1
|
Qiu S, Ding X, Ma X, Zhang L, Chen J, Wei W. Muscle cells affect the promoting effect of FGF21 on lipid accumulation in porcine adipocytes through AhR/FGFR1 signaling pathway. Biochem Biophys Res Commun 2025; 754:151520. [PMID: 40015071 DOI: 10.1016/j.bbrc.2025.151520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
The intramuscular fat (IMF) content, as an important meat quality trait, can directly affect the tenderness, juiciness, and flavor of pork. Reasonably increasing the IMF content can improve the palatability of pork. Therefore, identification of important factors for the lipid accumulation among muscles is the breakthrough point for improving meat quality. FGF21, identified as a novel metabolic regulator, has been found to regulate glucose and lipid metabolism in 3T3-L1 adipocytes, but its function in porcine adipocytes remains unclear. In this study, we discovered that the administration of recombinant FGF21 protein promotes adipogenic differentiation and increases triglyceride accumulation in porcine adipocytes. While the expression of FGFR1 in adipocytes under muscle conditions is inhibited, affecting the signal transduction of FGF21. This inhibitory effect is accompanied by activation of the AhR signaling pathway. When treated with the AhR antagonist CH223191, there was a partial restoration of FGFR1 expression levels. This indicates that muscle cells suppress the expression of FGFR1 in adipocytes by activating the AhR signaling pathway, thereby affecting the signal transduction of FGF21. Our results reveal the regulatory role of FGF21 in pig adipocyte differentiation and the regulatory mechanism of muscle environment on FGFR1 expression, providing new theoretical basis for IMF content improvement from the perspective of FGF21-FGFR1 signaling transduction.
Collapse
Affiliation(s)
- Shengda Qiu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaolei Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiangfei Ma
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Zhang K, Gan J, Wang B, Lei W, Zhen D, Yang J, Wang N, Wen C, Gao X, Li X, Xu A, Liu X, Li Y, Wu F, Lin Z. FGF21 protects against HFpEF by improving cardiac mitochondrial bioenergetics in mice. Nat Commun 2025; 16:1661. [PMID: 39955281 PMCID: PMC11829982 DOI: 10.1038/s41467-025-56885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Fibroblast growth factor 21 (FGF21), a metabolic hormone with pleiotropic effects, is beneficial for various cardiac disorders. However, FGF21's role in heart failure with preserved ejection fraction (HFpEF) remains unclear. Here, we show that elevated circulating FGF21 levels are negatively associated with cardiac diastolic function in patients with HFpEF. Global or adipose FGF21 deficiency exacerbates cardiac diastolic dysfunction and damage in high-fat diet (HFD) plus N[w]-nitro-L-arginine methyl ester (L-NAME)-induced HFpEF mice, whereas these effects are notably reversed by FGF21 replenishment. Mechanistically, FGF21 enhances the production of adiponectin (APN), which in turn indirectly acts on cardiomyocytes, or FGF21 directly targets cardiomyocytes, to negatively regulate pyruvate dehydrogenase kinase 4 (PDK4) production by activating PI3K/AKT signals, then promoting mitochondrial bioenergetics. Additionally, APN deletion strikingly abrogates FGF21's protective effects against HFpEF, while genetic PDK4 inactivation markedly mitigates HFpEF in mice. Thus, FGF21 protects against HFpEF via fine-tuning the multiorgan crosstalk among the adipose, liver, and heart.
Collapse
Affiliation(s)
- Ke Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jing Gan
- The Affiliated Dongguan Songshan Lake Center Hospital, The Innovative Center of Cardiometabolic Disease, Guangdong Medical University, Dongguan, China
| | - Baile Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Wei Lei
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dong Zhen
- The Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Yang
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Anzhen Hospital of Capital Medical University, Beijing, China
| | - Ningrui Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Congcong Wen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaotang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, China.
| | - Yulin Li
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Anzhen Hospital of Capital Medical University, Beijing, China.
| | - Fan Wu
- The Affiliated Dongguan Songshan Lake Center Hospital, The Innovative Center of Cardiometabolic Disease, Guangdong Medical University, Dongguan, China.
| | - Zhuofeng Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
- The Affiliated Dongguan Songshan Lake Center Hospital, The Innovative Center of Cardiometabolic Disease, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
3
|
Hoekx CA, Martinez-Tellez B, Straat ME, Bizino MB, van Eyk HJ, Lamb HJ, Smit JWA, Jazet IM, Nahon KJ, Janssen LGM, Rensen PCN, Boon MR. Circulating FGF21 is lower in South Asians compared with Europids with type 2 diabetes mellitus. Endocr Connect 2025; 14:e240362. [PMID: 39641307 PMCID: PMC11728930 DOI: 10.1530/ec-24-0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/12/2024] [Accepted: 12/06/2024] [Indexed: 12/07/2024]
Abstract
Objective Inflammation contributes to the development of type 2 diabetes mellitus (T2DM). While South Asians are more prone to develop T2DM than Europids, the inflammatory phenotype of the South Asian population remains relatively unknown. Therefore, we aimed to investigate potential differences in circulating levels of inflammation-related proteins in South Asians compared with Europids with T2DM. Method In this secondary analysis of three randomized controlled trials, relative plasma levels of 73 inflammation-related proteins were measured using an Olink Target Inflammation panel and the serum fibroblast growth factor 21 (FGF21) concentration using an ELISA kit in Dutch South Asians (n = 47) and Dutch Europids (n = 49) with T2DM. Results Of the 73 inflammation-related proteins, the relative plasma levels of six proteins were higher (stem cell factor, caspase-8, C-C motif chemokine ligand 28, interferon-gamma, sulfotransferase 1A1 and cystatin D; q-value <0.05), while relative levels of six proteins were lower (FGF21, human fibroblast collagenase, interferon-8, C-C motif chemokine ligand 4, C-X-C motif chemokine ligand 6 and monocyte chemoattractant protein-1; q-value <0.05) in South Asians compared with Europids. Of these, the effect size of FGF21 was the largest, particularly in females. We validated this finding by assessing the FGF21 concentration in serum. The FGF21 concentration was indeed lower in South Asians compared with Europids with T2DM in both males (-42.2%; P < 0.05) and females (-58.5%; P < 0.001). Conclusion Relative plasma levels of 12 inflammation-related proteins differed between South Asians and Europids with T2DM, with a significantly pronounced reduction in FGF21. In addition, the serum FGF21 concentration was significantly lower in South Asian males and females compared with Europids. Whether low FGF21 is an underlying cause or consequence of T2DM in South Asians remains to be determined. Clinical trial registration ClinicalTrials.gov (NCT01761318, registration date 20-12-2012; NCT02660047, registration date 21-03-2018; and NCT03012113, registration date 06-01-2017).
Collapse
Affiliation(s)
- Carlijn A Hoekx
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Borja Martinez-Tellez
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Nursing Physiotherapy and Medicine, SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
- Biomedical Research Unit, Torrecárdenas University Hospital, Almería, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Granada, Spain
| | - Maaike E Straat
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Maurice B Bizino
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Huub J van Eyk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hildebrandus J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johannes W A Smit
- Department of Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingrid M Jazet
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Kimberly J Nahon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura G M Janssen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Chen Y, Zhang Y, Jin X, Hong S, Tian H. Exerkines: Benign adaptation for exercise and benefits for non-alcoholic fatty liver disease. Biochem Biophys Res Commun 2024; 726:150305. [PMID: 38917635 DOI: 10.1016/j.bbrc.2024.150305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Exercise has multiple beneficial effects on human metabolic health and is regarded as a "polypill" for various diseases. At present, the lack of physical activity usually causes an epidemic of chronic metabolic syndromes, including obesity, cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Remarkably, NAFLD is emerging as a serious public health issue and is associated with the development of cirrhosis and hepatocellular carcinoma. Unfortunately, specific drug therapies for NAFLD and its more severe form, non-alcoholic steatohepatitis (NASH), are currently unavailable. Lifestyle modification is the foundation of treatment recommendations for NAFLD and NASH, especially for exercise. There are under-appreciated organs that crosstalk to the liver during exercise such as muscle-liver crosstalk. Previous studies have reported that certain exerkines, such as FGF21, GDF15, irisin, and adiponectin, are beneficial for liver metabolism and have the potential to be targeted for NAFLD treatment. In addition, some of exerkines can be modified for the new proteins and get enhanced functions, like IL-6/IC7Fc. Another importance of exercise is the physiological adaptation that combats metabolic diseases. Thus, this review aims to summarize the known exerkines and utilize a multi-omics mining tool to identify more exerkines for the future research. Overall, understanding the mechanisms by which exercise-induced exerkines exert their beneficial effects on metabolic health holds promise for the development of novel therapeutic strategies for NAFLD and related diseases.
Collapse
Affiliation(s)
- Yang Chen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yan Zhang
- Clinical Laboratory, Suzhou Yong Ding Hospital, Suzhou, 215200, China
| | - Xingsheng Jin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Shangyu Hong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200032, China.
| | - Haili Tian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
5
|
Barbhuiya PA, Sen S, Pathak MP. Ameliorative role of bioactive phytoconstituents targeting obesity associated NAFLD by modulation of inflammation and lipogenesis pathways: a comprehensive review. PHYTOCHEMISTRY REVIEWS 2024; 23:969-996. [DOI: 10.1007/s11101-023-09912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2025]
|
6
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
7
|
Wang R, Wang J, Zhang Z, Ma B, Sun S, Gao L, Gao G. FGF21 alleviates endothelial mitochondrial damage and prevents BBB from disruption after intracranial hemorrhage through a mechanism involving SIRT6. Mol Med 2023; 29:165. [PMID: 38049769 PMCID: PMC10696847 DOI: 10.1186/s10020-023-00755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Disruption of the BBB is a harmful event after intracranial hemorrhage (ICH), and this disruption contributes to a series of secondary injuries. We hypothesized that FGF21 may have protective effects after intracranial hemorrhage (ICH) and investigated possible underlying molecular mechanisms. METHODS Blood samples of ICH patients were collected to determine the relationship between the serum level of FGF21 and the [Formula: see text]GCS%. Wild-type mice, SIRT6flox/flox mice, endothelial-specific SIRT6-homozygous-knockout mice (eSIRT6-/- mice) and cultured human brain microvascular endothelial cells (HCMECs) were used to determine the protective effects of FGF21 on the BBB. RESULTS We obtained original clinical evidence from patient data identifying a positive correlation between the serum level of FGF21 and [Formula: see text]GCS%. In mice, we found that FGF21 treatment is capable of alleviating BBB damage, mitigating brain edema, reducing lesion volume and improving neurofunction after ICH. In vitro, after oxyhemoglobin injury, we further explored the protective effects of FGF21 on endothelial cells (ECs), which are a significant component of the BBB. Mitochondria play crucial roles during various types of stress reactions. FGF21 significantly improved mitochondrial biology and function in ECs, as evidenced by alleviated mitochondrial morphology damage, reduced ROS accumulation, and restored ATP production. Moreover, we found that the crucial regulatory mitochondrial factor deacylase sirtuin 6 (SIRT6) played an irreplaceable role in the effects of FGF21. Using endothelial-specific SIRT6-knockout mice, we found that SIRT6 deficiency largely diminished these neuroprotective effects of FGF21. Then, we revealed that FGF21 might promote the expression of SIRT6 via the AMPK-Foxo3a pathway. CONCLUSIONS We provide the first evidence that FGF21 is capable of protecting the BBB after ICH by improving SIRT6-mediated mitochondrial homeostasis.
Collapse
Affiliation(s)
- Runfeng Wang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Jin Wang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Zhiguo Zhang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Bo Ma
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Shukai Sun
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
8
|
Carsia RV, McIlroy PJ, John-Alder HB. Invited review: Adrenocortical function in avian and non-avian reptiles: Insights from dispersed adrenocortical cells. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111424. [PMID: 37080352 DOI: 10.1016/j.cbpa.2023.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Herein we review our work involving dispersed adrenocortical cells from several lizard species: the Eastern Fence Lizard (Sceloporus undulatus), Yarrow's Spiny Lizard (Sceloporus jarrovii), Striped Plateau Lizard (Sceloporus virgatus) and the Yucatán Banded Gecko (Coleonyx elegans). Early work demonstrated changes in steroidogenic function of adrenocortical cells derived from adult S. undulatus associated with seasonal interactions with sex. However, new information suggests that both sexes operate within the same steroidogenic budget over season. The observed sex effect was further explored in orchiectomized and ovariectomized lizards, some supported with exogenous testosterone. Overall, a suppressive effect of testosterone was evident, especially in cells from C. elegans. Life stage added to this complex picture of adrenal steroidogenic function. This was evident when sexually mature and immature Sceloporus lizards were subjected to a nutritional stressor, cricket restriction/deprivation. There were divergent patterns of corticosterone, aldosterone, and progesterone responses and associated sensitivities of each to corticotropin (ACTH). Finally, we provide strong evidence that there are multiple, labile subpopulations of adrenocortical cells. We conclude that the rapid (days) remodeling of adrenocortical steroidogenic function through fluctuating cell subpopulations drives the circulating corticosteroid profile of Sceloporus lizard species. Interestingly, progesterone and aldosterone may be more important with corticosterone serving as essential supportive background. In the wild, the flux in adrenocortical cell subpopulations may be adversely susceptible to climate-change related disruptions in food sources and to xenobiotic/endocrine-disrupting chemicals. We urge further studies using native lizard species as bioindicators of local pollutants and as models to examine the broader eco-exposome.
Collapse
Affiliation(s)
- Rocco V Carsia
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Patrick J McIlroy
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, 311 North Fifth Street, Camden, NJ 08102, United States
| | - Henry B John-Alder
- Department of Ecology, Evolution, and Natural Resources, The Pinelands Field Station Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, United States
| |
Collapse
|
9
|
Han F, Yin L, Yu X, Xu R, Tian M, Liu X, Zhou L, Hu L, Gong W, Xiao W, Lu G, Yao G, Ding Y. High circulating fibroblast growth factor-21 levels as a screening marker in fatty pancreas patients. PeerJ 2023; 11:e15176. [PMID: 37070097 PMCID: PMC10105565 DOI: 10.7717/peerj.15176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 04/19/2023] Open
Abstract
Background The study aimed to detect the serum levels of fibroblast growth factor-21 (FGF-21) in fatty pancreas (FP) patients and to investigate their potential clinical value. Methods We screened patients with FP using transabdominal ultrasound. The anthropometric, biochemical and serum levels of FGF-21 were compared between the FP group and the normal control (NC) group. A receiver operating characteristic (ROC) curve was used to evaluate the predictive value of serum FGF-21 for FP patients. Results Compared with the NC group, body mass index, fasting blood glucose levels, uric acid levels and cholesterol levels of the FP group were significantly higher, while the high-density lipoprotein level was lower. In addition, levels of serum FGF-21, resistin, leptin and tumor necrosis factor-α were significantly higher than those in the NC group, while the serum adiponectin level was lower. Pearson analysis showed serum FGF-21 levels in FP patients were negatively correlated with leptin. The ROC curve showed the best critical value of the serum FGF-21 level in FP patients was 171 pg/mL (AUC 0.744, P = 0.002, 95% confidence intervals 0.636-0.852). Conclusion Serum FGF-21 was closely related to fatty pancreas. Detecting serum FGF-21 levels may help identify the population susceptible to FP.
Collapse
Affiliation(s)
- Fei Han
- Dalian Medical University, Dalian, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Ling Yin
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xiaoping Yu
- Department of Health Promotion Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Ultrasound, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Renyan Xu
- Department of Health Promotion Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Ultrasound, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Mingxiang Tian
- Department of Health Promotion Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xinnong Liu
- Institute of Digestive Diseases, Yangzhou University, Yangzhou, China
| | - Lu Zhou
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Weijuan Gong
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Guanghuai Yao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yanbing Ding
- Dalian Medical University, Dalian, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Yan F, Yuan L, Yang F, Wu G, Jiang X. Emerging roles of fibroblast growth factor 21 in critical disease. Front Cardiovasc Med 2022; 9:1053997. [PMID: 36440004 PMCID: PMC9684205 DOI: 10.3389/fcvm.2022.1053997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 03/01/2024] Open
Abstract
In spite of the great progress in the management of critical diseases in recent years, its associated prevalence and mortality of multiple organ failure still remain high. As an endocrine hormone, fibroblast growth factor 21 (FGF21) functions to maintain homeostasis in the whole body. Recent studies have proved that FGF21 has promising potential effects in critical diseases. FGF21 has also been found to have a close relationship with the progression of critical diseases and has a great predictive function for organ failure. The level of FGF21 was elevated in both mouse models and human patients with sepsis or other critical illnesses. Moreover, it is a promising biomarker and has certain therapeutic roles in some critical diseases. We focus on the emerging roles of FGF21 and its potential effects in critical diseases including acute lung injury/acute respiratory distress syndrome (ALI/ARDS), acute myocardial injury (AMI), acute kidney injury (AKI), sepsis, and liver failure in this review. FGF21 has high application value and is worth further studying. Focusing on FGF21 may provide a new perspective for the management of the critical diseases.
Collapse
Affiliation(s)
- Fang Yan
- Department of Geriatrics, Chengdu Fifth People’s Hospital, Geriatric Diseases Institute of Chengdu, Chengdu, China
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Li Yuan
- Department of Clinical Laboratory Medicine, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Fan Yang
- Department of Endocrinology, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Guicheng Wu
- Department of Hepatology, School of Medicine, Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Goreges Hosipital, Chongqing University, Chongqing, China
| | - Xiaobo Jiang
- Department of Cardiology, Chengdu Fifth People’s Hospital, Chengdu, China
| |
Collapse
|
11
|
Pabian-Jewuła S, Bragiel-Pieczonka A, Rylski M. Ying Yang 1 engagement in brain pathology. J Neurochem 2022; 161:236-253. [PMID: 35199341 DOI: 10.1111/jnc.15594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
Herein, we discuss data concerning the involvement of transcription factor Yin Yang 1 (YY1) in the development of brain diseases, highlighting mechanisms of its pathological actions. YY1 plays an important role in the developmental and adult pathology of the nervous system. YY1 is essential for neurulation as well as maintenance and differentiation of neuronal progenitor cells and oligodendrocytes regulating both neural and glial tissues of the brain. Lack of a YY1 gene causes many developmental abnormalities and anatomical malformations of the central nervous system (CNS). Once dysregulated, YY1 exerts multiple neuropathological actions being involved in the induction of many brain disorders like stroke, epilepsy, Alzheimer's and Parkinson's diseases, autism spectrum disorder, dystonia, and brain tumors. Better understanding of YY1's dysfunction in the nervous system may lead to the development of novel therapeutic strategies related to YY1's actions.
Collapse
Affiliation(s)
- Sylwia Pabian-Jewuła
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Aneta Bragiel-Pieczonka
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Marcin Rylski
- Department of Radiology, Institute of Psychiatry and Neurology, 9 Sobieski Street, Warsaw, Poland
| |
Collapse
|
12
|
Feng Z, Yang Y, Liu Z, Zhao W, Huang L, Wu T, Mu Y. Integrated analysis of DNA methylome and transcriptome reveals the differences in biological characteristics of porcine mesenchymal stem cells. BMC Genom Data 2021; 22:56. [PMID: 34922435 PMCID: PMC8684131 DOI: 10.1186/s12863-021-01016-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bone marrow (BM) and umbilical cord (UC) are the main sources of mesenchymal stem cells (MSCs). These two MSCs display significant differences in many biological characteristics, yet the underlying regulation mechanisms of these cells remain largely unknown. RESULTS BMMSCs and UCMSCs were isolated from inbred Wuzhishan miniature pigs and the first global DNA methylation and gene expression profiles of porcine MSCs were generated. The osteogenic and adipogenic differentiation ability of porcine BMMSCs is greater than that of UCMSCs. A total of 1979 genes were differentially expressed and 587 genes were differentially methylated at promoter regions in these cells. Integrative analysis revealed that 102 genes displayed differences in both gene expression and promoter methylation. Gene ontology enrichment analysis showed that these genes were associated with cell differentiation, migration, and immunogenicity. Remarkably, skeletal system development-related genes were significantly hypomethylated and upregulated, whereas cell cycle genes were opposite in UCMSCs, implying that these cells have higher cell proliferative activity and lower differentiation potential than BMMSCs. CONCLUSIONS Our results indicate that DNA methylation plays an important role in regulating the differences in biological characteristics of BMMSCs and UCMSCs. Results of this study provide a molecular theoretical basis for the application of porcine MSCs in human medicine.
Collapse
Affiliation(s)
- Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Yalan Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Zhiguo Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weimin Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Huang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tianwen Wu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yulian Mu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
13
|
Targeting miRNA by Natural Products: A Novel Therapeutic Approach for Nonalcoholic Fatty Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6641031. [PMID: 34426744 PMCID: PMC8380168 DOI: 10.1155/2021/6641031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) as multifactorial chronic liver disease and the lack of a specific treatment have begun a new era in its treatment using gene expression changes and microRNAs. This study aimed to investigate the potential therapeutic effects of natural compounds in NAFLD by regulating miRNA expression. MicroRNAs play essential roles in regulating the cell's biological processes, such as apoptosis, migration, lipid metabolism, insulin resistance, and adipocyte differentiation, by controlling the posttranscriptional gene expression level. The impact of current NAFLD pharmacological management, including drug and biological therapies, is uncertain. In this context, various dietary fruits or medicinal herbal sources have received worldwide attention versus NAFLD development. Natural ingredients such as berberine, lychee pulp, grape seed, and rosemary possess protective and therapeutic effects against NAFLD by modifying the gene's expression and noncoding RNAs, especially miRNAs.
Collapse
|
14
|
Ahnak deficiency attenuates high-fat diet-induced fatty liver in mice through FGF21 induction. Exp Mol Med 2021; 53:468-482. [PMID: 33785868 PMCID: PMC8080712 DOI: 10.1038/s12276-021-00573-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/01/2023] Open
Abstract
The AHNAK nucleoprotein has been determined to exert an anti-obesity effect in adipose tissue and further inhibit adipogenic differentiation. In this study, we examined the role of AHNAK in regulating hepatic lipid metabolism to prevent diet-induced fatty liver. Ahnak KO mice have reportedly exhibited reduced fat accumulation in the liver and decreased serum triglyceride (TG) levels when provided with either a normal chow diet or a high-fat diet (HFD). Gene expression profiling was used to identify novel factors that could be modulated by genetic manipulation of the Ahnak gene. The results revealed that fibroblast growth factor 21 (FGF21) was markedly increased in the livers of Ahnak KO mice compared with WT mice fed a HFD. Ahnak knockdown in hepatocytes reportedly prevented excessive lipid accumulation induced by palmitate treatment and was associated with increased secretion of FGF21 and the expression of genes involved in fatty acid oxidation, which are primarily downstream of PPARα. These results indicate that pronounced obesity and hepatic steatosis are attenuated in HFD-fed Ahnak KO mice. This may be attributed, in part, to the induction of FGF21 and regulation of lipid metabolism, which are considered to be involved in increased fatty acid oxidation and reduced lipogenesis in the liver. These findings suggest that targeting AHNAK may have beneficial implications in preventing or treating hepatic steatosis.
Collapse
|
15
|
Nason SR, Antipenko J, Presedo N, Cunningham SE, Pierre TH, Kim T, Paul JR, Holleman C, Young ME, Gamble KL, Finan B, DiMarchi R, Hunter CS, Kharitonenkov A, Habegger KM. Glucagon receptor signaling regulates weight loss via central KLB receptor complexes. JCI Insight 2021; 6:141323. [PMID: 33411693 PMCID: PMC7934938 DOI: 10.1172/jci.insight.141323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/29/2020] [Indexed: 01/15/2023] Open
Abstract
Glucagon regulates glucose and lipid metabolism and promotes weight loss. Thus, therapeutics stimulating glucagon receptor (GCGR) signaling are promising for obesity treatment; however, the underlying mechanism(s) have yet to be fully elucidated. We previously identified that hepatic GCGR signaling increases circulating fibroblast growth factor 21 (FGF21), a potent regulator of energy balance. We reported that mice deficient for liver Fgf21 are partially resistant to GCGR-mediated weight loss, implicating FGF21 as a regulator of glucagon’s weight loss effects. FGF21 signaling requires an obligate coreceptor (β-Klotho, KLB), with expression limited to adipose tissue, liver, pancreas, and brain. We hypothesized that the GCGR-FGF21 system mediates weight loss through a central mechanism. Mice deficient for neuronal Klb exhibited a partial reduction in body weight with chronic GCGR agonism (via IUB288) compared with controls, supporting a role for central FGF21 signaling in GCGR-mediated weight loss. Substantiating these results, mice with central KLB inhibition via a pharmacological KLB antagonist, 1153, also displayed partial weight loss. Central KLB, however, is dispensable for GCGR-mediated improvements in plasma cholesterol and liver triglycerides. Together, these data suggest GCGR agonism mediates part of its weight loss properties through central KLB and has implications for future treatments of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Shelly R Nason
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Jessica Antipenko
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Natalie Presedo
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Stephen E Cunningham
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Tanya H Pierre
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Teayoun Kim
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, and
| | - Cassie Holleman
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, and
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Inc., Indianapolis, Indiana, USA
| | - Richard DiMarchi
- Novo Nordisk Research Center Indianapolis, Inc., Indianapolis, Indiana, USA.,Department of Chemistry, College of Arts and Sciences, Indiana University, Bloomington, Indiana, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| | | | - Kirk M Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine
| |
Collapse
|
16
|
Activation of AK005401 aggravates acute ischemia/reperfusion mediated hippocampal injury by directly targeting YY1/FGF21. Aging (Albany NY) 2020; 11:5108-5123. [PMID: 31336365 PMCID: PMC6682521 DOI: 10.18632/aging.102106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022]
Abstract
Ischemia exerts a negative impact on mitochondrial function, which ultimately results in neuronal damage via alterations in gene transcription and protein expression. Long non- coding RNAs (LncRNAs) play pivotal roles in the regulation of target protein expression and gene transcription. In the present study, we observed the effect of an unclassical LncRNA AK005401on ischemia/reperfusion (I/R) ischemia-mediated hippocampal injury and investigated the regulatory role of fibroblast growth factor 21 (FGF21) and Yin Yang 1 (YY1). C57Black/6 mice were subjected to I/R using the bilateral common carotid clip reperfusion method, and AK005401 siRNA oligos were administered via intracerebroventricular injection. HT22 cells were used to establish a model of oxygen-glucose deprivation/reoxygenation (OGD/R). We observed pathological morphology and mitochondrial structure. Neuronal apoptosis was evident. Cell activity, cell respiration, FGF21, YY1, and antioxidant capacity were evaluated. I/R or OGD/R significantly increased the expressions of AK005401and YY1 and decreased FGF21expression, which further attenuated the activation of PI3K/Akt, promoted reactive oxygen species (ROS) generation, and then caused mitochondria dysfunction and cell apoptosis, which were reversed by AK005401 siRNA oligos and were aggravated by overexpression of AK005401 and YY1. We conclude that AK005401/YY1/FGF21 signaling pathway has an important role in I/R-mediated hippocampal injury.
Collapse
|
17
|
Mosavat M, Omar SZ, Sthanshewar P. Serum FGF-21 and FGF-23 in association with gestational diabetes: a longitudinal case-control study. Horm Mol Biol Clin Investig 2020; 41:hmbci-2019-0060. [PMID: 32167928 DOI: 10.1515/hmbci-2019-0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Background Fibroblast growth factors (FGFs); FGF-21 and FGF-23, have been proposed to be associated with metabolic syndrome. However, data on the role of these peptides in gestational diabetes mellitus (GDM) are limited. Therefore, this study was designed to assess the association of serum FGF-21 and FGF-23 with the risk of GDM. Furthermore, we evaluated the circulation of these peptides in pregnancy and post-puerperium. Materials and methods Fifty-three pregnant subjects with GDM and 43 normal glucose tolerance (NGT) pregnant women participated in this study. Serum FGF-21 and FGF-23 were measured during pregnancy and post-puerperium. Results FGF-21 and FGF-23 were low in GDM compared to NGT during pregnancy. There were no significant differences in the level of these peptides post-puerperium. Using logistic regression, FGF-23 [odds ratio (OR) 0.70 (95% confidence interval [CI]: 0.50-0.96)] was inversely associated with GDM, so a 1-μg/mL decrease in FGF-23 levels was associated with a 1.4-fold increased risk of developing GDM and this remained statistically significant after adjustment for confounders [adjusted OR (aOR) 0.70 (95% CI: 0.50-0.98)]. There was no association of FGF-21 with the development of GDM risk. Conclusions Lower FGF-23 concentrations could be involved in the pathophysiology of GDM. FGF-21, even though associated with metabolic risk factors in pregnancy, may not be a fundamental factor in GDM.
Collapse
Affiliation(s)
- Maryam Mosavat
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siti Zawiah Omar
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Pavai Sthanshewar
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Zarei M, Pizarro-Delgado J, Barroso E, Palomer X, Vázquez-Carrera M. Targeting FGF21 for the Treatment of Nonalcoholic Steatohepatitis. Trends Pharmacol Sci 2020; 41:199-208. [PMID: 31980251 DOI: 10.1016/j.tips.2019.12.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/09/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Nonalcoholic steatohepatitis (NASH), the severe stage of nonalcoholic fatty liver disease (NAFLD), is defined as the presence of hepatic steatosis with inflammation, hepatocyte injury, and different degrees of fibrosis. Although NASH affects 2-5% of the global population, no drug has been specifically approved to treat the disease. Fibroblast growth factor 21 (FGF21) and its analogs have emerged as a potential new therapeutic strategy for the treatment of NASH. In fact, FGF21 deficiency favors the development of steatosis, inflammation, hepatocyte damage, and fibrosis in the liver, whereas administration of FGF21 analogs ameliorates NASH by attenuating these processes. We review mechanistic insights into the beneficial and potential side effects of therapeutic approaches targeting FGF21 for the treatment of NASH.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain; Pediatric Research Institute, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Javier Pizarro-Delgado
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain; Pediatric Research Institute, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain; Pediatric Research Institute, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain; Pediatric Research Institute, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology, and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain; Pediatric Research Institute, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Barcelona, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, 08028 Barcelona, Spain.
| |
Collapse
|
19
|
Ocker M. Fibroblast growth factor signaling in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis: Paving the way to hepatocellular carcinoma. World J Gastroenterol 2020; 26:279-290. [PMID: 31988589 PMCID: PMC6969880 DOI: 10.3748/wjg.v26.i3.279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/17/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic disorders are increasingly leading to non-alcoholic fatty liver disease, subsequent steatohepatitis, cirrhosis and hepatocellular carcinoma. Fibroblast growth factors and their receptors play an important role in maintaining metabolic homeostasis also in the liver and disorders in signaling have been identified to contribute to those pathophysiologic conditions leading to hepatic lipid accumulation and chronic inflammation. While specific and well tolerated inhibitors of fibroblast growth factor receptor activity are currently developed for (non-liver) cancer therapy, treatment of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis is still limited. Fibroblast growth factor-mimicking or restoring approaches have recently evolved as a novel therapeutic option and the impact of such interactions with the fibroblast growth factor receptor signaling network during non-alcoholic fatty liver disease/non-alcoholic steatohepatitis development is reviewed here.
Collapse
Affiliation(s)
- Matthias Ocker
- Department of Gastroenterology (CBF), Charité University Medicine Berlin, Berlin 10117, Germany
| |
Collapse
|
20
|
Jiang Y, Liu N, Wang Q, Yu Z, Lin L, Yuan J, Guo S, Ahn BJ, Wang XJ, Li X, Lo EH, Sun X, Wang X. Endocrine Regulator rFGF21 (Recombinant Human Fibroblast Growth Factor 21) Improves Neurological Outcomes Following Focal Ischemic Stroke of Type 2 Diabetes Mellitus Male Mice. Stroke 2019; 49:3039-3049. [PMID: 30571410 DOI: 10.1161/strokeaha.118.022119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background and Purpose- The complexity and heterogeneity of stroke, as well as the associated comorbidities, may render neuroprotective drugs less efficacious in clinical practice. Therefore, the development of targeted therapies to specific patient subsets has become a high priority in translational stroke research. Ischemic stroke with type 2 diabetes mellitus has a nearly double mortality rate and worse neurological outcomes. In the present study, we tested our hypothesis that rFGF21 (recombinant human fibroblast growth factor 21) administration is beneficial for improving neurological outcomes of ischemic stroke with type 2 diabetes mellitus. Methods- Type 2 diabetes mellitus db/db and nondiabetic genetic control db/+ mice were subjected into permanent focal ischemia of distal middle cerebral artery occlusion, we examined the effects of poststroke administration with rFGF21 in systemic metabolic disorders, inflammatory gatekeeper PPARγ (peroxisome proliferator-activated receptor γ) activity at 3 days, mRNA expression of inflammatory cytokines and microglia/macrophage activation at 7 days in the perilesion cortex, and last neurological function deficits, ischemic brain infarction, and white matter integrity up to 14 days after stroke of db/db mice. Results- After permanent focal ischemia, diabetic db/db mice presented confounding pathological features, including metabolic dysregulation, more severe brain damage, and neurological impairment, especially aggravated proinflammatory response and white matter integrity loss. However, daily rFGF21 treatment initiated at 6 hours after stroke for 14 days significantly normalized systemic metabolic disorders, rescued PPARγ activity decline, inhibited proinflammatory cytokine mRNA expression, and M1-like microglia/macrophage activation in the brain. Importantly, rFGF21 also significantly reduced white matter integrity loss, ischemic brain infarction, and neurological function deficits up to 14 days after stroke. The potential mechanisms of rFGF21 may in part consist of potent systematic metabolic regulation and PPARγ-activation promotion-associated antiproinflammatory roles in the brain. Conclusions- Taken together, these results suggest rFGF21 might be a novel and potent candidate of the disease-modifying strategy for treating ischemic stroke with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yinghua Jiang
- From the Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China (Y.J., X.S., ).,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| | - Ning Liu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.).,The Third Affiliated Hospital of Zhengzhou University, China (N.L.)
| | - Qingzhi Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.).,Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China (Q.W., J.Y.)
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| | - Li Lin
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.).,Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (L.L., X.-J.W., X.L.)
| | - Jing Yuan
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.).,Department of Neurology, The First Affiliated Hospital of Zhengzhou University, China (Q.W., J.Y.)
| | - Shuzhen Guo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| | - Bum Ju Ahn
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| | - Xiao-Jie Wang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (L.L., X.-J.W., X.L.)
| | - Xiaokun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (L.L., X.-J.W., X.L.)
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| | - Xiaochuan Sun
- From the Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, China (Y.J., X.S., )
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston (Y.J., N.L., Q.W., Z.Y., L.L., J.Y., S.G., B.J.A., E.H.L., X.W.)
| |
Collapse
|
21
|
Potential exerkines for physical exercise-elicited pro-cognitive effects: Insight from clinical and animal research. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:361-395. [PMID: 31607361 DOI: 10.1016/bs.irn.2019.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A sedentary lifestyle is now known as a critical risk factor for accelerated aging-related neurodegenerative disorders. In contract, having regular physical exercise has opposite effects. Clinical findings have suggested that physical exercise can promote brain plasticity, particularly the hippocampus and the prefrontal cortex, that are important for learning and memory and mood regulations. However, the underlying mechanisms are still unclear. Animal studies reveal that the effects of physical exercise on promoting neuroplasticity could be mediated by different exerkines derived from the peripheral system and the brain itself. This book chapter summarizes the recent evidence from clinical and pre-clinical studies showing the emerging mediators for exercise-promoted brain health, including myokines secreted from skeletal muscles, adipokines from adipose tissues, and other factors secreted from the bone and liver.
Collapse
|
22
|
Li X, Zhu Z, Zhou T, Cao X, Lu T, He J, Liang Y, Liu C, Dou Z, Shen B. Predictive value of combined serum FGF21 and free T3 for survival in septic patients. Clin Chim Acta 2019; 494:31-37. [PMID: 30853459 DOI: 10.1016/j.cca.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND We examined the correlation between thyroid hormone (TH) concentrations and the serum fibroblast growth factor 21 (FGF21) concentration in septic patients and to assess the collaborative value of these factors in predicting 28-day mortality in septic patients. METHODS A total of 120 consecutive patients with sepsis were divided into two groups according to their survival or death within 28 days after initial diagnosis of sepsis. RESULTS Patients in the non-survivor group had significantly higher serum FGF21 concentrations but lower total and free triiodothyronine (T3) and tetraiodothyronine (T4) concentrations than those in the survivor group. Thyroid hormone concentrations, including T3, free T3, T4 and free T4, were significantly negatively correlated with the ∆SOFA and APACHE II scores as well as the serum FGF21, IL-6, tumor necrosis factor-α, IL-10, procalcitonin, and C-reactive protein concentrations. Logistic regression analysis showed that the ∆SOFA score, serum FGF21 concentration, and free T3 concentration were significant predictors of 28-day mortality. The model with variables of ∆SOFA score and serum FGF21 and free T3 concentrations had the greatest area under the curve of 0.969. CONCLUSION The addition of free T3 and serum FGF21 to ∆SOFA score provided a significantly improved ability to predict 28-day mortality in septic patients.
Collapse
Affiliation(s)
- Xing Li
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Zexiang Zhu
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China.
| | - Tinghong Zhou
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Xiaoyu Cao
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Ting Lu
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Jiafen He
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Yan Liang
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Chuankai Liu
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Zhoulin Dou
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| | - Bin Shen
- Department of Critical Care Medicine, Changsha of Traditional Chinese Medicine Hospital, Changsha 410010, PR, China
| |
Collapse
|
23
|
Yu J, Peng J, Luan Z, Zheng F, Su W. MicroRNAs as a Novel Tool in the Diagnosis of Liver Lipid Dysregulation and Fatty Liver Disease. Molecules 2019; 24:molecules24020230. [PMID: 30634538 PMCID: PMC6358728 DOI: 10.3390/molecules24020230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, metabolic disorder, especially fatty liver disease, has been considered a major challenge to global health. The attention of researchers focused on expanding knowledge of the regulation mechanism behind these diseases and towards the new diagnostics tools and treatments. The pathophysiology of the fatty liver disease is undoubtedly complex. Abnormal hepatic lipid accumulation is a major symptom of most metabolic diseases. Therefore, the identification of novel regulation factors of lipid metabolism is important and meaningful. As a new diagnostic tool, the function of microRNAs during fatty liver disease has recently come into notice in biological research. Accumulating evidence supports the influence of miRNAs in lipid metabolism. In this review, we discuss the potential role of miRNAs in liver lipid metabolism and the pathogenesis of fatty liver disease.
Collapse
Affiliation(s)
- Jingwei Yu
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China.
- Department of Biology, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Jun Peng
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Zhilin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Wen Su
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
24
|
Pan Y, Wang B, Zheng J, Xiong R, Fan Z, Ye Y, Zhang S, Li Q, Gong F, Wu C, Lin Z, Li X, Pan X. Pancreatic fibroblast growth factor 21 protects against type 2 diabetes in mice by promoting insulin expression and secretion in a PI3K/Akt signaling-dependent manner. J Cell Mol Med 2018; 23:1059-1071. [PMID: 30461198 PMCID: PMC6349243 DOI: 10.1111/jcmm.14007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/11/2018] [Indexed: 01/09/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is important in glucose, lipid homeostasis and insulin sensitivity. However, it remains unknown whether FGF21 is involved in insulin expression and secretion that are dysregulated in type 2 diabetes mellitus (T2DM). In this study, we found that FGF21 was down-regulated in pancreatic islets of db/db mice, a mouse model of T2DM, along with decreased insulin expression, suggesting the possible involvement of FGF21 in maintaining insulin homeostasis and islet β-cell function. Importantly, FGF21 knockout exacerbated palmitate-induced islet β-cell failure and suppression of glucose-stimulated insulin secretion (GSIS). Pancreatic FGF21 overexpression significantly increased insulin expression, enhanced GSIS, improved islet morphology and reduced β-cell apoptosis in db/db mice. Mechanistically, FGF21 promoted expression of insulin gene transcription factors and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, the major regulators of insulin secretion, as well as activating phosphatidylinositol 3-kinase (PI3K)/Akt signaling in islets of db/db mice. In addition, pharmaceutical inhibition of PI3K/Akt signaling effectively suppressed FGF21-induced expression of insulin gene transcription factors and SNARE proteins, suggesting an essential role of PI3K/Akt signaling in FGF21-induced insulin expression and secretion. Taken together, our results demonstrate a protective role of pancreatic FGF21 in T2DM mice through inducing PI3K/Akt signaling-dependent insulin expression and secretion.
Collapse
Affiliation(s)
- Yingying Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Baile Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong
| | - Jujia Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rongrong Xiong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhichao Fan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanna Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Saisai Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qinyao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fanghua Gong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chaoming Wu
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuofeng Lin
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuebo Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
26
|
Zhang Y, Li L, Wang Q, Zhan S, Wang L, Zhong T, Guo J, Zhang H. Fibroblast growth factor 21 induces lipolysis more efficiently than it suppresses lipogenesis in goat adipocytes. Cytotechnology 2018; 70:1423-1433. [PMID: 30051280 DOI: 10.1007/s10616-018-0237-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) potentially regulates glucose and lipid metabolism in energy homeostasis. We investigated dynamic changes in goat adipocytes treated with 75 nM FGF21 for 24, 36 and 48 h. Compared to controls, FGF21-treated adipocytes displayed smaller lipid droplets and altered levels of the mRNA transcripts encoding several lipolysis genes. The genes with elevated mRNA levels included: ATGL, HSL, CPT-1, and UCP1, and this was observed mainly at 24 and 36 h (P < 0.05). Some gene expression was attenuated including lipogenesis genes, such as SREBP1, PPARγ, C/EBPα, and ACC. This attenuation was observed mainly at 24 h (P < 0.05). Among the genes that were significantly induced or inhibited, ATGL, PGC1α, and C/EBPα were observed a significant effect at 48 h (P < 0.05). In addition, FGF21 treatment greatly increased number of mitochondria and the expression of genes implicated in mitochondrial biogenesis, such as PGC1α, NRF1, and TFAM. These results suggest that FGF21 treatment induced lipolysis more effectively than it suppressed lipogenesis in goat adipocytes, and that mitochondrial biogenesis plays an important role in these cells.
Collapse
Affiliation(s)
- Yongfeng Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Qin Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Siyuan Zhan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Tao Zhong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
27
|
Salminen A, Kaarniranta K, Kauppinen A. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses. Ageing Res Rev 2017; 37:79-93. [PMID: 28552719 DOI: 10.1016/j.arr.2017.05.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/28/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process.
Collapse
|
28
|
Wang Q, Yuan J, Yu Z, Lin L, Jiang Y, Cao Z, Zhuang P, Whalen MJ, Song B, Wang XJ, Li X, Lo EH, Xu Y, Wang X. FGF21 Attenuates High-Fat Diet-Induced Cognitive Impairment via Metabolic Regulation and Anti-inflammation of Obese Mice. Mol Neurobiol 2017; 55:4702-4717. [PMID: 28712011 DOI: 10.1007/s12035-017-0663-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/15/2017] [Indexed: 12/25/2022]
Abstract
Accumulating studies suggest that overnutrition-associated obesity may lead to development of type 2 diabetes mellitus and metabolic syndromes (MetS). MetS and its components are important risk factors of mild cognitive impairment, age-related cognitive decline, vascular dementia, and Alzheimer's disease. It has been recently proposed that development of a disease-course modification strategy toward early and effective risk factor management would be clinically significant in reducing the risk of metabolic disorder-initiated cognitive decline. In the present study, we propose that fibroblast growth factor 21 (FGF21) is a novel candidate for the disease-course modification approach. Using a high-fat diet (HFD) consumption-induced obese mouse model, we tested our hypothesis that recombinant human FGF21 (rFGF21) administration is effective for improving obesity-induced cognitive dysfunction and anxiety-like behavior, by its multiple metabolic modulation and anti-pro-inflammation actions. Our experimental findings support our hypothesis that rFGF21 is protective to HFD-induced cognitive impairment, at least in part by metabolic regulation in glucose tolerance impairment, insulin resistance, and hyperlipidemia; potent systemic pro-inflammation inhibition; and improvement of hippocampal dysfunction, particularly by inhibiting pro-neuroinflammation and neurogenesis deficit. This study suggests that FGF21 might be a novel molecular target of the disease-course-modifying strategy for early intervention of MstS-associated cognitive decline.
Collapse
Affiliation(s)
- Qingzhi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450007, China.,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Jing Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450007, China.,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Li Lin
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yinghua Jiang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Zeyuan Cao
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Pengwei Zhuang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Michael J Whalen
- Neurobehavioral Core Facility, Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450007, China
| | - Xiao-Jie Wang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450007, China.
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
29
|
Armani A, Berry A, Cirulli F, Caprio M. Molecular mechanisms underlying metabolic syndrome: the expanding role of the adipocyte. FASEB J 2017; 31:4240-4255. [PMID: 28705812 DOI: 10.1096/fj.201601125rrr] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/12/2017] [Indexed: 02/06/2023]
Abstract
The metabolic syndrome (MetS) is defined as a cluster of 3 or more metabolic and cardiovascular risk factors and represents a serious problem for public health. Altered function of adipose tissue has a significant impact on whole-body metabolism and represents a key driver for the development of these metabolic derangements, collectively referred as to MetS. In particular, increased visceral and ectopic fat deposition play a major role in the development of insulin resistance and MetS. A large body of evidence demonstrates that aging and MetS share several metabolic alterations. Of importance, molecular pathways that regulate lifespan affect key processes of adipose tissue physiology, and transgenic mouse models with adipose-specific alterations in these pathways show derangements of adipose tissue and other metabolic features of MetS, which highlights a causal link between dysfunctional adipose tissue and deleterious effects on whole-body homeostasis. This review analyzes adipose tissue-specific dysfunctions, including metabolic alterations that are related to aging, that have a significant impact on the development of MetS.-Armani, A., Berry, A., Cirulli, F., Caprio, M. Molecular mechanisms underlying metabolic syndrome: the expanding role of the adipocyte.
Collapse
Affiliation(s)
- Andrea Armani
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana, Rome, Italy
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana, Rome, Italy; .,Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
30
|
An X, Yang Z, An Z. MiR-149 Compromises the Reactions of Liver Cells to Fatty Acid via its Polymorphism and Increases Non-Alcoholic Fatty Liver Disease (NAFLD) Risk by Targeting Methylene Tetrahydrofolate Reductase (MTHFR). Med Sci Monit 2017; 23:2299-2307. [PMID: 28507283 PMCID: PMC5443364 DOI: 10.12659/msm.901377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a worldwide health problem, and microRNA (miRNA) has been reported to be involved in NAFLD. The objective of our study was to explore the effect of polymorphism in miR-149 on the pathogenesis of NAFLD. MATERIAL AND METHODS Real-time PCR was performed to explore the effect of long-chain fatty acid (FFA) on the level of miR-149 and methylene tetrahydrofolate reductase (MTHFR). Then in-silicon analysis and luciferase assay were investigated to verify MTHFR was the target gene of miR-149. Finally, Western-blot analysis and real-time PCR were performed to confirm the control of MTHFR by miR-149. RESULTS In this study, we found that miR-149 was apparently upregulated in hepatocytes genotyped as TT treated with FFA; and MTHFR in hepatocytes genotyped as TT treated with FFA was evidently downregulated compared to control. Whereas, FFA had no obvious effect on MTHFR level in hepatocytes genotyped as CC. We searched an online miRNA database and found that miR-149 was a regulator of MTHFR expression, which was confirmed by luciferase assay. In hepatocytes genotyped as TT and treated with or without FFA, miR-149 mimic dose-dependently decreased the level of MTHFR, and miR-149 inhibitor dose-dependently increased the level of MTHFR. And in hepatocytes genotyped as CC treated with or without FFA exhibited a similar inhibition effect of miR-149 on expression of MTHFR. CONCLUSIONS The data suggested that the polymorphism in miR-149 played an important role in the development of NAFLD via altering the expression of miR-149 as well as its target, MTHFR.
Collapse
Affiliation(s)
- Xianchao An
- Department of Ultrasound, The Second Affiliated Hospital of Shanxi University of Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| | - Zonglin Yang
- Department of Ultrasound, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| | - Zhengzhuang An
- Department of Ultrasound, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| |
Collapse
|
31
|
Fibroblast Growth Factor 21 Deficiency Attenuates Experimental Colitis-Induced Adipose Tissue Lipolysis. Gastroenterol Res Pract 2017; 2017:3089378. [PMID: 28584524 PMCID: PMC5444037 DOI: 10.1155/2017/3089378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/24/2017] [Accepted: 04/02/2017] [Indexed: 12/11/2022] Open
Abstract
Aims Nutrient deficiencies are common in patients with inflammatory bowel disease (IBD). Adipose tissue plays a critical role in regulating energy balance. Fibroblast growth factor 21 (FGF21) is an important endocrine metabolic regulator with emerging beneficial roles in lipid homeostasis. We investigated the impact of FGF21 in experimental colitis-induced epididymal white adipose tissue (eWAT) lipolysis. Methods Mice were given 2.5% dextran sulfate sodium (DSS) ad libitum for 7 days to induce colitis. The role of FGF21 was investigated using antibody neutralization or knockout (KO) mice. Lipolysis index and adipose lipolytic enzymes were determined. In addition, 3T3-L1 cells were pretreated with IL-6, followed by recombinant human FGF21 (rhFGF21) treatment; lipolysis was assessed. Results DSS markedly decreased eWAT/body weight ratio and increased serum concentrations of free fatty acid (FFA) and glycerol, indicating increased adipose tissue lipolysis. eWAT intracellular lipolytic enzyme expression/activation was significantly increased. These alterations were significantly attenuated in FGF21 KO mice and by circulating FGF21 neutralization. Moreover, DSS treatment markedly increased serum IL-6 and FGF21 levels. IL-6 pretreatment was necessary for the stimulatory effect of FGF21 on adipose lipolysis in 3T3-L1 cells. Conclusions Our results demonstrate that experimental colitis induces eWAT lipolysis via an IL-6/FGF21-mediated signaling pathway.
Collapse
|
32
|
Ng R, Hussain NA, Zhang Q, Chang C, Li H, Fu Y, Cao L, Han W, Stunkel W, Xu F. miRNA-32 Drives Brown Fat Thermogenesis and Trans-activates Subcutaneous White Fat Browning in Mice. Cell Rep 2017; 19:1229-1246. [PMID: 28494871 PMCID: PMC5637386 DOI: 10.1016/j.celrep.2017.04.035] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/08/2016] [Accepted: 04/12/2017] [Indexed: 01/20/2023] Open
Abstract
Brown adipose tissue (BAT) activation and subcutaneous white fat browning are essential components of the thermogenic response to cold stimulus in mammals. microRNAs have been shown to regulate both processes in cis. Here, we identify miR-32 as a BAT-specific super-enhancer-associated miRNA in mice that is selectively expressed in BAT and further upregulated during cold exposure. Inhibiting miR-32 in vivo led to impaired cold tolerance, decreased BAT thermogenesis, and compromised white fat browning as a result of reduced serum FGF21 levels. Further examination showed that miR-32 directly represses its target gene Tob1, thereby activating p38 MAP kinase signaling to drive FGF21 expression and secretion from BAT. BAT-specific miR-32 overexpression led to increased BAT thermogenesis and serum FGF21 levels, which further promotes white fat browning in trans. Our results suggested miR-32 and Tob1 as modulators of FGF21 signaling that can be manipulated for therapeutic benefit against obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Raymond Ng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A(∗)STAR), Singapore 117609, Singapore
| | - Nurul Attiqah Hussain
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A(∗)STAR), Singapore 117609, Singapore
| | - Qiongyi Zhang
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A(∗)STAR), Singapore 117609, Singapore
| | - Chengwei Chang
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A(∗)STAR), Singapore 117609, Singapore
| | - Hongyu Li
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A(∗)STAR, Singapore 138667, Singapore
| | - Yanyun Fu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A(∗)STAR, Singapore 138667, Singapore
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A(∗)STAR, Singapore 138667, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Walter Stunkel
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A(∗)STAR), Singapore 117609, Singapore
| | - Feng Xu
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A(∗)STAR), Singapore 117609, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore.
| |
Collapse
|
33
|
Suárez-Vega A, Toral PG, Gutiérrez-Gil B, Hervás G, Arranz JJ, Frutos P. Elucidating fish oil-induced milk fat depression in dairy sheep: Milk somatic cell transcriptome analysis. Sci Rep 2017; 7:45905. [PMID: 28378756 PMCID: PMC5381099 DOI: 10.1038/srep45905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/06/2017] [Indexed: 12/20/2022] Open
Abstract
In this study, RNA sequencing was used to obtain a comprehensive profile of the transcriptomic changes occurring in the mammary gland of lactating sheep suffering from fish oil-induced milk fat depression (FO-MFD). The milk somatic cell transcriptome analysis of four control and four FO-MFD ewes generated an average of 42 million paired-end reads per sample. In both conditions, less than 220 genes constitute approximately 89% of the total counts. These genes, which are considered as core genes, were mainly involved in cytoplasmic ribosomal proteins and electron transport chain pathways. In total, 117 genes were upregulated, and 96 genes were downregulated in FO-MFD samples. Functional analysis of the latter indicated a downregulation of genes involved in the SREBP signaling pathway (e.g., ACACA, ACSL, and ACSS) and Gene Ontology terms related to lipid metabolism and lipid biosynthetic processes. Integrated interpretation of upregulated genes indicated enrichment in genes encoding plasma membrane proteins and proteins regulating protein kinase activity. Overall, our results indicate that FO-MFD is associated with the downregulation of key genes involved in the mammary lipogenesis process. In addition, the results also suggest that this syndrome may be related to upregulation of other genes implicated in signal transduction and codification of transcription factors.
Collapse
Affiliation(s)
- Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - Pablo G. Toral
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n, Grulleros 24346, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - Gonzalo Hervás
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n, Grulleros 24346, León, Spain
| | - Juan José Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León 24071, Spain
| | - Pilar Frutos
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas s/n, Grulleros 24346, León, Spain
| |
Collapse
|
34
|
Bijsmans ITGW, Milona A, Ijssennagger N, Willemsen ECL, Ramos Pittol JM, Jonker JW, Lange K, Hooiveld GJEJ, van Mil SWC. Characterization of stem cell-derived liver and intestinal organoids as a model system to study nuclear receptor biology. Biochim Biophys Acta Mol Basis Dis 2016; 1863:687-700. [PMID: 27956139 DOI: 10.1016/j.bbadis.2016.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/31/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors regulating a large variety of processes involved in reproduction, development, and metabolism. NRs are ideal drug targets because they are activated by lipophilic ligands that easily pass cell membranes. Immortalized cell lines recapitulate NR biology poorly and generating primary cultures is laborious and requires a constant need for donor material. There is a clear need for development of novel preclinical model systems that better resemble human physiology. Uncertainty due to technical limitations early in drug development is often the cause of preclinical drugs not reaching the clinic. Here, we studied whether organoids, mini-organs derived from the respective mouse tissue's stem cells, can serve as a novel model system to study NR biology and targetability. We characterized mRNA expression profiles of the NR superfamily in mouse liver, ileum, and colon organoids. Tissue-specific expression patterns were largely maintained in the organoids, indicating their suitability for NR research. Metabolic NRs Fxrα, Lxrα, Lxrβ, Pparα, and Pparγ induced expression of and binding to endogenous target genes. Transcriptome analyses of wildtype colon organoids stimulated with Rosiglitazone showed that lipid metabolism was the highest significant changed function, greatly mimicking the PPARs and Rosiglitazone function in vivo. Finally, using organoids we identify Trpm6, Slc26a3, Ang1, and Rnase4, as novel Fxr target genes. Our results demonstrate that organoids represent a framework to study NR biology that can be further expanded to human organoids to improve preclinical testing of novel drugs that target this pharmacologically important class of ligand activated transcription factors.
Collapse
Affiliation(s)
- Ingrid T G W Bijsmans
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexandra Milona
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Noortje Ijssennagger
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ellen C L Willemsen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - José M Ramos Pittol
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan W Jonker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Katja Lange
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Saskia W C van Mil
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
35
|
Tanimura Y, Aoi W, Takanami Y, Kawai Y, Mizushima K, Naito Y, Yoshikawa T. Acute exercise increases fibroblast growth factor 21 in metabolic organs and circulation. Physiol Rep 2016; 4:4/12/e12828. [PMID: 27335433 PMCID: PMC4923231 DOI: 10.14814/phy2.12828] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022] Open
Abstract
Fibroblast growth factor 21, a metabolic regulator, plays roles in lipolysis and glucose uptake in adipose tissues and skeletal muscles. Its expression in skeletal muscle is upregulated upon activation of the phosphatidylinositol 3‐kinase/Akt signaling pathway, which is induced by exercise and muscle contraction. We examined the increase of fibroblast growth factor 21 after acute exercise in metabolic organs, especially skeletal muscles and circulation. Participants exercised on bicycle ergometers for 60 min at 75% of their V˙O2max. Venous blood samples were taken before exercise and immediately after exercise. In an animal study, male ICR mice were divided into sedentary and exercise groups. Mice in the exercise group performed treadmill exercises at 30 m min−1 for 60 min. Shortly thereafter, blood, liver, and skeletal muscle samples were taken from mice. Acute exercise induced the increase of serum fibroblast growth factor 21 in both humans and mice, and increased fibroblast growth factor 21 expression in the skeletal muscles and the liver of mice. Acute exercise activated Akt in mice skeletal muscle. Acute exercise increases fibroblast growth factor 21 concentrations in both serum and metabolic organs. Moreover, results show that acute exercise increased the expression of fibroblast growth factor 21 in skeletal muscle, accompanied by the phosphorylation of Akt in mice.
Collapse
Affiliation(s)
- Yuko Tanimura
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan Faculty of human, Aichi-toho University, Nagoya, Japan
| | - Wataru Aoi
- Laboratory of Health Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | | | - Yukari Kawai
- Louis Pasteur Center for Medical Research, Kyoto, Japan
| | - Katsura Mizushima
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshikazu Yoshikawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
36
|
Ost M, Coleman V, Kasch J, Klaus S. Regulation of myokine expression: Role of exercise and cellular stress. Free Radic Biol Med 2016; 98:78-89. [PMID: 26898145 DOI: 10.1016/j.freeradbiomed.2016.02.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/26/2022]
Abstract
Exercise training is well known to improve physical fitness and to combat chronic diseases and aging related disorders. Part of this is thought to be mediated by myokines, muscle derived secretory proteins (mainly cytokines) that elicit auto/paracrine but also endocrine effects on organs such as liver, adipose tissue, and bone. Today, several hundred potential myokines have been identified most of them not exclusive to muscle cells. Strenuous exercise is associated with increased production of free radicals and reactive oxidant species (ROS) as well as endoplasmic reticulum (ER)-stress which at an excessive level can lead to muscle damage and cell death. On the other hand, transient elevations in oxidative and ER-stress are thought to be necessary for adaptive improvements by regular exercise through a hormesis action termed mitohormesis since mitochondria are essential for the generation of energy and tightly connected to ER- and oxidative stress. Exercise induced myokines have been identified by various in vivo and in vitro approaches and accumulating evidence suggests that ROS and ER-stress linked pathways are involved in myokine induction. For example, interleukin (IL)-6, the prototypic exercise myokine is also induced by oxidative and ER-stress. Exercise induced expression of some myokines such as irisin and meteorin-like is linked to the transcription factor PGC-1α and apparently not related to ER-stress whereas typical ER-stress induced cytokines such as FGF-21 and GDF-15 are not exercise myokines under normal physiological conditions. Recent technological advances have led to the identification of numerous potential new myokines but for most of them regulation by oxidative and ER-stress still needs to be unraveled.
Collapse
Affiliation(s)
- Mario Ost
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Verena Coleman
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Juliane Kasch
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Susanne Klaus
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition in Potsdam Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
37
|
Softic S, Boucher J, Solheim MH, Fujisaka S, Haering MF, Homan EP, Winnay J, Perez-Atayde AR, Kahn CR. Lipodystrophy Due to Adipose Tissue-Specific Insulin Receptor Knockout Results in Progressive NAFLD. Diabetes 2016; 65:2187-200. [PMID: 27207510 PMCID: PMC4955986 DOI: 10.2337/db16-0213] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/29/2016] [Indexed: 02/06/2023]
Abstract
Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and is also a common feature of type 2 diabetes, obesity, and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor 1 receptor (F-IR/IGFRKO). These mice develop severe lipodystrophy, diabetes, hyperlipidemia, and fatty liver disease within the first weeks of life. By 12 weeks of age, liver demonstrated increased reactive oxygen species, lipid peroxidation, histological evidence of balloon degeneration, and elevated serum alanine aminotransferase and aspartate aminotransferase levels. In these lipodystrophic mice, stored liver lipids can be used for energy production, as indicated by a marked decrease in liver weight with fasting and increased liver fibroblast growth factor 21 expression and intact ketogenesis. By 52 weeks of age, liver accounted for 25% of body weight and showed continued balloon degeneration in addition to inflammation, fibrosis, and highly dysplastic liver nodules. Progression of liver disease was associated with improvement in blood glucose levels, with evidence of altered expression of gluconeogenic and glycolytic enzymes. However, these mice were able to mobilize stored glycogen in response to glucagon. Feeding F-IRKO and F-IR/IGFRKO mice a high-fat diet for 12 weeks accelerated the liver injury and normalization of blood glucose levels. Thus, severe fatty liver disease develops early in lipodystrophic mice and progresses to advanced nonalcoholic steatohepatitis with highly dysplastic liver nodules. The liver injury is propagated by lipotoxicity and is associated with improved blood glucose levels.
Collapse
Affiliation(s)
- Samir Softic
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA
| | - Jeremie Boucher
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Marie H Solheim
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Shiho Fujisaka
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Max-Felix Haering
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Erica P Homan
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Jonathon Winnay
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Antonio R Perez-Atayde
- Department of Pathology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
38
|
Huang Y, Yang J, Li Y, Chen J, Song K, Wang X, Bu L, Cheng X, Wang J, Qu S. FGF21 Is Associated with Acanthosis Nigricans in Obese Patients. Int J Endocrinol 2016; 2016:1658062. [PMID: 27190511 PMCID: PMC4846753 DOI: 10.1155/2016/1658062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/11/2016] [Indexed: 02/07/2023] Open
Abstract
Objective. We aimed to investigate the relationship between FGF21 and obesity-related acanthosis nigricans (AN). Methods. 40 obese patients without AN (OB group), 40 obese patients with AN (AN group), and 40 healthy volunteers (control group, CON) were included in this study. Weight, BMI, lipid profile, FFA, UA, and CRP were measured in all participants. Oral glucose tolerance tests (OGTT) were performed and serum glucose and plasma insulin were measured. Serum FGF21 was measured by ELISA. Results. Compared with OB group, AN group had higher levels of fasting insulin and homeostasis model of assessment for insulin resistance (HOMA-IR) (P < 0.05), but lower serum levels of blood glucose. The difference of FGF21 among three groups was significant and AN group showed the highest serum level of FGF21 (P < 0.05). Serum FGF21 was most positively correlated with fasting insulin and HOMA-IR. Multiple logistic analysis showed that FGF21 was the independent risk factor for AN (OR 4.550; 95% CI 1.054-19.635; P = 0.042). Conclusion. AN patients had more serious hyperinsulinemia but better serum levels of blood glucose than OB. Increased FGF21 is associated with AN in obese patients and may be considered as compensatory response to the decreased insulin sensitivity.
Collapse
Affiliation(s)
- Yueye Huang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Department of Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yan Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Department of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiaqi Chen
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Department of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Kexiu Song
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xingchun Wang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Le Bu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaoyun Cheng
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiying Wang
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Department of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
39
|
Itoh N, Nakayama Y, Konishi M. Roles of FGFs As Paracrine or Endocrine Signals in Liver Development, Health, and Disease. Front Cell Dev Biol 2016; 4:30. [PMID: 27148532 PMCID: PMC4829580 DOI: 10.3389/fcell.2016.00030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/27/2016] [Indexed: 12/11/2022] Open
Abstract
The liver plays important roles in multiple processes including metabolism, the immune system, and detoxification and also has a unique capacity for regeneration. FGFs are growth factors that have diverse functions in development, health, and disease. The FGF family now comprises 22 members. Several FGFs have been shown to play roles as paracrine signals in liver development, health, and disease. FGF8 and FGF10 are involved in embryonic liver development, FGF7 and FGF9 in repair in response to liver injury, and FGF5, FGF8, FGF9, FGF17, and FGF18 in the development and progression of hepatocellular carcinoma. In contrast, FGF15/19 and FGF21 are endocrine signals. FGF15/19, which is produced in the ileum, is a negative regulator of bile acid metabolism and a stimulator of gallbladder filling. FGF15/19 is a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. It is also required for hepatocellular carcinoma and liver regeneration. FGF21 is a hepatokine produced in the liver. FGF21 regulates glucose and lipid metabolism in white adipose tissue. Serum FGF21 levels are elevated in non-alcoholic fatty liver. FGF21 also protects against non-alcoholic fatty liver. These findings provide new insights into the roles of FGFs in the liver and potential therapeutic strategies for hepatic disorders.
Collapse
Affiliation(s)
- Nobuyuki Itoh
- Medical Innovation Center, Kyoto University Graduate School of Medicine Kyoto, Japan
| | - Yoshiaki Nakayama
- Department of Microbial Chemistry, Kobe Pharmaceutical University Kobe, Japan
| | - Morichika Konishi
- Department of Microbial Chemistry, Kobe Pharmaceutical University Kobe, Japan
| |
Collapse
|
40
|
Xiao J, Lv D, Zhao Y, Chen X, Song M, Liu J, Bei Y, Wang F, Yang W, Yang C. miR-149 controls non-alcoholic fatty liver by targeting FGF-21. J Cell Mol Med 2016; 20:1603-8. [PMID: 27061435 PMCID: PMC4956949 DOI: 10.1111/jcmm.12848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/24/2016] [Indexed: 12/14/2022] Open
Abstract
Non‐alcoholic fatty liver disease (NAFLD), a lipid metabolism disorder characterized by the accumulation of intrahepatic fat, has emerged as a global public health problem. However, its underlying molecular mechanism remains unclear. We previously have found that miR‐149 was elevated in NAFLD induced by high‐fat diet mice model, whereas decreased by a 16‐week running programme. Here, we reported that miR‐149 was increased in HepG2 cells treated with long‐chain fatty acid (FFA). In addition, miR‐149 was able to promote lipogenesis in HepG2 cells in the absence of FFA treatment. Moreover, inhibition of miR‐149 was capable of inhibiting lipogenesis in HepG2 cells in the presence of FFA treatment. Meanwhile, fibroblast growth factor‐21 (FGF‐21) was identified as a target gene of miR‐149, which was demonstrated by the fact that miR‐149 could negatively regulate the protein expression level of FGF‐21, and FGF‐21 was also responsible for the effect of miR‐149 inhibitor in decreasing lipogenesis in HepG2 cells in the presence of FFA treatment. These data implicate that miR‐149 might be a novel therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Innovative Drug Research Center of Shanghai University, Shanghai, China
| | - Dongchao Lv
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Innovative Drug Research Center of Shanghai University, Shanghai, China
| | - Yingying Zhao
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyu Chen
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meiyi Song
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingqi Liu
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Innovative Drug Research Center of Shanghai University, Shanghai, China
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenzhuo Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Roh SG, Suzuki Y, Gotoh T, Tatsumi R, Katoh K. Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1-15. [PMID: 26732322 PMCID: PMC4698675 DOI: 10.5713/ajas.16.0001r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the discovery of leptin secreted from adipocytes, specialized tissues and cells have been found that secrete the several peptides (or cytokines) that are characterized to negatively and positively regulate the metabolic process. Different types of adipokines, hepatokines, and myokines, which act as cytokines, are secreted from adipose, liver, and muscle tissue, respectively, and have been identified and examined for their physiological roles in humans and disease in animal models. Recently, various studies of these cytokines have been conducted in ruminants, including dairy cattle, beef cattle, sheep, and goat. Interestingly, a few cytokines from these tissues in ruminants play an important role in the post-parturition, lactation, and fattening (marbling) periods. Thus, understanding these hormones is important for improving nutritional management in dairy cows and beef cattle. However, to our knowledge, there have been no reviews of the characteristics of these cytokines in beef and dairy products in ruminants. In particular, lipid and glucose metabolism in adipose tissue, liver tissue, and muscle tissue are very important for energy storage, production, and synthesis, which are regulated by these cytokines in ruminant production. In this review, we summarize the physiological roles of adipokines, hepatokines, and myokines in ruminants. This discussion provides a foundation for understanding the role of cytokines in animal production of ruminants.
Collapse
Affiliation(s)
- Sang-Gun Roh
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| | - Yutaka Suzuki
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| | - Takafumi Gotoh
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Kazuo Katoh
- Kuju Agriculture Research Center, Kyushu University, Oita 878-020, Japan
| |
Collapse
|
42
|
Fibroblast Growth Factor 21 Suppresses Adipogenesis in Pig Intramuscular Fat Cells. Int J Mol Sci 2015; 17:ijms17010011. [PMID: 26703591 PMCID: PMC4730258 DOI: 10.3390/ijms17010011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 01/08/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays an important role in the treatment of disease associated with muscle insulin resistance which is characterized by various factors, such as intramuscular triglyceride (IMT) content. Studies have also shown that FGF21 inhibits triglyceride synthesis in vivo. However, the precise mechanism whereby FGF21 regulates triglyceride metabolism in intramuscular fat (IMF), which may influence the muscle insulin sensitivity, is not clearly understood. In order to understand the role of FGF21 in IMF deposition, we performed FGF21 overexpression in IMF cells by stable transfection. Our results showed that FGF21 inhibited the key adipogenesis gene mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), CCAAT/enhancer-binding protein (CEBP) family by reducing lysine-specific demethylase 1 (LSD1) expression which led to significant decline in lipid accumulation, and the result was confirmed by Western blot. Moreover, triggered by FGF21, parts of the adipokines—fatty acid-binding protein 4 (FABP4), glucose transporter 4 (GLUT4), adiponectin (ADIPOQ), and perilipin (PLIN1)—were also down-regulated. Furthermore, FGF21 gene expression was suppressed by transcription factor CEBP beta (CEBPB) which contributed strongly to triglyceride synthesis. Taken together, our study is the first to experimentally demonstrate FGF21 emerging as an efficient blockade of adipogenesis in IMF, thus also providing a new understanding of the mechanism whereby FGF21 improves insulin sensitivity.
Collapse
|
43
|
Ji K, Zheng J, Lv J, Xu J, Ji X, Luo YB, Li W, Zhao Y, Yan C. Skeletal muscle increases FGF21 expression in mitochondrial disorders to compensate for energy metabolic insufficiency by activating the mTOR-YY1-PGC1α pathway. Free Radic Biol Med 2015; 84:161-170. [PMID: 25843656 DOI: 10.1016/j.freeradbiomed.2015.03.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/27/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a growth factor with pleiotropic effects on regulating lipid and glucose metabolism. Its expression is increased in skeletal muscle of mice and humans with mitochondrial disorders. However, the effects of FGF21 on skeletal muscle in response to mitochondrial respiratory chain deficiency are largely unknown. Here we demonstrate that the increased expression of FGF21 is a compensatory response to respiratory chain deficiency. The mRNA and protein levels of FGF21 were robustly raised in skeletal muscle from patients with mitochondrial myopathy or MELAS. The mammalian target of rapamycin (mTOR) phosphorylation levels and its downstream targets, Yin Yang 1 (YY1) and peroxisome proliferator-activated receptor γ, coactivator 1α (PGC-1α), were increased by FGF21 treatment in C2C12 myoblasts. Activation of the mTOR-YY1-PGC1α pathway by FGF21 in myoblasts regulated energy homeostasis as demonstrated by significant increases in intracellular ATP synthesis, oxygen consumption rate, activity of citrate synthase, glycolysis, mitochondrial DNA copy number, and induction of the expression of key energy metabolic genes. The effects of FGF21 on mitochondrial function required phosphoinositide 3-kinase (PI3K), which activates mTOR. Inhibition of PI3K, mTOR, YY1, and PGC-1α activities attenuated the stimulating effects of FGF21 on intracellular ATP levels and mitochondrial gene expression. Our findings revealed that mitochondrial respiratory chain deficiency elicited a compensatory response in skeletal muscle by increasing the FGF21 expression levels in muscle, which resulted in enhanced mitochondrial function through an mTOR-YY1-PGC1α-dependent pathway in skeletal muscle.
Collapse
Affiliation(s)
- Kunqian Ji
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jinfan Zheng
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jingwei Lv
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jingwen Xu
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xinbo Ji
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Yue-Bei Luo
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Wei Li
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Yuying Zhao
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Chuanzhu Yan
- Laboratory of Neuromuscular Disorders and Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China; Key Laboratory for Experimental Teratology of the Ministry of Education, Brain Science Research Institute, Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
44
|
Hanks LJ, Casazza K, Ashraf AP, Wallace S, Gutiérrez OM. Fibroblast growth factor-21, body composition, and insulin resistance in pre-pubertal and early pubertal males and females. Clin Endocrinol (Oxf) 2015; 82:550-6. [PMID: 25039824 PMCID: PMC4289452 DOI: 10.1111/cen.12552] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/10/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Accumulating evidence derived primarily from animal models suggests that fibroblast growth factor-21 (FGF-21) may affect the musculoskeletal system via effects on the capacity of tissues to respond to insulin. A proportion of musculoskeletal properties and underpinnings of promoting/preventing insulin resistance are established early in the pubertal transition. Thus, the objective of this study was to test the hypothesis that insulin resistance and/or obesity will promote greater FGF-21 concentration which will be inversely associated with musculoskeletal parameters [lean mass and bone mineral content (BMC)] in pre-/early pubertal children. Given the sexual dimorphic nature of musculoskeletal development of fat mass accrual, differences by obesity status and sex were also investigated. DESIGN Cross-sectional. PATIENTS Children ages 7-12 years (n = 69, 38% male, 48% non-Hispanic black, 45% obese). MEASUREMENTS Fasting FGF-21, glucose and insulin measures were obtained. An estimate of insulin resistance was derived using the homoeostatic model assessment of insulin resistance (HOMA-IR). Body composition (BMC, lean mass and fat mass) was assessed by DXA. Multivariate regression analysis was used to evaluate the influence of FGF-21 on BMC, lean mass and HOMA-IR as dependent variables. Obesity status was established based on BMI z-score. RESULTS FGF-21 concentrations did not differ by obesity status or by sex. There was an inverse association between FGF-21 and BMC among nonobese individuals (P = 0·01) and an inverse association between FGF-21 and lean mass among females (P = 0·02), which were both independent of fat mass. FGF-21 was inversely associated with HOMA-IR in males, but not females (P = 0·04). CONCLUSIONS The existence of relationships of FGF-21 with musculoskeletal parameters and insulin resistance raises the possibility of crosstalk between these systems. These findings suggest that circulating FGF-21 may differ in its association with bone, lean mass and insulin resistance depending on sex and weight status.
Collapse
Affiliation(s)
- Lynae J. Hanks
- Children’s Hospital of Alabama, University of Alabama at Birmingham (UAB)
| | | | - Ambika P. Ashraf
- Children’s Hospital of Alabama, University of Alabama at Birmingham (UAB)
| | - Stephenie Wallace
- Children’s Hospital of Alabama, University of Alabama at Birmingham (UAB)
| | | |
Collapse
|
45
|
Zibar K, Blaslov K, Bulum T, Ćuća JK, Smirčić-Duvnjak L. Basal and postprandial change in serum fibroblast growth factor-21 concentration in type 1 diabetic mellitus and in healthy controls. Endocrine 2015; 48:848-55. [PMID: 25194937 DOI: 10.1007/s12020-014-0413-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 08/30/2014] [Indexed: 12/12/2022]
Abstract
Fibroblast growth factor-21 (FGF-21) appears to have an important role in glucose and lipid metabolism. FGF-21 secretion is mainly determined by nutritional status. The aim of this study was to measure basal and postprandial FGF-21 and postprandial change of FGF-21 concentration in type 1 diabetes mellitus (T1DM) patients and in healthy controls, and to investigate the differences between the groups. The cross-sectional study included 30 C-peptide negative T1DM patients, median age 37 years (20-59), disease duration 22 years (3-45), and nine healthy controls, median age 30 years (27-47). Basal and postprandial FGF-21 concentrations were measured by ELISA. The associations of FGF-21 with glucose, lipids, and insulin were analyzed. Individuals with T1DM showed significantly lower basal FGF-21 concentration (P=0.046) when compared with healthy controls (median value 28.2 vs 104 pg/mL) and had significantly different postprandial change (∆ 30'-0') of FGF-21 (P=0.006) in comparison with healthy controls (median value -1.1 vs -20.5 pg/mL). The glucose and lipid status did not correlate with FGF-21. In healthy controls, postprandial insulin level correlated with basal FGF-21 (ρ=0.7, P=0.036). Multiple regression analysis showed that they are independently associated after adjustment for confounding factors (β=1.824, P=0.04). We describe the pathological pattern of basal and postprandial change of FGF-21 secretion not associated with glucose, lipid levels, or insulin therapy in patients with T1DM. Since FGF-21 has numerous protective metabolic effects in the experimental model, the lower basal FGF-21 concentration in T1DM patients opens the question about the potential role of recombinant FGF-21 therapy.
Collapse
Affiliation(s)
- Karin Zibar
- Department of Endocrinology and Metabolic Diseases, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Dugi Dol 4a, 10000, Zagreb, Croatia,
| | | | | | | | | |
Collapse
|
46
|
Lin Z, Pan X, Wu F, Ye D, Zhang Y, Wang Y, Jin L, Lian Q, Huang Y, Ding H, Triggle C, Wang K, Li X, Xu A. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation 2015; 131:1861-71. [PMID: 25794851 PMCID: PMC4444420 DOI: 10.1161/circulationaha.115.015308] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
Supplemental Digital Content is available in the text. Background— Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on glucose and lipid metabolism and insulin sensitivity. It acts as a key downstream target of both peroxisome proliferator-activated receptor α and γ, the agonists of which have been used for lipid lowering and insulin sensitization, respectively. However, the role of FGF21 in the cardiovascular system remains elusive. Methods and Results— The roles of FGF21 in atherosclerosis were investigated by evaluating the impact of FGF21 deficiency and replenishment with recombinant FGF21 in apolipoprotein E−/− mice. FGF21 deficiency causes a marked exacerbation of atherosclerotic plaque formation and premature death in apolipoprotein E−/− mice, which is accompanied by hypoadiponectinemia and severe hypercholesterolemia. Replenishment of FGF21 protects against atherosclerosis in apolipoprotein E−/−mice via 2 independent mechanisms, inducing the adipocyte production of adiponectin, which in turn acts on the blood vessels to inhibit neointima formation and macrophage inflammation, and suppressing the hepatic expression of the transcription factor sterol regulatory element-binding protein-2, thereby leading to reduced cholesterol synthesis and attenuation of hypercholesterolemia. Chronic treatment with adiponectin partially reverses atherosclerosis without obvious effects on hypercholesterolemia in FGF21-deficient apolipoprotein E−/− mice. By contrast, the cholesterol-lowering effects of FGF21 are abrogated by hepatic expression of sterol regulatory element-binding protein-2. Conclusions— FGF21 protects against atherosclerosis via fine tuning the multiorgan crosstalk among liver, adipose tissue, and blood vessels.
Collapse
Affiliation(s)
- Zhuofeng Lin
- From School of Pharmaceutical Science, Wenzhou Medical University, China (Z.L., X.P., Y.Z., L.J., X.L., A.X.); Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China (F.W., X.L.); State Key Laboratory of Pharmaceutical Biotechnology (D.Y., Y.W., Q.L., A.X.), Departments of Medicine (D.Y., Q.L., A.X.) and Pharmacology and Pharmacy (D.Y., Y.W., A.X.), University of Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, China (Y.H.); Department of Pharmacology, Weill Cornell Medical College in Qatar, Doha (H.D., C.T.); and Department of Neurology, 1st Affiliated Hospital of Anhui Medical University, Hefei, China (K.W.)
| | - Xuebo Pan
- From School of Pharmaceutical Science, Wenzhou Medical University, China (Z.L., X.P., Y.Z., L.J., X.L., A.X.); Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China (F.W., X.L.); State Key Laboratory of Pharmaceutical Biotechnology (D.Y., Y.W., Q.L., A.X.), Departments of Medicine (D.Y., Q.L., A.X.) and Pharmacology and Pharmacy (D.Y., Y.W., A.X.), University of Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, China (Y.H.); Department of Pharmacology, Weill Cornell Medical College in Qatar, Doha (H.D., C.T.); and Department of Neurology, 1st Affiliated Hospital of Anhui Medical University, Hefei, China (K.W.)
| | - Fan Wu
- From School of Pharmaceutical Science, Wenzhou Medical University, China (Z.L., X.P., Y.Z., L.J., X.L., A.X.); Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China (F.W., X.L.); State Key Laboratory of Pharmaceutical Biotechnology (D.Y., Y.W., Q.L., A.X.), Departments of Medicine (D.Y., Q.L., A.X.) and Pharmacology and Pharmacy (D.Y., Y.W., A.X.), University of Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, China (Y.H.); Department of Pharmacology, Weill Cornell Medical College in Qatar, Doha (H.D., C.T.); and Department of Neurology, 1st Affiliated Hospital of Anhui Medical University, Hefei, China (K.W.)
| | - Dewei Ye
- From School of Pharmaceutical Science, Wenzhou Medical University, China (Z.L., X.P., Y.Z., L.J., X.L., A.X.); Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China (F.W., X.L.); State Key Laboratory of Pharmaceutical Biotechnology (D.Y., Y.W., Q.L., A.X.), Departments of Medicine (D.Y., Q.L., A.X.) and Pharmacology and Pharmacy (D.Y., Y.W., A.X.), University of Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, China (Y.H.); Department of Pharmacology, Weill Cornell Medical College in Qatar, Doha (H.D., C.T.); and Department of Neurology, 1st Affiliated Hospital of Anhui Medical University, Hefei, China (K.W.)
| | - Yi Zhang
- From School of Pharmaceutical Science, Wenzhou Medical University, China (Z.L., X.P., Y.Z., L.J., X.L., A.X.); Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China (F.W., X.L.); State Key Laboratory of Pharmaceutical Biotechnology (D.Y., Y.W., Q.L., A.X.), Departments of Medicine (D.Y., Q.L., A.X.) and Pharmacology and Pharmacy (D.Y., Y.W., A.X.), University of Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, China (Y.H.); Department of Pharmacology, Weill Cornell Medical College in Qatar, Doha (H.D., C.T.); and Department of Neurology, 1st Affiliated Hospital of Anhui Medical University, Hefei, China (K.W.)
| | - Yu Wang
- From School of Pharmaceutical Science, Wenzhou Medical University, China (Z.L., X.P., Y.Z., L.J., X.L., A.X.); Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China (F.W., X.L.); State Key Laboratory of Pharmaceutical Biotechnology (D.Y., Y.W., Q.L., A.X.), Departments of Medicine (D.Y., Q.L., A.X.) and Pharmacology and Pharmacy (D.Y., Y.W., A.X.), University of Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, China (Y.H.); Department of Pharmacology, Weill Cornell Medical College in Qatar, Doha (H.D., C.T.); and Department of Neurology, 1st Affiliated Hospital of Anhui Medical University, Hefei, China (K.W.)
| | - Leigang Jin
- From School of Pharmaceutical Science, Wenzhou Medical University, China (Z.L., X.P., Y.Z., L.J., X.L., A.X.); Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China (F.W., X.L.); State Key Laboratory of Pharmaceutical Biotechnology (D.Y., Y.W., Q.L., A.X.), Departments of Medicine (D.Y., Q.L., A.X.) and Pharmacology and Pharmacy (D.Y., Y.W., A.X.), University of Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, China (Y.H.); Department of Pharmacology, Weill Cornell Medical College in Qatar, Doha (H.D., C.T.); and Department of Neurology, 1st Affiliated Hospital of Anhui Medical University, Hefei, China (K.W.)
| | - Qizhou Lian
- From School of Pharmaceutical Science, Wenzhou Medical University, China (Z.L., X.P., Y.Z., L.J., X.L., A.X.); Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China (F.W., X.L.); State Key Laboratory of Pharmaceutical Biotechnology (D.Y., Y.W., Q.L., A.X.), Departments of Medicine (D.Y., Q.L., A.X.) and Pharmacology and Pharmacy (D.Y., Y.W., A.X.), University of Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, China (Y.H.); Department of Pharmacology, Weill Cornell Medical College in Qatar, Doha (H.D., C.T.); and Department of Neurology, 1st Affiliated Hospital of Anhui Medical University, Hefei, China (K.W.)
| | - Yu Huang
- From School of Pharmaceutical Science, Wenzhou Medical University, China (Z.L., X.P., Y.Z., L.J., X.L., A.X.); Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China (F.W., X.L.); State Key Laboratory of Pharmaceutical Biotechnology (D.Y., Y.W., Q.L., A.X.), Departments of Medicine (D.Y., Q.L., A.X.) and Pharmacology and Pharmacy (D.Y., Y.W., A.X.), University of Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, China (Y.H.); Department of Pharmacology, Weill Cornell Medical College in Qatar, Doha (H.D., C.T.); and Department of Neurology, 1st Affiliated Hospital of Anhui Medical University, Hefei, China (K.W.)
| | - Hong Ding
- From School of Pharmaceutical Science, Wenzhou Medical University, China (Z.L., X.P., Y.Z., L.J., X.L., A.X.); Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China (F.W., X.L.); State Key Laboratory of Pharmaceutical Biotechnology (D.Y., Y.W., Q.L., A.X.), Departments of Medicine (D.Y., Q.L., A.X.) and Pharmacology and Pharmacy (D.Y., Y.W., A.X.), University of Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, China (Y.H.); Department of Pharmacology, Weill Cornell Medical College in Qatar, Doha (H.D., C.T.); and Department of Neurology, 1st Affiliated Hospital of Anhui Medical University, Hefei, China (K.W.)
| | - Chris Triggle
- From School of Pharmaceutical Science, Wenzhou Medical University, China (Z.L., X.P., Y.Z., L.J., X.L., A.X.); Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China (F.W., X.L.); State Key Laboratory of Pharmaceutical Biotechnology (D.Y., Y.W., Q.L., A.X.), Departments of Medicine (D.Y., Q.L., A.X.) and Pharmacology and Pharmacy (D.Y., Y.W., A.X.), University of Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, China (Y.H.); Department of Pharmacology, Weill Cornell Medical College in Qatar, Doha (H.D., C.T.); and Department of Neurology, 1st Affiliated Hospital of Anhui Medical University, Hefei, China (K.W.)
| | - Kai Wang
- From School of Pharmaceutical Science, Wenzhou Medical University, China (Z.L., X.P., Y.Z., L.J., X.L., A.X.); Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China (F.W., X.L.); State Key Laboratory of Pharmaceutical Biotechnology (D.Y., Y.W., Q.L., A.X.), Departments of Medicine (D.Y., Q.L., A.X.) and Pharmacology and Pharmacy (D.Y., Y.W., A.X.), University of Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, China (Y.H.); Department of Pharmacology, Weill Cornell Medical College in Qatar, Doha (H.D., C.T.); and Department of Neurology, 1st Affiliated Hospital of Anhui Medical University, Hefei, China (K.W.)
| | - Xiaokun Li
- From School of Pharmaceutical Science, Wenzhou Medical University, China (Z.L., X.P., Y.Z., L.J., X.L., A.X.); Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China (F.W., X.L.); State Key Laboratory of Pharmaceutical Biotechnology (D.Y., Y.W., Q.L., A.X.), Departments of Medicine (D.Y., Q.L., A.X.) and Pharmacology and Pharmacy (D.Y., Y.W., A.X.), University of Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, China (Y.H.); Department of Pharmacology, Weill Cornell Medical College in Qatar, Doha (H.D., C.T.); and Department of Neurology, 1st Affiliated Hospital of Anhui Medical University, Hefei, China (K.W.).
| | - Aimin Xu
- From School of Pharmaceutical Science, Wenzhou Medical University, China (Z.L., X.P., Y.Z., L.J., X.L., A.X.); Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China (F.W., X.L.); State Key Laboratory of Pharmaceutical Biotechnology (D.Y., Y.W., Q.L., A.X.), Departments of Medicine (D.Y., Q.L., A.X.) and Pharmacology and Pharmacy (D.Y., Y.W., A.X.), University of Hong Kong, China; School of Biomedical Sciences, Chinese University of Hong Kong, China (Y.H.); Department of Pharmacology, Weill Cornell Medical College in Qatar, Doha (H.D., C.T.); and Department of Neurology, 1st Affiliated Hospital of Anhui Medical University, Hefei, China (K.W.).
| |
Collapse
|
47
|
Chatterjee TK, Basford JE, Yiew KH, Stepp DW, Hui DY, Weintraub NL. Role of histone deacetylase 9 in regulating adipogenic differentiation and high fat diet-induced metabolic disease. Adipocyte 2014; 3:333-8. [PMID: 26317058 DOI: 10.4161/adip.28814] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/23/2022] Open
Abstract
Adipose tissue serves as both a storage site for excess calories and as an endocrine organ, secreting hormones such as adiponectin that promote metabolic homeostasis. In obesity, adipose tissue expands primarily by hypertrophy (enlargement of existing adipocytes) rather than hyperplasia (generation of new adipocytes via adipogenic differentiation of preadipocytes). Progressive adipocyte hypertrophy leads to inflammation, insulin resistance, dyslipidemia, and ectopic lipid deposition, the hallmark characteristics of metabolic disease. We demonstrate that during chronic high fat feeding in mice, adipogenic differentiation is impaired due to the actions of histone deacetylase 9 (HDAC9), a member of the class II family of HDACs. Mechanistically, upregulated HDAC9 expression blocks the adipogenic differentiation program during chronic high fat feeding, leading to accumulation of improperly differentiated adipocytes with diminished expression of adiponectin. These adipocytes are inefficient at storing lipid, resulting in ectopic lipid deposition in the liver. HDAC9 gene deletion prevents the detrimental effects of chronic high fat feeding on adipogenic differentiation, increases adiponectin expression, and enhances energy expenditure by promoting beige adipogenesis, thus leading to reduced body mass and improved metabolic homeostasis. HDAC9 is therefore emerging as a critical regulator of adipose tissue health and a novel therapeutic target for obesity-related disease.
Collapse
|
48
|
FGF21 inhibits apolipoprotein(a) expression in HepG2 cells via the FGFR1-ERK1/2-Elk-1 pathway. Mol Cell Biochem 2014; 393:33-42. [DOI: 10.1007/s11010-014-2044-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/14/2014] [Indexed: 01/18/2023]
|
49
|
Khan MJ, Jacometo CB, Graugnard DE, Corrêa MN, Schmitt E, Cardoso F, Loor JJ. Overfeeding Dairy Cattle During Late-Pregnancy Alters Hepatic PPARα-Regulated Pathways Including Hepatokines: Impact on Metabolism and Peripheral Insulin Sensitivity. GENE REGULATION AND SYSTEMS BIOLOGY 2014; 8:97-111. [PMID: 24737933 PMCID: PMC3981572 DOI: 10.4137/grsb.s14116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/02/2014] [Accepted: 02/25/2014] [Indexed: 01/03/2023]
Abstract
Hepatic metabolic gene networks were studied in dairy cattle fed control (CON, 1.34 Mcal/kg) or higher energy (overfed (OVE), 1.62 Mcal/kg) diets during the last 45 days of pregnancy. A total of 57 target genes encompassing PPARα-targets/co-regulators, hepatokines, growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis, lipogenesis, and lipoprotein metabolism were evaluated on −14, 7, 14, and 30 days around parturition. OVE versus CON cows were in more negative energy balance (NEB) postpartum and had greater serum non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHBA), and liver triacylglycerol (TAG) concentrations. Milk synthesis rate did not differ. Liver from OVE cows responded to postpartal NEB by up-regulating expression of PPARα-targets in the fatty acid oxidation and ketogenesis pathways, along with gluconeogenic genes. Hepatokines (fibroblast growth factor 21 (FGF21), angiopoietin-like 4 (ANGPTL4)) and apolipoprotein A-V (APOA5) were up-regulated postpartum to a greater extent in OVE than CON. OVE led to greater blood insulin prepartum, lower NEFA:insulin, and greater lipogenic gene expression suggesting insulin sensitivity was not impaired. A lack of change in APOB, MTTP, and PNPLA3 coupled with upregulation of PLIN2 postpartum in cows fed OVE contributed to TAG accumulation. Postpartal responses in NEFA and FGF21 with OVE support a role of this hepatokine in diminishing adipose insulin sensitivity.
Collapse
Affiliation(s)
- M Jawad Khan
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA. ; Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Carolina B Jacometo
- NUPEEC, Departamento de Clínicas Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brasil
| | - Daniel E Graugnard
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Marcio N Corrêa
- NUPEEC, Departamento de Clínicas Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brasil
| | | | - Felipe Cardoso
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
50
|
Petri I, Dumbell R, Scherbarth F, Steinlechner S, Barrett P. Effect of exercise on photoperiod-regulated hypothalamic gene expression and peripheral hormones in the seasonal Dwarf Hamster Phodopus sungorus. PLoS One 2014; 9:e90253. [PMID: 24603871 PMCID: PMC3946023 DOI: 10.1371/journal.pone.0090253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/31/2014] [Indexed: 12/30/2022] Open
Abstract
The Siberian hamster (Phodopus sungorus) is a seasonal mammal responding to the annual cycle in photoperiod with anticipatory physiological adaptations. This includes a reduction in food intake and body weight during the autumn in anticipation of seasonally reduced food availability. In the laboratory, short-day induction of body weight loss can be reversed or prevented by voluntary exercise undertaken when a running wheel is introduced into the home cage. The mechanism by which exercise prevents or reverses body weight reduction is unknown, but one hypothesis is a reversal of short-day photoperiod induced gene expression changes in the hypothalamus that underpin body weight regulation. Alternatively, we postulate an exercise-related anabolic effect involving the growth hormone axis. To test these hypotheses we established photoperiod-running wheel experiments of 8 to 16 weeks duration assessing body weight, food intake, organ mass, lean and fat mass by magnetic resonance, circulating hormones FGF21 and insulin and hypothalamic gene expression. In response to running wheel activity, short-day housed hamsters increased body weight. Compared to short-day housed sedentary hamsters the body weight increase was accompanied by higher food intake, maintenance of tissue mass of key organs such as the liver, maintenance of lean and fat mass and hormonal profiles indicative of long day housed hamsters but there was no overall reversal of hypothalamic gene expression regulated by photoperiod. Therefore the mechanism by which activity induces body weight gain is likely to act largely independently of photoperiod regulated gene expression in the hypothalamus.
Collapse
Affiliation(s)
- Ines Petri
- Department of Zoology, University of Veterinary Medicine, Hannover, Germany
| | - Rebecca Dumbell
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Frank Scherbarth
- Department of Zoology, University of Veterinary Medicine, Hannover, Germany
| | | | - Perry Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|