1
|
Liraglutide Improves the Angiogenic Capability of EPC and Promotes Ischemic Angiogenesis in Mice under Diabetic Conditions through an Nrf2-Dependent Mechanism. Cells 2022; 11:cells11233821. [PMID: 36497087 PMCID: PMC9736458 DOI: 10.3390/cells11233821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
The impairment in endothelial progenitor cell (EPC) functions results in dysregulation of vascular homeostasis and dysfunction of the endothelium under diabetic conditions. Improving EPC function has been considered as a promising strategy for ameliorating diabetic vascular complications. Liraglutide has been widely used as a therapeutic agent for diabetes. However, the effects and mechanisms of liraglutide on EPC dysfunction remain unclear. The capability of liraglutide in promoting blood perfusion and angiogenesis under diabetic conditions was evaluated in the hind limb ischemia model of diabetic mice. The effect of liraglutide on the angiogenic function of EPC was evaluated by cell scratch recovery assay, tube formation assay, and nitric oxide production. RNA sequencing was performed to assess the underlying mechanisms. Liraglutide enhanced blood perfusion and angiogenesis in the ischemic hindlimb of db/db mice and streptozotocin-induced type 1 diabetic mice. Additionally, liraglutide improved tube formation, cell migration, and nitric oxide production of high glucose (HG)-treated EPC. Assessment of liraglutide target pathways revealed a network of genes involved in antioxidant activity. Further mechanism study showed that liraglutide decreased the production of reactive oxygen species and increased the activity of nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 deficiency attenuated the beneficial effects of liraglutide on improving EPC function and promoting ischemic angiogenesis under diabetic conditions. Moreover, liraglutide activates Nrf2 through an AKT/GSK3β/Fyn pathway, and inhibiting this pathway abolished liraglutide-induced Nrf2 activation and EPC function improvement. Overall, these results suggest that Liraglutide represents therapeutic potential in promoting EPC function and ameliorating ischemic angiogenesis under diabetic conditions, and these beneficial effects relied on Nrf2 activation.
Collapse
|
2
|
Wan G, Xu Z, Xiang X, Zhang M, Jiang T, Chen J, Li S, Wang C, Yan C, Yang X, Chen Z. Elucidation of endothelial progenitor cell dysfunction in diabetes by RNA sequencing and constructing lncRNA-miRNA-mRNA competing endogenous RNA network. J Mol Med (Berl) 2022; 100:1569-1585. [PMID: 36094536 DOI: 10.1007/s00109-022-02251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
With the rapid increase in the incidence of diabetes, non-healing diabetic wounds have posed a huge challenge to public health. Endothelial progenitor cell (EPC) has been widely reported to promote wound repairing, while its number and function were suppressed in diabetes. However, the specific mechanisms and competing endogenous RNA (ceRNA) network of EPCs in diabetes remain largely unknown. Thus, the transcriptome analyses were carried in the present study to clarify the mechanism underlying EPCs dysfunction in diabetes. EPCs were successfully isolated from rats. Compared to the control, diabetic rat-derived EPCs displayed impaired proliferation, migration, and tube formation ability. The differentially expressed (DE) RNAs were successfully identified by RNA sequencing in the control and diabetic groups. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that DE mRNAs were significantly enriched in terms and pathways involved in the functions of EPCs and wound healing. Protein-protein interaction networks revealed critical DE mRNAs in the above groups. Moreover, the whole lncRNA-miRNA-mRNA ceRNA network was constructed, in which 9 lncRNAs, 9 mRNAs, and 5 miRNAs were further validated by quantitative real-time polymerase chain reaction. Rno-miR-10b-5p and Tgfb2 were identified as key regulators of EPCs dysfunction in diabetes. The present research provided novel insight into the underlying mechanism of EPCs dysfunction in diabetes and prompted potential targets to restore the impaired functions, thus accelerating diabetic wound healing. KEY MESSAGES: • Compared to the control, diabetic rat-derived EPCs displayed impaired proliferation, migration, and tube formation ability. • The DE RNAs were successfully identified by RNA sequencing in the control and diabetic groups and analyzed by DE, GO, and KEGG analysis. • PPI and lncRNA-miRNA-mRNA ceRNA networks were constructed. • 9 lncRNAs, 9 mRNAs, and 5 miRNAs were further validated by qRT-PCR. • Rno-miR-10b-5p and Tgfb2 were identified as key regulators of EPCs dysfunction in diabetes.
Collapse
Affiliation(s)
- Gui Wan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhao Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuejiao Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Maojie Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shengbo Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Liu M, Chen J, Cao N, Zhao W, Gao G, Wang Y, Fu Q. Therapies Based on Adipose-Derived Stem Cells for Lower Urinary Tract Dysfunction: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14102229. [PMID: 36297664 PMCID: PMC9609842 DOI: 10.3390/pharmaceutics14102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lower urinary tract dysfunction often requires tissue repair or replacement to restore physiological functions. Current clinical treatments involving autologous tissues or synthetic materials inevitably bring in situ complications and immune rejection. Advances in therapies using stem cells offer new insights into treating lower urinary tract dysfunction. One of the most frequently used stem cell sources is adipose tissue because of its easy access, abundant source, low risk of severe complications, and lack of ethical issues. The regenerative capabilities of adipose-derived stem cells (ASCs) in vivo are primarily orchestrated by their paracrine activities, strong regenerative potential, multi-differentiation potential, and cell–matrix interactions. Moreover, biomaterial scaffolds conjugated with ASCs result in an extremely effective tissue engineering modality for replacing or repairing diseased or damaged tissues. Thus, ASC-based therapy holds promise as having a tremendous impact on reconstructive urology of the lower urinary tract.
Collapse
Affiliation(s)
- Meng Liu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Jiasheng Chen
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Nailong Cao
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
- Correspondence: (Y.W.); (Q.F.)
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
- Correspondence: (Y.W.); (Q.F.)
| |
Collapse
|
4
|
Bolla AM, Loretelli C, Montefusco L, Finzi G, Abdi R, Ben Nasr M, Lunati ME, Pastore I, Bonventre JV, Nebuloni M, Rusconi S, Santus P, Zuccotti G, Galli M, D’Addio F, Fiorina P. Inflammation and vascular dysfunction: The negative synergistic combination of diabetes and COVID-19. Diabetes Metab Res Rev 2022; 38:e3565. [PMID: 35830597 PMCID: PMC9349661 DOI: 10.1002/dmrr.3565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 01/08/2023]
Abstract
AIMS Several reports indicate that diabetes determines an increased mortality risk in patients with coronavirus disease 19 (COVID-19) and a good glycaemic control appears to be associated with more favourable outcomes. Evidence also supports that COVID-19 pneumonia only accounts for a part of COVID-19 related deaths. This disease is indeed characterised by abnormal inflammatory response and vascular dysfunction, leading to the involvement and failure of different systems, including severe acute respiratory distress syndrome, coagulopathy, myocardial damage and renal failure. Inflammation and vascular dysfunction are also well-known features of hyperglycemia and diabetes, making up the ground for a detrimental synergistic combination that could explain the increased mortality observed in hyperglycaemic patients. MATERIALS AND METHODS In this work, we conduct a narrative review on this intriguing connection. Together with this, we also present the clinical characteristics, outcomes, laboratory and histopathological findings related to this topic of a cohort of nearly 1000 subjects with COVID-19 admitted to a third-level Hospital in Milan. RESULTS We found an increased mortality in subjects with COVID-19 and diabetes, together with an altered inflammatory profile. CONCLUSIONS This may support the hypothesis that diabetes and COVID-19 meet at the crossroads of inflammation and vascular dysfunction. (ClinicalTrials.gov NCT04463849 and NCT04382794).
Collapse
Affiliation(s)
| | - Cristian Loretelli
- International Center for T1DPediatric Clinical Research Center Romeo ed Enrica InvernizziDepartment of Biomedical and Clinical Science L. SaccoUniversity of MilanMilanItaly
| | | | | | - Reza Abdi
- Nephrology DivisionBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Moufida Ben Nasr
- International Center for T1DPediatric Clinical Research Center Romeo ed Enrica InvernizziDepartment of Biomedical and Clinical Science L. SaccoUniversity of MilanMilanItaly
- Nephrology DivisionBoston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Ida Pastore
- Division of EndocrinologyASST Fatebenefratelli‐SaccoMilanItaly
| | - Joseph V. Bonventre
- Nephrology DivisionBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Manuela Nebuloni
- Pathology UnitASST Fatebenefratelli‐SaccoMilanItaly
- Department of Biomedical and Clinical Sciences L. SaccoUniversity of MilanMilanItaly
| | - Stefano Rusconi
- Department of Biomedical and Clinical Sciences L. SaccoUniversity of MilanMilanItaly
| | - Pierachille Santus
- Department of Biomedical and Clinical Sciences L. SaccoUniversity of MilanMilanItaly
- Division of Respiratory DiseasesASST Fatebenefratelli‐SaccoMilanItaly
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center Romeo ed Enrica InvernizziDepartment of Biomedical and Clinical Science L. SaccoUniversity of MilanMilanItaly
- Department of Pediatrics“V. Buzzi” Children's HospitalMilanItaly
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences L. SaccoUniversity of MilanMilanItaly
- III Division of Infectious DiseasesLuigi Sacco HospitalASST Fatebenefratelli‐SaccoMilanItaly
| | - Francesca D’Addio
- Division of EndocrinologyASST Fatebenefratelli‐SaccoMilanItaly
- International Center for T1DPediatric Clinical Research Center Romeo ed Enrica InvernizziDepartment of Biomedical and Clinical Science L. SaccoUniversity of MilanMilanItaly
| | - Paolo Fiorina
- Division of EndocrinologyASST Fatebenefratelli‐SaccoMilanItaly
- International Center for T1DPediatric Clinical Research Center Romeo ed Enrica InvernizziDepartment of Biomedical and Clinical Science L. SaccoUniversity of MilanMilanItaly
- Nephrology DivisionBoston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
5
|
Guo F, Ren Z, Liu D, Wang L, Hou X, Chen W. The Inhibitory Effect of Regulatory T Cells on the Intimal Hyperplasia of Tissue-Engineered Blood Vessels in Diabetic Pigs. Front Bioeng Biotechnol 2022; 10:929867. [PMID: 35957644 PMCID: PMC9360552 DOI: 10.3389/fbioe.2022.929867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Severe inflammatory response and functional impairment of endothelial progenitor cells (EPCs) often lead to the implantation failure of EPC-captured tissue-engineered blood vessels (TEBVs) in diabetes. Regulatory T cells (Treg cells) are the most important inhibitory immune cells, but their effects in angiogenesis remain undefined, and the differences in the microenvironment may be an important reason. Here, we constructed a TEBV coated with an anti-CD34 antibody-functionalized heparin-collagen multilayer (anti-CD34 antibody-modified TEBV) using layer-by-layer self-assembly. Then, TEBVs were implanted into diabetic pigs. All TEBVs remained unobstructed 60 days after implantation, although varying degrees of intimal hyperplasia were detectable. Severe intimal hyperplasia was observed in the control group and peripheral injection of Treg cells group. Intravenous injection of Treg cells significantly inhibited intimal hyperplasia, inflammation, and cell apoptosis. Moreover, intravenous injection increased the proportion of circulating EPCs, while peripheral injection did not have these effects and reduced microvessel density around the TEBV. Interestingly, many Nestin+ cells could be detected in TEBVs, most of which were fusiform, showing the characteristics of smooth-muscle cells. Treg cell intravenous transplantation markedly reduced the number of Nestin+ cells in the TEBV. In conclusion, Treg cells inhibited the intimal hyperplasia of TEBVs in diabetic pigs by promoting EPC mobilization, anti-inflammatory action, and cellular protection.
Collapse
Affiliation(s)
- Fengjie Guo
- Outpatient Department, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhipeng Ren
- Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dongxu Liu
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Linghui Wang
- Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaobin Hou
- Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Wen Chen, ; Xiaobin Hou,
| | - Wen Chen
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Wen Chen, ; Xiaobin Hou,
| |
Collapse
|
6
|
Regulation of endothelial progenitor cell functions during hyperglycemia: new therapeutic targets in diabetic wound healing. J Mol Med (Berl) 2022; 100:485-498. [PMID: 34997250 DOI: 10.1007/s00109-021-02172-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Diabetes is primarily characterized by hyperglycemia, and its high incidence is often very costly to patients, their families, and national economies. Unsurprisingly, the number and function of endothelial progenitor cells (EPCs) decrease in patients resulting in diabetic wound non-healing. As precursors of endothelial cells (ECs), these cells were discovered in 1997 and found to play an essential role in wound healing. Their function, number, and role in wound healing has been widely investigated. Hitherto, a lot of complex molecular mechanisms have been discovered. In this review, we summarize the mechanisms of how hyperglycemia affects the function and number of EPCs and how the affected cells impact wound healing. We aim to provide a complete summary of the relationship between diabetic hyperglycosemia, EPCs, and wound healing, as well as a better comprehensive platform for subsequent related research.
Collapse
|
7
|
Fu Y, Zhou JD, Sang XY, Zhao QT. Gualou-Xiebai-Banxia decoction protects against type II diabetes with acute myocardial ischemia by attenuating oxidative stress and apoptosis via PI3K/Akt/eNOS signaling. Chin J Nat Med 2021; 19:161-169. [PMID: 33781449 DOI: 10.1016/s1875-5364(21)60017-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 01/08/2023]
Abstract
Gualou-Xiebai-Banxia decoction has a long history of medical use for treating cardiovascular diseases in China. In this study, we investigated the protective effect and underlying mechanisms GXB in type II diabetes with acute myocardial ischemia (T2DM-AMI) rats. We hypothesized that GXB may display its protective effect on T2DM-AMI by reducing endothelial progenitor cells (EPCs) apoptosisviaactivating PI3K (phosphatidyl inositol 3-kinase)/Akt (serine/threonine protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling. Rats were challenged with a high-fat diet and intraperitoneal injection of streptozotocin to induce a model of type II diabetes mellitus (T2DM) and coronary ligation to induce acute myocardial infarction (AMI). Changes in metabolites were assessed via enzyme-linked immunoassay and biochemical examination. The number and apoptosis rate of EPCs in peripheral blood were detected by flow cytometry. Target mRNAs and proteins in EPCs were analyzed by RT-PCR and Western blot analysis. The results demonstrated that GXB treatment decreased T2DM-AMI-associated changes in plasma fasting blood glucose, muscular enzymes, and blood lipids, and reduced oxidative stress. Furthermore, EPC apoptosis was increased in T2DM-AMI rats and was associated with decreased mRNA and protein levels of PI3K, Akt, and eNOS compared to the controls. Conversely, T2DM-AMI rats treated with GXB exhibited more circulating EPCs and downregulated levels of cell apoptosis, combined with increased mRNA and protein levels of PI3K, Akt, and eNOS compared to those of untreated T2DM-AMI rats. Our study showed that GXB treatment mitigated EPC apoptosis and promoted PI3K/Akt/eNOS signaling in T2DM-AMI rats.
Collapse
Affiliation(s)
- Yao Fu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ji-Dong Zhou
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiao-Yu Sang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qi-Tao Zhao
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
8
|
Dai Q, Fan X, Meng X, Sun S, Su Y, Ling X, Chen X, Wang K, Dai X, Zhang C, Da S, Zhang G, Gu C, Chen H, He J, Hu H, Yu L, Pan X, Tan Y, Yan X. FGF21 promotes ischaemic angiogenesis and endothelial progenitor cells function under diabetic conditions in an AMPK/NAD+-dependent manner. J Cell Mol Med 2021; 25:3091-3102. [PMID: 33599110 PMCID: PMC7957202 DOI: 10.1111/jcmm.16369] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic vascular complications are closely associated with long‐term vascular dysfunction and poor neovascularization. Endothelial progenitor cells (EPCs) play pivotal roles in maintaining vascular homeostasis and triggering angiogenesis, and EPC dysfunction contributes to defective angiogenesis and resultant diabetic vascular complications. Fibroblast growth factor 21 (FGF21) has received substantial attention as a potential therapeutic agent for diabetes via regulating glucose and lipid metabolism. However, the effects of FGF21 on diabetic vascular complications remain unclear. In the present study, the in vivo results showed that FGF21 efficiently improved blood perfusion and ischaemic angiogenesis in both type 1 and type 2 diabetic mice, and these effects were accompanied by enhanced EPC mobilization and infiltration into ischaemic muscle tissues and increases in plasma stromal cell–derived factor‐1 concentration. The in vitro results revealed that FGF21 directly prevented EPC damage induced by high glucose, and the mechanistic studies demonstrated that nicotinamide adenine dinucleotide (NAD+) was dramatically decreased in EPCs challenged with high glucose, whereas FGF21 treatment significantly increased NAD+ content in an AMPK‐dependent manner, resulting in improved angiogenic capability of EPCs. These results indicate that FGF21 promotes ischaemic angiogenesis and the angiogenic ability of EPCs under diabetic conditions by activating the AMPK/NAD+ pathway.
Collapse
Affiliation(s)
- Qiaoxia Dai
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xia Fan
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xue Meng
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Shiyue Sun
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yue Su
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiao Ling
- Department of Pharmacy, The People's Hospital of YuHuan, Taizhou, China
| | - Xiangjuan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozhen Dai
- School of Biomedicine, Chengdu Medical College, Chengdu, China
| | - Chi Zhang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sun Da
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Guigui Zhang
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chunjie Gu
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Hui Chen
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Junhong He
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Haiqi Hu
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, China
| | - Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, the Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohong Pan
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications, Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Hartmeier PR, Pham NB, Velankar KY, Issa F, Giannoukakis N, Meng WS. Hydrogel Dressings for Chronic Wound Healing in Diabetes: Beyond Hydration. JOURNAL OF PHARMACEUTICS & DRUG DELIVERY RESEARCH 2020; 10:1000197. [PMID: 36110983 PMCID: PMC9473423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chronic wounds caused by diabetes are a significant medical challenge. Complications from non-healing can result in dire consequences for patients and cost the healthcare system billions of dollars annually. Non-healing in wounds for diabetic patient's results from a combination of factors which impair clearing of injured tissue, proliferation of healthy cell populations and increase risk of infection. Wound dressings continue to form the basis for the treatment of chronic wounds. Traditionally, these focused solely on hydration of the wound site and mitigating infection risk. Hydrogel systems are ready made to meet these basic requirements due to their intrinsic hydration properties and ability to deliver active ingredients. Flexibility in materials and methods of release allowed these systems to remain targets of research into the 21st century. Improved understanding of the wound environment and healing cascades has led to the development of more advanced systems which incorporate endogenous growth factors and living cells. Despite their promise, clinical efficacy of these systems has remained a challenge. Further, the regulatory pathways for approval add a layer of complexity to translate pre-clinical work into marketed products. In this review, we discuss systems currently in clinical use, pre-clinical directions and regulatory challenges for hydrogels in the treatment of diabetic chronic wounds.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, USA
| | - Ngoc B Pham
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, USA
| | - Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, USA
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, USA
- Deparment of Biological Sciences, Carnegie Mellon University, Pittsburgh, USA
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA
| |
Collapse
|
10
|
Combined Transplantation of Adipose Tissue-Derived Stem Cells and Endothelial Progenitor Cells Improve Diabetic Erectile Dysfunction in a Rat Model. Stem Cells Int 2020; 2020:2154053. [PMID: 32714394 PMCID: PMC7354671 DOI: 10.1155/2020/2154053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Erectile dysfunction (ED) is a common complication in men suffered with diabetic mellitus. Stem cell transplantation is a promising strategy for the treatment of diabetic ED (DED). In this study, we evaluated whether combined transplantation of adipose tissue-derived stem cells (ADSCs) and endothelial progenitor cells (EPCs) could improve the erectile function of the DED rat model. DED rats were induced via intraperitoneal injection of streptozotocin (50 mg/kg), and ED was screened by apomorphine (100 mg/kg). DED rats were divided into 4 groups (n = 14 each): DED, ADSC, EPC, and ADSC/EPC group. Another 14 age-matched male SD rats with normal erectile function were served as the normal group. The normal group and the DED group were received intracavernous injection with phosphate-buffered saline (PBS). And the other groups were received intracavernous injection with ADSCs (1 × 106), EPCs (1 × 106), and ADSCs/EPCs (0.5 × 106/0.5 × 106), respectively. The total intracavernous pressure (ICP) and mean arterial pressure (MAP) were recorded at day 28 after injection. The endothelium, smooth muscle, and penile dorsal nerves were assessed within cavernoursal tissue. On day 28 after injection, the ADSC/EPC group displayed more significantly enhanced ICP and ICP/MAP than the DED or ADSC or EPC group (p < 0.05). Immunofluorescent analysis and western blot demonstrated that the improvement of erectile function in the ADSC/EPC5 group was associated with increased expression of endothelial marker (CD31) and the correction of eNOS-cGMP-NO signaling. More 5-ethynyl-2′-deoxyuridine- (EdU-) positive EPCs could be found lining in the cavernous endothelial layer in the ADSC/EPC group than the EPC group, which was attributed to the paracrine of vascular endothelial growth factor (VEGF) and stromal-derived factor-1 (SDF-1) by ADSCs. Combined transplantation of ADSCs and EPCs has a synergic effect in repairing the endothelial function of DED rats, and the underlying mechanism might be the paracrine of VEGF and SDF-1 by ADSCs, which improves the recruitment and proliferation of EPCs in the cavernosum.
Collapse
|
11
|
Pastore I, Bolla AM, Montefusco L, Lunati ME, Rossi A, Assi E, Zuccotti GV, Fiorina P. The Impact of Diabetes Mellitus on Cardiovascular Risk Onset in Children and Adolescents. Int J Mol Sci 2020; 21:ijms21144928. [PMID: 32664699 PMCID: PMC7403998 DOI: 10.3390/ijms21144928] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
The prevalence of diabetes mellitus is rising among children and adolescents worldwide. Cardiovascular diseases are the main cause of morbidity and mortality in diabetic patients. We review the impact of diabetes on establishing, during childhood and adolescence, the premises for cardiovascular diseases later in life. Interestingly, it seems that hyperglycemia is not the only factor that establishes an increased cardiovascular risk in adolescence. Other factors have been recognized to play a role in triggering the onset of latent cardiovascular diseases in the pediatric population. Among these cardiovascular risk factors, some are modifiable: glucose variability, hypoglycemia, obesity, insulin resistance, waist circumference, hypertension, dyslipidemia, smoking alcohol, microalbuminuria and smoking. Others are unmodifiable, such as diabetes duration and family history. Among the etiological factors, subclinical endothelial dysfunction represents one of the earliest key players of atherosclerosis and it can be detected during early ages in patients with diabetes. A better assessment of cardiovascular risk in pediatric population still represents a challenge for clinicians, and thus further efforts are required to properly identify and treat pediatric patients who may suffer from cardiovascular disease later in early adulthood.
Collapse
Affiliation(s)
- Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy; (I.P.); (A.M.B.); (L.M.); (M.E.L.); (A.R.)
| | - Andrea Mario Bolla
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy; (I.P.); (A.M.B.); (L.M.); (M.E.L.); (A.R.)
| | - Laura Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy; (I.P.); (A.M.B.); (L.M.); (M.E.L.); (A.R.)
| | - Maria Elena Lunati
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy; (I.P.); (A.M.B.); (L.M.); (M.E.L.); (A.R.)
| | - Antonio Rossi
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy; (I.P.); (A.M.B.); (L.M.); (M.E.L.); (A.R.)
| | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, 20157 Milan, Italy;
| | - Gian Vincenzo Zuccotti
- Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano and Department of Pediatrics, Buzzi Children’s Hospital, 20157 Milan, Italy;
| | - Paolo Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, 20157 Milan, Italy; (I.P.); (A.M.B.); (L.M.); (M.E.L.); (A.R.)
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, 20157 Milan, Italy;
- Nephrology Division, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-919-2624
| |
Collapse
|
12
|
Fan X, He L, Dai Q, He J, Chen X, Dai X, Zhang C, Sun D, Meng X, Sun S, Huang J, Chen J, Lin L, Chen L, Tan Y, Yan X. Interleukin-1β augments the angiogenesis of endothelial progenitor cells in an NF-κB/CXCR7-dependent manner. J Cell Mol Med 2020; 24:5605-5614. [PMID: 32239650 PMCID: PMC7214148 DOI: 10.1111/jcmm.15220] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are able to trigger angiogenesis, and pro‐inflammatory cytokines have beneficial effects on angiogenesis under physiological and pathological conditions. C‐X‐C chemokine receptor type 7 (CXCR‐7), receptor for stromal cell‐derived factor‐1, plays a critical role in enhancing EPC angiogenic function. Here, we examined whether CXCR7 mediates the pro‐angiogenic effects of the inflammatory cytokine interleukin‐1β (IL‐1β) in EPCs. EPCs were isolated by density gradient centrifugation and angiogenic capability was evaluated in vitro by Matrigel capillary formation assay and fibrin gel bead assay. IL‐1β elevated CXCR7 expression at both the transcriptional and translational levels in a dose‐ and time‐dependent manner, and blockade of the nuclear translocation of NF‐κB dramatically attenuated the IL‐1β‐mediated up‐regulation of CXCR7 expression. IL‐1β stimulation significantly promoted EPCs tube formation and this effect was largely impaired by CXCR7‐siRNA transfection. IL‐1β treatment stimulated extracellular signal‐regulated kinase 1/2 (Erk1/2) phosphorylation, and inhibition of Erk1/2 phosphorylation partially impaired IL‐1β‐induced tube formation of EPCs but without significant effects on CXCR7 expression. Moreover, blocking NF‐κB had no significant effects on IL‐1β‐stimulated Erk1/2 phosphorylation. These findings indicate that CXCR7 plays an important role in the IL‐1β‐enhanced angiogenic capability of EPCs and antagonizing CXCR7 is a potential strategy for inhibiting angiogenesis under inflammatory conditions.
Collapse
Affiliation(s)
- Xia Fan
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,Department of Endocrinology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luqing He
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Qiaoxia Dai
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Junhong He
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xiangjuan Chen
- Department of Obstetrics and Gynecology, The first affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozhen Dai
- School of Biomedicine, Chengdu Medical College, Chengdu, China
| | - Chi Zhang
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Xue Meng
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Shiyue Sun
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Jiameng Huang
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Lin Lin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liangmiao Chen
- Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Tan
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Xiaoqing Yan
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Wang Q, Liu L, Li Y, Wang J, Liu Y, Wu Q, Wang B, Qi B, Qi B. Hypoxic Preconditioning Enhances Biological Function of Endothelial Progenitor Cells via Notch-Jagged1 Signaling Pathway. Med Sci Monit 2017; 23:4665-4667. [PMID: 28959004 PMCID: PMC5633065 DOI: 10.12659/msm.902470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hypoxic preconditioning may be a key influence on functions of endothelial progenitor cells (EPCs). MATERIAL AND METHODS To investigate the role and mechanism of the Notch-Jagged1 pathway on endothelial progenitor cells in hypoxic preconditioning, endothelial progenitor cells were randomly allocated into 5 groups: 1 Normoxic control group; 2 Hypoxic blank group; 3 Hypoxic+25 μM DAPT group; 4 Hypoxic+50 μM DAPT group; 5 Hypoxic+100 μM DAPT group. After reoxygenation, protein and mRNA levels of Jagged1 were measured by Western blot and quantitative RT-PCR. The MTT test was used to assess proliferation. ELISA was used to measure NO and VEGF secretion. RESULTS Hypoxic preconditioning treatment significantly upregulated both protein and mRNA levels of Jagged1 in endothelial progenitor cells. It also enhanced proliferation ability and elevated secretion of NO and VEGF. Furthermore, after blocking the Notch pathway by using DAPT, Jagged1 expression and EP proliferation, migration, and secretion of NO and VEGF were decreased in a dose-dependent manner. CONCLUSIONS Our results suggest the Notch-Jagged1 pathway enhances EPCs proliferation and secretion ability during hypoxic preconditioning.
Collapse
Affiliation(s)
- Qian Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - LiHua Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - YuanYuan Li
- Department of Neurology, Zhumadian Zhongxin Hospital, Zhumadian, Henan, China (mainland)
| | - Jinfeng Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Yun Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - QinQin Wu
- Department of Geriatrics, The Central Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Bin Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Benming Qi
- Department of Otolaryngology, 1st People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - BenLing Qi
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
14
|
Kovanecz I, Vernet D, Masouminia M, Gelfand R, Loni L, Aboagye J, Tsao J, Rajfer J, Gonzalez-Cadavid NF. Implanted Muscle-Derived Stem Cells Ameliorate Erectile Dysfunction in a Rat Model of Type 2 Diabetes, but Their Repair Capacity Is Impaired by Their Prior Exposure to the Diabetic Milieu. J Sex Med 2017; 13:786-97. [PMID: 27114192 DOI: 10.1016/j.jsxm.2016.02.168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Muscle-derived stem cells (MDSCs) and other SCs implanted into the penile corpora cavernosa ameliorate erectile dysfunction in type 1 diabetic rat models by replenishing lost corporal smooth muscle cells (SMCs) and decreasing fibrosis. However, there are no conclusive data from models of type 2 diabetes (T2D) and obesity. AIM To determine whether MDSCs from obese Zucker (OZ) rats with T2D at an early stage of diabetes (early diabetic SCs isolated and cultured in low-glucose medium [ED-SCs]) counteract corporal veno-occlusive dysfunction and corporal SMC loss or lipo-fibrosis when implanted in OZ rats at a late stage of diabetes and whether MDSCs from these OZ rats with late diabetes (late diabetic SCs isolated and cultured in high-glucose medium [LD-SC]) differ from ED-SCs in gene transcriptional phenotype and repair capacity. METHODS ED-SCs and LD-SCs were compared by DNA microarray assays, and ED-SCs were incubated in vitro under high-glucose conditions (ED-HG-SC). These three MDSC types were injected into the corpora cavernosa of OZ rats with late diabetes (OZ/ED, OZ/LD, and OZ/ED-HG rats, respectively). Untreated OZ and non-diabetic lean Zucker rats functioned as controls. Two months later, rats were subjected to cavernosometry and the penile shaft and corporal tissues were subjected to histopathology and DNA microarray assays. MAIN OUTCOME MEASURES In vivo erectile dysfunction assessment by Dynamic Infusion Cavernosometry followed by histopathology marker analysis of the penile tissues. RESULTS Implanted ED-SCs and ED-HG-SCs improved corporal veno-occlusive dysfunction, counteracted corporal decreases in the ratio of SMCs to collagen and fat infiltration in rats with long-term T2D, and upregulated neuronal and endothelial nitric oxide. LD-SCs acquired an inflammatory, pro-fibrotic, oxidative, and dyslipidemic transcriptional phenotype and failed to repair the corporal tissue. CONCLUSION MDSCs from pre-diabetic rats injected into the corpora cavernosa of rats with long-term T2D improve corporal veno-occlusive dysfunction and the underlying histopathology. In contrast, MDSCs from rats with long-term uncontrolled T2D are imprinted by the hyperglycemic and dyslipidemic milieu with a noxious phenotype associated with an impaired tissue repair capacity. SCs affected by diabetes could lack tissue repair efficacy as autografts and should be reprogrammed in vitro or substituted by SCs from allogenic non-diabetic sources.
Collapse
Affiliation(s)
- Istvan Kovanecz
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Dolores Vernet
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Maryam Masouminia
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Robert Gelfand
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Leila Loni
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - James Aboagye
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - James Tsao
- Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Jacob Rajfer
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nestor F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Medicine, Charles Drew University of Medicine and Science, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Yan X, Dai X, He L, Ling X, Shao M, Zhang C, Wang Y, Xiao J, Cai L, Li X, Tan Y. A Novel CXCR4 antagonist enhances angiogenesis via modifying the ischaemic tissue environment. J Cell Mol Med 2017; 21:2298-2307. [PMID: 28374486 PMCID: PMC5618675 DOI: 10.1111/jcmm.13150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/07/2017] [Indexed: 01/01/2023] Open
Abstract
Endothelial progenitor cells (EPCs) play a capital role in angiogenesis via directly participating in neo-vessel formation and secreting pro-angiogenic factors. Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 play a critical role in the retention and quiescence of EPCs within its niche in the bone marrow. Disturbing the interaction between SDF-1 and CXCR4 is an effective strategy for EPC mobilization. We developed a novel CXCR4 antagonist P2G, a mutant protein of SDF-1β with high antagonistic activity against CXCR4 and high potency in enhancing ischaemic angiogenesis and blood perfusion. However, its direct effects on ischaemic tissue remain largely unknown. In this study, P2G was found to possess a robust capability to promote EPC infiltration and incorporation in neo-vessels, enhance the expression and function of pro-angiogenic factors, such as SDF-1, vascular endothelial growth factor and matrix metalloprotein-9, and activate cell signals involved in angiogenesis, such as proliferating cell nuclear antigen, protein kinase B (Akt), extracellular regulated protein kinases and mammalian target of rapamycin, in ischaemic tissue. Moreover, P2G can attenuate fibrotic remodelling to facilitate the recovery of ischaemic tissue. The capability of P2G in direct augmenting ischaemic environment for angiogenesis suggests that it is a potential candidate for the therapy of ischaemia diseases.
Collapse
Affiliation(s)
- Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Chashan University-town, Wenzhou, Zhejiang, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA.,Chinese-American Pediatric Research Institute at the First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaozhen Dai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA.,School of Biomedicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Luqing He
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Chashan University-town, Wenzhou, Zhejiang, China
| | - Xiao Ling
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Chashan University-town, Wenzhou, Zhejiang, China
| | - Minglong Shao
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Chashan University-town, Wenzhou, Zhejiang, China
| | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Chashan University-town, Wenzhou, Zhejiang, China
| | - Yuehui Wang
- Department of Geriatric Medicine, the first hospital of Jilin university, Changchun, Jilin, China
| | - Jian Xiao
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Chashan University-town, Wenzhou, Zhejiang, China
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Chashan University-town, Wenzhou, Zhejiang, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA.,Chinese-American Pediatric Research Institute at the First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Chashan University-town, Wenzhou, Zhejiang, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Chashan University-town, Wenzhou, Zhejiang, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA.,Chinese-American Pediatric Research Institute at the First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
16
|
Ben Nasr M, Fiorina P. CXCR4 antagonism overcomes diabetic stem cell mobilopathy. Atherosclerosis 2016; 251:512-513. [PMID: 27352994 DOI: 10.1016/j.atherosclerosis.2016.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Moufida Ben Nasr
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Transplant Medicine, San Raffaele Hospital, Milan, Italy
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Transplant Medicine, San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
17
|
Gao X, Wang Y, Hou HY, Lyu Y, Wang HY, Yao LB, Zhang J, Cao F, Wang YS. In vivo bioluminescence imaging of hyperglycemia exacerbating stem cells on choroidal neovascularization in mice. Int J Ophthalmol 2016; 9:519-27. [PMID: 27162722 DOI: 10.18240/ijo.2016.04.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/20/2015] [Indexed: 12/11/2022] Open
Abstract
AIM To investigate the influence of hyperglycemia on the severity of choroidal neovascularization (CNV), especially the involvement of bone marrow-derived cells (BMCs) and underlying mechanisms. METHODS BMCs from firefly luciferase (Fluc)/green fluorescent protein (GFP) double transgenic mice were transplanted into C57BL/6J wide-type mice. The recipient mice were injected intraperitoneally with streptozotocin (STZ) daily for 5 consecutive days to induce diabetes mellitus (DM), followed by CNV laser photocoagulation. The BMCs recruitment in CNV exposed to hyperglycemia was firstly examined in Fluc/GFP chimeric mice by in vivo optical bioluminescence imaging (BLI) and in vitro Fluc assays. The CNV severity was evaluated by H&E staining and choroidal flatmount. The expression of vascular endothelial growth factor (VEGF) and stromal cell derived factor-1 (SDF-1) was detected by Western Blot. RESULTS BLI showed that the BMCs exerted dynamic effects in CNV model in Fluc/GFP chimeric mice exposed to hyperglycemia. The signal intensity of transplanted Fluc(+)GFP(+) BMCs in the DM chimeric mice was significantly higher than that in the control chimeric mice with CNV induction at days 5, 7, 14 and 21 (121861.67±9948.81 vs 144998.33±13787.13 photons/second/cm(2)/sr for control and DM mice, P 5d<0.05; 178791.67±30350.8 vs 240166.67±22605.3, P 7d<0.05; 124176.67±16253.52 vs 196376.67±18556.79, P 14d<0.05; 97951.60±10343.09 vs 119510.00±14383.76, P 21d<0.05), which was consistent with in vitro Fluc assay at day 7 [relative light units of Fluc (RLU1)], 215.00±52.05 vs 707.33±88.65, P<0.05; RLU1/ relative light units of renilla luciferase (RLU2), 0.90±0.17 vs 1.83±0.17, P<0.05]. The CNVs in the DM mice were wider than those in the control group at days 5, 7, 14 and 21 (147.83±17.36 vs 220.33±20.17 µm, P 5d<0.05; 212.17±24.63 vs 326.83±19.49, P 7d<0.05; 163.17±18.24 vs 265.17±20.55, P 14d<0.05; 132.00±10.88 vs 205.33±12.98, P 21d<0.05). The average area of CNV in the DM group was larger at 7d (20688.67±3644.96 vs 32218.00±4132.69 µm(2), P<0.05). The expression of VEGF and SDF-1 was enhanced in the DM mice. CONCLUSION Hyperglycemia promots the vasculogenesis of CNV, especially the contribution of BMCs, which might be triggered by VEGF and SDF-1 production.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yu Wang
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Hui-Yuan Hou
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yang Lyu
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Hai-Yan Wang
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Li-Bo Yao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Jian Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Feng Cao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yu-Sheng Wang
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
18
|
Protective effect of Astragalus polysaccharide on endothelial progenitor cells injured by thrombin. Int J Biol Macromol 2015; 82:711-8. [PMID: 26434517 DOI: 10.1016/j.ijbiomac.2015.09.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 01/22/2023]
Abstract
Several studies have demonstrated that Astragalus polysaccharide (APS) has a protective effect on endothelial cells damaged by various factors. To examine the role of APS in the endothelial inflammatory response, rat bone marrow endothelial progenitor cells (EPCs) were isolated by density gradient centrifugation and identified by immunohistochemistry, then we established a model of inflammatory injury induced by thrombin and measured the effects of APS on EPC viability and proliferation by MTT assays. We also assayed the effect APS had on the inflammatory response, by examining the nuclear factor kappa B (NF-κB) signaling pathway, as well as the expression of intercellular adhesion molecule-1 (ICAM-1), vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR. Results demonstrated that EPCs were damaged by thrombin, and APS appeared to inhibit this damage. APS suppressed thrombin-induced ICAM-1 expression by blocking NF-κB signaling in rat bone marrow EPCs, and up-regulating expression of VEGF and its receptors. We believed that APS may be used to treat and prevent EPC injury-related diseases.
Collapse
|
19
|
Wolkow PP, Kosiniak-Kamysz W, Osmenda G, Wilk G, Bujak-Gizycka B, Ignacak A, Kanitkar M, Walus-Miarka M, Harrison DG, Korbut R, Malecki MT, Guzik TJ. GTP cyclohydrolase I gene polymorphisms are associated with endothelial dysfunction and oxidative stress in patients with type 2 diabetes mellitus. PLoS One 2014; 9:e108587. [PMID: 25369080 PMCID: PMC4219671 DOI: 10.1371/journal.pone.0108587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/22/2014] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The genetic background of atherosclerosis in type 2 diabetes mellitus (T2DM) is complex and poorly understood. Studying genetic components of intermediate phenotypes, such as endothelial dysfunction and oxidative stress, may aid in identifying novel genetic components for atherosclerosis in diabetic patients. METHODS Five polymorphisms forming two haplotype blocks within the GTP cyclohydrolase 1 gene, encoding a rate limiting enzyme in tetrahydrobiopterin synthesis, were studied in the context of flow and nitroglycerin mediated dilation (FMD and NMD), intima-media thickness (IMT), and plasma concentrations of von Willebrand factor (vWF) and malondialdehyde (MDA). RESULTS Rs841 was associated with FMD (p = 0.01), while polymorphisms Rs10483639, Rs841, Rs3783641 (which form a single haplotype) were associated with both MDA (p = 0.012, p = 0.0015 and p = 0.003, respectively) and vWF concentrations (p = 0.016, p = 0.03 and p = 0.045, respectively). In addition, polymorphism Rs8007267 was also associated with MDA (p = 0.006). Haplotype analysis confirmed the association of both haplotypes with studied variables. CONCLUSIONS Genetic variation of the GCH1 gene is associated with endothelial dysfunction and oxidative stress in T2DM patients.
Collapse
Affiliation(s)
- Pawel P. Wolkow
- Centre for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Wladyslaw Kosiniak-Kamysz
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz Osmenda
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz Wilk
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Beata Bujak-Gizycka
- Centre for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Adam Ignacak
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Mihir Kanitkar
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | | | - David G. Harrison
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - Ryszard Korbut
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej T. Malecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Krakow, Poland
- University Hospital, Krakow, Poland
| | - Tomasz J. Guzik
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Krakow, Poland
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
20
|
Xiao M, Men LN, Xu MG, Wang GB, Lv HT, Liu C. Berberine protects endothelial progenitor cell from damage of TNF-α via the PI3K/AKT/eNOS signaling pathway. Eur J Pharmacol 2014; 743:11-6. [DOI: 10.1016/j.ejphar.2014.09.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 01/09/2023]
|
21
|
Abstract
Endothelial progenitor cells (EPCs) are primitive endothelial precursors which are known to functionally contribute to the pathogenesis of disease. To date a number of distinct subtypes of these cells have been described, with differing maturation status, cellular phenotype, and function. Although there is much debate on which subtype constitutes the true EPC population, all subtypes have endothelial characteristics and contribute to neovascularisation. Vasculogenesis, the process by which EPCs contribute to blood vessel formation, can be dysregulated in disease with overabundant vasculogenesis in the context of solid tumours, leading to tumour growth and metastasis, and conversely insufficient vasculogenesis can be present in an ischemic environment. Importantly, it is widely known that transcription factors tightly regulate cellular phenotype and function by controlling the expression of particular target genes and in turn regulating specific signalling pathways. This suggests that transcriptional regulators may be potential therapeutic targets to control EPC function. Herein, we discuss the observed EPC subtypes described in the literature and review recent studies describing the role of a number of transcriptional families in the regulation of EPC phenotype and function in normal and pathological conditions.
Collapse
|
22
|
Poncina N, Albiero M, Menegazzo L, Cappellari R, Avogaro A, Fadini GP. The dipeptidyl peptidase-4 inhibitor saxagliptin improves function of circulating pro-angiogenic cells from type 2 diabetic patients. Cardiovasc Diabetol 2014; 13:92. [PMID: 24886621 PMCID: PMC4033689 DOI: 10.1186/1475-2840-13-92] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/09/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is associated with reduction and dysfunction of circulating pro-angiogenic cells (PACs). DPP-4 inhibitors, a class of oral agents for T2D, might possess pleiotropic vasculoprotective activities. Herein, we tested whether DPP-4 inhibition with Saxagliptin affects the function of circulating PACs from T2D and healthy subjects. METHODS PACs were isolated from T2D (n = 20) and healthy (n = 20) subjects. Gene expression, clonogenesis, proliferation, adhesion, migration and tubulisation were assessed in vitro by incubating PACs with or without Saxagliptin and SDF-1α. Stimulation of angiogenesis by circulating cells from T2D patients treated with Saxagliptin or other non-incretinergic drugs was assessed in vivo using animal models. RESULTS Soluble DPP-4 activity was predominant over cellular activity and was successfully inhibited by Saxagliptin. At baseline, T2D compared to healthy PACs contained less acLDL(+)Lectin(+) cells, and showed altered expression of genes related to adhesion and cell cycle regulation. This was reflected by impaired adhesion and clonogenesis/proliferative response of T2D PACs. Saxagliptin + SDF-1α improved adhesion and tube sustaining capacity of PACs from T2D patients. CD14+ PACs were more responsive to Saxagliptin than CD14- PACs. While Saxagliptin modestly reduced angiogenesis by mature endothelial cells, circulating PACs-progeny cells from T2D patients on Saxagliptin treatment displayed higher growth factor-inducible in vivo angiogenetic activity, compared to cells from T2D patients on non-incretinergic regimen. CONCLUSIONS Saxagliptin reverses PACs dysfunction associated with T2D in vitro and improves inducible angiogenesis by circulating cells in vivo. These data add knowledge to the potential pleiotropic cardiovascular effects of DPP-4 inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | - Gian Paolo Fadini
- Venetian Institute of Molecular Medicine, University Hospital of Padova, Via Giustiniani, Padova 2, 35100, Italy.
| |
Collapse
|
23
|
Katagi M, Terashima T, Okano J, Urabe H, Nakae Y, Ogawa N, Udagawa J, Maegawa H, Matsumura K, Chan L, Kojima H. Hyperglycemia induces abnormal gene expression in hematopoietic stem cells and their progeny in diabetic neuropathy. FEBS Lett 2014; 588:1080-6. [PMID: 24583009 DOI: 10.1016/j.febslet.2014.02.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/29/2014] [Accepted: 02/14/2014] [Indexed: 01/21/2023]
Abstract
Diabetic peripheral neuropathy is a major chronic diabetic complication. We have previously shown that in type 1 diabetic streptozotocin-treated mice, insulin- and TNF-α co-expressing bone marrow-derived cells (BMDCs) induced by hyperglycemia travel to nerve tissues where they fuse with nerve cells, causing premature apoptosis and nerve dysfunction. Here we show that similar BMDCs also occur in type 2 diabetic high-fat diet (HFD) mice. Furthermore, we found that hyperglycemia induces the co-expression of insulin and TNF-α in c-kit(+)Sca-1(+)lineage(-) (KSL) progenitor cells, which maintain the same expression pattern in the progeny, which in turn participates in the fusion with neurons when transferred to normoglycemic animals.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Bone Marrow Transplantation
- Cell Fusion
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/pathology
- Diet, High-Fat/adverse effects
- Ganglia, Spinal/pathology
- Gene Expression
- Hematopoietic Stem Cells/physiology
- Hyperglycemia/genetics
- Hyperglycemia/metabolism
- Hyperglycemia/pathology
- Insulin/metabolism
- Mice
- Mice, Inbred C57BL
- Neurons/physiology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Miwako Katagi
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tomoya Terashima
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Junko Okano
- Department of Division of Anatomy and Cell Biology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Urabe
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yuki Nakae
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Nobuhiro Ogawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jun Udagawa
- Department of Division of Anatomy and Cell Biology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kazuhiro Matsumura
- Department of Critical and Intensive Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Lawrence Chan
- Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, and Biochemistry, Baylor College of Medicine, Houston, Texas, United States
| | - Hideto Kojima
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan.
| |
Collapse
|
24
|
Chen X, Chen Q, Wang L, Li G. Ghrelin induces cell migration through GHSR1a-mediated PI3K/Akt/eNOS/NO signaling pathway in endothelial progenitor cells. Metabolism 2013; 62:743-52. [PMID: 23218924 DOI: 10.1016/j.metabol.2012.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/16/2012] [Accepted: 09/24/2012] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The purpose of this research was to investigate the effects of ghrelin on circulating endothelial progenitor cells (EPC) directional migration and its underlying molecular mechanisms involved in this process. MATERIALS/METHODS EPC were isolated from bone marrow of SD rats by using Percoll density gradient centrifugation, and characterized by double positive for acLDL-Dil uptake and FITC-UEA-1 binding and immunocytochemistry for CD34, CD133, vWF and Flk-1. EPC were treated with different concentrations of ghrelin (10(-9)~10(-6)M) with or without GHSR1a inhibitor [D-Lys3]-GHRP-6, PI3K inhibitor LY294002 and endothelial nitric oxide synthase (eNOS) inhibitor L-NAME, migration of EPC was detected by transwell assay, levels of phosphorylated and total Akt and eNOS were determined by Western-blot analysis and Nitric Oxide (NO) production was measured by Griess assay, respectively. RESULTS EPC were successfully obtained by Percoll density gradient centrifugation and ghrelin at 10(-8)M~10(-7)M promoted EPC migration. Ghrelin-induced EPC migration was accompanied by phosphorylation of Akt and eNOS, as well as an increase in NO production. These biochemical events and EPC directional migration induced by ghrelin were completely inhibited by GHSR-1a blocker [D-Lys3]-GHRP-6. PI3K inhibitor LY294002 attenuated ghrelin-induced EPC migration, phosphorylation of Akt and eNOS, and NO production. eNOS inhibitor L-NAME blocked ghrelin-induced EPC migration, phosphorylation of eNOS, and NO production, but had no effect on Akt phosphorylation. CONCLUSIONS These findings suggest that ghrelin stimulates EPC directional migration via GHSR1a-mediated PI3K/Akt/eNOS/NO signal pathway. It indicates that ghrelin may be used as a therapeutic strategy to treat ischemic diseases by promoting EPC directional migration.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Geriatrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | | | | | | |
Collapse
|
25
|
Lima LCF, Porto ML, Campagnaro BP, Tonini CL, Nogueira BV, Pereira TM, Vasquez EC, Meyrelles SS. Mononuclear cell therapy reverts cuff-induced thrombosis in apolipoprotein E-deficient mice. Lipids Health Dis 2012; 11:96. [PMID: 22849299 PMCID: PMC3477089 DOI: 10.1186/1476-511x-11-96] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/12/2012] [Indexed: 01/06/2023] Open
Abstract
Background Stem/progenitor cell-based therapy has successfully been used as a novel therapeutic strategy for vascular diseases triggered by endothelial dysfunction. The aim of this study was to investigate the effects of mononuclear cell (MNC) therapy in situ on carotid cuff-induced occlusive thrombus in the apolipoprotein E knockout (apoE-/-) mouse. Methods Spleen-derived MNCs were isolated from green fluorescent protein (GFP)-transgenic mice for cell treatment. A cuff-induced thrombus model was produced by placing a nonconstrictive silastic collar around the left common carotid artery in 20-week-old female apoE-/- mice. After 10 days, the cuff was removed, and the animals received in situ MNCs (Cuff-MNC) or vehicle (Cuff-Vehicle) and were compared with sham-operated animals (Sham). Results The histological analysis showed that the MNC treatment reverted occlusive thrombus formation compared to the vehicle and the vessel lumen area to that observed in the Sham group (MNC, 50 ± 4; Vehicle, 20 ± 4; Sham, 55 ± 2 x103 μm2; p < 0.01). The animals that underwent the carotid cuff placement developed compensatory vessel enlargement, which was reduced by the MNC therapy. In addition, the treatment was able to reduce superoxide anion production, which likely contributed to the reduced apoptosis that was observed. Lastly, the immunofluorescence analysis revealed the presence of endothelial progenitor cells (EPCs) in the carotid endothelia of the apoE-/- mice. Conclusion In situ short-term MNC therapy was able to revert cuff-induced occlusive thrombi in the carotid arteries of apoE-/- mice, possibly through the homing of EPCs, reduction of oxidative stress and decreased apoptosis.
Collapse
Affiliation(s)
- Leandro C F Lima
- Laboratory of Transgenes and Cardiovascular Control, Department Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | | | | | | | | | | |
Collapse
|