Group Animal Breeding, Justus-Liebig-University, Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Group Animal Breeding, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
18
|
Coloma-García W, Mehaba N, Llonch P, Caja G, Such X, Salama AAK. Prenatal heat stress effects on gestation and postnatal behavior in kid goats. PLoS One 2020; 15:e0220221. [PMID: 32040479 PMCID: PMC7010273 DOI: 10.1371/journal.pone.0220221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/28/2020] [Indexed: 11/24/2022] Open
Abstract
Consequences of heat stress during pregnancy can affect the normal development of the offspring. In the present experiment, 30 Murciano-Granadina dairy goats (41.8 ± 5.7 kg) were exposed to 2 thermal environments varying in temperature-humidity index (THI) from 12 days before mating to 45 days of gestation. The environmental conditions were: gestation under thermal-neutral (TN; THI = 71 ± 3); and gestation under heat stress (HS; THI = 85 ± 3) conditions. At 27 ± 4 days old, female kids exposed to in utero TN (IUTN; n = 16) or in utero HS (IUHS; n = 10) were subjected to 2 tests: arena test (AT) and novel object test (NOT), the latter was repeated at 3 months of age. Additionally, 8 months after birth, a subset of IUTH and IUHS growing goats (n = 8 each; 16.8 ± 3.4 kg BW) were exposed to 2 environmental conditions in 2 consecutive periods: a basal thermal-neutral period (THI = 72 ± 3) for 7 days, and a heat-stress period (THI = 87 ± 2) for 21 days. In both periods, feeding, resting, posture, and thermally-associated behaviors were recorded. The gestation length was shortened by 3 days in GHS goats. In the AT, IUHS kids showed a lower number of sniffs (P < 0.01) compared to IUTN. In the NOT, IUHS kids also tended to show a lower number of sniffs (P = 0.09). During heat exposure, IUTN and IUHS growing goats spent more time resting and exhibited more heat-stress related behaviors such as panting and drinking (P < 0.001); however, no differences were observed between both groups. In conclusion, heat stress during the first third of pregnancy shortened gestation length and influenced the exploratory behavior of the kids in the early life. However, behavior responses to heat stress during the adulthood were not affected by the in utero thermal treatment.
Collapse
Affiliation(s)
- Wellington Coloma-García
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- Facultad de Medicina Veterinaria, Universidad Agraria del Ecuador (UAE), Guayaquil, Ecuador
| | - Nabil Mehaba
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Pol Llonch
- Service of Nutrition and Animal Welfare (SNiBA), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Gerardo Caja
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Xavier Such
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- * E-mail:
| | - Ahmed A. K. Salama
- Group of Research in Ruminants (G2R), Department of Animal and Food Science, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| |
Collapse
|
19
|
Chang EI, Wesolowski SR, Gilje EA, Baker PR, Reisz JA, D’Alessandro A, Hay, WW, Rozance PJ, Brown LD. Skeletal muscle amino acid uptake is lower and alanine production is greater in late gestation intrauterine growth-restricted fetal sheep hindlimb. Am J Physiol Regul Integr Comp Physiol 2019; 317:R615-R629. [PMID: 31483682 PMCID: PMC6879841 DOI: 10.1152/ajpregu.00115.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In a sheep model of intrauterine growth restriction (IUGR) produced from placental insufficiency, late gestation fetuses had smaller skeletal muscle mass, myofiber area, and slower muscle protein accretion rates compared with normally growing fetuses. We hypothesized that IUGR fetal muscle develops adaptations that divert amino acids (AAs) from protein accretion and activate pathways that conserve substrates for other organs. We placed hindlimb arterial and venous catheters into late gestation IUGR (n = 10) and control (CON, n = 8) fetal sheep and included an external iliac artery flow probe to measure hindlimb AA uptake rates. Arterial and venous plasma samples and biceps femoris muscle were analyzed by mass spectrometry-based metabolomics. IUGR fetuses had greater abundance of metabolites enriched within the alanine, aspartate, and glutamate metabolism pathway compared with CON. Net uptake rates of branched-chain AA (BCAA) were lower by 42%-73%, and muscle ammoniagenic AAs (alanine, glycine, and glutamine) were lower by 107%-158% in IUGR hindlimbs versus CON. AA uptake rates correlated with hindlimb weight; the smallest hindlimbs showed net release of ammoniagenic AAs. Gene expression levels indicated a decrease in BCAA catabolism in IUGR muscle. Plasma purines were lower and plasma uric acid was higher in IUGR versus CON, possibly a reflection of ATP conservation. We conclude that IUGR skeletal muscle has lower BCAA uptake and develops adaptations that divert AAs away from protein accretion into alternative pathways that sustain global energy production and nitrogen disposal in the form of ammoniagenic AAs for metabolism in other organs.
Collapse
Affiliation(s)
- Eileen I. Chang
- 1Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Stephanie R. Wesolowski
- 1Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth A. Gilje
- 1Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Peter R. Baker
- 2Department of Pediatrics, Section of Genetics and Metabolism, University of Colorado School of Medicine, Aurora, Colorado
| | - Julie A. Reisz
- 3Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Angelo D’Alessandro
- 3Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - William W. Hay,
- 1Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Paul J. Rozance
- 1Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura D. Brown
- 1Department of Pediatrics, Section of Neonatology, Perinatal Research Center, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
20
|
Posont RJ, Yates DT. Postnatal Nutrient Repartitioning due to Adaptive Developmental Programming. Vet Clin North Am Food Anim Pract 2019; 35:277-288. [PMID: 31103181 DOI: 10.1016/j.cvfa.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Fetal stress induces developmental adaptations that result in intrauterine growth restriction (IUGR) and low birthweight. These adaptations reappropriate nutrients to the most essential tissues, which benefits fetal survival. The same adaptations are detrimental to growth efficiency and carcass value in livestock, however, because muscle is disproportionally targeted. IUGR adipocytes, liver tissues, and pancreatic β-cells also exhibit functional adaptations. Identifying mechanisms underlying adaptive changes is fundamental to improving outcomes and value in low birthweight livestock. The article outlines studies that have begun to identify stress-induced fetal adaptations affecting growth, metabolism, and differential nutrient utilization in IUGR-born animals.
Collapse
Affiliation(s)
- Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, PO Box 830908, Lincoln, NE 68583, USA
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, PO Box 830908, Lincoln, NE 68583, USA.
| |
Collapse
|
21
|
Beede KA, Limesand SW, Petersen JL, Yates DT. Real supermodels wear wool: summarizing the impact of the pregnant sheep as an animal model for adaptive fetal programming. Anim Front 2019; 9:34-43. [PMID: 31608163 PMCID: PMC6777506 DOI: 10.1093/af/vfz018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Kristin A Beede
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, NE
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, NE
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, NE
| |
Collapse
|
22
|
Britt JL, Greene MA, Bridges WC, Klotz JL, Aiken GE, Andrae JG, Pratt SL, Long NM, Schrick FN, Strickland JR, Wilbanks SA, Miller MF, Koch BM, Duckett SK. Ergot alkaloid exposure during gestation alters. I. Maternal characteristics and placental development of pregnant ewes1. J Anim Sci 2019; 97:1874-1890. [PMID: 30895321 DOI: 10.1093/jas/skz068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/15/2019] [Indexed: 12/11/2022] Open
Abstract
Tall fescue [Lolium arundinaceum (Scheyreb.) Darbysh] is the primary cool season forage grass in the Southeastern United States. Most tall fescue contains an endophytic fungus (Epichloë coenophiala) that produces ergot alkaloids and upon ingestion induces fescue toxicosis. The objective of this study was to assess how exposure to endophyte-infected (E+; 1.77 mg hd-1 d-1 ergovaline and ergovalinine) or endophyte-free (E-; 0 mg hd-1 d-1 ergovaline and ergovalinine) tall fescue seed fed during 2 stages of gestation (MID, days 35-85/LATE, days 86-133) alters placental development. Thirty-six, fescue naïve Suffolk ewes were randomly assigned to 1 of 4 fescue treatments: E-/E-, E-/E+, E+/E-, or E+/E+. Ewes were individually fed the same amount of E+ or E- seed mixed into total mixed ration during MID and LATE gestation. Terminal surgeries were conducted on day 133 of gestation. Ewes fed E+ fescue seed had elevated (P < 0.001) ergot alkaloid excretion and reduced (P < 0.001) prolactin levels during the periods when fed E+ seed. Ewes switched on day 86 from E- to E+ seed had a 4% reduction (P = 0.005) in DMI during LATE gestation, which translated to a 2% reduction (P = 0.07) in DMI overall. Average daily gain was also reduced (P = 0.049) by 64% for E-/E+ ewes during LATE gestation and tended to be reduced (P = 0.06) by 33% overall. Ewes fed E+ seed during LATE gestation exhibited a 14% and 23% reduction in uterine (P = 0.03) and placentome (P = 0.004) weights, respectively. Caruncle weights were also reduced by 28% (P = 0.003) for E-/E+ ewes compared with E-/E- and E+/E-. Ewes fed E+ seed during both MID and LATE gestation exhibited a 32% reduction in cotyledon (P = 0.01) weights, whereas ewes fed E+ seed only during MID gestation (E+/E-) had improved (P = 0.01) cotyledon weights. The percentage of type A placentomes tended to be greater (P = 0.08) for E+/E+ ewes compared with other treatments. Other placentome types (B, C, or D) did not differ (P > 0.05). Total fetal weight per ewe was reduced (P = 0.01) for ewes fed E+ seed during LATE gestation compared with E-; however, feeding E+ seed during MID gestation did not alter (P = 0.70) total fetal weight per ewe. These results suggest that exposure to ergot alkaloids during LATE (days 86-133) gestation has the greatest impact on placental development by reducing uterine and placentome weights. This, in turn, reduced total fetal weight per ewe by 15% in ewes fed E+ seed during LATE gestation (E-/E+ and E+/E+).
Collapse
Affiliation(s)
- Jessica L Britt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Maslyn A Greene
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - William C Bridges
- Department of Mathematical Sciences, Clemson University, Clemson, SC
| | - James L Klotz
- USDA-ARS, Forage Production Research Unit, Lexington, KY
| | - Glen E Aiken
- USDA-ARS, Forage Production Research Unit, Lexington, KY
| | - John G Andrae
- Simpson Research and Education Center, Clemson University, Clemson, SC
| | - Scott L Pratt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Nathan M Long
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | | | - James R Strickland
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Sarah A Wilbanks
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Markus F Miller
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Brandon M Koch
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Susan K Duckett
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| |
Collapse
|
23
|
Tao S, Dahl GE, Laporta J, Bernard JK, Orellana Rivas RM, Marins TN. PHYSIOLOGY SYMPOSIUM: Effects of heat stress during late gestation on the dam and its calf12. J Anim Sci 2019; 97:2245-2257. [PMID: 30753515 PMCID: PMC6488308 DOI: 10.1093/jas/skz061] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/10/2019] [Indexed: 12/14/2022] Open
Abstract
Heat stress during late gestation in cattle negatively affects the performance of the dam and its calf. This brief exposure to an adverse environment before parturition affects the physiological responses, tissue development, metabolism, and immune function of the dam and her offspring, thereby limiting their productivity. During the dry period of a dairy cow, heat stress blunts mammary involution by attenuating mammary apoptosis and autophagic activity and reduces subsequent mammary cell proliferation, leading to impaired milk production in the next lactation. Dairy cows in early lactation that experience prepartum heat stress display reduced adipose tissue mobilization and lower degree of insulin resistance in peripheral tissues. Similar to mammary gland development, placental function is impaired by heat stress as evidenced by reduced secretion of placental hormones (e.g., estrone sulfate) in late gestation cows, which partly explains the reduced fetal growth rate and lighter birth weight of the calves. Compared with dairy calves born to dams that are exposed to evaporative cooling during summer, calves born to noncooled dry cows maintain lower BW until 1 yr of age, but display a stronger ability to absorb glucose during metabolic challenges postnatally. Immunity of the calves, both passive and cell-mediated immune function, is also impaired by prenatal heat stress, resulting in increased susceptibility of the calves to diseases in their postnatal life. In fact, dairy heifers born to heat-stressed dry cows without evaporative cooling have a greater chance leaving the herd before puberty compared with heifers born to dry cows provided with evaporative cooling (12.2% vs. 22.7%). Dairy heifers born to late-gestation heat-stressed dry cows have lower milk yield at maturity during their first and second lactations. Emerging evidence suggests that late-gestation heat stress alters the mammary gland microstructure of the heifers during the first lactation and exerts epigenetic alterations that might explain, in part, their impaired productivity.
Collapse
Affiliation(s)
- Sha Tao
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA
| | - Geoffrey E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Jimena Laporta
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - John K Bernard
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA
| | | | - Thiago N Marins
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA
| |
Collapse
|
24
|
Cadaret CN, Posont RJ, Beede KA, Riley HE, Loy JD, Yates DT. Maternal inflammation at midgestation impairs subsequent fetal myoblast function and skeletal muscle growth in rats, resulting in intrauterine growth restriction at term. Transl Anim Sci 2019; 3:txz037. [PMID: 31032478 PMCID: PMC6476527 DOI: 10.1093/tas/txz037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 11/13/2022] Open
Abstract
Maternal inflammation induces intrauterine growth restriction (MI-IUGR) of the fetus, which compromises metabolic health in human offspring and reduces value in livestock. The objective of this study was to determine the effect of maternal inflammation at midgestation on fetal skeletal muscle growth and myoblast profiles at term. Pregnant Sprague-Dawley rats were injected daily with bacterial endotoxin (MI-IUGR) or saline (controls) from the 9th to the 11th day of gestational age (dGA; term = 21 dGA). At necropsy on dGA 20, average fetal mass and upper hindlimb cross-sectional areas were reduced (P < 0.05) in MI-IUGR fetuses compared with controls. MyoD+ and myf5+ myoblasts were less abundant (P < 0.05), and myogenin+ myoblasts were more abundant (P < 0.05) in MI-IUGR hindlimb skeletal muscle compared with controls, indicating precocious myoblast differentiation. Type I and Type II hindlimb muscle fibers were smaller (P < 0.05) in MI-IUGR fetuses than in controls, but fiber type proportions did not differ between experimental groups. Fetal blood plasma TNFα concentrations were below detectable amounts in both experimental groups, but skeletal muscle gene expression for the cytokine receptors TNFR1, IL6R, and FN14 was greater (P < 0.05) in MI-IUGR fetuses than controls, perhaps indicating enhanced sensitivity to these cytokines. Maternal blood glucose concentrations at term did not differ between experimental groups, but MI-IUGR fetal blood contained less (P < 0.05) glucose, cholesterol, and triglycerides. Fetal-to-maternal blood glucose ratios were also reduced (P < 0.05), which is indicative of placental insufficiency. Indicators of protein catabolism, including blood plasma urea nitrogen and creatine kinase, were greater (P < 0.05) in MI-IUGR fetuses than in controls. From these findings, we conclude that maternal inflammation at midgestation causes muscle-centric fetal programming that impairs myoblast function, increases protein catabolism, and reduces skeletal muscle growth near term. Fetal muscle sensitivity to inflammatory cytokines appeared to be enhanced after maternal inflammation, which may represent a mechanistic target for improving these outcomes in MI-IUGR fetuses.
Collapse
Affiliation(s)
- Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Hannah E Riley
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - John Dustin Loy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE.,Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
25
|
Yates DT, Petersen JL, Schmidt TB, Cadaret CN, Barnes TL, Posont RJ, Beede KA. ASAS-SSR Triennnial Reproduction Symposium: Looking Back and Moving Forward-How Reproductive Physiology has Evolved: Fetal origins of impaired muscle growth and metabolic dysfunction: Lessons from the heat-stressed pregnant ewe. J Anim Sci 2018; 96:2987-3002. [PMID: 29701769 PMCID: PMC6095381 DOI: 10.1093/jas/sky164] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is the second leading cause of perinatal mortality and predisposes offspring to metabolic disorders at all stages of life. Muscle-centric fetal adaptations reduce growth and yield metabolic parsimony, beneficial for IUGR fetal survival but detrimental to metabolic health after birth. Epidemiological studies have reported that IUGR-born children experience greater prevalence of insulin resistance and obesity, which progresses to diabetes, hypertension, and other metabolic disorders in adulthood that reduce quality of life. Similar adaptive programming in livestock results in decreased birth weights, reduced and inefficient growth, decreased carcass merit, and substantially greater mortality rates prior to maturation. High rates of glucose consumption and metabolic plasticity make skeletal muscle a primary target for nutrient-sparing adaptations in the IUGR fetus, but at the cost of its contribution to proper glucose homeostasis after birth. Identifying the mechanisms underlying IUGR pathophysiology is a fundamental step in developing treatments and interventions to improve outcomes in IUGR-born humans and livestock. In this review, we outline the current knowledge regarding the adaptive restriction of muscle growth and alteration of glucose metabolism that develops in response to progressively exacerbating intrauterine conditions. In addition, we discuss the evidence implicating developmental changes in β adrenergic and inflammatory systems as key mechanisms for dysregulation of these processes. Lastly, we highlight the utility and importance of sheep models in developing this knowledge.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
26
|
Van Eetvelde M, Opsomer G. Innovative look at dairy heifer rearing: Effect of prenatal and post-natal environment on later performance. Reprod Domest Anim 2017; 52 Suppl 3:30-36. [DOI: 10.1111/rda.13019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- M Van Eetvelde
- Department of Reproduction, Obstetrics and Herd Health; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - G Opsomer
- Department of Reproduction, Obstetrics and Herd Health; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| |
Collapse
|
27
|
Camacho LE, Chen X, Hay WW, Limesand SW. Enhanced insulin secretion and insulin sensitivity in young lambs with placental insufficiency-induced intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol 2017; 313:R101-R109. [PMID: 28490449 PMCID: PMC5582953 DOI: 10.1152/ajpregu.00068.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 11/22/2022]
Abstract
Intrauterine growth restriction (IUGR) is associated with persistent metabolic complications, but information is limited for IUGR infants. We determined glucose-stimulated insulin secretion (GSIS) and insulin sensitivity in young lambs with placental insufficiency-induced IUGR. Lambs with hyperthermia-induced IUGR (n = 7) were compared with control lambs (n = 8). GSIS was measured at 8 ± 1 days of age, and at 15 ± 1 days, body weight-specific glucose utilization rates were measured with radiolabeled d-glucose during a hyperinsulinemic-euglycemic clamp (HEC). IUGR lambs weighed 23% less (P < 0.05) than controls at birth. Fasting plasma glucose and insulin concentrations were not different between IUGR and controls for either study. First-phase insulin secretion was enhanced 2.3-fold in IUGR lambs compared with controls. However, second-phase insulin concentrations, glucose-potentiated arginine-stimulated insulin secretion, and β-cell mass were not different, indicating that IUGR β-cells have an intrinsic enhancement in acute GSIS. Compared with controls, IUGR lambs had higher body weight-specific glucose utilization rates and greater insulin sensitivity at fasting (1.6-fold) and hyperinsulinemic periods (2.4-fold). Improved insulin sensitivity for glucose utilization was not due to differences in skeletal muscle insulin receptor and glucose transporters 1 and 4 concentrations. Plasma lactate concentrations during HEC were elevated in IUGR lambs compared with controls, but no differences were found for glycogen content or citrate synthase activity in liver and muscle. Greater insulin sensitivity for glucose utilization and enhanced acute GSIS in young lambs are predicted from fetal studies but may promote conditions that exaggerate glucose disposal and lead to episodes of hypoglycemia in IUGR infants.
Collapse
Affiliation(s)
- Leticia E Camacho
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Xiaochuan Chen
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona.,Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China; and
| | - William W Hay
- Perinatal Research Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona;
| |
Collapse
|
28
|
Season of birth is associated with first-lactation milk yield in Holstein Friesian cattle. Animal 2017; 11:2252-2259. [DOI: 10.1017/s1751731117001021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
29
|
Brown LD, Hay WW. Impact of placental insufficiency on fetal skeletal muscle growth. Mol Cell Endocrinol 2016; 435:69-77. [PMID: 26994511 PMCID: PMC5014698 DOI: 10.1016/j.mce.2016.03.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
Intrauterine growth restriction (IUGR) caused by placental insufficiency is one of the most common and complex problems in perinatology, with no known cure. In pregnancies affected by placental insufficiency, a poorly functioning placenta restricts nutrient supply to the fetus and prevents normal fetal growth. Among other significant deficits in organ development, the IUGR fetus characteristically has less lean body and skeletal muscle mass than their appropriately-grown counterparts. Reduced skeletal muscle growth is not fully compensated after birth, as individuals who were born small for gestational age (SGA) from IUGR have persistent reductions in muscle mass and strength into adulthood. The consequences of restricted muscle growth and accelerated postnatal "catch-up" growth in the form of adiposity may contribute to the increased later life risk for visceral adiposity, peripheral insulin resistance, diabetes, and cardiovascular disease in individuals who were formerly IUGR. This review will discuss how an insufficient placenta results in impaired fetal skeletal muscle growth and how lifelong reductions in muscle mass might contribute to increased metabolic disease risk in this vulnerable population.
Collapse
Affiliation(s)
- Laura D Brown
- Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus F441, Perinatal Research Center, 13243 East 23rd Avenue, Aurora, CO 80045, United States.
| | - William W Hay
- Department of Pediatrics, University of Colorado School of Medicine, Anschutz Medical Campus F441, Perinatal Research Center, 13243 East 23rd Avenue, Aurora, CO 80045, United States.
| |
Collapse
|
30
|
Monteiro A, Tao S, Thompson I, Dahl G. In utero heat stress decreases calf survival and performance through the first lactation. J Dairy Sci 2016; 99:8443-8450. [DOI: 10.3168/jds.2016-11072] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022]
|
31
|
Rozance PJ, Hay WW. New approaches to management of neonatal hypoglycemia. Matern Health Neonatol Perinatol 2016; 2:3. [PMID: 27168942 PMCID: PMC4862061 DOI: 10.1186/s40748-016-0031-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022] Open
Abstract
Despite being a very common problem after birth, consensus on how to manage low glucose concentrations in the first 48 h of life has been difficult to establish and remains a debated issue. One of the reasons for this is that few studies have provided the type of data needed to establish a definitive approach agreed upon by all. However, some recent publications have provided much needed primary data to inform this debate. These publications have focused on aspects of managing low blood glucose concentrations in the patients most at-risk for asymptomatic hypoglycemia—those born late-preterm, large for gestational age, small for gestational age, or growth restricted, and those born following a pregnancy complicated by diabetes mellitus. The goal of this review is to discuss specific aspects of this new research. First, we focus on promising new data testing the role of buccal dextrose gel in the management of asymptomatic neonatal hypoglycemia. Second, we highlight some of the clinical implications of a large, prospective study documenting the association of specific glycemic patterns with neurodevelopmental outcomes at two years of age.
Collapse
Affiliation(s)
- Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, 13243 E 23rd Ave, MS F441, Aurora, CO 80045 USA
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, 13243 E 23rd Ave, MS F441, Aurora, CO 80045 USA
| |
Collapse
|
32
|
Monteiro A, Guo JR, Weng XS, Ahmed B, Hayen M, Dahl G, Bernard J, Tao S. Effect of maternal heat stress during the dry period on growth and metabolism of calves. J Dairy Sci 2016; 99:3896-3907. [DOI: 10.3168/jds.2015-10699] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/24/2016] [Indexed: 11/19/2022]
|
33
|
Yates DT, Cadaret CN, Beede KA, Riley HE, Macko AR, Anderson MJ, Camacho LE, Limesand SW. Intrauterine growth-restricted sheep fetuses exhibit smaller hindlimb muscle fibers and lower proportions of insulin-sensitive Type I fibers near term. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1020-9. [PMID: 27053651 DOI: 10.1152/ajpregu.00528.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/29/2016] [Indexed: 01/02/2023]
Abstract
Intrauterine growth restriction (IUGR) reduces muscle mass and insulin sensitivity in offspring. Insulin sensitivity varies among muscle fiber types, with Type I fibers being most sensitive. Differences in fiber-type ratios are associated with insulin resistance in adults, and thus we hypothesized that near-term IUGR sheep fetuses exhibit reduced size and proportions of Type I fibers. Placental insufficiency-induced IUGR fetuses were ∼54% smaller (P < 0.05) than controls and exhibited hypoxemia and hypoglycemia, which contributed to 6.9-fold greater (P < 0.05) plasma norepinephrine and ∼53% lower (P < 0.05) plasma insulin concentrations. IUGR semitendinosus muscles contained less (P < 0.05) myosin heavy chain-I protein (MyHC-I) and proportionally fewer (P < 0.05) Type I and Type I/IIa fibers than controls, but MyHC-II protein concentrations, Type II fibers, and Type IIx fibers were not different. IUGR biceps femoris muscles exhibited similar albeit less dramatic differences in fiber type proportions. Type I and IIa fibers are more responsive to adrenergic and insulin regulation than Type IIx and may be more profoundly impaired by the high catecholamines and low insulin in our IUGR fetuses, leading to their proportional reduction. In both muscles, fibers of each type were uniformly smaller (P < 0.05) in IUGR fetuses than controls, which indicates that fiber hypertrophy is not dependent on type but rather on other factors such as myoblast differentiation or protein synthesis. Together, our findings show that IUGR fetal muscles develop smaller fibers and have proportionally fewer Type I fibers, which is indicative of developmental adaptations that may help explain the link between IUGR and adulthood insulin resistance.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska; and School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska; and
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska; and
| | - Hannah E Riley
- Department of Animal Science, University of Nebraska, Lincoln, Nebraska; and
| | - Antoni R Macko
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| | - Leticia E Camacho
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| |
Collapse
|
34
|
Brown LD, Rozance PJ, Bruce JL, Friedman JE, Hay WW, Wesolowski SR. Limited capacity for glucose oxidation in fetal sheep with intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol 2015. [PMID: 26224688 DOI: 10.1152/ajpregu.00197.2015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Intrauterine growth-restricted (IUGR) fetal sheep, produced by placental insufficiency, have lower oxygen concentrations, higher lactate concentrations, and increased hepatic glucose production that is resistant to suppression by insulin. We hypothesized that increased lactate production in the IUGR fetus results from reduced glucose oxidation, during basal and maximal insulin-stimulated conditions, and is used to support glucose production. To test this, studies were performed in late-gestation control (CON) and IUGR fetal sheep under basal and hyperinsulinemic-clamp conditions. The basal glucose oxidation rate was similar and increased by 30-40% during insulin clamp in CON and IUGR fetuses (P < 0.005). However, the fraction of glucose oxidized was 15% lower in IUGR fetuses during basal and insulin-clamp periods (P = 0.05). IUGR fetuses also had four-fold higher lactate concentrations (P < 0.001) and lower lactate uptake rates (P < 0.05). In IUGR fetal muscle and liver, mRNA expression of pyruvate dehydrogenase kinase (PDK4), an inhibitor of glucose oxidation, was increased over fourfold. In IUGR fetal liver, but not skeletal muscle, mRNA expression of lactate dehydrogenase A (LDHA) was increased nearly fivefold. Hepatic expression of the gluconeogenic genes, phosphoenolpyruvate carboxykinase (PCK)1, and PCK2, was correlated with expression of PDK4 and LDHA. Collectively, these in vivo and tissue data support limited capacity for glucose oxidation in the IUGR fetus via increased PDK4 in skeletal muscle and liver. We speculate that lactate production also is increased, which may supply carbon for glucose production in the IUGR fetal liver.
Collapse
Affiliation(s)
- Laura D Brown
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Paul J Rozance
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer L Bruce
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jacob E Friedman
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - William W Hay
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Stephanie R Wesolowski
- Perinatal Research Center, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
35
|
Karimi MT, Ghorbani GR, Kargar S, Drackley JK. Late-gestation heat stress abatement on performance and behavior of Holstein dairy cows. J Dairy Sci 2015; 98:6865-75. [PMID: 26233442 DOI: 10.3168/jds.2014-9281] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/29/2015] [Indexed: 11/19/2022]
Abstract
The objective of this study was to evaluate cooling to lessen the effects of heat stress during the last 3 wk of gestation on performance and behavior of multiparous Holstein cows. Twenty nonlactating cows were randomly assigned to treatments approximately 21 d before their expected calving date based on mature equivalent milk production and parity. Treatments were only imposed during the last 3 wk of gestation and included heat stress (HT; n=10) and cooling (CL; n=10), both under a similar photoperiod (14 h of light and 10 h of dark). Dry cows were housed in a sand-bedded stall with the stall areas for CL cows equipped with sprinklers and fans that were on from 0700 to 1900 h, whereas those for the HT cows were not. After parturition, all cows were housed in a barn with cooling devices. Rectal temperatures were measured daily at 1400 h and respiration rates were recorded by counting the flank movements for 1 min at 1500 h on odd days over the last 3 wk of gestation to calving. Daily dry matter intake was measured from -21 d relative to expected calving to 21 d after calving and milk production was recorded daily up to 180 d in milk. Behavioral changes of dry cows were studied continuously for 24 h at -10 d relative to expected calving. The average temperature-humidity index during the last 3 wk of gestation was 69.7 and was not significantly different between treatments. Heat-stressed cows exhibited greater rectal temperatures (39.5 vs. 39.2°C), greater respiration rates (70.4 vs. 63.3 breaths/min), and decreased dry matter intake (13.7 vs. 15.5 kg/d) compared with CL cows. Compared with HT cows, CL cows produced more milk during 180 d in milk (40.5 vs. 44.6 kg/d). Heat stress decreased ruminating (243.2 vs. 282.5 min/d) and chewing times (390.6 vs. 448.7 min/d) at -10 d before calving. The CL cows had shorter standing times than their HT counterparts (390.4 vs. 474.0 min/d). These results confirm that heat stress abatement in the late gestation period improves performance of dairy cows in subsequent lactation.
Collapse
Affiliation(s)
- M T Karimi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - G R Ghorbani
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - S Kargar
- Department of Animal Sciences, College of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - J K Drackley
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
36
|
Lactate in cord blood and its relation to fetal gluconeogenesis in at term deliveries. Early Hum Dev 2015; 91:165-8. [PMID: 25656301 DOI: 10.1016/j.earlhumdev.2015.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND In the human fetus, an increased lactate and glucose level can be anticipated when hypoxia and stress are present and is likely to be a function of both anaerobic metabolism and catecholamine-mediated glycogenolysis/glycolysis. AIM We assessed if measurement of lactate in cord artery blood after vaginal and cesarean delivery may predict glucose concentration. STUDY DESIGN Umbilical artery cord blood lactacidemia, acidemia, and glucose concentration was tested by 'mini-lab' Radiometer ABL90 FLEX analyzers (Radiometer®, Copenhagen, Denmark) after vaginal delivery (VD), spontaneous (n=493) and by vacuum extractor (n=41) or by cesarean delivery (CD), elective (n=120) and emergency (n=68) in at term, vigorous neonates delivered from March to December 2012 at the 2nd level maternity ward of Policlinico Abano Terme, Abano Terme (Italy). RESULTS Cord blood lactacidemia and glucose levels were significantly higher in VD by vacuum extractor than in all other groups (5.32±1.96mmol/L, p=0.050 and 103.6±30.5mg/dL, p<0.001, respectively) and significantly lower in elective CD group (1.77±0.99mmol/L, p<0.001 and 69.8±13.0mg/dL, p<0.001). The cord blood lactate concentration was significantly and positively correlated with glucose levels (r=0.434, p<0.001), but significantly and negatively correlated with pH (r=-0,662, p<0.001), NaHCO3(-) (r=-0,802, p<0.001), and base excess (BE) (r=-0,698, p<0.001). However, in multivariate linear regression analysis, only BE, PaCO2 and cord blood lactate were significant predictive variables (R(2)=0.410; p<0.001) of glucose levels at birth. CONCLUSION Cord blood artery lactate and glucose concentration are significantly and positively correlated at birth in healthy, at term vaginally and cesarean delivered neonates, but BE is the best indicator of activated fetal gluconeogenesis.
Collapse
|
37
|
Davis MA, Macko AR, Steyn LV, Anderson MJ, Limesand SW. Fetal adrenal demedullation lowers circulating norepinephrine and attenuates growth restriction but not reduction of endocrine cell mass in an ovine model of intrauterine growth restriction. Nutrients 2015; 7:500-16. [PMID: 25584967 PMCID: PMC4303851 DOI: 10.3390/nu7010500] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/25/2014] [Indexed: 12/26/2022] Open
Abstract
Placental insufficiency is associated with fetal hypoglycemia, hypoxemia, and elevated plasma norepinephrine (NE) that become increasingly pronounced throughout the third trimester and contribute to intrauterine growth restriction (IUGR). This study evaluated the effect of fetal adrenal demedullation (AD) on growth and pancreatic endocrine cell mass. Placental insufficiency-induced IUGR was created by exposing pregnant ewes to elevated ambient temperatures during mid-gestation. Treatment groups consisted of control and IUGR fetuses with either surgical sham or AD at 98 days gestational age (dGA; term = 147 dGA), a time-point that precedes IUGR. Samples were collected at 134 dGA. IUGR-sham fetuses were hypoxemic, hypoglycemic, and hypoinsulinemic, and values were similar in IUGR-AD fetuses. Plasma NE concentrations were ~5-fold greater in IUGR-sham compared to control-sham, control-AD, and IUGR-AD fetuses. IUGR-sham and IUGR-AD fetuses weighed less than controls. Compared to IUGR-sham fetuses, IUGR-AD fetuses weighed more and asymmetrical organ growth was absent. Pancreatic β-cell mass and α-cell mass were lower in both IUGR-sham and IUGR-AD fetuses compared to controls, however, pancreatic endocrine cell mass relative to fetal mass was lower in IUGR-AD fetuses. These findings indicate that NE, independently of hypoxemia, hypoglycemia and hypoinsulinemia, influence growth and asymmetry of growth but not pancreatic endocrine cell mass in IUGR fetuses.
Collapse
Affiliation(s)
- Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Antoni R Macko
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Leah V Steyn
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
38
|
Elevated plasma norepinephrine inhibits insulin secretion, but adrenergic blockade reveals enhanced β-cell responsiveness in an ovine model of placental insufficiency at 0.7 of gestation. J Dev Orig Health Dis 2014; 4:402-10. [PMID: 24358443 DOI: 10.1017/s2040174413000093] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In pregnancies complicated by placental insufficiency (PI), fetal hypoglycemia and hypoxemia progressively worsen during the third trimester, which increases circulating norepinephrine (NE). Pharmacological adrenergic blockade (ADR-block) at 0.9 gestation revealed that NE inhibits insulin secretion and enhanced β-cell responsiveness in fetuses with PI-induced intrauterine growth restriction (IUGR). NE concentrations in PI fetuses at 0.7 gestation were threefold greater compared with age-matched controls, but the levels were similar to near-term controls. Therefore, our objective was to determine whether elevations in plasma NE concentrations inhibit insulin secretion and produce compensatory β-cell responsiveness in PI fetuses at 0.7 gestation. Fetal insulin was measured under basal, glucose-stimulated insulin secretion (GSIS) and glucose-potentiated arginine-stimulated insulin secretion (GPAIS) conditions in the absence and presence of an ADR-block. Placental weights were 38% lower (P < 0.05) in PI fetus than in controls, but fetal weights were not different. PI fetuses had lower (P < 0.05) basal blood oxygen content, plasma glucose, insulin-like growth factor-1 and insulin concentrations and greater plasma NE concentrations (891 ± 211 v. 292 ± 65 pg/ml; P < 0.05) than controls. GSIS was lower in PI fetuses than in controls (0.34 ± 0.03 v. 1.08 ± 0.06 ng/ml; P < 0.05). ADR-block increased GSIS in PI fetuses (1.19 ± 0.11 ng/ml; P < 0.05) but decreased GSIS in controls (0.86 ± 0.02 ng/ml; P < 0.05). Similarly, GPAIS was 44% lower (P < 0.05) in PI fetuses than in controls, and ADR-block increased (P < 0.05) GPAIS in PI fetuses but not in controls. Insulin content per islet was not different between treatments. We conclude that elevations in fetal plasma NE suppress insulin concentrations, and that compensatory β-cell stimulus-secretion responsiveness is present before IUGR.
Collapse
|
39
|
Yates DT, Clarke DS, Macko AR, Anderson MJ, Shelton LA, Nearing M, Allen RE, Rhoads RP, Limesand SW. Myoblasts from intrauterine growth-restricted sheep fetuses exhibit intrinsic deficiencies in proliferation that contribute to smaller semitendinosus myofibres. J Physiol 2014; 592:3113-25. [PMID: 24860171 PMCID: PMC4214663 DOI: 10.1113/jphysiol.2014.272591] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022] Open
Abstract
Intrauterine growth restriction (IUGR) reduces skeletal muscle mass in fetuses and offspring. Our objective was to determine whether myoblast dysfunction due to intrinsic cellular deficiencies or serum factors reduces myofibre hypertrophy in IUGR fetal sheep. At 134 days, IUGR fetuses weighed 67% less (P < 0.05) than controls and had smaller (P < 0.05) carcasses and semitendinosus myofibre areas. IUGR semitendinosus muscles had similar percentages of pax7-positive nuclei and pax7 mRNA but lower (P < 0.05) percentages of myogenin-positive nuclei (7 ± 2% and 13 ± 2%), less myoD and myogenin mRNA, and fewer (P < 0.05) proliferating myoblasts (PNCA-positive-pax7-positive) than controls (44 ± 2% vs. 52 ± 1%). Primary myoblasts were isolated from hindlimb muscles, and after 3 days in growth media (20% fetal bovine serum, FBS), myoblasts from IUGR fetuses had 34% fewer (P < 0.05) myoD-positive cells than controls and replicated 20% less (P < 0.05) during a 2 h BrdU pulse. IUGR myoblasts also replicated less (P < 0.05) than controls during a BrdU pulse after 3 days in media containing 10% control or IUGR fetal sheep serum (FSS). Both myoblast types replicated less (P < 0.05) with IUGR FSS-supplemented media compared to control FSS-supplemented media. In differentiation-promoting media (2% FBS), IUGR and control myoblasts had similar percentages of myogenin-positive nuclei after 5 days and formed similar-sized myotubes after 7 days. We conclude that intrinsic cellular deficiencies in IUGR myoblasts and factors in IUGR serum diminish myoblast proliferation and myofibre size in IUGR fetuses, but intrinsic myoblast deficiencies do not affect differentiation. Furthermore, the persistent reduction in IUGR myoblast replication shows adaptive deficiencies that explain poor muscle growth in IUGR newborn offspring.
Collapse
Affiliation(s)
- Dustin T Yates
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Derek S Clarke
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Antoni R Macko
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Leslie A Shelton
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Marie Nearing
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Ronald E Allen
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
40
|
Tao S, Monteiro A, Hayen M, Dahl G. Short communication: Maternal heat stress during the dry period alters postnatal whole-body insulin response of calves. J Dairy Sci 2014; 97:897-901. [DOI: 10.3168/jds.2013-7323] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/17/2013] [Indexed: 11/19/2022]
|
41
|
Metges CC, Görs S, Lang IS, Hammon HM, Brüssow KP, Weitzel JM, Nürnberg G, Rehfeldt C, Otten W. Low and high dietary protein:carbohydrate ratios during pregnancy affect materno-fetal glucose metabolism in pigs. J Nutr 2014; 144:155-63. [PMID: 24353346 DOI: 10.3945/jn.113.182691] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inadequate dietary protein during pregnancy causes intrauterine growth retardation. Whether this is related to altered maternal and fetal glucose metabolism was examined in pregnant sows comparing a high-protein:low-carbohydrate diet (HP-LC; 30% protein, 39% carbohydrates) with a moderately low-protein:high-carbohydrate diet (LP-HC; 6.5% protein, 68% carbohydrates) and the isoenergetic standard diet (ST; 12.1% protein, 60% carbohydrates). During late pregnancy, maternal and umbilical glucose metabolism and fetal hepatic mRNA expression of gluconeogenic enzymes were examined. During an i.v. glucose tolerance test (IVGTT), the LP-HC-fed sows had lower insulin concentrations and area under the curve (AUC), and higher glucose:insulin ratios than the ST- and the HP-LC-fed sows (P < 0.05). Insulin sensitivity and glucose clearance were higher in the LP-HC sows compared with ST sows (P < 0.05). Glucagon concentrations during postabsorptive conditions and IVGTT, and glucose AUC during IVGTT, were higher in the HP-LC group compared with the other groups (P < 0.001). (13)C glucose oxidation was lower in the HP-LC sows than in the ST and LP-HC sows (P < 0.05). The HP-LC fetuses were lighter and had a higher brain:liver ratio than the ST group (P < 0.05). The umbilical arterial inositol concentration was greater in the HP-LC group (P < 0.05) and overall small fetuses (230-572 g) had higher values than medium and heavy fetuses (≥573 g) (P < 0.05). Placental lactate release was lower in the LP-HC group than in the ST group (P < 0.05). Fetal glucose extraction tended to be lower in the LP-HC group than in the ST group (P = 0.07). In the HP-LC and LP-HC fetuses, hepatic mRNA expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC) was higher than in the ST fetuses (P < 0.05). In conclusion, the HP-LC and LP-HC sows adapted by reducing glucose turnover and oxidation and having higher glucose utilization, respectively. The HP-LC and LP-HC fetuses adapted via prematurely expressed hepatic gluconeogenic enzymes.
Collapse
|
42
|
Yun CH, Wynn P, Ha JK. Stress, acute phase proteins and immune modulation in calves. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an14441] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acute phase and inflammatory responses are triggered by a variety of intrinsic and extrinsic stressors that come at a cost through suppressing the normal function of tissues and organs of domestic animals. Recently, with growing attention placed on global warming and animal welfare, there has been an increased interest in improving our understanding of the relationships between different classes of stress, the expression of acute phase proteins (APPs), the stress-related endocrine system and immunomodulation. Immune function is compromised by all forms of stress including poor nutrition, weaning, extreme thermal conditions, injury and infection in calves. Proinflammatory cytokines, APPs and hormones of the hypothalamic–pituitary adrenal axis as well as the composition of immune cells can all be characterised in culture supernatants and peripheral blood. APPs have been used as biomarkers for the stress status of ruminants both experimentally and in field studies. Therefore detailed studies of the mechanisms of action of these APPs and their interactions in ameliorating different stress responses are warranted. The focus of this review is on the aetiology of the responses in calves under severe stress and its impact on growth and immune status. Possible strategies to alleviate this condition including the role of specific feed additives are presented.
Collapse
|
43
|
Tao S, Dahl G. Invited review: Heat stress effects during late gestation on dry cows and their calves. J Dairy Sci 2013; 96:4079-93. [DOI: 10.3168/jds.2012-6278] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 03/19/2013] [Indexed: 12/18/2022]
|
44
|
Tao S, Monteiro A, Thompson I, Hayen M, Dahl G. Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. J Dairy Sci 2012; 95:7128-36. [DOI: 10.3168/jds.2012-5697] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/07/2012] [Indexed: 01/06/2023]
|
45
|
Yates DT, Macko AR, Chen X, Green AS, Kelly AC, Anderson MJ, Fowden AL, Limesand SW. Hypoxaemia-induced catecholamine secretion from adrenal chromaffin cells inhibits glucose-stimulated hyperinsulinaemia in fetal sheep. J Physiol 2012; 590:5439-47. [PMID: 22907052 DOI: 10.1113/jphysiol.2012.237347] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract Hypoxaemia elicits adrenergic suppression of fetal glucose-stimulated hyperinsulinaemia. We postulate that this effect is mediated by catecholamines, exclusively, from fetal adrenal chromaffin cells. To investigate this hypothesis, square-wave hyperglycaemic clamp studies were performed under normoxaemic (26 ± 0.9 mmHg) and hypoxaemic (14 ± 0.3 mmHg) steady-state conditions in near-term fetal sheep that had undergone either surgical sham or bilateral adrenal demedullation (AD), values mentioned are ± SEM. Under normoxaemic conditions plasma noradrenaline concentrations were lower in AD fetuses than in sham-operated fetuses (457 ± 122 versus 1073 ± 103 pg ml(-1), P < 0.05). Plasma insulin concentrations were not different at euglycaemia between shams (0.46 ± 0.07 ng ml(-1)) and AD fetuses (0.44 ± 0.04 ng ml(-1)) and increased (P < 0.05) with hyperglycaemia in both groups although to a lesser extent in AD fetuses (0.94 ± 0.19 ng ml(-1)) compared to shams (1.31 ± 0.15 ng ml(-1); P < 0.05). Hypoxaemia increased plasma adrenaline (26-fold) and noradrenaline (5-fold) in shams but elicited no change in AD fetuses. Under hypoxaemic conditions, euglycaemic plasma insulin concentrations were reduced (P < 0.05) in both sham and AD fetuses to 0.30 ± 0.05 ng ml(-1) and 0.27 ± 0.01 ng ml(-1) respectively, and the insulin response to hyperglycaemia was abolished in shams but not affected in AD fetuses (0.33 ± 0.06 versus 0.73 ± 0.02 ng ml(-1), P < 0.05). Hypoxaemia also induced hyperlactacaemia and hypocarbia to a greater extent in shams than in AD fetuses, indicating that catecholamines potentiate reductions in oxidative metabolism independently of insulin. These findings demonstrate that the fetal adrenal chromaffin cells are the source for acute hypoxaemia-induced elevations in fetal plasma catecholamines and suppression of glucose-stimulated hyperinsulinaemia, but other factors reduce plasma insulin at euglycaemia.
Collapse
Affiliation(s)
- Dustin T Yates
- Department of Animal Sciences, University of Arizona, Tucson, AZ 85719, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Developmental programming in response to intrauterine growth restriction impairs myoblast function and skeletal muscle metabolism. J Pregnancy 2012; 2012:631038. [PMID: 22900186 PMCID: PMC3415084 DOI: 10.1155/2012/631038] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 05/25/2012] [Indexed: 02/07/2023] Open
Abstract
Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR), skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.
Collapse
|
47
|
Maliszewski AM, Gadhia MM, O'Meara MC, Thorn SR, Rozance PJ, Brown LD. Prolonged infusion of amino acids increases leucine oxidation in fetal sheep. Am J Physiol Endocrinol Metab 2012; 302:E1483-92. [PMID: 22454287 PMCID: PMC3378157 DOI: 10.1152/ajpendo.00026.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal high-protein supplements designed to increase birth weight have not been successful. We recently showed that maternal amino acid infusion into pregnant sheep resulted in competitive inhibition of amino acid transport across the placenta and did not increase fetal protein accretion rates. To bypass placental transport, singleton fetal sheep were intravenously infused with an amino acid mixture (AA, n = 8) or saline [control (Con), n = 10] for ∼12 days during late gestation. Fetal leucine oxidation rate increased in the AA group (3.1 ± 0.5 vs. 1.4 ± 0.6 μmol·min(-1)·kg(-1), P < 0.05). Fetal protein accretion (2.6 ± 0.5 and 2.2 ± 0.6 μmol·min(-1)·kg(-1) in AA and Con, respectively), synthesis (6.2 ± 0.8 and 7.0 ± 0.9 μmol·min(-1)·kg(-1) in AA and Con, respectively), and degradation (3.6 ± 0.6 and 4.5 ± 1.0 μmol·min(-1)·kg(-1) in AA and Con, respectively) rates were similar between groups. Net fetal glucose uptake decreased in the AA group (2.8 ± 0.4 vs. 3.9 ± 0.1 mg·kg(-1)·min(-1), P < 0.05). The glucose-O(2) quotient also decreased over time in the AA group (P < 0.05). Fetal insulin and IGF-I concentrations did not change. Fetal glucagon increased in the AA group (119 ± 24 vs. 59 ± 9 pg/ml, P < 0.05), and norepinephrine (NE) also tended to increase in the AA group (785 ± 181 vs. 419 ± 76 pg/ml, P = 0.06). Net fetal glucose uptake rates were inversely proportional to fetal glucagon (r(2) = 0.38, P < 0.05), cortisol (r(2) = 0.31, P < 0.05), and NE (r(2) = 0.59, P < 0.05) concentrations. Expressions of components in the mammalian target of rapamycin signaling pathway in fetal skeletal muscle were similar between groups. In summary, prolonged infusion of amino acids directly into normally growing fetal sheep increased leucine oxidation. Amino acid-stimulated increases in fetal glucagon, cortisol, and NE may contribute to a shift in substrate oxidation by the fetus from glucose to amino acids.
Collapse
Affiliation(s)
- Anne M Maliszewski
- Perinatal Research Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, USA
| | | | | | | | | | | |
Collapse
|