1
|
Lee NK, Lee Y, Shin DS, Ra J, Choi YM, Ryu BH, Lee J, Park E, Paik HD. Hepatoprotective Effect of Lactiplantibacillus plantarum DSR330 in Mice with High Fat Diet-Induced Nonalcoholic Fatty Liver Disease. J Microbiol Biotechnol 2024; 34:399-406. [PMID: 38247213 PMCID: PMC10940777 DOI: 10.4014/jmb.2310.10026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/23/2024]
Abstract
Lactiplantibacillus plantarum DSR330 (DSR330) has been examined for its antimicrobials production and probiotics. In this study, the hepatoprotective effects of DSR330 were examined against non-alcoholic fatty liver disease (NAFLD) in a high-fat diet (HFD)-fed C57BL/6 mouse model. To induce the development of fatty liver, a HFD was administered for five weeks, and then silymarin (positive control) or DSR330 (108 or 109 CFU/day) was administered along with the HFD for seven weeks. DSR330 significantly decreased body weight and altered serum and hepatic lipid profiles, including a reduction in triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels compared to those in the HFD group. DSR330 significantly alleviated HFD-related hepatic injury by inducing morphological changes and reducing the levels of biomarkers, including AST, ALT, and ALP. Additionally, DSR330 alleviated the expression of SREBP-1c, ACC1, FAS, ACO, PPARα, and CPT-1 in liver cells. Insulin and leptin levels were decreased by DSR330 compared to those observed in the HFD group. However, adiponectin levels were increased, similar to those observed in the ND group. These results demonstrate that L. plantarum DSR330 inhibited HFD-induced hepatic steatosis in mice with NAFLD by modulating various signaling pathways. Hence, the use of probiotics can lead to hepatoprotective effects.
Collapse
Affiliation(s)
- Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Yunjung Lee
- Department of Food and Nutrition, Kyungnam University, Changwon 51767, Republic of Korea
| | - Da-Soul Shin
- Department of Food and Nutrition, Kyungnam University, Changwon 51767, Republic of Korea
| | - Jehyeon Ra
- FM MI center, Daesang Wellife, Seoul 03130, Republic of Korea
| | - Yong-Min Choi
- FM MI center, Daesang Wellife, Seoul 03130, Republic of Korea
| | - Byung Hee Ryu
- Jongga R&D product Division, Daesang, Seoul 03130, Republic of Korea
| | - Jinhyeuk Lee
- FM MI center, Daesang Wellife, Seoul 03130, Republic of Korea
| | - Eunju Park
- Department of Food and Nutrition, Kyungnam University, Changwon 51767, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Mijiti M, Mori R, Nakashima Y, Banno A, Ye Y, Takeuchi A, Matsuba S, Kiriyama K, Sutoh K, Nagaoka S. Protamine-derived peptide RPR (Arg-Pro-Arg) ameliorates oleic acid-induced lipogenesis via the PepT1 pathway in HepG2 cells. Biosci Biotechnol Biochem 2023; 87:197-207. [PMID: 36521839 DOI: 10.1093/bbb/zbac197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
The protamine-derived peptide arginine-proline-arginine (RPR) can ameliorate lifestyle-related diseases such as obesity and hypercholesterolemia. Thus, we hypothesized that the hypolipidemic activity of RPR could attenuate events leading to non-alcoholic fatty liver disease. Addition of 2 m m oleic acid (OA) to the culture medium induced fatty liver conditions in HepG2 cells. The OA + RPR group showed significantly decreased cellular or medium triglyceride (TG) level compared with the OA group. Stearoyl-CoA desaturase-1 (SCD1) or sterol regulatory element-binding protein 1 (SREBP1) protein level was significantly lower in the OA + RPR group than in the OA group. In the R + P + R amino acid mixture-treated group, the TG level was not significantly different from that in the OA-treated group. The OA + RP- or OA + PR-treated groups showed significantly decreased cellular TG level compared with the OA group. Moreover, the effect of RPR disappeared when the peptide transporter 1 (PepT1) was knocked down with a siRNA. Collectively, our results demonstrated that RPR effectively ameliorated hepatic steatosis in HepG2 cells via the PepT1 pathway.
Collapse
Affiliation(s)
- Maihemuti Mijiti
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Ryosuke Mori
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yuga Nakashima
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Arata Banno
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Yuyang Ye
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Asahi Takeuchi
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Shoya Matsuba
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Keisuke Kiriyama
- Fordays Co., Ltd., Fordays Nutritional Research Center, 2-24-16 Nakacho, Koganei City, Tokyo, Japan
| | - Keita Sutoh
- Fordays Co., Ltd., Fordays Nutritional Research Center, 2-24-16 Nakacho, Koganei City, Tokyo, Japan
| | - Satoshi Nagaoka
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
3
|
Huang Y, Wang X, Yan C, Li C, Zhang L, Zhang L, Liang E, Liu T, Mao J. Effect of metformin on nonalcoholic fatty liver based on meta-analysis and network pharmacology. Medicine (Baltimore) 2022; 101:e31437. [PMID: 36316840 PMCID: PMC9622616 DOI: 10.1097/md.0000000000031437] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Whether metformin is related to nonalcoholic fatty liver disease (NAFLD) is controversial. Our aim was to investigate the relationship between metformin and NAFLD that may predict the metformin potential of these lesions and new prevention strategies in NAFLD patients. METHODS The meta-analysis was analyzed by Revman 5.3 softwares systematically searched for works published through July 29, 2022. Network pharmacology research based on databases, Cytoscape 3.7.1 software and R software respectively. RESULTS The following variables were associated with metformin in NAFLD patients: decreased of alanine aminotransferase (ALT) level (mean difference [MD] = -10.84, 95% confidence interval [CI] = -21.85 to 0.16, P = .05); decreased of aspartate amino transferase (AST) level (MD = -4.82, 95% CI = -9.33 to -0.30, P = .04); decreased of triglyceride (TG) level (MD = -0.17, 95% CI = -0.26 to -0.08, P = .0002); decreased of total cholesterol (TC) level (MD = -0.29, 95% CI = -0.47 to -0.10, P = .003); decreased of insulin resistance (IR) level (MD = -0.42, 95% CI = -0.82 to -0.02, P = .04). In addition, body mass index (BMI) (MD = -0.65, 95% CI = -1.46 to 0.16, P = .12) had no association with metformin in NAFLD patients. 181 metformin targets and 868 NAFLD disease targets were interaction analyzed, 15 core targets of metformin for the treatment of NAFLD were obtained. The effect of metformin on NAFLD mainly related to cytoplasm and protein binding, NAFLD, hepatitis B, pathway in cancer, toll like receptor signaling pathway and type 2 diabetes mellitus (T2DM). The proteins of hypoxia inducible factor-1 (HIF1A), nuclear factor erythroid 2-related factor (NFE2L2), nitric oxide synthase 3 (NOS3), nuclear receptor subfamily 3 group C member 1 (NR3C1), PI3K catalytic subunit alpha (PIK3CA), and silencing information regulator 2 related enzyme 1 (SIRT1) may the core targets of metformin for the treatment of NAFLD. CONCLUSION Metformin might be a candidate drug for the treatment of NAFLD which exhibits therapeutic effect on NAFLD patients associated with ALT, AST, TG, TC and IR while was not correlated with BMI. HIF1A, NFE2L2, NOS3, NR3C1, PIK3CA, and SIRT1 might be core targets of metformin for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yuanshe Huang
- AnShun University, Guizhou Anshun, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaodong Wang
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Chen Yan
- An Shun City People’s Hospital, Anshun, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Lidan Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lai Zhang
- AnShun University, Guizhou Anshun, China
| | - E Liang
- AnShun University, Guizhou Anshun, China
| | | | - Jingxin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
- Chongqing Medical and Pharmaceutical College, Chongqing, China
- *Correspondence: Jingxin Mao, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China (e-mail: )
| |
Collapse
|
4
|
Hoogerland JA, Staels B, Dombrowicz D. Immune-metabolic interactions in homeostasis and the progression to NASH. Trends Endocrinol Metab 2022; 33:690-709. [PMID: 35961913 DOI: 10.1016/j.tem.2022.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/16/2022]
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) has increased significantly over the past two decades. NAFLD ranges from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) and predisposes to fibrosis and hepatocellular carcinoma (HCC). The importance of the immune system in hepatic physiology and in the progression of NAFLD is increasingly recognized. At homeostasis, the liver participates in immune defense against pathogens and in tolerance of gut-derived microbial compounds. Hepatic immune cells also respond to metabolic stimuli and have a role in NAFLD progression to NASH. In this review, we discuss how metabolic perturbations affect immune cell phenotype and function in NAFL and NASH, and then focus on the role of immune cells in liver homeostasis and in the development of NASH.
Collapse
Affiliation(s)
- Joanne A Hoogerland
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - David Dombrowicz
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France.
| |
Collapse
|
5
|
Younes R, Govaere O, Petta S, Miele L, Tiniakos D, Burt A, David E, Vecchio FM, Maggioni M, Cabibi D, McLeod D, Pareja MJ, Fracanzani AL, Aller R, Rosso C, Ampuero J, Gallego-Durán R, Armandi A, Caviglia GP, Zaki MYW, Liguori A, Francione P, Pennisi G, Grieco A, Birolo G, Fariselli P, Eslam M, Valenti L, George J, Romero-Gómez M, Anstee QM, Bugianesi E. Caucasian lean subjects with non-alcoholic fatty liver disease share long-term prognosis of non-lean: time for reappraisal of BMI-driven approach? Gut 2022; 71:382-390. [PMID: 33541866 DOI: 10.1136/gutjnl-2020-322564] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The full phenotypic expression of non-alcoholic fatty liver disease (NAFLD) in lean subjects is incompletely characterised. We aimed to investigate prevalence, characteristics and long-term prognosis of Caucasian lean subjects with NAFLD. DESIGN The study cohort comprises 1339 biopsy-proven NAFLD subjects from four countries (Italy, UK, Spain and Australia), stratified into lean and non-lean (body mass index (BMI) </≥25 kg/m2). Liver/non-liver-related events and survival free of transplantation were recorded during the follow-up, compared by log-rank testing and reported by adjusted HR. RESULTS Lean patients represented 14.4% of the cohort and were predominantly of Italian origin (89%). They had less severe histological disease (lean vs non-lean: non-alcoholic steatohepatitis 54.1% vs 71.2% p<0.001; advanced fibrosis 10.1% vs 25.2% p<0.001), lower prevalence of diabetes (9.2% vs 31.4%, p<0.001), but no significant differences in the prevalence of the PNPLA3 I148M variant (p=0.57). During a median follow-up of 94 months (>10 483 person-years), 4.7% of lean vs 7.7% of non-lean patients reported liver-related events (p=0.37). No difference in survival was observed compared with non-lean NAFLD (p=0.069). CONCLUSIONS Caucasian lean subjects with NAFLD may progress to advanced liver disease, develop metabolic comorbidities and experience cardiovascular disease (CVD) as well as liver-related mortality, independent of longitudinal progression to obesity and PNPLA3 genotype. These patients represent one end of a wide spectrum of phenotypic expression of NAFLD where the disease manifests at lower overall BMI thresholds. LAY SUMMARY NAFLD may affect and progress in both obese and lean individuals. Lean subjects are predominantly males, have a younger age at diagnosis and are more prevalent in some geographic areas. During the follow-up, lean subjects can develop hepatic and extrahepatic disease, including metabolic comorbidities, in the absence of weight gain. These patients represent one end of a wide spectrum of phenotypic expression of NAFLD.
Collapse
Affiliation(s)
- Ramy Younes
- The Newcastle Liver Research Group, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Boehringer Ingelheim International GmbH, Ingelheim, Germany.,Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, Università degli Studi di Torino, Torino, Italy
| | - Olivier Govaere
- The Newcastle Liver Research Group, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Salvatore Petta
- Sezione di Gastroenterologia, PROMISE, Università di Palermo, Palermo, Italy
| | - Luca Miele
- Dipartimento Universitario Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.,Area Medicina Interna, Gastroenterologia e Oncologia Medica, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Dina Tiniakos
- The Newcastle Liver Research Group, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Dept of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alastair Burt
- The Newcastle Liver Research Group, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ezio David
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, Università degli Studi di Torino, Torino, Italy
| | - Fabio Maria Vecchio
- Dipartimento Universitario Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.,Area Anatomia Patologica, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Marco Maggioni
- Department of Pathology, Ca' Granda IRCCS Foundation, Milan, Italy
| | - Daniela Cabibi
- Pathology Institute, PROMISE, University of Palermo, Palermo, Italy
| | - Duncan McLeod
- Department of Anatomical Pathology, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Sydney, New South Wales, Australia
| | | | - Anna Ludovica Fracanzani
- Unit of Medicine and Metabolic Disease Ca' Granda IRCCS Foundation, Policlinico Hospital, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Rocio Aller
- Gastroenterology, Hospital Clínico Universitario de Valladolid, Centro de Investigación de Endocrinología y Nutrición, Universidad de Valladolid, Valladolid, Spain
| | - Chiara Rosso
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, Università degli Studi di Torino, Torino, Italy
| | - Javier Ampuero
- UCM Digestive Diseases and SeLiver Group, Virgen del Rocio University Hospital, Institute of Biomedicine of Seville, University of Seville, Seville, Spain
| | - Rocío Gallego-Durán
- UCM Digestive Diseases and SeLiver Group, Virgen del Rocio University Hospital, Institute of Biomedicine of Seville, University of Seville, Seville, Spain
| | - Angelo Armandi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, Università degli Studi di Torino, Torino, Italy
| | - Gian Paolo Caviglia
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, Università degli Studi di Torino, Torino, Italy
| | - Marco Y W Zaki
- The Newcastle Liver Research Group, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Biochemistry Department, Faculty of Pharmacy, Minia University, El Minia, Egypt
| | - Antonio Liguori
- Dipartimento Universitario Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Francione
- Unit of Medicine and Metabolic Disease Ca' Granda IRCCS Foundation, Policlinico Hospital, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Grazia Pennisi
- Sezione di Gastroenterologia, PROMISE, Università di Palermo, Palermo, Italy
| | - Antonio Grieco
- Dipartimento Universitario Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.,Area Medicina Interna, Gastroenterologia e Oncologia Medica, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Birolo
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, Università degli Studi di Torino, Torino, Italy
| | - Piero Fariselli
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, Università degli Studi di Torino, Torino, Italy
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, New South Wales, Australia
| | - Luca Valenti
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS C'a Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, New South Wales, Australia
| | - Manuel Romero-Gómez
- UCM Digestive Diseases and SeLiver Group, Virgen del Rocio University Hospital, Institute of Biomedicine of Seville, University of Seville, Seville, Spain
| | - Quentin Mark Anstee
- The Newcastle Liver Research Group, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK .,Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
6
|
Kizilaslan N, Zekiye Erdem N, Katar M, Gevrek F. The Effects of Probiotics and Omega-3 Fatty Acids in Liver Steatosis Induced in Rats by High-Fructose Corn Syrup. Int J Clin Pract 2022; 2022:7172492. [PMID: 35685520 PMCID: PMC9159191 DOI: 10.1155/2022/7172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
AIMS This study was designed to reveal the effect of probiotics and omega-3 fatty acids in a fatty liver model in rats induced by high-fructose corn syrup (HFCS). METHODS In the study, 40 male Wistar Albino rats were used, and these rats were divided into five groups. HFCS was added to the drinking water (30% solution) of four groups (Groups 2, 3, 4, and 5) for three weeks, and the animals were fed ad libitum. At the end of three weeks, the rats in Groups 3, 4, and 5 were administered omega-3 fatty acids (400 mg/kg) and probiotics (1.5 × 109 cfu/mL/day) with the gavage method for four weeks. The body weights of rats were weighed and recorded before starting the experiment, at the end of the third week, and before the animals were sacrificed at the last week, all at the same hour. By subtracting the remaining amount of food and water from the daily food and water amount, the amount of food and water consumed was calculated. These values were recorded for seven weeks. At the end of the seven weeks, the rats were sacrificed after blood specimens and tissues were taken. RESULTS Analyzing the changes in the food intake of each group within itself throughout the experiment, it was observed that there was an increase in the food intake in the control group; from the starting week to the last week, the food intake amount of the HFCS group began to decrease particularly after the second week; and it began to decrease after the third week in the groups that were administered probiotics and omega-3 fatty acids. The changes in the sacrifice weights in the HFCS + omega-3 fatty acid, HFCS + probiotic, and HFCS + probiotic + omega-3 fatty acid groups were found to be lower than that in the HFCS group. The maximum levels of glucose, ALT, ALP, serum cholesterol, triglyceride and AST were found to be in the HFCS group. It was determined that the minimum mean steatosis level was in the control group, while the maximum steatosis level was in the HFCS group. CONCLUSIONS As a result, there was a protective effect of probiotic and omega-3 fatty acid.
Collapse
Affiliation(s)
- Nildem Kizilaslan
- Tokat Gaziosmanpasa University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Tokat, Turkey
| | - Nihal Zekiye Erdem
- Istanbul Medipol University, School of Health Sciences, Department of Nutrition and Dietetics, Istanbul, Turkey
| | - Muzaffer Katar
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Biochemistry, Tokat, Turkey
| | - Fikret Gevrek
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Histology, Tokat, Turkey
| |
Collapse
|
7
|
Protective Effect of a Mixture of Astragalus membranaceus and Lithospermum erythrorhizon Extract against Hepatic Steatosis in High Fat Diet-Induced Nonalcoholic Fatty Liver Disease Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8370698. [PMID: 32256659 PMCID: PMC7106914 DOI: 10.1155/2020/8370698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/21/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
The present study aimed to evaluate the potential synergistic and protective effects of ALM16, a mixture of Astragalus membranaceus (AM) and Lithospermum erythrorhizon (LE) extract in a ratio of 7 : 3, against hepatic steatosis in high fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) mice. Forty-eight mice were randomly divided into eight groups and orally administered daily for 6 weeks with a normal diet (ND) or high fat diet alone (HFD), HFD with AM (HFD + 100 mg/kg AM extract), HFD with LE (HFD + 100 mg/kg LE extract), HFD with ALM16 (HFD + 50, 100, and 200 mg/kg ALM16), or HFD with MT (HFD + 100 mg/kg Milk thistle extract) as a positive control. ALM16 significantly decreased the body and liver weight, serum and hepatic lipid profiles, including triglyceride (TG), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL), and low-density lipoprotein-cholesterol (LDL), and serum glucose levels, compared to the HFD group. Moreover, ALM16 significantly ameliorated the HFD-induced increased hepatic injury markers, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and gamma-glutamyltransferase (GGT)-1. Furthermore, as compared to the mice fed HFD alone, ALM16 increased the levels of phosphorylated AMP-activated protein kinase (p-AMPK) and acetyl-CoA carboxylase (p-ACC), thereby upregulating the expression of carnitine palmitoyltransferase (CPT)-1 and downregulating the expression of sterol regulatory element-binding protein (SREBP)-1c and fatty acid synthase (FAS). These results demonstrated that ALM16 markedly inhibited HFD-induced hepatic steatosis in NAFLD mice by modulating AMPK and ACC signaling pathways, and may be more effective than the single extracts of AM or LE.
Collapse
|
8
|
Glucagon-like peptide-1 effects lipotoxic oxidative stress by regulating the expression of microRNAs. Biochem Biophys Res Commun 2016; 482:1462-1468. [PMID: 27956176 DOI: 10.1016/j.bbrc.2016.12.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/24/2022]
Abstract
Aim to confirm whether the treatment of GLP-1 can modulated body weight, lipid metabolism, insulin content, pancreas oxidative stress, improved T-AOC, MDA levels related to FFA-Induced oxidative stress in C57BL/6 mice and INS-1 cells. In this study, GLP-1 makes the expression of AMPK, PPARα, CPT1A and SIRT1 increased, and the expression of SREBP1c, miR-33 and miR-370 decreased. Interestingly, the effects of GLP-1 were less dose dependent as GLP-1 regulated the FFA, which related to gene expression at much lower doses (3 μg/kg, 10 mM, mice and INS-1 respectively) and effects were relatively maintained at higher dose (30 μg/kg, 100 mM, mice and INS-1 respectively) as well. Subsequently, the analysis showed that inhibited expression of miR-33 and miR-370 upregulated the expression of CPT1A and SIRT1, reversely mimics. These results demonstrated for the first time that GLP-1 improve lipotoxic oxidative stress of pancreas by regulate expression of microRNAs.
Collapse
|
9
|
Dattaroy D, Seth RK, Das S, Alhasson F, Chandrashekaran V, Michelotti G, Fan D, Nagarkatti M, Nagarkatti P, Diehl AM, Chatterjee S. Sparstolonin B attenuates early liver inflammation in experimental NASH by modulating TLR4 trafficking in lipid rafts via NADPH oxidase activation. Am J Physiol Gastrointest Liver Physiol 2016; 310:G510-25. [PMID: 26718771 PMCID: PMC4824178 DOI: 10.1152/ajpgi.00259.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/28/2015] [Indexed: 01/31/2023]
Abstract
Although significant research data exist on the pathophysiology of nonalcoholic steatohepatitis (NASH), finding an efficient treatment regimen for it remains elusive. The present study used sparstolonin B (SsnB), a novel TLR4 antagonist derived from the Chinese herb Sparganium stoloniferum, as a possible drug to mitigate early inflammation in NASH. This study used an early steatohepatitic injury model in high-fat-fed mice with CYP2E1-mediated oxidative stress as a second hit. SsnB was administered for 1 wk along with bromodichloromethane (BDCM), an inducer of CYP2E1-mediated oxidative stress. Results showed that SsnB administration attenuated inflammatory morphology and decreased elevation of the liver enzyme alanine aminotransferase (ALT). Mice administered SsnB also showed decreased mRNA expression of proinflammatory cytokines TNF-α, IFN-γ, IL-1β, and IL-23, while protein levels of both TNF-α and IL-1β were significantly decreased. SsnB significantly decreased Kupffer cell activation as evidenced by reduction in CD68 and monocyte chemoattractant protein-1 (MCP1) mRNA and protein levels with concomitant inhibition of macrophage infiltration in the injured liver. Mechanistically, SsnB decreased TLR4 trafficking to the lipid rafts, a phenomenon described by the colocalization of TLR4 and lipid raft marker flotillin in tissues and immortalized Kupffer cells. Since we have shown previously that NADPH oxidase drives TLR4 trafficking in NASH, we studied the role of SsnB in modulating this pathway. SsnB prevented NADPH oxidase activation in vivo and in vitro as indicated by decreased peroxynitrite formation. In summary, the present study reports a novel use of the TLR4 antagonist SsnB in mitigating inflammation in NASH and in parallel shows a unique molecular mechanism of decreasing nitrative stress.
Collapse
Affiliation(s)
- Diptadip Dattaroy
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | - Ratanesh Kumar Seth
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | - Suvarthi Das
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | - Firas Alhasson
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | - Varun Chandrashekaran
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | | | - Daping Fan
- 3Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina; and
| | - Mitzi Nagarkatti
- 4Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Prakash Nagarkatti
- 4Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Anna Mae Diehl
- 2Division of Gastroenterology, Duke University, Durham, North Carolina;
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| |
Collapse
|
10
|
Jang E, Shin MH, Kim KS, Kim Y, Na YC, Woo HJ, Kim Y, Lee JH, Jang HJ. Anti-lipoapoptotic effect of Artemisia capillaris extract on free fatty acids-induced HepG2 cells. Altern Ther Health Med 2014; 14:253. [PMID: 25038800 PMCID: PMC4223594 DOI: 10.1186/1472-6882-14-253] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/10/2014] [Indexed: 12/19/2022]
Abstract
Background Artemisia capillaris (AC) has been recognized as one of the promising candidates for hepatoprotective, hypoglycemic, hypolipidemic, antiobesitic and anti-inflammatory therapeutic effectiveness. This study evaluated the inherent mechanism and anti-apoptotic activity of 30% ethanol extract of AC (AC extract) 100 μg/ml on free fatty acids (FFAs)-induced HepG2 cellular steatosis and lipoapoptosis. Methods Hepatic steatosis was induced by culturing HepG2 cells with a FFAs mixture (oleic and palmitic acid at the proportion of 2:1) for 24 h, thus ultimately giving rise to lipoapoptosis. Cell viability and lipid accumulation were detected by MTT assay and Oil Red O staining method respectively and Caspase-3, −9, Bax, Bcl-2, p-JNK and PUMA were measured for lipoapoptosis after 24 hours. Results AC extract significantly improved the FFAs-induced steatosis without cytotoxicity and Caspase-3, −9, Bax and Bcl-2 were modulated profitably to HepG2 cells after AC treatment. In addition, AC extract inhibited the activation of c-Jun NH2 terminal kinase (JNK) and PUMA, which mechanism is related to non-alcoholic steatohepatitis (NASH). Conclusions Combined together, AC extract exerted an obvious hypolipidemic and anti-apoptotic effect, indicating that AC extract might have potential therapeutic herb against NASH.
Collapse
|
11
|
Ebrahimi-Mameghani M, Aliashrafi S, Javadzadeh Y, AsghariJafarabadi M. The Effect of Chlorella vulgaris Supplementation on Liver En-zymes, Serum Glucose and Lipid Profile in Patients with Non-Alcoholic Fatty Liver Disease. Health Promot Perspect 2014; 4:107-15. [PMID: 25097844 DOI: 10.5681/hpp.2014.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/02/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is becoming a public health problem worldwide and using microalgae is a new approach on its treatment. The aim of this study was to investigate the effect of Chlorella vulgaris supplementation on liver enzymes, serum glucose and lipid profile in patients with NAFLD. METHODS This double-blind randomized placebo-controlled clinical trial was conducted on 60 NAFLD patients from specialized clinics of Tabriz University of Medical Sciences from December 2011 to July 2012. The subjects were randomly allocated into 2 groups: 1) "intervention" (n=30) received 400 mg/day vitamin E plus four 300 mg tablets of Chlorella vulgaris and, 2) "placebo" (n=30) received 400 mg/day vitamin E and four placebo tablets per day for 8 weeks. Weight, liver enzymes and metabolic factors were assessed in fasting serum and dietary data was collected at baseline and end of the study. RESULTS Weight, liver enzymes, fasting blood sugar (FBS) and lipid profile decreased significantly in both groups (P<0.05). The differences in weight, ALP and FBS between the two groups were statistically significant (P=0.01, P=0.04 and P=0.02, respectively). CONCLUSION C. vulgaris seems to improve FBS and lipid profile and therefore could be considered as an effective complementary treatment in NAFLD.
Collapse
Affiliation(s)
| | - Soodabeh Aliashrafi
- Student Research Committee, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
12
|
Herbal medicines for the treatment of nonalcoholic steatohepatitis: current scenario and future prospects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:648308. [PMID: 24987431 PMCID: PMC4060323 DOI: 10.1155/2014/648308] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a multifactorial disease and has close correlations with other metabolic disorders. This makes its treatment difficult using a single pharmacological drug. Use of plant extract/decoction or polyherbal formulation to treat various liver diseases is very well mentioned in various traditional systems of medicine (Ayurveda, Japanese or traditional Chinese Medicine, and Kampo medicine). Medicinal herbs are known for their multifaceted implications and thus can form an effective treatment schedule against NASH. Till date, several plant extracts, polyherbal formulations, and phytochemicals have been evaluated for their possible therapeutic potential in preventing onset and progression of NASH in experimental models, but clinical studies using the same are sparse. Herbal extracts with antioxidants, antidiabetic, and antihyperlipidemic properties have been shown to ameliorate symptoms of NASH. This review article is a meticulous compilation of our current knowledge on the role of natural products in alleviating NASH and possible lacunae in research that needs to be addressed.
Collapse
|
13
|
Sahini N, Borlak J. Recent insights into the molecular pathophysiology of lipid droplet formation in hepatocytes. Prog Lipid Res 2014; 54:86-112. [PMID: 24607340 DOI: 10.1016/j.plipres.2014.02.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/17/2014] [Accepted: 02/21/2014] [Indexed: 12/11/2022]
Abstract
Triacyglycerols are a major energy reserve of the body and are normally stored in adipose tissue as lipid droplets (LDs). The liver, however, stores energy as glycogen and digested triglycerides in the form of fatty acids. In stressed condition such as obesity, imbalanced nutrition and drug induced liver injury hepatocytes accumulate excess lipids in the form of LDs whose prolonged storage leads to disease conditions most notably non-alcoholic fatty liver disease (NAFLD). Fatty liver disease has become a major health burden with more than 90% of obese, nearly 70% of overweight and about 25% of normal weight patients being affected. Notably, research in recent years has shown LD as highly dynamic organelles for maintaining lipid homeostasis through fat storage, protein sorting and other molecular events studied in adipocytes and other cells of living organisms. This review focuses on the molecular events of LD formation in hepatocytes and the importance of cross talk between different cell types and their signalling in NAFLD as to provide a perspective on molecular mechanisms as well as possibilities for different therapeutic intervention strategies.
Collapse
Affiliation(s)
- Nishika Sahini
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
14
|
Abstract
The article is intended to provide an overview of the strengths and limits of controlled trials of pharmacologic treatment of nonalcoholic fatty liver disease. No drug has so far been approved, although validated on histologic outcomes. Several new drugs are under scrutiny, acting with different mechanisms along the chain of events from fatty liver to fibrosis, cirrhosis, and hepatocellular carcinoma. The article investigates which drug, if any, should be preferred for a tailored intervention in individual patients, according to age, comorbidities, and disease severity, and if treatment should be continued lifelong, to prevent disease progression and long-term occurrence of cirrhosis.
Collapse
|
15
|
Das S, Seth RK, Kumar A, Kadiiska MB, Michelotti G, Diehl AM, Chatterjee S. Purinergic receptor X7 is a key modulator of metabolic oxidative stress-mediated autophagy and inflammation in experimental nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2013; 305:G950-63. [PMID: 24157968 PMCID: PMC3882442 DOI: 10.1152/ajpgi.00235.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies indicate that metabolic oxidative stress, autophagy, and inflammation are hallmarks of nonalcoholic steatohepatitis (NASH) progression. However, the molecular mechanisms that link these important events in NASH remain unclear. In this study, we investigated the mechanistic role of purinergic receptor X7 (P2X7) in modulating autophagy and resultant inflammation in NASH in response to metabolic oxidative stress. The study uses two rodent models of NASH. In one of them, a CYP2E1 substrate bromodichloromethane is used to induce metabolic oxidative stress and NASH. Methyl choline-deficient diet feeding is used for the other NASH model. CYP2E1 and P2X7 receptor gene-deleted mice are used to establish their roles in regulating metabolic oxidative stress and autophagy. Autophagy gene expression, protein levels, confocal microscopy based-immunolocalization of lysosome-associated membrane protein (LAMP)2A and histopathological analysis were performed. CYP2E1-dependent metabolic oxidative stress induced increases in P2X7 receptor expression and chaperone-mediated autophagy markers LAMP2A and heat shock cognate 70 but caused depletion of light chain 3 isoform B (LC3B) protein levels. P2X7 receptor gene deletion significantly decreased LAMP2A and inflammatory indicators while significantly increasing LC3B protein levels compared with wild-type mice treated with bromodichloromethane. P2X7 receptor-deleted mice were also protected from NASH pathology as evidenced by decreased inflammation and fibrosis. Our studies establish that P2X7 receptor is a key regulator of autophagy induced by metabolic oxidative stress in NASH, thereby modulating hepatic inflammation. Furthermore, our findings presented here form a basis for P2X7 receptor as a potential therapeutic target in the treatment for NASH.
Collapse
Affiliation(s)
- Suvarthi Das
- Environmental Health and Disease Laboratory, Dept. of Environmental Health Sciences, Univ. of South Carolina, Columbia, SC 29208.
| | - Ratanesh Kumar Seth
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | - Ashutosh Kumar
- 2Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina;
| | - Maria B. Kadiiska
- 2Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina;
| | | | - Anna Mae Diehl
- 3Division of Gastroenterology, Duke University, Durham North Carolina
| | - Saurabh Chatterjee
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| |
Collapse
|
16
|
Inhibitory effect of a Cirsium setidens extract on hepatic fat accumulation in mice fed a high-fat diet via the induction of fatty acid β-oxidation. Biosci Biotechnol Biochem 2013; 77:1424-9. [PMID: 23832362 DOI: 10.1271/bbb.130049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cirsium setidens is a perennial medicinal herb that is rich in flavonoids. We investigated in this study the effect of a C. setidens ethanol extract (CSE) on the development of nonalcoholic fatty liver in mice fed a high-fat diet (HF). C57BL/6J mice were fed either a control diet (CON) or HF for 8 weeks, and then fed CON, HF, or HF with 100 mg/kg of BW CSE (HF+CSE) for an additional 7 weeks. The final body weight and adipose tissue weight of the mice in the HF+CSE group were significantly lower than those in the HF group. CSE also markedly diminished both the lipid droplets in the liver tissues and decreased the hepatic and serum triglycerides (TG) concentrations. CSE strongly increased the hepatic mRNA levels of carnitine palmitoyltransferase (CPT1) and medium-chain acyl-CoA dehydrogenase (MCAD), the fatty acid β-oxidation enzymes. The hepatic levels of phosphorylated-AMP-activated protein kinase (AMPK) were significantly higher in the HF+CSF group than in the HF group. These results suggest that CSE inhibited hepatic fat accumulation by up-regulating the expression of the fatty acid β-oxidation genes.
Collapse
|
17
|
Karlas T, Wiegand J, Berg T. Gastrointestinal complications of obesity: non-alcoholic fatty liver disease (NAFLD) and its sequelae. Best Pract Res Clin Endocrinol Metab 2013; 27:195-208. [PMID: 23731881 DOI: 10.1016/j.beem.2013.02.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity is a major risk factor for malign and non-malign diseases of the gastrointestinal tract. Non-alcoholic fatty liver disease (NAFLD) is an outstanding example for the complex pathophysiology of the metabolic system and represents both source and consequence of the metabolic syndrome. NAFLD has a growing prevalence and will become the leading cause of advanced liver disease and cirrhosis. Obesity has a negative impact on NAFLD at all aspects and stages of the disease. The growing epidemic will strain health care resources and demands new concepts for prevention, screening and therapeutic approaches. A better understanding of the interplay of liver, gut and hormonal system is necessary for new insights in the underlying mechanisms of NAFLD and the metabolic syndrome including obesity. Identification of patients at risk for progressive liver disease will allow a better adaption of treatment strategies.
Collapse
Affiliation(s)
- Thomas Karlas
- Leipzig University Medical Centre, IFB Adiposity Diseases, Leipzig, Germany.
| | | | | |
Collapse
|