1
|
Guo L, Gong W. Comparison of the benefits and risks of hemihepatic inflow occlusion: a systematic review and meta-analysis. Ann Med Surg (Lond) 2024; 86:4083-4091. [PMID: 38989162 PMCID: PMC11230829 DOI: 10.1097/ms9.0000000000002165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/29/2024] [Indexed: 07/12/2024] Open
Abstract
Background Application of hemihepatic inflow occlusion (HIO) and total hepatic inflow occlusion (TIO) are two common approaches for hepatectomy. However, their efficacy and safety remain controversial. Methods Randomized control trials (RCTs) published before 15t January 2023 were included by a systematic literature search, which compared the clinical outcomes between HIO and TIO. The primary outcome was the estimated blood loss (EBL). Three independent authors screened and extracted the data and resolved disagreements by consensus. The ROB2.0 tool was used for evaluating the risk of bias. Results A total of 1026 patients (511 TIO and 515 HIO) from 9 studies were analyzed in the meta-analyses. The EBL between TIO and HIO group was similar, while HIO was associated with a lower proportion of patients required transfusion (P=0.002), less units of blood transferred (P<0.001) and a lower overall complication rate (P=0.008). There were no significant differences between TIO and HIO in mortality (P=0.37), length of stay (P=0.97), bile leak rate (P=0.58), liver failure rate (P=0.96), reoperation rate (P=0.48), postoperative haemorrhage rate (P=0.93) and incidence of postoperative ascites (P=0.96). The operative time of HIO was usually no more than 15 min longer than that of TIO (P<0.001). Conclusions Comparing with the TIO, HIO increased the operative time and failed to further reduce the EBL in patients with liver surgery. However, despite the complexity of the operation, HIO was recommended due to the similar effect on the consumption of blood products and the postoperative complications.
Collapse
Affiliation(s)
- Lianming Guo
- Department of Hepatobiliary & Pancreatic Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Weiqiang Gong
- Department of Hepatobiliary & Pancreatic Surgery, Weifang People's Hospital, Weifang, Shandong Province, China
| |
Collapse
|
2
|
Chen Y, Zhang J, Li F. Inhibitory role of remifentanil in hepatic ischemia-reperfusion injury through activation of Fmol/Parkin signaling pathway: A study based on network pharmacology analysis and high-throughput sequencing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155300. [PMID: 38518639 DOI: 10.1016/j.phymed.2023.155300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/13/2023] [Accepted: 12/17/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND This study was conducted to elucidate the critical molecular pathways underlying the protective effects of remifentanil against hepatic ischemia-reperfusion injury in rats. Our approach integrated network pharmacology analysis with high-throughput sequencing to achieve a comprehensive understanding of the mechanisms involved. STUDY DESIGN/METHODS The study utilized GSE24430 gene expression data from GEO to investigate remifentanil's impact on Hepatic Ischemia-Reperfusion Injury in rats. Weighted Correlation Network Analysis (WGCNA) was employed to pinpoint crucial genes and identify modules of co-expressed genes. Differential analysis with the "Limma" package revealed genes differentially expressed in IRI vs. control groups. PubChem and PharmMapper provided target genes affected by remifentanil. Protein-protein interaction networks were constructed via GeneCards and STRING. Functional analysis pinpointed core genes involved in remifentanil's IRI alleviation. IRI rat models were established, and hepatic injury indicators, liver structure via H&E staining, autophagosome counts via electron microscopy, and gene/protein expression via RT-qPCR and Western blot were assessed. High-throughput sequencing analyzed molecular pathways affected by varying remifentanil doses in IRI rats. RESULTS In the study, we discovered four primary co-expression modules associated with hepatic IRI, and the grey module exhibited the highest correlation with hepatic IRI.A total of sixty-eight genes that were differentially expressed were found to have a connection with hepatic IRI.Network pharmacology analysis found that remifentanil may alleviate hepatic IRI through Fmol.found that the Fmol/Parkin signaling pathway may alleviate hepatic IRI via Additionally, the database autophagy. The established hepatic IRI rat models further confirmed the above findings. CONCLUSION Our study established that remifentanil triggers the Fmol/Parkin signaling cascade, amplifying the expression levels of Fmol and Parkin. This process culminates in the activation of autophagy within hepatic cells, ultimately alleviating hepatic ischemia-reperfusion injury (IRI).
Collapse
Affiliation(s)
- Yisi Chen
- Department of Anesthesiology, Huai'an First People's Hospital, Huai'an 223300, China.
| | - Jun Zhang
- Department of Anesthesiology, Huai'an First People's Hospital, Huai'an 223300, China
| | - Fayin Li
- Department of Anesthesiology, Huai'an First People's Hospital, Huai'an 223300, China
| |
Collapse
|
3
|
Habibi P, Falamarzi K, Ebrahimi ND, Zarei M, Malekpour M, Azarpira N. GDF11: An emerging therapeutic target for liver diseases and fibrosis. J Cell Mol Med 2024; 28:e18140. [PMID: 38494851 PMCID: PMC10945076 DOI: 10.1111/jcmm.18140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 03/19/2024] Open
Abstract
Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), has been identified as a key player in various biological processes, including embryonic development, aging, metabolic disorders and cancers. GDF11 has also emerged as a critical component in liver development, injury and fibrosis. However, the effects of GDF11 on liver physiology and pathology have been a subject of debate among researchers due to conflicting reported outcomes. While some studies suggest that GDF11 has anti-aging properties, others have documented its senescence-inducing effects. Similarly, while GDF11 has been implicated in exacerbating liver injury, it has also been shown to have the potential to reduce liver fibrosis. In this narrative review, we present a comprehensive report of recent evidence elucidating the diverse roles of GDF11 in liver development, hepatic injury, regeneration and associated diseases such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma. We also explore the therapeutic potential of GDF11 in managing various liver pathologies.
Collapse
Affiliation(s)
- Pardis Habibi
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| | - Kimia Falamarzi
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| | | | - Mohammad Zarei
- Renal Division, Brigham & Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- John B. Little Center for Radiation SciencesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Mahdi Malekpour
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| | - Negar Azarpira
- Transplant Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
4
|
Groiss S, Viertler C, Kap M, Bernhardt G, Mischinger HJ, Sieuwerts A, Verhoef C, Riegman P, Kruhøffer M, Svec D, Sjöback SR, Becker KF, Zatloukal K. Inter-patient heterogeneity in the hepatic ischemia-reperfusion injury transcriptome: Implications for research and diagnostics. N Biotechnol 2024; 79:20-29. [PMID: 38072306 DOI: 10.1016/j.nbt.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Cellular responses induced by surgical procedure or ischemia-reperfusion injury (IRI) may severely alter transcriptome profiles and complicate molecular diagnostics. To investigate this effect, we characterized such pre-analytical effects in 143 non-malignant liver samples obtained from 30 patients at different time points of ischemia during surgery from two individual cohorts treated either with the Pringle manoeuvre or total vascular exclusion. Transcriptomics profiles were analyzed by Affymetrix microarrays and expression of selected mRNAs was validated by RT-PCR. We found 179 mutually deregulated genes which point to elevated cytokine signaling with NFκB as a dominant pathway in ischemia responses. In contrast to ischemia, reperfusion induced pro-apoptotic and pro-inflammatory cascades involving TNF, NFκB and MAPK pathways. FOS and JUN were down-regulated in steatosis compared to their up-regulation in normal livers. Surprisingly, molecular signatures of underlying primary and secondary cancers were present in non-tumor tissue. The reported inter-patient variability might reflect differences in individual stress responses and impact of underlying disease conditions. Furthermore, we provide a set of 230 pre-analytically highly robust genes identified from histologically normal livers (<2% covariation across both cohorts) that might serve as reference genes and could be particularly suited for future diagnostic applications.
Collapse
Affiliation(s)
- Silvia Groiss
- Diagnostic & Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Christian Viertler
- Diagnostic & Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Marcel Kap
- Pathology Department, Erasmus University Medical Center, 3015CN Rotterdam, the Netherlands
| | - Gerwin Bernhardt
- Division of General Surgery, Department of Surgery, Medical University of Graz, 8010 Graz, Austria; Department of Orthopedics and Trauma Surgery, Medical University of Graz, 8010 Graz, Austria
| | - Hans-Jörg Mischinger
- Division of General Surgery, Department of Surgery, Medical University of Graz, 8010 Graz, Austria
| | - Anieta Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, 3015CN Rotterdam, the Netherlands
| | - Cees Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015CN Rotterdam, the Netherlands
| | - Peter Riegman
- Pathology Department, Erasmus University Medical Center, 3015CN Rotterdam, the Netherlands
| | | | - David Svec
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 252 50 Vestec, Czech Republic
| | | | | | - Kurt Zatloukal
- Diagnostic & Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
5
|
Omorou M, Huang Y, Gao M, Mu C, Xu W, Han Y, Xu H. The forkhead box O3 (FOXO3): a key player in the regulation of ischemia and reperfusion injury. Cell Mol Life Sci 2023; 80:102. [PMID: 36939886 PMCID: PMC11072419 DOI: 10.1007/s00018-023-04755-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/21/2023]
Abstract
Forkhead box O3 is a protein encoded by the FOXO3 gene expressed throughout the body. FOXO3 could play a crucial role in longevity and many other pathologies, such as Alzheimer's disease, glioblastoma, and stroke. This study is a comprehensive review of the expression of FOXO3 under ischemia and reperfusion (IR) and the molecular mechanisms of its regulation and function. We found that the expression level of FOXO3 under ischemia and IR is tissue-specific. Specifically, the expression level of FOXO3 is increased in the lung and intestinal epithelial cells after IR. However, FOXO3 is downregulated in the kidney after IR and in the skeletal muscles following ischemia. Interestingly, both increased and decreased FOXO3 expression have been reported in the brain, liver, and heart following IR. Nevertheless, these contribute to stimulating ischemia and reperfusion injury via the induction of inflammatory response, apoptosis, autophagy, mitophagy, pyroptosis, and oxidative damage. These results suggest that FOXO3 could play protective effects in some organs and detrimental effects in others against IR injury. Most importantly, these findings indicate that controlling FOXO3 expression, genetically or pharmacologically, could contribute to preventing or treating ischemia and reperfusion damage.
Collapse
Affiliation(s)
- Moussa Omorou
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Yiwei Huang
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Meng Gao
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Chenxi Mu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Weijing Xu
- Department Epidemiology and Health Statistics, Jiamusi University School of Public Health, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Yuchun Han
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, 154000, Heilongjiang, People's Republic of China.
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, 154000, Heilongjiang, People's Republic of China.
| |
Collapse
|
6
|
Kawamoto Y, Honda G, Ome Y, Matsunaga Y, Uemura S, Yoshida N, Kotera Y, Ariizumi S. Laparoscopic left hepatectomy in a goat as a training model for laparoscopic anatomic liver resection: results of training courses with a total of 70 goats. Surg Endosc 2023; 37:3634-3641. [PMID: 36627539 DOI: 10.1007/s00464-023-09864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND To create a suitable animal model for the training of laparoscopic anatomic liver resection, we performed left hepatectomy using a goat and found its suitability. We have since started using goats for wet-lab training and have gradually standardized the relevant procedures. Herein, we report our standardized training procedures using a goat and discuss its feasibility as a novel training model. METHODS The standardized wet-lab training courses of laparoscopic liver resection conducted on 62 tables with a total of 70 goats were reviewed. The training course began by encircling the hepatoduodenal ligament for the Pringle maneuver, which was repeated during the parenchymal dissection. Following partial liver resection of the left lateral section, left hepatectomy was performed by a standardized procedure for humans in which the liver was split, exposing the entire length of the middle hepatic vein trunk from the dorsal side after extrahepatic transection of the left Glissonean pedicle. If a goat deceased before initiating left hepatectomy, the training was restarted with a new goat. The surgical procedures were performed by surgeons of varying skill levels. RESULTS A total of 184 surgeons including 10 surgical residents participated in the training. Partial liver resection was initiated in 62 tables, with 8 (13%) dying during or after the procedure of partial liver resection. Subsequently, left hepatectomy was initiated in 61 and completed in 59 tables (98%), regardless of whether the goat survived or deceased, and was not completed in 2 tables (3%) due to time limitation. In 14 tables (23%), the goats deceased during the procedure, however, the procedure was completed. The causes of death were multifactorial, including massive bleeding, reperfusion injury after the Pringle maneuver, and carbon dioxide gas embolism. CONCLUSIONS Left hepatectomy in a goat is useful as a training model for laparoscopic anatomic liver resection.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Goro Honda
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
| | - Yusuke Ome
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Yutaro Matsunaga
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Shuichiro Uemura
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Naoki Yoshida
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Yoshihito Kotera
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Shunichi Ariizumi
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| |
Collapse
|
7
|
A photoacoustic patch for three-dimensional imaging of hemoglobin and core temperature. Nat Commun 2022; 13:7757. [PMID: 36522334 PMCID: PMC9755152 DOI: 10.1038/s41467-022-35455-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Electronic patches, based on various mechanisms, allow continuous and noninvasive monitoring of biomolecules on the skin surface. However, to date, such devices are unable to sense biomolecules in deep tissues, which have a stronger and faster correlation with the human physiological status than those on the skin surface. Here, we demonstrate a photoacoustic patch for three-dimensional (3D) mapping of hemoglobin in deep tissues. This photoacoustic patch integrates an array of ultrasonic transducers and vertical-cavity surface-emitting laser (VCSEL) diodes on a common soft substrate. The high-power VCSEL diodes can generate laser pulses that penetrate >2 cm into biological tissues and activate hemoglobin molecules to generate acoustic waves, which can be collected by the transducers for 3D imaging of the hemoglobin with a high spatial resolution. Additionally, the photoacoustic signal amplitude and temperature have a linear relationship, which allows 3D mapping of core temperatures with high accuracy and fast response. With access to biomolecules in deep tissues, this technology adds unprecedented capabilities to wearable electronics and thus holds significant implications for various applications in both basic research and clinical practice.
Collapse
|
8
|
Li J, Li J, Fang H, Yang H, Wu T, Shi X, Pang C. Isolongifolene alleviates liver ischemia/reperfusion injury by regulating AMPK-PGC1α signaling pathway-mediated inflammation, apoptosis, and oxidative stress. Int Immunopharmacol 2022; 113:109185. [DOI: 10.1016/j.intimp.2022.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/05/2022]
|
9
|
Chen S, Li A, Wu J, Huang Y, Zou T, Tailaiti T, Wang J. Dexmedetomidine reduces myocardial ischemia-reperfusion injury in young mice through MIF/AMPK/GLUT4 axis. BMC Anesthesiol 2022; 22:289. [PMID: 36104681 PMCID: PMC9472426 DOI: 10.1186/s12871-022-01825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reperfusion of ischemic tissue has adverse impact on the myocardium. Dexmedetomidine (Dex) is a α2-adrenergic receptor (α2-AR) agonist with sedative and analgesic effects. Macrophage migration inhibition factor (MIF) is a pressure-regulating cytokine and is responsible for inflammatory and immune diseases. This study aims to reveal the consequences of Dex on myocardial ischemia-reperfusion injury (IRI) in young mice. METHODS Fifty mice were raised and examined. At the end of the experiment, all mice were euthanized. The anterior descending department of the left coronary artery in mice was under ischemia for 60 min, then the ligation line was released and reperfused for 120 min to establish the IRI model. Mice were randomly divided into Sham, control, treatment using 4,5-dihydro-3-(4-hydroxyphenyl)-5-isoxazoleacetic acid (ISO-1), Dex treatment, and Dex combined ISO-1 treatment groups. Interleukin (IL)-6, IL-10 and tumor necrosis factor (TNF-α) were determined by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) and ATP levels were recorded. The expressions of MIF, P-adenosine monophosphate-activated kinase α (AMPKα), glucose transporter (GLUT)4, Bax and Bcl-2 were detected by Western Blot (WB). Hematoxylin and Eosin (H&E) staining was used to study cell morphology. Apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. Echocardiography was carried out at the end of reperfusion, and the infarct size was calculated by Electron microscopy. RESULTS I/R + Dex group showed significantly increased IL-6 and TNF-α levels and reduced myocardial cell necrosis and apoptosis. H&E staining showed alleviated myocardial disorder, myocardial cell swelling, myocardial fiber fracture, and inflammatory cell infiltration in I/R + Dex group. Myocardial cell necrosis and apoptosis were significantly reduced in I/R + Dex group. ATP level in myocardial tissue of mice in I/R group was substantially decreased, while that in Dex group was increased. WB results showed that MIF, P-AMPK α, GLUT4 and Bcl-2 levels were increased and Bax levels were decreased in I/R + Dex group. CONCLUSION Dex may exert myocardial protection in young mice through MIF/AMPK/GLUT4 axis.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, No.137, Liyushan Road, Xinshi District, Urumqi, Xinjiang, 830054, Uygur Autonomous Region, China
| | - Aimei Li
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, No.137, Liyushan Road, Xinshi District, Urumqi, Xinjiang, 830054, Uygur Autonomous Region, China
| | - Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, No.137, Liyushan Road, Xinshi District, Urumqi, Xinjiang, 830054, Uygur Autonomous Region, China
| | - Yidan Huang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, No.137, Liyushan Road, Xinshi District, Urumqi, Xinjiang, 830054, Uygur Autonomous Region, China
| | - Tiantian Zou
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, No.137, Liyushan Road, Xinshi District, Urumqi, Xinjiang, 830054, Uygur Autonomous Region, China
| | - Taiwangu Tailaiti
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, No.137, Liyushan Road, Xinshi District, Urumqi, Xinjiang, 830054, Uygur Autonomous Region, China
| | - Jiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, No.137, Liyushan Road, Xinshi District, Urumqi, Xinjiang, 830054, Uygur Autonomous Region, China.
| |
Collapse
|
10
|
Lee B, Cho JY, Han HS, Yoon YS, Lee HW, Lee JS, Kim M, Jo Y. Effect of postoperative administration of nafamostat mesilate on posthepatectomy liver failure. HPB (Oxford) 2022; 24:1569-1576. [PMID: 35477649 DOI: 10.1016/j.hpb.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND To investigate whether the administration of nafamostat mesilate (NM) reduces the risk of posthepatectomy liver failure (PHLF) in patients undergoing hepatectomy for hepatocellular carcinoma (HCC). METHODS We retrospectively reviewed the 1114 patients who underwent hepatectomy for HCC between 2004 and 2020. NM was selectively administered to patients undergoing major hepatectomy with an estimated blood loss of >500 mL. NM group was administered via intravenous of 20 mg of NM from immediately after surgery until postoperative day 4. We performed 1:1 propensity score matching and included 56 patients in each group. PHLF was defined according to the International Study Group of Liver Surgery (ISGLS). RESULTS The incidence of PHLF was lower in the NM group than control group (P = 0.018). The mean peak total bilirubin (P = 0.006), aspartate transaminase (P = 0.018), and alanine aminotransferase (P = 0.018) levels postoperatively were significantly lower in the NM group. The mean hospital stays (P = 0.012) and major complication rate (P = 0.023) were also significantly lower in the NM group. CONCLUSION Prophylactic administration of NM reduced the risks of complication and decreased the frequency of PHLF after hepatectomy. A further prospective study is needed to verify our findings.
Collapse
Affiliation(s)
- Boram Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jai Young Cho
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea.
| | - Ho-Seong Han
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoo-Seok Yoon
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Hae Won Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun Suh Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Moonhwan Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Yeongsoo Jo
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Morsy MA, Ibrahim YF, Abdel Hafez SMN, Zenhom NM, Nair AB, Venugopala KN, Shinu P, Abdel-Gaber SA. Paeonol Attenuates Hepatic Ischemia/Reperfusion Injury by Modulating the Nrf2/HO-1 and TLR4/MYD88/NF-κB Signaling Pathways. Antioxidants (Basel) 2022; 11:antiox11091687. [PMID: 36139761 PMCID: PMC9495847 DOI: 10.3390/antiox11091687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatic ischemia/reperfusion (HIR) is the most common type of liver injury following several clinical situations. Modulating oxidative stress and inflammation by Nrf2/HO-1 and TLR4/MYD88/NF-κB pathways, respectively, is involved in alleviating HIR injury. Paeonol is a natural phenolic compound that demonstrates significant antioxidant and anti-inflammatory effects. The present study explored the possible protective effect of paeonol against HIR injury and investigated its possible molecular mechanisms in rats. Rats were randomly divided into four groups: sham-operated control, paeonol-treated sham-operated control, HIR untreated, and HIR paeonol-treated groups. The results confirmed that hepatic injury was significantly aggravated biochemically by elevated serum levels of alanine transaminase and aspartate transaminase, as well as by histopathological alterations, while paeonol reduced the increase in transaminases and alleviated pathological changes induced by HIR. Additionally, paeonol inhibited the HIR-induced oxidative stress in hepatic tissues by decreasing the upraised levels of malondialdehyde and nitric oxide and enhancing the suppressed levels of reduced glutathione and superoxide dismutase activity. Furthermore, paeonol activated the protective antioxidative Nrf2/HO-1 pathway. The protective effect of paeonol was associated with inhibiting the expression of the inflammatory key mediators TLR4, MYD88, NF-κB, and TNF-α. Finally, paeonol inhibited the increased mRNA levels of the pro-apoptotic marker Bax and enhanced the reduced mRNA levels of the anti-apoptotic marker Bcl-2. Taken together, our results proved for the first time that paeonol could protect against HIR injury by inhibiting oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, the Deanship of Scientific Research, the Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
- Correspondence: ; Tel.: +966-5496-72245
| | - Yasmine F. Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | | | - Nagwa M. Zenhom
- Department of Biochemistry, Faculty of Medicine, Al-Baha University, Albaha 65525, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Seham A. Abdel-Gaber
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
12
|
Progress and Setbacks in Translating a Decade of Ferroptosis Research into Clinical Practice. Cells 2022; 11:cells11142134. [PMID: 35883577 PMCID: PMC9320262 DOI: 10.3390/cells11142134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ten years after its initial description, ferroptosis has emerged as the most intensely studied entity among the non-apoptotic forms of regulated cell death. The molecular features of ferroptotic cell death and its functional role have been characterized in vitro and in an ever-growing number of animal studies, demonstrating that it exerts either highly detrimental or, depending on the context, occasionally beneficial effects on the organism. Consequently, two contrary therapeutic approaches are being explored to exploit our detailed understanding of this cell death pathway: the inhibition of ferroptosis to limit organ damage in disorders such as drug-induced toxicity or ischemia-reperfusion injury, and the induction of ferroptosis in cancer cells to ameliorate anti-tumor strategies. However, the path from basic science to clinical utility is rocky. Emphasizing ferroptosis inhibition, we review the success and failures thus far in the translational process from basic research in the laboratory to the treatment of patients.
Collapse
|
13
|
Zhang S, Rao S, Yang M, Ma C, Hong F, Yang S. Role of Mitochondrial Pathways in Cell Apoptosis during He-Patic Ischemia/Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23042357. [PMID: 35216473 PMCID: PMC8877300 DOI: 10.3390/ijms23042357] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatic ischemia-reperfusion injury is a major cause of post-operative hepatic dysfunction and liver failure after transplantation. Mitochondrial pathways can be either beneficial or detrimental to hepatic cell apoptosis during hepatic ischemia/reperfusion injury, depending on multiple factors. Hepatic ischemia/reperfusion injury may be induced by opened mitochondrial permeability transition pore, released apoptosis-related proteins, up-regulated B-cell lymphoma-2 gene family proteins, unbalanced mitochondrial dynamics, and endoplasmic reticulum stress, which are integral parts of mitochondrial pathways. In this review, we discuss the role of mitochondrial pathways in apoptosis that account for the most deleterious effect of hepatic ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Sen Zhang
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Sijing Rao
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Meiwen Yang
- Department of Surgery, Fuzhou Medical College, Nanchang University, Fuzhou 344099, China;
| | - Chen Ma
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Fengfang Hong
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, China; (S.Z.); (S.R.); (C.M.)
- Correspondence: (F.H.); or (S.Y.)
| | - Shulong Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, China
- Department of Physiology, Fuzhou Medical College, Nanchang University, Fuzhou 344099, China
- Correspondence: (F.H.); or (S.Y.)
| |
Collapse
|
14
|
Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells 2022; 11:cells11040688. [PMID: 35203337 PMCID: PMC8870414 DOI: 10.3390/cells11040688] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects. At the core of HIRI lies mitochondrial dysfunction. Various studies, from both animal models and in clinical settings, have clearly shown that mitochondrial function is severely hampered by HIRI and that its preservation or restoration is a key indicator of successful organ recovery. Several strategies have been thus implemented throughout the years, targeting mitochondrial function. This work briefly discusses some the most utilized approaches, ranging from surgical practices to pharmacological interventions and highlights how novel strategies can be investigated and implemented by intricately discussing the way mitochondrial function is affected by HIRI.
Collapse
|
15
|
The multifaceted role of ferroptosis in liver disease. Cell Death Differ 2022; 29:467-480. [PMID: 35075250 PMCID: PMC8901678 DOI: 10.1038/s41418-022-00941-0] [Citation(s) in RCA: 269] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is an iron-dependent form of non-apoptotic cell death characterized by excessive lipid peroxidation and associated with a plethora of pathological conditions in the liver. Emerging evidence supports the notion that dysregulated metabolic pathways and impaired iron homeostasis play a role in the progression of liver disease via ferroptosis. Although the molecular mechanisms by which ferroptosis causes disease are poorly understood, several ferroptosis-associated genes and pathways have been implicated in liver disease. Here, we review the physiological role of the liver in processing nutrients, our current understanding of iron metabolism, the characteristics of ferroptosis, and the mechanisms that regulate ferroptosis. In addition, we summarize the role of ferroptosis in the pathogenesis of liver disease, including liver injury, non-alcoholic steatohepatitis, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Finally, we discuss the therapeutic potential of targeting ferroptosis for managing liver disease.
Collapse
|
16
|
Platt E, Klootwijk E, Salama A, Davidson B, Robertson F. Literature review of the mechanisms of acute kidney injury secondary to acute liver injury. World J Nephrol 2022; 11:13-29. [PMID: 35117976 PMCID: PMC8790308 DOI: 10.5527/wjn.v11.i1.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/12/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023] Open
Abstract
People exposed to liver ischaemia reperfusion (IR) injury often develop acute kidney injury and the combination is associated with significant morbidity and mortality. Molecular mediators released by the liver in response to IR injury are the likely cause of acute kidney injury (AKI) in this setting, but the mediators have not yet been identified. Identifying the mechanism of injury will allow the identification of therapeutic targets which may modulate both liver IR injury and AKI following liver IR injury.
Collapse
Affiliation(s)
- Esther Platt
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, United Kingdom
| | - Enriko Klootwijk
- Department of Renal Medicine, University College London, London NW3 2PF, United Kingdom
| | - Alan Salama
- Department of Renal Medicine, University College London, London NW3 2PF, United Kingdom
| | - Brian Davidson
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, United Kingdom
| | - Francis Robertson
- Division of Surgery and Interventional Science, University College London, London NW3 2QG, United Kingdom
| |
Collapse
|
17
|
Protective mechanisms of telmisartan against hepatic ischemia/reperfusion injury in rats may involve PPARγ-induced TLR4/NF-κB suppression. Biomed Pharmacother 2021; 145:112374. [PMID: 34915671 DOI: 10.1016/j.biopha.2021.112374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatic ischemia-reperfusion (I/R) is an important cause of liver damage in many clinical situations. Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) is an inflammatory pathway activated in hepatic I/R injury. Telmisartan, a selective angiotensin II type 1 receptor antagonist and peroxisome proliferator-activated receptor-gamma (PPARγ) partial agonist, can inhibit the expression of pro-inflammatory cytokines. The present work investigated the possible protective effect of telmisartan against hepatic I/R injury and explored its possible mechanisms in rats. Rats were divided into four equal groups: sham-operated control, telmisartan-treated sham-operated control, I/R untreated, and I/R telmisartan-treated groups. Hepatic injury was evaluated biochemically by serum activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and histopathological examination. Hepatic oxidative stress biomarkers, myeloperoxidase level, PPARγ and TLR4 mRNA expression, and NF-κB and active caspase 3 immunoexpression were determined. The study showed that telmisartan attenuated hepatic I/R, as evidenced by decreased serum ALT and AST activities and confirmed by improvement of the histopathological changes. The protective effect of telmisartan was associated with modulation of oxidative stress parameters, myeloperoxidase level, PPARγ and TLR4 mRNA expression, and NF-κB and caspase 3 immunoexpression. Taken together, the current study showed that telmisartan could protect the rat liver from I/R injury. This hepatoprotective effect was attributed to, at least in part, increase in PPARγ expression and suppression of TLR4/NF-κB pathway.
Collapse
|
18
|
Betsou A, Lambropoulou M, Georgakopoulou AE, Kostomitsopoulos N, Konstandi O, Anagnostopoulos K, Tsalikidis C, Simopoulos CE, Valsami G, Tsaroucha AK. The hepatoprotective effect of silibinin after hepatic ischemia/reperfusion in a rat model is confirmed by immunohistochemistry and qRT-PCR. J Pharm Pharmacol 2021; 73:1274-1284. [PMID: 33847359 DOI: 10.1093/jpp/rgab062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/19/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVES We investigated the positive effect of silibinin after IV administration as silibinin-hydroxypropyl-β-cyclodextrin lyophilized product, by measuring gene expression and liver tissue protein levels of tumor necrosis factor-α, interleukin-6, monocyte chemoattractant protein-1, matrix metalloproteinases matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases-2. METHODS 63 Wistar rats of age 13.24±4.40 weeks underwent ischemia/reperfusion (I/R) injury of the liver. The animals were randomized into three groups: Sham (S; n = 7); Control (C; n-28); silibinin (Si; n-28). The C and Si groups underwent 45 min ischemia. Si received silibinin-hydroxypropyl-β-cyclodextrin intravenously immediately before reperfusion at a dose of 5 mg/kg. Both groups were further divided into 4 subgroups, based on euthanasia time (i.e., 60, 120, 180 and 240 min). KEY FINDINGS qRT-PCR results confirmed the statistically significant reduction of the expression of the pro-inflammatory factors at 240 min after I/R injury (tumor necrosis factor-α: P < 0.05; MCR1: P < 0.05) and matrix metalloproteinases (matrix metalloproteinases 2: P < 0.05; matrix metalloproteinases 3: P < 0.05) and the increase of tissue inhibitor of matrix metalloproteinases-2 in liver tissue in the Si group. Moreover, results of immunohistochemistry levels confirmed that at 240 min pro-inflammatory factors (tumor necrosis factor-α: P < 0.05; MCR1: P < 0.05) and matrix metalloproteinases ( matrix metalloproteinases 2: P < 0.05; matrix metalloproteinases 3: P < 0.05) had a statistically significantly lower expression in the Si group while tissue inhibitor of matrix metalloproteinases-2 had a higher expression. CONCLUSIONS Silibinin may have a beneficial effect on the protection of the liver.
Collapse
Affiliation(s)
- Afrodite Betsou
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Ourania Konstandi
- Faculty of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Christos Tsalikidis
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Constantinos E Simopoulos
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgia Valsami
- School of Health Sciences, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra K Tsaroucha
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- 2nd Department of Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Bioethics, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
19
|
Yan L, Luo H, Li X, Li Y. d-Pinitol protects against endoplasmic reticulum stress and apoptosis in hepatic ischemia-reperfusion injury via modulation of AFT4-CHOP/GRP78 and caspase-3 signaling pathways. Int J Immunopathol Pharmacol 2021; 35:20587384211032098. [PMID: 34275383 PMCID: PMC8287360 DOI: 10.1177/20587384211032098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a major unavoidable clinical problem
often accompanying various liver surgery and transplantation.
d-Pinitol, a cyclic polyol, exhibits hepatoprotective efficacy. The
objective of this study is to determine the possible mechanism of action of
pinitol against endoplasmic reticulum (ER) stress regulation-mediated hepatic
IRI and compare its effects with thymoquinone (TQ) in experimental rats. Male
Sprague Dawley rats were pre-treated orally with either vehicle (DMSO) or
d-Pinitol (5, 10, and 20 mg/kg) or TQ (30 mg/kg) for 21 days and
subjected to 60 min of partial hepatic ischemia followed by 24 h of reperfusion.
Pre-treatment with pinitol (10 and 20 mg/kg) effectively
(P < 0.05) protected against
IRI-induced hepatic damage reflected by attenuation of elevated oxidative stress
and pro-inflammatory cytokines. Additionally, western blot and ELISA analyses
suggested that pinitol significantly
(P < 0.05) down-regulated expression of
endoplasmic reticulum stress apoptotic markers, namely glucose-regulated protein
(GRP)-78, CCAAT/enhancer-binding protein homologous protein (CHOP), activating
transcription factor (AFT)-4 and -6α, X-box binding protein-1, and caspase-3, 9,
and 12. Additionally, pinitol pre-treatment effectively
(P < 0.05) improved mitochondrial
function and phosphorylation of Extracellular signal-regulated kinase (ERK)-1/2
and p38. Pinitol markedly (P < 0.05)
protected hepatic apoptosis determined by flow cytometry. Further, pinitol
provided effective (P < 0.05) protection
against hepatic histological and ultrastructural aberrations induced by IRI. TQ
showed more pronounced protective effect against attenuation of IRI-induced
hepatic injury as compared to d-Pinitol. Pinitol offered protection
against endoplasmic reticulum stress-mediated phosphorylation of ERK1/2 and p38,
thereby inhibiting AFT4-CHOP/GRP78 signaling response and caspase-3 induced
hepatocellular apoptosis during hepatic ischemia-reperfusion insults. Thus,
Pinitol can be considered as a viable option for the management of hepatic
IRI.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, Xi'an, Shaanxi, China.,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptides, Xi'an, Shaanxi, China
| | - Heng Luo
- Reproductive Medicine Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xingsheng Li
- Department of Gerontology, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Yongyong Li
- Department of Gerontology, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| |
Collapse
|
20
|
Li S, Zhu J, Pan L, Wan P, Qin Q, Luo D, Pan W, Wei Y, Xu Y, Shang L, Ye X. Potential protective effect of hesperidin on hypoxia/reoxygenation-induced hepatocyte injury. Exp Ther Med 2021; 22:764. [PMID: 34035861 PMCID: PMC8135133 DOI: 10.3892/etm.2021.10196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Hesperidin (HDN) has been reported to have hydrogen radical- and hydrogen peroxide-removal activities and to serve an antioxidant role in biological systems. However, whether HDN protects hepatocytes (HCs) against hypoxia/reoxygenation (H/R)-induced injury remains unknown. The present study aimed to explore the role of HDN in H/R-induced injury. HCs were isolated and cultured under H/R conditions with or without HDN treatment. HC damage was markedly induced under H/R, as indicated by cell viability, supernatant lactate dehydrogenase levels and alanine aminotransferase levels; however, HDN treatment significantly reversed HC injury. Oxidative stress markers (malondialdehyde, superoxide dismutase, glutathioneand reactive oxygen species) were increased markedly during H/R in HCs; however, this effect was significantly attenuated after exposure to HDN. Compared with those of the control group, the mRNA expression levels of IL-6 and TNF-α in HCs and the concentrations of IL-6 and TNF-α in the supernatants increased significantly following H/R, and HDN significantly ameliorated these effects. Western blotting demonstrated that microtubule-associated protein 1 light chain 3α (MAP1LC3A, also known as LC3) and Beclin-1 protein expression levels increased, while sequestosome 1 levels decreased during H/R following exposure to HDN. The number of GFP-LC3 puncta in HCs following exposure to HDN was increased compared with that observed in HCs without HDN exposure under the H/R conditions after bafilomycin A1 treatment. In summary, the present study demonstrated that HDN attenuated HC oxidative stress and inflammatory responses while enhancing autophagy during H/R. HDN may have a potential protective effect on HCs during H/R-induced injury.
Collapse
Affiliation(s)
- Shilai Li
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jijin Zhu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ling Pan
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Peiqi Wan
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Quanlin Qin
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Daqing Luo
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenhui Pan
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuqing Wei
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yansong Xu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liming Shang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
21
|
Zhang H, Chen T, Ren J, Xia Y, Onuma A, Wang Y, He J, Wu J, Wang H, Hamad A, Shen C, Zhang J, Asara JM, Behbehani GK, Wen H, Deng M, Tsung A, Huang H. Pre-operative exercise therapy triggers anti-inflammatory trained immunity of Kupffer cells through metabolic reprogramming. Nat Metab 2021; 3:843-858. [PMID: 34127858 PMCID: PMC8462058 DOI: 10.1038/s42255-021-00402-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Pre-operative exercise therapy improves outcomes for many patients who undergo surgery. Despite the well-known effects on tolerance to systemic perturbation, the mechanisms by which pre-operative exercise protects the organ that is operated on from inflammatory injury are unclear. Here, we show that four-week aerobic pre-operative exercise significantly attenuates liver injury and inflammation from ischaemia and reperfusion in mice. Remarkably, these beneficial effects last for seven more days after completing pre-operative exercising. We find that exercise specifically drives Kupffer cells toward an anti-inflammatory phenotype with trained immunity via metabolic reprogramming. Mechanistically, exercise-induced HMGB1 release enhances itaconate metabolism in the tricarboxylic acid cycle that impacts Kupffer cells in an NRF2-dependent manner. Therefore, these metabolites and cellular/molecular targets can be investigated as potential exercise-mimicking pharmaceutical candidates to protect against liver injury during surgery.
Collapse
Affiliation(s)
- Hongji Zhang
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tianmeng Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Cellular and Molecular Pathology Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jinghua Ren
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yujia Xia
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Amblessed Onuma
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yu Wang
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jiayi He
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Junru Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Han Wang
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmad Hamad
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Chengli Shen
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jinxiang Zhang
- Department of Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - John M Asara
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Gregory K Behbehani
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Meihong Deng
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| | - Allan Tsung
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Hai Huang
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
22
|
Hwang S, Yang YM. Exosomal microRNAs as diagnostic and therapeutic biomarkers in non-malignant liver diseases. Arch Pharm Res 2021; 44:574-587. [PMID: 34165701 PMCID: PMC8223764 DOI: 10.1007/s12272-021-01338-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/20/2021] [Indexed: 12/16/2022]
Abstract
The liver is a vital organ responsible for various physiological functions, such as metabolism, immune response, digestion, and detoxification. Crosstalk between hepatocytes, hepatic macrophages, and hepatic stellate cells is critical for liver pathology. Exosomes are small extracellular vesicles (50-150 nm) that play an important role in cell-cell or organ-organ communication as they transfer their cargo, such as protein, DNA, and RNA to recipient cells or distant organs. In various liver diseases, the number of liver cell-derived exosomes is increased and the exosomal microRNA (miRNA) profile is altered. Early studies investigated the value of circulating exosomal miRNAs as biomarkers. Several exosomal miRNAs showed excellent diagnostic values, suggesting their potential as diagnostic biomarkers in liver diseases. Exosomal miRNAs have emerged as critical regulators of liver pathology because they control the expression of multiple genes in recipient cells. In this review, we discuss the biology of exosomes and summarize the recent findings of exosome-mediated intercellular and organ-to-organ communication during liver pathology. As there are many review articles dealing with exosomal miRNAs in liver cancer, we focused on non-malignant liver diseases. The therapeutic potential of exosomal miRNAs in liver pathology is also highlighted.
Collapse
Affiliation(s)
- Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, South Korea
| | - Yoon Mee Yang
- Department of Pharmacy, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, South Korea.
- KNU Researcher training program for developing Anti-Viral Innovative Drugs, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
23
|
Cao J, Xu T, Zhou C, Wang S, Jiang B, Wu K, Ma L. NR4A1 knockdown confers hepatoprotection against ischaemia-reperfusion injury by suppressing TGFβ1 via inhibition of CYR61/NF-κB in mouse hepatocytes. J Cell Mol Med 2021; 25:5099-5112. [PMID: 33942481 PMCID: PMC8178266 DOI: 10.1111/jcmm.16493] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
Nuclear receptor subfamily 4, group A, member 1 (NR4A1) can aggravate ischaemia‐reperfusion (I/R) injury in the heart, kidney and brain. Thus, the present study aimed to unravel the role of NR4A1 on hepatic I/R injury. For this purpose, the mouse hepatic I/R model and H/R‐exposed mouse hepatocytes model were established to stimulate the hepatic and hepatocellular damage. Then, the levels of ALT and AST as well as TNF‐α and IL‐1β expression were measured in the mouse serum and supernatant of hepatocyte s, respectively. Thereafter, we quantified the levels of NR4A1, CYR61, NF‐kB p65 and TGFβ1 under pathological conditions, and their interactions were analysed using ChIP and dual‐luciferase reporter gene assays. The in vivo and in vitro effects of NR4A1, CYR61, NF‐kB p65 and TGFβ1 on I/R‐induced hepatic and H/R‐induced hepatocellular damage were evaluated using gain‐ and loss‐of‐function approaches. NR4A1 was up‐regulated in the hepatic tissues of I/R‐operated mice and in H/R‐treated hepatocytes. Silencing NR4A1 relieved the I/R‐induced hepatic injury, as supported by suppression of ALT and AST as well as TNF‐α and IL‐1β. Meanwhile, NR4A1 knockdown attenuated the H/R‐induced hepatocellular damage by inhibiting the apoptosis of hepatocyte s. Moreover, we also found that NR4A1 up‐regulated the expression of CYR61 which resulted in the activation of the NF‐κB signalling pathway, thereby enhancing the transcription of TGFβ1, which was validated to be the mechanism underlying the contributory role of NR4A1 in hepatic I/R injury. Taken together, NR4A1 silencing reduced the expression of CYR61/NF‐κB/TGFβ1, thereby relieving the hepatic I/R injury.
Collapse
Affiliation(s)
- Jun Cao
- Department of hepatic and Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ting Xu
- The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China.,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chengming Zhou
- Department of hepatic and Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shaochuang Wang
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Baofei Jiang
- Department of General surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Kun Wu
- Department of General surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Long Ma
- Department of Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
24
|
Chao TY, Hsieh CC, Hsu SM, Wan CH, Lian GT, Tseng YH, Kuo YH, Hsieh SC. Ergostatrien-3β-ol (EK100) from Antrodia camphorata Attenuates Oxidative Stress, Inflammation, and Liver Injury In Vitro and In Vivo. Prev Nutr Food Sci 2021; 26:58-66. [PMID: 33859960 PMCID: PMC8027041 DOI: 10.3746/pnf.2021.26.1.58] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Hepatic ischemia/reperfusion (IR) injury is a complication that occurs during liver surgery, whereby hepatic tissue is injured by oxygen deficiency during ischemia, then further damaged by a cascade of inflammatory and oxidative insults when blood is resupplied during reperfusion. Antrodia camphorata is an indigenous fungus in Taiwan and an esteemed Chinese herbal medicine with various bioactivities. This study examined the effect of ergostatrien-3β-ol (EK100), an active compound found in both the fruiting body and mycelia of A. camphorata, on IR injury pathologies in rats and cell models of oxidative and inflammatory stress. Male Sprague-Dawley rats were randomly assigned to receive a vehicle or 5 mg/kg EK100 prior to hepatic IR injury induced by 1 h ischemia followed by 24 h reperfusion, or a sham operation. RAW 264.7 murine macrophages and HepG2 hepatocytes were pretreated with EK100, then inflammation was induced with lipopolysaccharides in the former and oxidative stress was induced with hydrogen peroxide in the latter. EK100 decreased IR-induced elevation in serum levels of alanine aminotransferase and aspartate aminotransferase and lowered levels of the inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-1β. In addition, EK100 significantly reduced hepatic mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2, as well as nitrite production and iNOS gene expression in both hepatocyte and macrophage cell lines. We demonstrated that EK100 exhibits potent protec-tion against hepatic IR injury, which may be used to design strategies to ameliorate liver damage during liver surgery.
Collapse
Affiliation(s)
- Ting-Yu Chao
- Institute of Food Science and Technology, Taipei 106, Taiwan
| | - Cheng-Chu Hsieh
- Biologics Division, Animal Health Research Institute, Council of Agriculture, Executive Yuan, New Taipei 251, Taiwan
| | - Shih-Min Hsu
- Institute of Food Science and Technology, Taipei 106, Taiwan.,Metal Industries Research and Development Centre, Kaohsiung 811, Taiwan
| | - Cho-Hua Wan
- Department and Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Guan-Ting Lian
- Institute of Food Science and Technology, Taipei 106, Taiwan
| | - Yi-Han Tseng
- Institute of Food Science and Technology, Taipei 106, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Chen Hsieh
- Institute of Food Science and Technology, Taipei 106, Taiwan
| |
Collapse
|
25
|
Khalili F, Khosravi MB, Sahmeddini MA, Eghbal MH, Kazemi K, Nikeghbalian S, Ghazanfar Tehran S, Khosravi B. The Effect of Perioperative N-acetylcysteine on the Short and Long Term Outcomes in Pediatrics Undergoing Living-Donor Liver Transplantation. Int J Organ Transplant Med 2021; 12:12-20. [PMID: 34987729 PMCID: PMC8717878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Ischemia-reperfusion injury during transplantation can cause post-operative graft dysfunction. OBJECTIVE To assess the efficacy of N-acetylcysteine in preventing hepatic ischemia-reperfusion injury and post-transplant outcomes. METHODS In this retrospective study on pediatrics undergoing living-donor (from one of their parents) liver transplantation, N-acetylcysteine was administered to one group (n=20) after induction in the donors until graft harvest, and in the recipients during implantation, which was maintained for 19 hours. The second group (n=20) did not receive NAC. Early allograft dysfunction was determined in the presence of alanine aminotransferase or aspartate aminotransferase ≥2000 IU/L and bilirubin ≥10 mg/dL within the first 7 days, and an international normalized ratio ≥1.6 on day 7. Data were collected from a retrospectively maintained database. RESULTS The incidence of post-reperfusion syndrome was lower in N-acetylcysteine group compared with the other group (5% vs. 30%, p=0.037). Serum creatinine level was significantly (p=0.04) different in the N-acetylcysteine group during the second post-operative week (0.14 vs. 0.15 mg/dL). There was no significant difference in the incidence of early allograft dysfunction (21% vs. 14%, p=0.327), and the survival rate (p=0.409). CONCLUSION Peri-operative infusion of N-acetylcysteine in both donor and recipient would effectively prevent post-reperfusion syndrome and renal insufficiency. However, it might not affect the early allograft dysfunction, ICU stay, and mortality. NAC increases the chance of re-operation due to non-surgical bleeding in the first post-operative day.
Collapse
Affiliation(s)
- F. Khalili
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. B. Khosravi
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. A. Sahmeddini
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. H. Eghbal
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - K. Kazemi
- Shiraz Organ Transplant Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S. Nikeghbalian
- Shiraz Organ Transplant Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S. Ghazanfar Tehran
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - B. Khosravi
- Biostatistics Department, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Ruan Y, Zeng J, Jin Q, Chu M, Ji K, Wang Z, Li L. Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review). Exp Ther Med 2020; 20:268. [PMID: 33199993 PMCID: PMC7664614 DOI: 10.3892/etm.2020.9398] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Although acute myocardial infarction is one of the most common fatal diseases worldwide, the understanding of its underlying pathogenesis continues to develop. Myocardial ischemia/reperfusion (I/R) can restore myocardial oxygen and nutrient supply. However, a large number of studies have demonstrated that recovery of blood perfusion after acute ischemia causes reperfusion injury to the heart. With progress made in the understanding of the underlying mechanisms of myocardial I/R and oxidative stress, a novel area of research that merits greater study has been identified, that of I/R-induced endoplasmic reticulum (ER) stress (ERS). Cardiac I/R can alter the function of the ER, leading to the accumulation of unfolded/misfolded proteins. The resulting ERS then induces the activation of signal transduction pathways, which in turn contribute to the development of I/R injury. The mechanism of I/R injury, and the causal relationship between I/R and ERS are reviewed in the present article.
Collapse
Affiliation(s)
- Yongxue Ruan
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jingjing Zeng
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Qike Jin
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Maoping Chu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Kangting Ji
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Zhongyu Wang
- Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Lei Li
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
27
|
Silva DVTD, Baião DDS, Ferreira VF, Paschoalin VMF. Betanin as a multipath oxidative stress and inflammation modulator: a beetroot pigment with protective effects on cardiovascular disease pathogenesis. Crit Rev Food Sci Nutr 2020; 62:539-554. [PMID: 32997545 DOI: 10.1080/10408398.2020.1822277] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress is a common physiopathological condition enrolled in risk factors for cardiovascular diseases. Individuals in such a redox imbalance status present endothelial dysfunctions and inflammation, reaching the onset of heart disease. Phytochemicals are able to attenuate the main mechanisms of oxidative stress and inflammation and should be considered as supportive therapies to manage risk factors for cardiovascular diseases. Beetroot (Beta vulgaris L.) is a rich source of bioactive compounds, including betanin (betanidin-5-O-β-glucoside), a pigment displaying the potential to alleviate oxidative stress and inflammantion, as previously demonstrated in preclinical trials. Betanin resists gastrointestinal digestion, is absorbed by the epithelial cells of intestinal mucosa and reaches the plasma in its active form. Betanin displays free-radical scavenger ability through hydrogen or electron donation, preserving lipid structures and LDL particles while inducing the transcription of antioxidant genes through the nuclear factor erythroid-2-related factor 2 and, simultaneously, suppressing the pro-inflammatory nuclear factor kappa-B pathways. This review discusses the anti-radical and gene regulatory cardioprotective activities of betanin in the pathophysiology of endothelial damage and atherogenesis, the main conditions for cardiovascular disease. In addition, betanin influences on these multipath cellular signals and aiding in reducing cardiovascular disorders is proposed.
Collapse
Affiliation(s)
| | - Diego Dos Santos Baião
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | | |
Collapse
|
28
|
Protein Profiles of Pretransplant Grafts Predict Early Allograft Dysfunction After Liver Transplantation From Donation After Circulatory Death. Transplantation 2020; 104:79-89. [PMID: 31283675 DOI: 10.1097/tp.0000000000002787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Predicting the development of early allograft dysfunction (EAD) following liver transplantation (LT) remains challenging for transplant clinicians. The objectives of this study are to investigate the potential relationship between the protein profiles of pretransplant grafts and the onset of EAD, and then combine with clinical parameters to construct a mathematically predictive model. METHODS Clinical data of 121 LT procedures from donation after circulatory death at the authors' center were analyzed. The expression levels of 7 studied proteins were determined by immunohistochemistry. Another independent cohort of 37 subjects was designed for further validation of the predictive model. RESULTS With an incidence of 43.0% (52/121), EAD was linked to significantly increased risk of acute kidney injury and renal replacement therapy, as well as reduced 6-month patient and liver graft survival. Allograft weight and high intrahepatic vascular endothelial growth factor (VEGF) expression were identified as independent risk factors of EAD and survival outcomes. Liver grafts with high VEGF expression exhibited delayed functional recovery within the first postoperative week. The combination of VEGF overexpression and EAD yielded the highest frequency of renal dysfunction and the worst survival. Based on allograft weight and intrahepatic VEGF expression, an EAD risk assessment model was developed. The incidence of EAD differed significantly between grafts with risk scores ≥-1.72 and <-1.72. The model functioned well in the validation cohort. CONCLUSIONS Pretransplant intrahepatic protein profiling contributes to the estimation of early graft performance and recipient outcomes following LT. The predictive model could allow for an accurate prediction of EAD.
Collapse
|
29
|
Tang Y, Kong W, Zhao J, Chen Y, Liu L, Zhang G. Can Viscoelasticity Measurements Obtained Through Shear-Wave US Elastography be used to Monitor Hepatic Ischemia-Reperfusion Injury and Treatment Response? An Animal Study. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2464-2471. [PMID: 32553529 DOI: 10.1016/j.ultrasmedbio.2020.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate whether viscoelasticity measurements can be used to quantitatively analyze and monitor therapy response in hepatic ischemia-reperfusion injury (HIRI). All animals were divided into three groups: a sham operation group (n = 12), an ischemia-reperfusion injury (IRI) group (n = 12) and an andrographolide pre-treatment group (n = 6). To assess the feasibility of using shear-wave velocity (SWV) and shear-wave dispersion (SWD), shear-wave ultrasound elastography was applied onto IRI rats after 4 and 24 h of reperfusion or sham operation (each time point subgroup n = 6). For the verification experiments, six additional rats received andrographolide injection 2 h before IRI and were examined 24 h after reperfusion. The rats were sacrificed for biochemical and histopathological analyses after ultrasound scanning was performed. Compared with the sham group, the IRI group exhibited significantly higher SWD after both 4 and 24 h of reperfusion(10.69 ± 0.69 vs. 15.20 ± 3.23 and 9.01 ± 0.46 vs. 19.35 ± 0.86; p < 0.05). A positive correlation was found between SWD values and Suzuki's score (r = 0.621; p < 0.05). No correlation was found between SWV and Suzuki's score (r = 0.283; p > 0.05), although significant differences were found between the two groups after 24 h of reperfusion. Andrographolide treatment resulted in a significantly decreased SWD (15.24 ± 0.45 vs. 19.35 ± 0.86; p < 0.05), whereas SWV showed no statistically significant difference. This study demonstrated the potential of using viscoelasticity measurements for the diagnosis and therapeutic monitoring of HIRI, and that the use of SWD was significantly more advantageous than SWV.
Collapse
Affiliation(s)
- Ying Tang
- Department of Ultrasound, Tianjin First Center Hospital, Tianjin 300192, China.
| | - Weina Kong
- Department of Ultrasound, Tianjin First Center Hospital, Tianjin 300192, China
| | - Jingwen Zhao
- Department of Ultrasound, Tianjin First Center Hospital, Tianjin 300192, China
| | - Yun Chen
- Department of Ultrasound, Tianjin First Center Hospital, Tianjin 300192, China
| | - Lei Liu
- Department of Ultrasound, Tianjin First Center Hospital, Tianjin 300192, China
| | - Guoying Zhang
- Department of Ultrasound, Tianjin First Center Hospital, Tianjin 300192, China
| |
Collapse
|
30
|
Durhan A, Koşmaz K, Süleyman M, Tez M, Şenlikci A, Ersak C, Ünal Y, Pekcici R, Karaahmet F, Şeneş M, Alkan Kuşabbi I, Eser EP, Hücümenoğlu S. Assessment of Ankaferd Blood Stopper in experimental liver ischemia reperfusion injury. Turk J Med Sci 2020; 50:1421-1427. [PMID: 32490644 PMCID: PMC7491290 DOI: 10.3906/sag-2004-240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/23/2020] [Indexed: 11/03/2022] Open
Abstract
Background/aim To investigate possible protective effects of Ankaferd Blood Stopper® (ABS) in an experimental liver ischemia reperfusion injury (IRI) model. Materials and methods The study was carried out on 30 female rats separated into 3 groups as sham, control (IRI), and treatment (IRI + ABS) groups. In the IRI + ABS group, 0.5 mL/day ABS was given for 7 days before surgery. In the IRI and IRI + ABS groups, the hepatic pedicle was clamped for 30 min to apply ischemia. Then, after opening the clamp, 90-min reperfusion of the liver was provided. Blood and liver tissue samples were taken for biochemical and histopathological analyses. Results Compared to the sham group, the IRI group had significantly higher levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total oxidant status (TOS), malondialdehyde (MDA), fluorescent oxidant products (FOP) and lower expression of albumin and total antioxidant status (TAS) (P < 0.05). Compared to the IRI group, the IRI+ABS group showed lower expression of AST, ALT, TOS, MDA and FOP and higher expression of albumin and TAS (P < 0.05). In the histopathological analysis, congestion scores were statistically significantly lower in the IRI + ABS group than in the IRI group. Conclusions ABS has a strong hepatoprotective effect due to its antioxidant and antiinflammatory effects and could therefore be used as a potential therapeutic agent for IRI.
Collapse
Affiliation(s)
- Abdullah Durhan
- Department of Surgical Oncology, Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Koray Koşmaz
- Department of Gastrointestinal Surgery, Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Marlen Süleyman
- Department of Surgical Oncology, Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Mesut Tez
- Department of Surgical Oncology, Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Abdullah Şenlikci
- Department of Gastrointestinal Surgery, Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Can Ersak
- Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Yilmaz Ünal
- Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Recep Pekcici
- Department of General Surgery, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Fatih Karaahmet
- Department of Gastroenterology and Hepatology, Department of Internal Medicine, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Mehmet Şeneş
- Department of Biochemistry, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Ilknur Alkan Kuşabbi
- Department of Biochemistry, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Eylem Pinar Eser
- Department of Pathology, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| | - Sema Hücümenoğlu
- Department of Pathology, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
31
|
Ko SF, Chen YL, Sung PH, Chiang JY, Chu YC, Huang CC, Huang CR, Yip HK. Hepatic 31 P-magnetic resonance spectroscopy identified the impact of melatonin-pretreated mitochondria in acute liver ischaemia-reperfusion injury. J Cell Mol Med 2020; 24:10088-10099. [PMID: 32691975 PMCID: PMC7520314 DOI: 10.1111/jcmm.15617] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Acute liver ischaemia-reperfusion injury (IRI), commonly encountered during liver resection and transplantation surgery, is strongly associated with unfavourable clinical outcome. However, a prompt and accurate diagnosis and the treatment of this entity remain formidable challenges. This study tested the hypothesis that 31 P-magnetic resonance spectroscopy (31 P-MRS) findings could provide reliable living images to accurately identify the degree of acute liver IRI and melatonin-pretreated mitochondria was an innovative treatment for protecting the liver from IRI in rat. Adult male SD rats were categorized into group 1 (sham-operated control), group 2 (IRI only) and group 3 (IRI + melatonin [ie mitochondrial donor rat received intraperitoneal administration of melatonin] pretreated mitochondria [10 mg/per rat by portal vein]). By the end of study period at 72 hours, 31 P-MRS showed that, as compared with group 1, the hepatic levels of ATP and NADH were significantly lower in group 2 than in groups 1 and 3, and significantly lower in group 3 than in group 1. The liver protein expressions of mitochondrial-electron-transport-chain complexes and mitochondrial integrity exhibited an identical pattern to 31 P-MRS finding. The protein expressions of oxidative stress, inflammatory, cellular stress signalling and mitochondrial-damaged biomarkers displayed an opposite finding of 31 P-MRS, whereas the protein expressions of antioxidants were significantly progressively increased from groups 1 to 3. Microscopic findings showed that the fibrotic area/liver injury score and inflammatory and DNA-damaged biomarkers exhibited an identical pattern of cellular stress signalling. Melatonin-pretreated mitochondria effectively protected liver against IRI and 31 P-MRS was a reliable tool for measuring the mitochondrial/ATP consumption in living animals.
Collapse
Affiliation(s)
- Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chung-Cheng Huang
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, China
| |
Collapse
|
32
|
von Platen A, D'Souza MA, Rooyackers O, Nowak G. Intrahepatic Microdialysis for Monitoring of Metabolic Markers to Detect Rejection Early After Liver Transplantation. Transplant Proc 2020; 53:130-135. [PMID: 32631580 DOI: 10.1016/j.transproceed.2020.02.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/07/2020] [Accepted: 02/15/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The clinical and biochemical manifestations of acute rejection after liver transplantation are nonspecific, and a liver biopsy is often needed to verify the diagnosis. This may delay treatment. The aim of this study was to evaluate whether monitoring of intrahepatic glucose, lactate, pyruvate, and glycerol by microdialysis can be used to predict rejection early after liver transplantation. METHODS Seventy-one patients undergoing liver transplantation were included in the study. The patients were monitored using microdialysis for up to 6 days postoperatively. Patients who developed acute rejection within 1 month were identified according to standard protocol. Area under the curve (AUC) was calculated for 12-hour intervals for glucose, lactate, pyruvate, glycerol, and lactate/pyruvate ratio. Patients with and without rejection were compared with respect to these parameters, as well as standard liver blood investigations and time-zero biopsies. RESULTS The lactate/pyruvate ratio was higher at 0 to 12 hours in the group with rejection as compared to the group without rejection. Glucose was lower in the group with rejection at 24 to 48 hours. Also, the intrahepatic lactate levels at 48 to 72 hours and pyruvate levels at 60 to 72 hours after liver transplantation, were higher in the rejection group. The lactate/pyruvate ratio at 0 to 12 hours and lactate at 60 to 72 hours were two independent risk factors for rejection within the first month after liver transplantation. No significant differences in glycerol levels could be detected between the two patient groups. CONCLUSIONS Microdialysis monitoring following liver transplantation may be useful in the detection of the metabolic events that precede rejection. The metabolic patterns detected by microdialysis early after transplantation indicate a possible relation between primary ischemia-reperfusion injury and the development of rejection. Identifying these patterns may help to identify patients at risk for the development of acute rejection and may help select those who may benefit from higher dose of immunosuppression early after liver transplantation.
Collapse
Affiliation(s)
- Anna von Platen
- Division of Transplant Surgery, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Melroy A D'Souza
- Division of Surgery, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olav Rooyackers
- Division of Anaesthesiology and Intensive Care, Department for Clinical Science, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Greg Nowak
- Division of Transplant Surgery, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
33
|
N-Acetylcysteine Reduced Ischemia and Reperfusion Damage Associated with Steatohepatitis in Mice. Int J Mol Sci 2020; 21:ijms21114106. [PMID: 32526845 PMCID: PMC7313069 DOI: 10.3390/ijms21114106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 01/22/2023] Open
Abstract
N-acetylcysteine (NAC) is a pharmacological alternative with great potential for reducing the deleterious effects of surgical procedures on patients with steatohepatitis. We evaluated the effect of NAC on hepatic ischemia/reperfusion (I/R) injury in C57BL/6J mice, 8 weeks-old, weighing 25-30 g, with steatohepatitis induced by a methionine- and choline-deficient (MCD) diet. Groups: MCD group (steatohepatitis), MCD-I/R group (steatohepatitis plus 30 min of 70% liver ischemia and 24 h of reperfusion), MCD-I/R+NAC group (same as MCD-I/R group plus 150 mg/kg NAC 15 min before ischemia), and control group (normal AIN-93M diet). Liver enzymes and histopathology; nitrite and TBARS (thiobarbituric acid reactive substances) levels; pro-inflammatory cytokines; antioxidants enzymes; Nrf2 (nuclear factor erythroid-2-related factor 2) expression; and apoptosis were evaluated. In the group treated with NAC, reductions in inflammatory infiltration; AST (aspartate aminotransferase), nitrite, and TBARS levels; GPx (gutathione peroxidase) activity; cytokines synthesis; and number of apoptotic cells were observed while the GR (glutathione reductase) activity was increased. No differences were observed in Nfr2 expression or in SOD (superoxide dismutase), CAT (catalase), and GST (glutathione S-transferase) activities. Thus, it may be concluded that NAC exerts beneficial effects on mice livers with steatohepatitis submitted to I/R by reducing oxidative stress, inflammatory response, and cell death.
Collapse
|
34
|
Laparoscopic combined with thoracoscopic transdiaphragmatic hepatectomy for hepatitis B-related hepatocellular carcinoma located in segment VII or VIII. Hepatobiliary Pancreat Dis Int 2020; 19:291-294. [PMID: 31862345 DOI: 10.1016/j.hbpd.2019.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023]
|
35
|
CXCL16 silencing alleviates hepatic ischemia reperfusion injury during liver transplantation by inhibiting p38 phosphorylation. Pathol Res Pract 2020; 216:152913. [DOI: 10.1016/j.prp.2020.152913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 03/01/2020] [Indexed: 02/08/2023]
|
36
|
Yang B, Duan W, Wei L, Zhao Y, Han Z, Wang J, Wang M, Dai C, Zhang B, Chen D, Chen Z. Bone Marrow Mesenchymal Stem Cell-Derived Hepatocyte-Like Cell Exosomes Reduce Hepatic Ischemia/Reperfusion Injury by Enhancing Autophagy. Stem Cells Dev 2020; 29:372-379. [PMID: 31969065 DOI: 10.1089/scd.2019.0194] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury remains a major problem in liver transplantation. I/R causes inflammatory cytokine release, apoptosis, and necrosis. Bone marrow-mesenchymal stem cells (BM-MSCs) can differentiate into hepatocytes in vivo, and differentiation further increases when hepatocytes are damaged. Exosomes are important mediators of cellular connections. Recently, exosomes of hepatocytes have been shown to play a pivotal role in inhibiting hepatocyte apoptosis and promoting hepatocyte regeneration. Therefore, we induced MSCs to differentiate into hepatocyte-like cells and extracted their exosomes; we then injected the exosomes into a mouse hepatic I/R model through the tail vein. Simultaneously, CoCl2 was used to mimic I/R in vitro. Our data indicated that in vivo, mesenchymal stem cell-derived hepatocyte-like cell exosomes (MSC-Heps-Exo) effectively relieve hepatic I/R damage, reduce hepatocyte apoptosis, and decrease liver enzyme levels. Consistent with the in vivo results, the in vitro experiments confirmed that exosomes effectively increased hepatocyte tolerance to ischemia and reduced hepatocyte apoptosis. We thus found that autophagy enhancement may be the mechanism by which exosomes protect the liver from I/R injury. These results indicate that exosomes play a protective role in hepatic I/R, and that the use of BM-MSCs for hepatocyte induction and exosome extraction may provide a new clinical treatment method through bioengineering.
Collapse
Affiliation(s)
- Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,The National Hurricane Center Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wu Duan
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,The National Hurricane Center Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,The National Hurricane Center Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhenyi Han
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,The National Hurricane Center Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jin Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,The National Hurricane Center Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Meixi Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,The National Hurricane Center Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,The National Hurricane Center Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Bo Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,The National Hurricane Center Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,The National Hurricane Center Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,The National Hurricane Center Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
37
|
Fujii T, Duarte S, Lee E, Ke B, Busuttil RW, Coito AJ. Tissue Inhibitor of Metalloproteinase 3 Deficiency Disrupts the Hepatocyte E-Cadherin/β-Catenin Complex and Induces Cell Death in Liver Ischemia/Reperfusion Injury. Liver Transpl 2020; 26:113-126. [PMID: 31642174 DOI: 10.1002/lt.25667] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Tissue inhibitor of metalloproteinase (TIMP) 3 is a naturally occurring inhibitor of a broad range of proteases, with key roles in extracellular matrix turnover and in the pathogenesis of various diseases. In this study, we investigated the response of mice lacking TIMP3 (TIMP3-/-) to hepatic ischemia/reperfusion injury (IRI). We report here that TIMP3-/- mice showed an enhanced inflammatory response, exacerbated organ damage, and further impaired liver function after IRI when compared with their wild-type littermates. Loss of TIMP3 led to the cleavage and shedding of E-cadherin during hepatic IRI; the full-length 120-kDa E-cadherin and the ratio of 38-kDa C-terminal fragment/120-kDa E-cadherin were decreased and increased, respectively, in TIMP3-/- livers after IRI. Moreover, GI254023X, a potent inhibitor of a disintegrin and metalloprotease (ADAM) 10, was capable of partially rescuing the expression of E-cadherin in the TIMP3-null hepatocytes. The proteolysis of E-cadherin in the TIMP3-/- livers was also linked to the loss of β-catenin from the hepatocyte membranes and to an increased susceptibility to apoptosis after liver IRI. In a similar fashion, depression of the E-cadherin/β-catenin complex mediated by TIMP3 deletion and knockdown of β-catenin by small interfering RNA were both capable of inducing caspase activation in isolated hepatocytes subjected to H2 O2 oxidative stress. Hence, these results support a protective role for TIMP3 expression in sheltering the hepatocyte E-cadherin/β-catenin complex from proteolytic processing and inhibiting apoptosis after hepatic IRI.
Collapse
Affiliation(s)
- Takehiro Fujii
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA
| | - Sergio Duarte
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA
| | - Eudora Lee
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA
| | - Ronald W Busuttil
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA
| | - Ana J Coito
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
38
|
Hasegawa Y, Nitta H, Takahara T, Katagiri H, Kanno S, Umemura A, Akiyama Y, Iwaya T, Otsuka K, Sasaki A. Glucocorticoid use and ischemia-reperfusion injury in laparoscopic liver resection: Randomized controlled trial. Ann Gastroenterol Surg 2020; 4:76-83. [PMID: 32021961 PMCID: PMC6992679 DOI: 10.1002/ags3.12298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/19/2019] [Accepted: 10/27/2019] [Indexed: 12/19/2022] Open
Abstract
AIM Laparoscopic liver resection (LLR) is increasingly carried out worldwide. However, there are concerns regarding ischemia-reperfusion injury caused by pneumoperitoneum and the Pringle maneuver. It is not clear whether perioperative use of glucocorticoids lowers the risk of ischemia-reperfusion hepatic injury in LLR as has been reported for open liver resection. The aim of the present study was to investigate the role of perioperative glucocorticoid use in improving hepatic function and surgical outcomes after LLR. METHODS In this double-blind, randomized controlled trial (UMIN000013823), we enrolled 130 patients who presented to our institution for LLR between April 2014 and October 2018. Six patients were excluded, resulting in 124 patients being randomized to either the glucocorticoid or the control group. Preoperatively, patients in the glucocorticoid group received 500 mg methylprednisolone in saline solution, patients in the control group saline solution only. Surgical outcomes and blood parameters were compared between the two groups. RESULTS The Pringle maneuver could not be carried out in 24 patients, resulting in 50 patients in each group being included in the analysis. Postoperatively, total, direct and indirect bilirubin, and C-reactive protein and interleukin-6 levels were significantly lower, albumin levels were significantly higher, and prothrombin time was significantly shorter in the glucocorticoid than in the control group. Surgical outcomes were not significantly different between the groups. CONCLUSION This first report on preoperative glucocorticoid use in LLR showed that it significantly improved postoperative liver function and thus might enhance the safety of LLR.
Collapse
Affiliation(s)
- Yasushi Hasegawa
- Department of SurgeryIwate Medical University School of MedicineMorioka CityJapan
| | - Hiroyuki Nitta
- Department of SurgeryIwate Medical University School of MedicineMorioka CityJapan
| | - Takeshi Takahara
- Department of SurgeryIwate Medical University School of MedicineMorioka CityJapan
| | - Hirokatsu Katagiri
- Department of SurgeryIwate Medical University School of MedicineMorioka CityJapan
| | - Shoji Kanno
- Department of SurgeryIwate Medical University School of MedicineMorioka CityJapan
| | - Akira Umemura
- Department of SurgeryIwate Medical University School of MedicineMorioka CityJapan
| | - Yuji Akiyama
- Department of SurgeryIwate Medical University School of MedicineMorioka CityJapan
| | - Takeshi Iwaya
- Department of SurgeryIwate Medical University School of MedicineMorioka CityJapan
| | - Koki Otsuka
- Department of SurgeryIwate Medical University School of MedicineMorioka CityJapan
| | - Akira Sasaki
- Department of SurgeryIwate Medical University School of MedicineMorioka CityJapan
| |
Collapse
|
39
|
Baker MA, Nandivada P, Mitchell PD, Fell GL, Pan A, Cho BS, De La Flor DJ, Anez-Bustillos L, Dao DT, Nosé V, Puder M. Omega-3 fatty acids are protective in hepatic ischemia reperfusion injury in the absence of GPR120 signaling. J Pediatr Surg 2019; 54:2392-2397. [PMID: 31036368 PMCID: PMC6790164 DOI: 10.1016/j.jpedsurg.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/13/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND A single dose of IV fish oil (FO) before hepatic ischemia reperfusion injury (HIRI) increases hepatocyte proliferation and reduces necrosis in wild type (WT) mice. It has been suggested that the GPR120 receptor on Kupffer cells mediates FO's ability to reduce HIRI. The purpose of this study was to determine whether GPR120 is required for FO to reduce HIRI. METHODS Sixty-four (n = 8/group) adult male WT (C57BL/6) and GPR120 knockout (KO) mice received IV FO (1 g/kg) or saline 1 h prior to HIRI or sham operation. Mice were euthanized 24 h postoperatively for analysis of hepatic histology, NFκB activity, and serum alanine transaminase (ALT) levels. RESULTS FO pretreated livers had less necrosis after HIRI than saline pretreated livers in both WT (mean ± SEM 25.9 ± 7.3% less, P = 0.007) and KO (36.6 ± 7.3% less, P < 0.0001) mice. There was no significant difference in percent necrosis between WT-FO and KO-FO groups. Sham groups demonstrated minimal necrosis (0-1.9%). Mean [95% CI] ALT after HIRI was significantly higher (P = 0.04) in WT-Saline mice (1604 U/L [751-3427]) compared to WT-FO (321 U/L [150-686]) but was not significantly higher in KO-Saline mice compared to KO-FO. There were no differences in ALT between WT-FO and KO-FO mice who underwent HIRI or between groups who underwent sham surgery. There were no differences in NFκB or IKKβ activation among groups as measured by Western blot analysis. CONCLUSIONS IV FO pretreatment was able to reduce HIRI in GPR120 KO mice, suggesting the hepatoprotective effects of FO are not mediated by GPR120 alone.
Collapse
Affiliation(s)
- Meredith A. Baker
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital
| | - Prathima Nandivada
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital
| | - Paul D. Mitchell
- Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital
| | - Gillian L. Fell
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital
| | - Amy Pan
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital
| | - Bennet S. Cho
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital
| | - Denis J. De La Flor
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital
| | | | - Duy T. Dao
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital
| | - Vania Nosé
- Department of Pathology, Massachusetts General Hospital
| | - Mark Puder
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital.
| |
Collapse
|
40
|
Anger F, Camara M, Ellinger E, Germer CT, Schlegel N, Otto C, Klein I. Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Improve Liver Regeneration After Ischemia Reperfusion Injury in Mice. Stem Cells Dev 2019; 28:1451-1462. [PMID: 31495270 DOI: 10.1089/scd.2019.0085] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatic ischemia reperfusion injury (IRI) remains a major obstacle in liver resection and transplantation surgery, especially in diseased organs. Human mesenchymal stromal cells (MSCs) are reported to acutely alleviate hepatic IRI in mice by releasing bioactive membrane-enclosed extracellular vesicles (EVs), but the long-term effects of MSC-derived EV on hepatic IRI are unknown. Given the considerable differentiation capacity of fibroblasts (FBs) during wound healing and their morphological similarities with MSC, the present study aimed to investigate the potential of these two cell types and their cell-derived EV in attenuating liver damage after IRI. EVs were isolated and purified from the supernatant of MSC and FB cultures and, subsequently, characterized by electron microscopy, nanoparticle tracking analysis, and western blot. Liver injury and organ regeneration in a murine in vivo model of IRI were assessed by serum transaminase levels, histopathology, and immunohistochemistry. Changes in expression of inflammation-associated genes within liver tissue were evaluated by reverse transcriptase quantitative polymerase chain reaction. MSC, MSC-derived EV, FB, and FB-derived EV were systemically administered before hepatic IRI. We found that MSC and MSC-derived EV decreased serum transaminase levels, reduced hepatic necrosis, increased the amount of Ki67-positive hepatocytes, and repressed the transcription of inflammation-associated genes. Although they had no impact on organ damage, FB and FB-derived EV showed some regenerative potential in the late phase of hepatic IRI. Compared to FB, MSC and their derived EV had a stronger potential to attenuate liver damage and improve organ regeneration after hepatic IRI. These results suggest that the key therapeutic factors are located within EV.
Collapse
Affiliation(s)
- Friedrich Anger
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Monika Camara
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Elisabeth Ellinger
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Ingo Klein
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Sevoflurane Protects Hepatocytes From Ischemic Injury by Reducing Reactive Oxygen Species Signaling of Hepatic Stellate Cells: Translational Findings Based on a Clinical Trial. Anesth Analg 2019; 127:1058-1065. [PMID: 30216289 DOI: 10.1213/ane.0000000000003692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Randomized controlled trials (RCTs) data demonstrate that sevoflurane postconditioning improves clinical outcomes of liver resection with inflow occlusion, presumably due to hepatocyte protection from ischemic injury. However, mechanisms remain unclear. This study examines liver biopsy samples obtained in an RCT of sevoflurane postconditioning to test the hypothesis that sevoflurane attenuates hepatocyte apoptosis. METHODS Messenger ribonucleic acid (mRNA) of pro- and antiapoptotic regulators Bax and B-cell lymphoma 2 (Bcl2) was examined in hepatic biopsies obtained during the RCT. Hepatic stellate cells (HSCs) and hepatocytes were exposed to hypoxia/reoxygenation (H/R) in vitro to evaluate the effect of sevoflurane postconditioning on apoptosis. The role of HSC as a potential apoptosis trigger in hepatocytes through the production of reactive oxygen species induced by H/R was explored by transferring supernatants from H/R-exposed HSC to hepatocytes as target cells. RESULTS In patients of the RCT, the Bax/Bcl2 mRNA ratio in liver tissue was markedly decreased in the sevoflurane arm (25% ± 21% reduction; P = .001). In vitro, H/R increased reactive oxygen species production in HSC by 33% ± 16% (P = .025), while it was abolished in the presence of sevoflurane (P < .001). In hepatocytes, caspase was minimally activated by H/R. However, incubation of hepatocytes with supernatants of HSC, previously exposed to H/R, increased caspase activity by 28% ± 13% (P < .001). When exposed to supernatants from HSC undergoing sevoflurane postconditioning, caspase activation in hepatocytes was reduced by 20% ± 9% (P < .001), similarly to the sevoflurane effect on the BAX/Bcl2 mRNA ratio in the liver samples. CONCLUSIONS The study shows that sevoflurane postconditioning affects apoptosis of hepatocytes after ischemia-reperfusion injury in patients. It also demonstrates that HSC may be the effector cells of sevoflurane protection.
Collapse
|
42
|
Dusabimana T, Kim SR, Kim HJ, Park SW, Kim H. Nobiletin ameliorates hepatic ischemia and reperfusion injury through the activation of SIRT-1/FOXO3a-mediated autophagy and mitochondrial biogenesis. Exp Mol Med 2019; 51:1-16. [PMID: 31028246 PMCID: PMC6486618 DOI: 10.1038/s12276-019-0245-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 01/23/2023] Open
Abstract
Hepatic ischemia and reperfusion injury are characterized by impaired autophagy, mitochondrial dysfunction, and subsequent compromise of cellular homeostasis following hepatic surgery or transplantation. Nobiletin, a natural flavonoid, is a beneficial antioxidant that possesses anti-inflammatory and anti-cancer activities. We investigated the effect of nobiletin on hepatic IR injury and described the underlying mechanisms. C57BL/6 mice were subjected to 60 min of partial hepatic ischemia, treated with nobiletin (5 mg/kg) or vehicle at the start of reperfusion, and killed at 5 h of reperfusion. Hepatic ischemia and reperfusion increased hepatocellular oxidative damage, inflammation, and cell death, but these changes were alleviated upon nobiletin treatment. Nobiletin increased the expression of proteins that control autophagy, mitochondrial dynamics, and biogenesis. Specifically, the SIRT-1/FOXO3a and PGC-1α pathways were activated by nobiletin. IR-induced AKT activation was associated with FOXO3a phosphorylation, which resulted in a significant reduction in the nuclear FOXO3a levels and potentially attenuated autophagy-regulatory gene expression. Nobiletin increased FOXO3a expression and its nuclear translocation via the inhibition of AKT. Specific inhibition of SIRT-1 abolished the protective effect of nobiletin, causing decreased FOXO3a expression, followed by autophagy induction and decreased PGC-1α expression and mitochondrial dynamics. Taken together, our data indicate that SIRT-1 directly mediates the protective effect of nobiletin against hepatic ischemia and reperfusion injury. The activation of autophagy and mitochondrial function through the SIRT-1/FOXO3a and PGC-1α pathways indicate that nobiletin could have therapeutic potential for treating hepatic ischemia and reperfusion injury. Nobiletin, an antioxidant found in citrus peel, may protect the liver from reperfusion injury, damage following blood flow interruption. When blood flow is restricted and then restored, as in transplant, surgery, or shock, cells are injured, largely due to damage to the cellular powerhouses, the mitochondria. Nobiletin is known to have many benefits, including anti-cancer and anti-inflammatory activities, but its mechanism of action is not well understood. Sang Won Park and Hwajin Kim, at the Gyeongsang National University School of Medicine, in Jinju, South Korea, and co-workers, investigated how nobiletin might protect the liver against interruption of blood flow. They found that nobiletin triggered cells to dismantle damaged mitochondria and produce new, functioning mitochondria, greatly reducing liver damage. These results illuminate how nobiletin works and may lead to better treatments for liver reperfusion injury.
Collapse
Affiliation(s)
- Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea.,Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - So Ra Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea.,Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea. .,Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju, 52727, Republic of Korea.
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea.
| |
Collapse
|
43
|
Lee PC, Zan BS, Chen LT, Chung TW. Multifunctional PLGA-based nanoparticles as a controlled release drug delivery system for antioxidant and anticoagulant therapy. Int J Nanomedicine 2019; 14:1533-1549. [PMID: 30880963 PMCID: PMC6396665 DOI: 10.2147/ijn.s174962] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Ischemia/reperfusion (I/R) injury causes the generation of many ROS such as H2O2 and leads to vascular thrombosis, which causes tissue damage. Purpose In this investigation, poly (lactideco-glycolide) (PLGA)-based nanoparticles are used for their anticoagulant and antioxidant properties in vascular therapy. Methods Both heparin and glutathione are entrapped on PLGA-stearylamine nanoparticles by layer-by-layer interactions. Results The drug release rate is successfully controlled with only 10.3% of the heparin released after 96 hours. An H2O2-responsive platform is also developed by combining silk fibroin and horse peroxidase to detect H2O2 in this drug delivery system. Besides, hyaluronic acid was decorated on the surface of nanoparticles to target the human bone marrow mesenchymal stem cells (hBMSCs) for cell therapy. The results of an in vitro study indicate that the nanoparticles could be taken up by hBMSCs within 2 hours and exocytosis occurred 6 hours after cellular uptake. Conclusion We propose that the multifunctional nanoparticles that are formed herein can be effectively delivered to the site of an I/R injury via the hBMSC homing effect. The proposed approach can potentially be used to treat vascular diseases, providing a platform for hBMSCs for the controlled delivery of a wide range of drugs.
Collapse
Affiliation(s)
- Pei-Chi Lee
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan,
| | - Bo-Shen Zan
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan,
| | - Li-Ting Chen
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan,
| | - Tze-Wen Chung
- Department of Biomedical Engineering, National Yang Ming University, Taipei 112, Taiwan, .,Drug Delivery Department, Center for Advanced Pharmaceutics and Drug Delivery Research, National Yang Ming University, Taipei 112, Taiwan,
| |
Collapse
|
44
|
Akateh C, Beal EW, Kim JL, Reader BF, Maynard K, Zweier JL, Whitson BA, Black SM. Intrahepatic Delivery of Pegylated Catalase Is Protective in a Rat Ischemia/Reperfusion Injury Model. J Surg Res 2019; 238:152-163. [PMID: 30771685 DOI: 10.1016/j.jss.2019.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/27/2018] [Accepted: 01/10/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ischemia/reperfusion injury (IRI) can occur during liver surgery. Endogenous catalase is important to cellular antioxidant defenses and is critical to IRI prevention. Pegylation of catalase (PEG-CAT) improves its therapeutic potential by extending plasma half-life, but systemic administration of exogenous PEG-CAT has been only mildly therapeutic for hepatic IRI. Here, we investigated the protective effects of direct intrahepatic delivery of PEG-CAT during IRI using a rat hilar clamp model. MATERIALS AND METHODS PEG-CAT was tested in vitro and in vivo. In vitro, enriched rat liver cell populations were subjected to oxidative stress injury (H2O2), and measures of cell health and viability were assessed. In vivo, rats underwent segmental (70%) hepatic warm ischemia for 1 h, followed by 6 h of reperfusion, and plasma alanine aminotransferase and aspartate aminotransferase, tissue malondialdehyde, adenosine triphosphate, and GSH, and histology were assessed. RESULTS In vitro, PEG-CAT pretreatment of liver cells showed substantial uptake and protection against oxidative stress injury. In vivo, direct intrahepatic, but not systemic, delivery of PEG-CAT during IRI significantly reduced alanine aminotransferase and aspartate aminotransferase in a time-dependent manner (P < 0.01, P < 0.0001, respectively, for all time points) compared to control. Similarly, tissue malondialdehyde (P = 0.0048), adenosine triphosphate (P = 0.019), and GSH (P = 0.0015), and the degree of centrilobular necrosis, were improved by intrahepatic compared to systemic PEG-CAT delivery. CONCLUSIONS Direct intrahepatic administration of PEG-CAT achieved significant protection against IRI by reducing the volume distribution and taking advantage of the substantial hepatic first-pass uptake of this molecule. The mode of delivery was an important factor for protection against hepatic IRI by PEG-CAT.
Collapse
Affiliation(s)
- Clifford Akateh
- The COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, Ohio; Comprehensive Transplant Center, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Eliza W Beal
- The COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, Ohio; Comprehensive Transplant Center, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jung-Lye Kim
- The COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Brenda F Reader
- The COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, Ohio; Comprehensive Transplant Center, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Katelyn Maynard
- The COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jay L Zweier
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Bryan A Whitson
- The COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, Ohio; Comprehensive Transplant Center, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sylvester M Black
- The COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, Ohio; Comprehensive Transplant Center, The Ohio State University Wexner Medical Center, Columbus, Ohio; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
45
|
Li DY, Liu WT, Wang GY, Shi XJ. Impact of combined ischemic preconditioning and remote ischemic perconditioning on ischemia-reperfusion injury after liver transplantation. Sci Rep 2018; 8:17979. [PMID: 30568237 PMCID: PMC6299280 DOI: 10.1038/s41598-018-36365-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Ischemic preconditioning (IPC) and remote ischemic perconditioning (RIPer) confer protective effects against liver ischemia-reperfusion injury (IRI), but data about RIPer applying in liver transplantation is lacking. The study aimed to evaluate whether the combination of IPC and RIPer provides reinforced protective effects. C57BL/6 mice (160 pairs) were allocated into four groups: control, subjected to liver transplantation only; IPC, donor hilar was clamped for 10 min followed by 15 min of reperfusion; RIPer, three cycles of occlusion (5 min) and opening (5 min) of femoral vascular bundle were performed before reperfusion; IPC + RIPer, donors and recipients were subjected to IPC and RIPer respectively. Liver tissues were obtained for histological evaluation, TUNEL staining, malondialdehyde assays, GSH-Px assays, and NF-κB p65 protein and Bcl-2/Bax mRNA analyses. Blood samples were used to evaluate ALT, AST, TNF-α, NOx levels and flow cytometry. We found that protective efficacy of RIPer is less than IPC in terms of ALT, TNF-α, GSH-Px and NOx at 2 h postoperation, but almost equivalent at 24 h and 72 h postoperation. Except for Suzuki scores, ALT, Bcl-2/Bax mRNA ratio, other indices showed that combined treatment brought enhanced attenuation in IRI, compared with single treatment, through additive effects on antioxidation, anti-apoptosis, modulation of microcirculation disturbance, and inhibition of innate immune response. This study suggested a combined strategy that could enhance protection against IRI in clinical liver transplantation, otherwise, provided a hint that RIPer's mechanism might be partly or totally different from IPC in humoral pathway.
Collapse
Affiliation(s)
- Ding-Yang Li
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Wen-Tao Liu
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Guang-Yi Wang
- Department of Hepatobiliary & Pancreatic Surgery, The First Norman Bethune Hospital Affiliated to Jilin University, Changchun, 130021, Jilin Province, China
| | - Xiao-Ju Shi
- Department of Hepatobiliary & Pancreatic Surgery, The First Norman Bethune Hospital Affiliated to Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
46
|
Zhang Y, Miao LS, Cai YM, He JX, Zhang ZN, Wu G, Zheng J. TXNIP knockdown alleviates hepatocyte ischemia reperfusion injury through preventing p38/JNK pathway activation. Biochem Biophys Res Commun 2018; 502:409-414. [PMID: 29852169 DOI: 10.1016/j.bbrc.2018.05.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 10/14/2022]
Abstract
Hepatic ischemia and reperfusion (I/R) injury is a major cause of liver damage during liver transplantation, resection surgery, shock, and trauma. It has been reported that TXNIP expression was upregulated in a rat model of hepatic I/R injury. However, the role of TXNIP in the hepatic I/R injury is little known. In our study, we investigated the biological role of TXNIP and its potential molecular mechanism in the human hepatic cell line (HL7702 cells). Using oxygen-glucose deprivation and reoxygenation (OGD/R) to create a cell model of hepatic I/R injury, we found that the mRNA and protein expression levels of TXNIP were upregulated in HL7702 cells exposed to OGD/R. TXNIP overexpression remarkably promoted OGD/R-induced cell apoptosis and lactate dehydrogenase (LDH) release, both of which were significantly decreased by TXNIP knockdown. The production of malondialdehyde (MDA) was also increased by TXNIP overexpression, but was reduced by TXNIP knockdown. Moreover, TXNIP overexpression significantly upregulated the phosphorylation of p38 and JNK, which was remarkably inhibited by TXNIP knockdown. Additionally, p38-specific inhibitor SB203580 abrogated the effect of TXNIP overexpression on OGD/R-induced cell injury. Taken together, these results indicated that TXNIP knockdown alleviated hepatocyte I/R injury through preventing p38/JNK pathway activation. Thus, TXNIP might offer a novel potential therapeutic target for the treatment of hepatic I/R injury.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Liang-Sheng Miao
- Department of Anesthesiology, Weinan Central Hospital, Weinan, Shaanxi Province, China
| | - Ying-Min Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jia-Xuan He
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zhen-Ni Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Gang Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Juan Zheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
47
|
Zhou H, Xie G, Mao Y, Zhou K, Ren R, Zhao Q, Wang H, Yin S. Enhanced Regeneration and Hepatoprotective Effects of Interleukin 22 Fusion Protein on a Predamaged Liver Undergoing Partial Hepatectomy. J Immunol Res 2018; 2018:5241526. [PMID: 30515423 PMCID: PMC6234454 DOI: 10.1155/2018/5241526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
Liver ischemia-reperfusion injury (IRI) and regeneration deficiency are two major challenges for surgery patients with chronic liver disease. As a survival factor for hepatocytes, interleukin 22 (IL-22) plays an important role in hepatoprotection and the promotion of regeneration after hepatectomy. In this study, we aim to investigate the roles of an interleukin 22 fusion protein (IL-22-FP) in mice with a predamaged liver after a two-third partial hepatectomy (PHx). Predamaged livers in mice were induced by concanavalin A (ConA)/carbon tetrachloride (CCl4) following PHx with or without IL-22-FP treatment. A hepatic IRI mouse model was also used to determine the hepatoprotective effects of IL-22-FP. In the ConA/CCl4 model, IL-22-FP treatment alleviated liver injury and accelerated hepatocyte proliferation. Administration of IL-22-FP activated the hepatic signal transducer and activator of transcription 3 (STAT3) and upregulated the expression of many mitogenic proteins. IL-22-FP treatment prior to IRI effectively reduced liver damage through decreased aminotransferase and improved liver histology. In conclusion, IL-22-FP promotes liver regeneration in mice with predamaged livers following PHx and alleviates IRI-induced liver injury. Our study suggests that IL-22-FP may represent a promising therapeutic drug against regeneration deficiency and liver IRI in patients who have undergone PHx.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
| | - Guomin Xie
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
| | - Yudi Mao
- Department of Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Ke Zhou
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
| | - Ruixue Ren
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Qihong Zhao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Shi Yin
- Department of Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| |
Collapse
|
48
|
Jayant K, Reccia I, Shapiro AMJ. Normothermic ex-vivo liver perfusion: where do we stand and where to reach? Expert Rev Gastroenterol Hepatol 2018; 12:1045-1058. [PMID: 30064278 DOI: 10.1080/17474124.2018.1505499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays liver transplantation is considered as the treatment of choice, however, the scarcity of suitable donor organs limits the delivery of care to the end-stage liver disease patients leading to the death while on the waiting list. The advent of ex-situ normothermic machine perfusion (NMP) has emerged as an alternative to the standard organ preservation technique, static cold storage (SCS). The newer technique promises to not only restore the normal metabolic activity but also attempt to recondition the marginal livers back to the pristine state, which are otherwise more susceptible to ischemic injury and foster the poor post-transplant outcomes. Areas covered: An extensive search of all the published literature describing the role of NMP based device in liver transplantation as an alternative to SCS was made on MEDLINE, EMBASE, Cochrane, BIOSIS, Crossref, Scopus databases and clinical trial registry on 10 May 2018. Expert commentary: The main tenet of NMP is the establishment of the physiological milieu, which permits aerobic metabolism to continue through out the period of preservation and limits the effects of ischemia-reperfusion (I/R) injury. In addition, by assessing the various metabolic and synthetic parameters the viability and suitability of donor livers for transplantation can be determined. This important technological advancement has scored satisfactorily on the safety and efficacy parameters in preliminary clinical studies. The present review suggests that NMP can offer the opportunity to assess and safely utilize the marginal donor livers if deemed appropriate for the transplantation. However, ongoing trials will determine its full potential and further adoption.
Collapse
Affiliation(s)
- Kumar Jayant
- a Department of Surgery and Cancer , Imperial College London , London , UK
| | - Isabella Reccia
- a Department of Surgery and Cancer , Imperial College London , London , UK
| | | |
Collapse
|
49
|
Zhang Q, Ge Y, Li H, Bai G, Jiao Z, Kong X, Meng W, Wang H. Effect of hydrogen-rich saline on apoptosis induced by hepatic ischemia reperfusion upon laparoscopic hepatectomy in miniature pigs. Res Vet Sci 2018; 119:285-291. [PMID: 30077949 DOI: 10.1016/j.rvsc.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/15/2018] [Accepted: 07/21/2018] [Indexed: 02/07/2023]
Abstract
Hepatic ischemia reperfusion injury (HIRI) occurs commonly in liver surgery and liver transplantation. Hydrogen, a safe and effective antioxidant, exerts a protective effect against liver injury. In this study, we investigated the role of hydrogen-rich saline (HRS) in apoptosis in a miniature pig model of laparoscopic HIRI upon hepatectomy. Bama miniature pigs were randomly assigned to sham, I/R and HRS groups. The pigs received 10 mL/kg HRS by portal venous injection 10 min before reperfusion and at 1 d, 2 d, and 3 d after surgery. The results showed that HRS treatment significantly decreased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) activity and TUNEL-positive cells. Upon HRS treatment, the expression of P53 and Bax mRNA and protein by RT-qPCR and Western blot was markedly decreased, whereas the expression of bcl-2 mRNA and protein was significantly increased. Moreover, Caspase-3 and Caspase-9 activities were significantly decreased upon treatment with HRS. In conclusion, the results indicate that HRS could alleviate liver injury and improve liver function via inhibiting apoptosis after laparoscopic HIRI and hepatectomy injury in miniature pigs.
Collapse
Affiliation(s)
- Qianzhen Zhang
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yansong Ge
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hui Li
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ge Bai
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhihui Jiao
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiangdong Kong
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Weijing Meng
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongbin Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
50
|
Zhang Y, Shen Q, Liu Y, Chen H, Zheng X, Xie S, Ji H, Zheng S. Hepatic Ischemic Preconditioning Alleviates Ischemia-Reperfusion Injury by Decreasing TIM4 Expression. Int J Biol Sci 2018; 14:1186-1195. [PMID: 30123068 PMCID: PMC6097479 DOI: 10.7150/ijbs.24898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/03/2018] [Indexed: 01/17/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) of the liver is a primary cause of post-liver-surgery complications and ischemic preconditioning (IPC) has been verified to protect against ischemia-reperfusion injury. TIM-4 activation plays an important role in macrophage mediated hepatic IRI. This study aimed to determine whether IPC protects against hepatic IRI through inhibiting TIM-4 activation. In this study, a model of warm liver ischemia (90 min) and reperfusion for 6 h was used. Mice were subjected to ischemia-reperfusion injury with or without ischemic preconditioning and TIM4 blocking antibody. Western blot was determined to detect the expression of TIM4 protein and mitochondrial apoptosis-related protein expression. Liver function was evaluated using the level of alanine transaminase (ALT) and aspartate transaminase (AST), cell apoptosis and pathological examination. We found that compared with the control group, ischemic preconditioning reduced IRI by decreasing hepatocyte apoptosis, ALT, AST, CD68 and CD3 positive cells, tissue myeloperoxidase activity(MPO), and downregulating TIM-4 expression. TIM4 blocking could reduce CD68 and CD3 positive cells in liver. Furthermore, activated monocytes transfusion significantly abolished the protect effect of IPC with increased hepatocyte apoptosis, ALT, AST, CD68 and CD3 positive cells while TIM-4 knockdown monocytes lost this effect. These results suggested that IPC protects against hepatic IRI by downregulating TIM-4 and indicated TIM-4 would be a novel therapeutic target to minimize IRI.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiang Shen
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanxing Liu
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Chen
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoxiao Zheng
- Department of Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shangzhi Xie
- Department of Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haofeng Ji
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA
| | - Shusen Zheng
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|