1
|
Ren K, Yong C, Wang Y, Wei H, Zhao K, He B, Cui M, Chen Y, Wang J. Cytomegalovirus Pneumonia in Inflammatory Bowel Disease: Literature Review and Clinical Recommendations. Infect Drug Resist 2023; 16:6195-6208. [PMID: 37724090 PMCID: PMC10505384 DOI: 10.2147/idr.s420244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/22/2023] [Indexed: 09/20/2023] Open
Abstract
Aim The objective was to elucidate the correlation between CMVP and immunosuppressive therapy in IBD patients, we hope this review could expand on the significance of CMV as an opportunistic pathogen and the potential impact on morbidity and mortality in IBD patients. Methods Records and clinical trajectories linked to CMVP in IBD patients were extracted from the PubMed database, irrespective of language barriers. The reference lists incorporated in these studies were manually inspected. Conclusions were generated using straightforward descriptive analysis. Results In total, 18 IBD patients, including Crohn's disease (CD, 67%) and Ulcerative Colitis (UC, 33%), affected by CMVP were identified from 17 published articles. A minority of these patients (17%) exhibited active disease, whereas the majority (83%) presented with quiescent disease. Fever (100%) and dyspnea (44%) emerged as the most prevalent clinical symptoms. All the patients had undergone immunosuppressive therapy. A significant proportion, up to 89%, had received thiopurine treatment prior to the CMVP diagnosis. Interestingly, none of the patients were subjected to biological therapy. Half of the patients manifested with Hemophagocytic Lymphohistiocytosis (HLH). Almost all patients (94%) were administered antiviral treatment and a substantial 83% experienced full recovery. Immunosuppressive agents were either tapered or discontinued altogether. A subset of patients, 17%, suffered fatal outcomes. Conclusion Our findings underscore the need for heightened suspicion of CMVP in IBD patients who exhibit symptoms such as fever and dyspnea. During the COVID-19 pandemic, CMVP should be considered a potential differential diagnosis. It was observed that CMVP primarily transpires during CD remission. Azathioprine emerged as the predominant immunosuppressant linked to CMV reactivation. The prompt application of effective antiviral therapy can substantially enhance patient outcomes. CMV vaccine might serve as a viable prevention strategy.
Collapse
Affiliation(s)
- Keyu Ren
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, People’s Republic of China
| | - Chunming Yong
- Department of Emergency, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, People’s Republic of China
| | - Yanting Wang
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, People’s Republic of China
| | - Hongyun Wei
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, People’s Republic of China
| | - Kun Zhao
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, People’s Republic of China
| | - Baoguo He
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, People’s Republic of China
| | - Mingjuan Cui
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, People’s Republic of China
| | - Yunqing Chen
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, People’s Republic of China
| | - Jin Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, 266000, People’s Republic of China
| |
Collapse
|
2
|
Wanjalla CN, Gabriel CL, Fuseini H, Bailin SS, Mashayekhi M, Simmons J, Warren CM, Glass DR, Oakes J, Gangula R, Wilfong E, Priest S, Temu T, Newell EW, Pakala S, Kalams SA, Gianella S, Smith D, Harrison DG, Mallal SA, Koethe JR. CD4 + T cells expressing CX3CR1, GPR56, with variable CD57 are associated with cardiometabolic diseases in persons with HIV. Front Immunol 2023; 14:1099356. [PMID: 36865544 PMCID: PMC9971959 DOI: 10.3389/fimmu.2023.1099356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Persons with HIV (PWH) on long-term antiretroviral therapy (ART) have a higher incidence and prevalence of cardiometabolic diseases attributed, in part, to persistent inflammation despite viral suppression. In addition to traditional risk factors, immune responses to co-infections such as cytomegalovirus (CMV) may play an unappreciated role in cardiometabolic comorbidities and offer new potential therapeutic targets in a subgroup of individuals. We assessed the relationship of CX3CR1+, GPR56+, and CD57+/- T cells (termed CGC+) with comorbid conditions in a cohort of 134 PWH co-infected with CMV on long-term ART. We found that PWH with cardiometabolic diseases (non-alcoholic fatty liver disease, calcified coronary arteries, or diabetes) had higher circulating CGC+CD4+ T cells compared to metabolically healthy PWH. The traditional risk factor most correlated with CGC+CD4+ T cell frequency was fasting blood glucose, as well as starch/sucrose metabolites. While unstimulated CGC+CD4+ T cells, like other memory T cells, depend on oxidative phosphorylation for energy, they exhibited higher expression of carnitine palmitoyl transferase 1A compared to other CD4+ T cell subsets, suggesting a potentially greater capacity for fatty acid β-oxidation. Lastly, we show that CMV-specific T cells against multiple viral epitopes are predominantly CGC+. Together, this study suggests that among PWH, CGC+ CD4+ T cells are frequently CMV-specific and are associated with diabetes, coronary arterial calcium, and non-alcoholic fatty liver disease. Future studies should assess whether anti-CMV therapies could reduce cardiometabolic disease risk in some individuals.
Collapse
Affiliation(s)
- Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Curtis L. Gabriel
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Hubaida Fuseini
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Samuel S. Bailin
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mona Mashayekhi
- Division of Endocrinology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joshua Simmons
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christopher M. Warren
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David R. Glass
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Jared Oakes
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rama Gangula
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Erin Wilfong
- Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephen Priest
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tecla Temu
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Evan W. Newell
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Suman Pakala
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Spyros A. Kalams
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sara Gianella
- Department of Medicine, University of California, San Diego, CA, United States
| | - David Smith
- Department of Medicine, University of California, San Diego, CA, United States
| | - David G. Harrison
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Simon A. Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John R. Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Infectious Disease Section, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| |
Collapse
|
3
|
Wang W, Chen X, Pan J, Zhang X, Zhang L. Epstein-Barr Virus and Human Cytomegalovirus Infection in Intestinal Mucosa of Chinese Patients With Inflammatory Bowel Disease. Front Microbiol 2022; 13:915453. [PMID: 35711779 PMCID: PMC9195000 DOI: 10.3389/fmicb.2022.915453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Objective This study aimed to determine the frequency of Epstein–Barr virus (EBV), cytomegalovirus (CMV) in mucosa and blood of inflammatory bowel disease (IBD) patients in China and evaluate their correlation with the clinical disease activities. Methods Peripheral blood and endoscopic fresh colonic mucosal samples were collected from a cohort of 287 IBD patients and 50 controls. Viral DNA load was analyzed through quantitative real-time PCR. The clinical disease activity of ulcerative colitis (UC) and Crohn’s disease (CD) was assessed by the Mayo Clinic Score and Crohn’s disease activity index, respectively. Results Among 287 IBD patients, 228 (79.4%) were positive for EBV and 99 (34.5%) were positive for CMV. EBV and CMV infection rates are significantly higher than those in the control group (28.0%, p < 0.05; 4.0%, p < 0.05). In addition, EBV/CMV prevalence increases as clinical activities progress [For EBV infection, the prevalence was 53.93% (48/89) in the mild group, 87.00% (87/100) in the moderate group, and 94.90% (93/98) in the severe group; and for CMV infection, the prevalence was 3.37% (3/89) in the mild group, 27.00% (27/100) in the moderate group, and 70.41% (69/98) in the severe group]. EBV and CMV loads are related to clinical disease activities (p < 0.05). In addition, viral load in the intestinal mucosa of patients with acute exacerbation of IBD is higher than that of patients in remission. Conclusion High prevalence of EBV and CMV is found in patients with IBD, and their prevalence is related to clinical disease activities. In addition, the viral load in the intestinal mucosa is associated with the status of mucosa in the same patients (active phase versus remission phase). Detection of viral load on mucosal specimens with quantitative real-time PCR is a feasible method to monitor EBV and CMV infection in IBD patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Laboratory Medicine, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xin Chen
- Department of Laboratory Medicine, The 908th Hospital of Chinese PLA Joint Logistics Support Force, Nanchang, China
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Xianhui Zhang
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, China
| |
Collapse
|
4
|
El Baba R, Herbein G. Immune Landscape of CMV Infection in Cancer Patients: From "Canonical" Diseases Toward Virus-Elicited Oncomodulation. Front Immunol 2021; 12:730765. [PMID: 34566995 PMCID: PMC8456041 DOI: 10.3389/fimmu.2021.730765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Human Cytomegalovirus (HCMV) is an immensely pervasive herpesvirus, persistently infecting high percentages of the world population. Despite the apparent robust host immune responses, HCMV is capable of replicating, evading host defenses, and establishing latency throughout life by developing multiple immune-modulatory strategies. HCMV has coexisted with humans mounting various mechanisms to evade immune cells and effectively win the HCMV-immune system battle mainly through maintaining its viral genome, impairing HLA Class I and II molecule expression, evading from natural killer (NK) cell-mediated cytotoxicity, interfering with cellular signaling, inhibiting apoptosis, escaping complement attack, and stimulating immunosuppressive cytokines (immune tolerance). HCMV expresses several gene products that modulate the host immune response and promote modifications in non-coding RNA and regulatory proteins. These changes are linked to several complications, such as immunosenescence and malignant phenotypes leading to immunosuppressive tumor microenvironment (TME) and oncomodulation. Hence, tumor survival is promoted by affecting cellular proliferation and survival, invasion, immune evasion, immunosuppression, and giving rise to angiogenic factors. Viewing HCMV-induced evasion mechanisms will play a principal role in developing novel adapted therapeutic approaches against HCMV, especially since immunotherapy has revolutionized cancer therapeutic strategies. Since tumors acquire immune evasion strategies, anti-tumor immunity could be prominently triggered by multimodal strategies to induce, on one side, immunogenic tumor apoptosis and to actively oppose the immune suppressive microenvironment, on the other side.
Collapse
Affiliation(s)
- Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UBFC, Besançon, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UBFC, Besançon, France
- Department of Virology, Centre hospitalier régional universitaire de Besançon (CHRU) Besançon, Besancon, France
| |
Collapse
|
5
|
Galitska G, Coscia A, Forni D, Steinbrueck L, De Meo S, Biolatti M, De Andrea M, Cagliani R, Leone A, Bertino E, Schulz T, Santoni A, Landolfo S, Sironi M, Cerboni C, Dell'Oste V. Genetic Variability of Human Cytomegalovirus Clinical Isolates Correlates With Altered Expression of Natural Killer Cell-Activating Ligands and IFN-γ. Front Immunol 2021; 12:532484. [PMID: 33897679 PMCID: PMC8062705 DOI: 10.3389/fimmu.2021.532484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2021] [Indexed: 01/03/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection often leads to systemic disease in immunodeficient patients and congenitally infected children. Despite its clinical significance, the exact mechanisms contributing to HCMV pathogenesis and clinical outcomes have yet to be determined. One of such mechanisms involves HCMV-mediated NK cell immune response, which favors viral immune evasion by hindering NK cell-mediated cytolysis. This process appears to be dependent on the extent of HCMV genetic variation as high levels of variability in viral genes involved in immune escape have an impact on viral pathogenesis. However, the link between viral genome variations and their functional effects has so far remained elusive. Thus, here we sought to determine whether inter-host genetic variability of HCMV influences its ability to modulate NK cell responses to infection. For this purpose, five HCMV clinical isolates from a previously characterized cohort of pediatric patients with confirmed HCMV congenital infection were evaluated by next-generation sequencing (NGS) for genetic polymorphisms, phylogenetic relationships, and multiple-strain infection. We report variable levels of genetic characteristics among the selected clinical strains, with moderate variations in genome regions associated with modulation of NK cell functions. Remarkably, we show that different HCMV clinical strains differentially modulate the expression of several ligands for the NK cell-activating receptors NKG2D, DNAM-1/CD226, and NKp30. Specifically, the DNAM-1/CD226 ligand PVR/CD155 appears to be predominantly upregulated by fast-replicating (“aggressive”) HCMV isolates. On the other hand, the NGK2D ligands ULBP2/5/6 are downregulated regardless of the strain used, while other NK cell ligands (i.e., MICA, MICB, ULBP3, Nectin-2/CD112, and B7-H6) are not significantly modulated. Furthermore, we show that IFN-γ; production by NK cells co-cultured with HCMV-infected fibroblasts is directly proportional to the aggressiveness of the HCMV clinical isolates employed. Interestingly, loss of NK cell-modulating genes directed against NK cell ligands appears to be a common feature among the “aggressive” HCMV strains, which also share several gene variants across their genomes. Overall, even though further studies based on a higher number of patients would offer a more definitive scenario, our findings provide novel mechanistic insights into the impact of HCMV genetic variability on NK cell-mediated immune responses.
Collapse
Affiliation(s)
- Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Diego Forni
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Lars Steinbrueck
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Simone De Meo
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Marco De Andrea
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| | - Rachele Cagliani
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Agata Leone
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Enrico Bertino
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Thomas Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Angela Santoni
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Santo Landolfo
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Manuela Sironi
- Laboratory of Bioinformatics, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Cristina Cerboni
- Laboratory of Molecular Immunology and Immunopathology, Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Potential Impact of Human Cytomegalovirus Infection on Immunity to Ovarian Tumours and Cancer Progression. Biomedicines 2021; 9:biomedicines9040351. [PMID: 33808294 PMCID: PMC8065684 DOI: 10.3390/biomedicines9040351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common, and life-threatening gynaecological cancer affecting females. Almost 75% of all OC cases are diagnosed at late stages, where the 5-year survival rate is less than 30%. The aetiology of the disease is still unclear, and there are currently no screening method nor effective treatment strategies for the advanced disease. A growing body of evidence shows that human cytomegalovirus (HCMV) infecting more than 50% of the world population, may play a role in inducing carcinogenesis through its immunomodulatory activities. In healthy subjects, the primary HCMV infection is essentially asymptomatic. The virus then establishes a life-long chronic latency primarily in the hematopoietic progenitor cells in the bone marrow, with periodic reactivation from latency that is often characterized by high levels of circulating pro-inflammatory cytokines. Currently, infection-induced chronic inflammation is considered as an essential process for OC progression and metastasis. In line with this observation, few recent studies have identified high expressions of HCMV proteins on OC tissue biopsies that were associated with poor survival outcomes. Active HCMV infection in the OC tumour microenvironment may thus directly contribute to OC progression. In this review, we highlight the potential impact of HCMV infection-induced immunomodulatory effects on host immune responses to OC that may promote OC progression.
Collapse
|
7
|
Collados Rodríguez M. The Fate of Speckled Protein 100 (Sp100) During Herpesviruses Infection. Front Cell Infect Microbiol 2021; 10:607526. [PMID: 33598438 PMCID: PMC7882683 DOI: 10.3389/fcimb.2020.607526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022] Open
Abstract
The constitutive expression of Speckled-100 (Sp100) is known to restrict the replication of many clinically important DNA viruses. This pre-existing (intrinsic) immune defense to virus infection can be further upregulated upon interferon (IFN) stimulation as a component of the innate immune response. In humans, Sp100 is encoded by a single gene locus, which can produce alternatively spliced isoforms. The widely studied Sp100A, Sp100B, Sp100C and Sp100HMG have functions associated with the transcriptional regulation of viral and cellular chromatin, either directly through their characteristic DNA-binding domains, or indirectly through post-translational modification (PTM) and associated protein interaction networks. Sp100 isoforms are resident component proteins of promyelocytic leukemia-nuclear bodies (PML-NBs), dynamic nuclear sub-structures which regulate host immune defenses against many pathogens. In the case of human herpesviruses, multiple protein antagonists are expressed to relieve viral DNA genome transcriptional silencing imposed by PML-NB and Sp100-derived proteinaceous structures, thereby stimulating viral propagation, pathogenesis, and transmission to new hosts. This review details how different Sp100 isoforms are manipulated during herpesviruses HSV1, VZV, HCMV, EBV, and KSHV infection, identifying gaps in our current knowledge, and highlighting future areas of research.
Collapse
|
8
|
De Meo S, Dell'Oste V, Molfetta R, Tassinari V, Lotti LV, Vespa S, Pignoloni B, Covino DA, Fantuzzi L, Bona R, Zingoni A, Nardone I, Biolatti M, Coscia A, Paolini R, Benkirane M, Edfors F, Sandalova T, Achour A, Hiscott J, Landolfo S, Santoni A, Cerboni C. SAMHD1 phosphorylation and cytoplasmic relocalization after human cytomegalovirus infection limits its antiviral activity. PLoS Pathog 2020; 16:e1008855. [PMID: 32986788 PMCID: PMC7544099 DOI: 10.1371/journal.ppat.1008855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 10/08/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
SAMHD1 is a host restriction factor that functions to restrict both retroviruses and DNA viruses, based on its nuclear deoxynucleotide triphosphate (dNTP) hydrolase activity that limits availability of intracellular dNTP pools. In the present study, we demonstrate that SAMHD1 expression was increased following human cytomegalovirus (HCMV) infection, with only a modest effect on infectious virus production. SAMHD1 was rapidly phosphorylated at residue T592 after infection by cellular cyclin-dependent kinases, especially Cdk2, and by the viral kinase pUL97, resulting in a significant fraction of phosho-SAMHD1 being relocalized to the cytoplasm of infected fibroblasts, in association with viral particles and dense bodies. Thus, our findings indicate that HCMV-dependent SAMHD1 cytoplasmic delocalization and inactivation may represent a potential novel mechanism of HCMV evasion from host antiviral restriction activities.
Collapse
Affiliation(s)
- Simone De Meo
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Tassinari
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Simone Vespa
- Laboratory of General Pathology, Center of Aging Science and Translational Medicine (CeSI-MeT) and Department of Medical, Oral and Biotechnological Sciences G. d'Annunzio University, Chieti, Italy
| | - Benedetta Pignoloni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Laura Fantuzzi
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Bona
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Ilaria Nardone
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Coscia
- Neonatal Unit, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Monsef Benkirane
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS-Université de Montpellier, Montpellier, France
| | - Fredrik Edfors
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - John Hiscott
- Istituto Pasteur Italia-Cenci Bolognetti Foundation, Rome, Italy
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Angela Santoni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
- IRCCS, Neuromed, Pozzilli, Isernia, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
9
|
Yang Z, Du J, Zhu J, Rong Y, Chen S, Yu L, Deng X, Zhang X, Sheng H, Yang L, Lu X, Li D, Yin B, Lin J. Allicin Inhibits Proliferation by Decreasing IL-6 and IFN-β in HCMV-Infected Glioma Cells. Cancer Manag Res 2020; 12:7305-7317. [PMID: 32884345 PMCID: PMC7443012 DOI: 10.2147/cmar.s259677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/10/2020] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Allicin, an extract of garlic, has antitumor effects in multiple tumor types. However, the efficacy of allicin for treating glioblastoma has not yet been examined. This study examined the antitumor effect of allicin on human cytomegalovirus (HCMV)-infected glioblastoma multiforme (GBM) and its role in cytokine signaling. MATERIALS AND METHODS HCMV-infected glioblastoma was modeled by transfection of U87MG glioblastoma cells with HMCV proteins. MTT assay was used to assess the effect of allicin on the proliferation of glioma cells. Western blot analysis was used to detect the effect of allicin on the expression of intermediate-early gene 2 (IE2) and p53. Reverse transcription-quantitative polymerase chain reaction was used to assess and the levels of interleukin (IL)-6 and interferon (IFN)-β. Single cell gel electrophoresis was used to analyze changes in radiotherapy-induced DNA damage. RESULTS Transfection of the IE2 protein led to decreased p53 expression and increased glioblastoma cell proliferation. Allicin inhibited this proliferation in a dose- and time-dependent manner. An inhibitory effect on cytokine release was observed in GBM cells treated with allicin. After treatment with allicin, p53 levels increased significantly, whereas expression of the inflammatory factors such as IL-6 and IFN-β decreased. U87MG cells treated with allicin and 10 Gy irradiation had increased intracellular DNA damage compared to either treatment alone. CONCLUSION Allicin inhibited proliferation of glioblastoma cells in vitro. Allicin also inhibited cytokine release, upregulated p53 activity, and increased the sensitivity of glioblastoma to radiotherapy. These results suggest that allicin is effective against HCMV-infected glioblastomas.
Collapse
Affiliation(s)
- Zelin Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jizao Du
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jinjin Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Yuxi Rong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Shaohuai Chen
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Lisheng Yu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiangyang Deng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaojia Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Liang Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiangqi Lu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Dandong Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China,Correspondence: Jian Lin The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang, People’s Republic of ChinaTel +86 577 8800 2502Fax +86 577 8883 2693 Email
| |
Collapse
|
10
|
Cytomegalovirus and Inflammatory Bowel Diseases (IBD) with a Special Focus on the Link with Ulcerative Colitis (UC). Microorganisms 2020; 8:microorganisms8071078. [PMID: 32698383 PMCID: PMC7409252 DOI: 10.3390/microorganisms8071078] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022] Open
Abstract
Cytomegalovirus (CMV) infects approximately 40% of adults in France and persists lifelong as a latent agent in different organs, including gut. A close relationship is observed between inflammation that favors viral expression and viral replication that exacerbates inflammation. In this context, CMV colitis may impact the prognosis of patients suffering from inflammatory bowel diseases (IBDs), and notably those with ulcerative colitis (UC). In UC, the mucosal inflammation and T helper cell (TH) 2 cytokines, together with immunomodulatory drugs used for controlling flare-ups, favor viral reactivation within the gut, which, in turn, increases mucosal inflammation, impairs corticoid and immunosuppressor efficacy (the probability of steroid resistance is multiplied by more than 20 in the case of CMV colitis), and enhances the risk for colectomy. This review emphasizes the virological tools that are recommended for exploring CMV colitis during inflammatory bowel diseases (IBD) and underlines the interest of using ganciclovir for treating flare-ups associated to CMV colitis in UC patients.
Collapse
|
11
|
A Comparative Quantitative Proteomic Analysis of HCMV-Infected Cells Highlights pUL138 as a Multifunctional Protein. Molecules 2020; 25:molecules25112520. [PMID: 32481657 PMCID: PMC7321164 DOI: 10.3390/molecules25112520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 02/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread virus that can establish life-long latent infection in large populations. The establishment of latent infection prevents HCMV from being cleared by host cells, and HCMV reactivation from latency can cause severe disease and death in people with immature or compromised immune systems. To establish persistent and latent infection in healthy individuals, HCMV encodes a large array of proteins that can modulate different components and pathways of host cells. It has been reported that pUL138 encoded by the UL133-UL138 polycistronic locus promotes latent infection in primary CD34+ hematopoietic progenitor cells (HPCs) infected in vitro. In this study, recombinant HCMV HanUL138del was constructed by deleting the UL138 locus of Han, a clinical HCMV strain. Then, a comparative quantitative proteomic analysis of Han- and HanUL138del-infected MRC5 cells was performed to study the effect of pUL138 on host cells in the context of HCMV infection. Our results indicated that, during the early phase of HCMV infection, the innate immune response was differentially activated, while during the late phase of HCMV infection, multiple host proteins were differentially expressed between Han- and HanUL138del-infected cells, and these proteins are involved in the oxidation-reduction process, ER to Golgi vesicle-mediated transport, and extracellular matrix organization. Among these proteins, STEAP3, BORCS7, FAM172A, RELL1, and WDR48 were further demonstrated to affect HCMV infection. Our study provides a systematic view of the effect of pUL138 on the host cell proteome and highlights the proposition that multiple biological processes or host factors may be involved in the overall role of the UL133-UL138 polycistronic locus in HCMV persistence.
Collapse
|
12
|
Dell'Oste V, Biolatti M, Galitska G, Griffante G, Gugliesi F, Pasquero S, Zingoni A, Cerboni C, De Andrea M. Tuning the Orchestra: HCMV vs. Innate Immunity. Front Microbiol 2020; 11:661. [PMID: 32351486 PMCID: PMC7174589 DOI: 10.3389/fmicb.2020.00661] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding how the innate immune system keeps human cytomegalovirus (HCMV) in check has recently become a critical issue in light of the global clinical burden of HCMV infection in newborns and immunodeficient patients. Innate immunity constitutes the first line of host defense against HCMV as it involves a complex array of cooperating effectors – e.g., inflammatory cytokines, type I interferon (IFN-I), natural killer (NK) cells, professional antigen-presenting cells (APCs) and phagocytes – all capable of disrupting HCMV replication. These factors are known to trigger a highly efficient adaptive immune response, where cellular restriction factors (RFs) play a major gatekeeping role. Unlike other innate immunity components, RFs are constitutively expressed in many cell types, ready to act before pathogen exposure. Nonetheless, the existence of a positive regulatory feedback loop between RFs and IFNs is clear evidence of an intimate cooperation between intrinsic and innate immunity. In the course of virus-host coevolution, HCMV has, however, learned how to manipulate the functions of multiple cellular players of the host innate immune response to achieve latency and persistence. Thus, HCMV acts like an orchestra conductor able to piece together and rearrange parts of a musical score (i.e., innate immunity) to obtain the best live performance (i.e., viral fitness). It is therefore unquestionable that innovative therapeutic solutions able to prevent HCMV immune evasion in congenitally infected infants and immunocompromised individuals are urgently needed. Here, we provide an up-to-date review of the mechanisms regulating the interplay between HCMV and innate immunity, focusing on the various strategies of immune escape evolved by this virus to gain a fitness advantage.
Collapse
Affiliation(s)
- Valentina Dell'Oste
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Ganna Galitska
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Alessandra Zingoni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Immunology and Immunopathology, "Sapienza" University of Rome, Rome, Italy
| | - Marco De Andrea
- Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy.,Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
13
|
Ashley CL, Abendroth A, McSharry BP, Slobedman B. Interferon-Independent Innate Responses to Cytomegalovirus. Front Immunol 2019; 10:2751. [PMID: 31921100 PMCID: PMC6917592 DOI: 10.3389/fimmu.2019.02751] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
The critical role of interferons (IFNs) in mediating the innate immune response to cytomegalovirus (CMV) infection is well established. However, in recent years the functional importance of the IFN-independent antiviral response has become clearer. IFN-independent, IFN regulatory factor 3 (IRF3)-dependent interferon-stimulated gene (ISG) regulation in the context of CMV infection was first documented 20 years ago. Since then several IFN-independent, IRF3-dependent ISGs have been characterized and found to be among the most influential in the innate response to CMV. These include virus inhibitory protein, endoplasmic reticulum-associated IFN-inducible (viperin), ISG15, members of the interferon inducible protein with tetratricopeptide repeats (IFIT) family, interferon-inducible transmembrane (IFITM) proteins and myxovirus resistance proteins A and B (MxA, MxB). IRF3-independent, IFN-independent activation of canonically IFN-dependent signaling pathways has also been documented, such as IFN-independent biphasic activation of signal transducer and activator of transcription 1 (STAT1) during infection of monocytes, differential roles of mitochondrial and peroxisomal mitochondrial antiviral-signaling protein (MAVS), and the ability of human CMV (HCMV) immediate early protein 1 (IE1) protein to reroute IL-6 signaling and activation of STAT1 and its associated ISGs. This review examines the role of identified IFN-independent ISGs in the antiviral response to CMV and describes pathways of IFN-independent innate immune response induction by CMV.
Collapse
Affiliation(s)
- Caroline L Ashley
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Brian P McSharry
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.,School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
14
|
Chen S, Shenk T, Nogalski MT. P2Y2 purinergic receptor modulates virus yield, calcium homeostasis, and cell motility in human cytomegalovirus-infected cells. Proc Natl Acad Sci U S A 2019; 116:18971-18982. [PMID: 31481624 PMCID: PMC6754545 DOI: 10.1073/pnas.1907562116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) manipulates many aspects of host cell biology to create an intracellular milieu optimally supportive of its replication and spread. Our study reveals that levels of several components of the purinergic signaling system, including the P2Y2 and P2X5 receptors, are elevated in HCMV-infected fibroblasts. Knockdown and drug treatment experiments demonstrated that P2Y2 enhances the yield of virus, whereas P2X5 reduces HCMV production. The HCMV IE1 protein induces P2Y2 expression; and P2Y2-mediated signaling is important for efficient HCMV gene expression, DNA synthesis, and the production of infectious HCMV progeny. P2Y2 cooperates with the viral UL37x1 protein to regulate cystolic Ca2+ levels. P2Y2 also regulates PI3K/Akt signaling and infected cell motility. Thus, P2Y2 functions at multiple points within the viral replication cycle to support the efficient production of HCMV progeny, and it may facilitate in vivo viral spread through its role in cell migration.
Collapse
Affiliation(s)
- Saisai Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014
| | - Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014
| | - Maciej T Nogalski
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014
| |
Collapse
|
15
|
Human cytomegalovirus induces and exploits Roquin to counteract the IRF1-mediated antiviral state. Proc Natl Acad Sci U S A 2019; 116:18619-18628. [PMID: 31451648 DOI: 10.1073/pnas.1909314116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA represents a pivotal component of host-pathogen interactions. Human cytomegalovirus (HCMV) infection causes extensive alteration in host RNA metabolism, but the functional relationship between the virus and cellular RNA processing remains largely unknown. Through loss-of-function screening, we show that HCMV requires multiple RNA-processing machineries for efficient viral lytic production. In particular, the cellular RNA-binding protein Roquin, whose expression is actively stimulated by HCMV, plays an essential role in inhibiting the innate immune response. Transcriptome profiling revealed Roquin-dependent global down-regulation of proinflammatory cytokines and antiviral genes in HCMV-infected cells. Furthermore, using cross-linking immunoprecipitation (CLIP)-sequencing (seq), we identified IFN regulatory factor 1 (IRF1), a master transcriptional activator of immune responses, as a Roquin target gene. Roquin reduces IRF1 expression by directly binding to its mRNA, thereby enabling suppression of a variety of antiviral genes. This study demonstrates how HCMV exploits host RNA-binding protein to prevent a cellular antiviral response and offers mechanistic insight into the potential development of CMV therapeutics.
Collapse
|
16
|
Galitska G, Biolatti M, Griffante G, Gugliesi F, Pasquero S, Dell'Oste V, Landolfo S. Catch me if you can: the arms race between human cytomegalovirus and the innate immune system. Future Virol 2019. [DOI: 10.2217/fvl-2018-0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV), a common opportunistic pathogen of significant clinical importance, targets immunocompromised individuals of the human population worldwide. The absence of a licensed vaccine and the low efficacy of currently available drugs remain a barrier to combating the global infection. The HCMV's ability to modulate and escape innate immune responses remains a critical step in the ongoing search for potential drug targets. Here, we describe the complex interplay between HCMV and the host immune system, focusing on different evasion strategies that the virus has employed to subvert innate immune responses. We especially highlight the mechanisms and role of host antiviral restriction factors and provide insights into viral modulation of pro-inflammatory NF-κB and interferon signaling pathways.
Collapse
Affiliation(s)
- Ganna Galitska
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Matteo Biolatti
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Gloria Griffante
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Francesca Gugliesi
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Selina Pasquero
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Valentina Dell'Oste
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| | - Santo Landolfo
- Department of Public Health & Pediatric Sciences, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Cadena-Mota S, Monsiváis-Urenda A, Salgado-Bustamante M, Monjarás-Ávila C, Bernal-Silva S, Aranda-Romo S, Noyola DE. Effect of cytomegalovirus infection and leukocyte immunoglobulin like receptor B1 polymorphisms on receptor expression in peripheral blood mononuclear cells. Microbiol Immunol 2019; 62:755-762. [PMID: 30461037 DOI: 10.1111/1348-0421.12661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/25/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022]
Abstract
Leukocyte immunoglobulin like receptor B1 (LILRB1) plays a significant role in a number of infectious, autoimmune, cardiovascular, and oncologic disorders. LILRB1 expression varies between individuals and may be associated with polymorphisms on the regulatory region of the LILRB1 gene, as well as to previous cytomegalovirus infection. In this study, the contribution of these two factors to LILRB1 expression in peripheral blood mononuclear cells of healthy young adults was analyzed. LILRB1 expression in NK cells, T cells, B cells and monocytes was significantly stronger in individuals who had had cytomegalovirus infection than in those who had not (P < 0.001, P < 0.001, P < 0.01, and P < 0.001, respectively). Overall, no differences in LILRB1 expression were observed between individuals with and without GAA haplotypes of the LILRB1 regulatory region. However, when analyzed according to cytomegalovirus infection status, significant differences in LILRB1+ NK cells were observed. A higher proportion of LILRB1+ cells was found in GAA+ than in GAA- individuals who had not been infected (P < 0.01), whereas GAA- individuals had a larger proportion of LILRB1+ cells than GAA+ individuals who were cytomegalovirus positive (P < 0.01). In conclusion, cytomegalovirus infection has a major effect on LILRB1 expression in NK and other mononuclear cells and polymorphisms in the LILRB1 regulatory region appear to have a modulatory influence over this effect.
Collapse
Affiliation(s)
- Sandra Cadena-Mota
- Faculty of Medicine, Microbiology Department, Autonomous University of San Luis Potosí, 2405 Venustiano Carranza Avenue, Colonia los Filtros, 78210 San Luis Potosí, Mexico
| | - Adriana Monsiváis-Urenda
- Faculty of Medicine, Department of Immunology, Autonomous University of San Luis Potosí, 2405 Venustiano Carranza Avenue, Colonia los Filtros, 78210 San Luis Potosí, Mexico.,Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, 550 Sierra Leona Avenue, Lomas 2da Sección, 78210 San Luis Potosí, Mexico
| | - Mariana Salgado-Bustamante
- Faculty of Medicine, Department of Biochemistry, Autonomous University of San Luis Potosí, 2405 Venustiano Carranza Avenue, Colonia los Filtros, 78210 San Luis Potosí, Mexico
| | - César Monjarás-Ávila
- Faculty of Medicine, Microbiology Department, Autonomous University of San Luis Potosí, 2405 Venustiano Carranza Avenue, Colonia los Filtros, 78210 San Luis Potosí, Mexico
| | - Sofía Bernal-Silva
- Faculty of Medicine, Microbiology Department, Autonomous University of San Luis Potosí, 2405 Venustiano Carranza Avenue, Colonia los Filtros, 78210 San Luis Potosí, Mexico.,Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, 550 Sierra Leona Avenue, Lomas 2da Sección, 78210 San Luis Potosí, Mexico
| | - Saray Aranda-Romo
- Faculty of Dentistry, Biochemistry, Microbiology, and Pathology Laboratory, Autonomous University of San Luis Potosí, 2 Dr. Manuel Nava Avenue, Zona Universitaria, 78290 San Luis Potosí, Mexico
| | - Daniel E Noyola
- Faculty of Medicine, Microbiology Department, Autonomous University of San Luis Potosí, 2405 Venustiano Carranza Avenue, Colonia los Filtros, 78210 San Luis Potosí, Mexico
| |
Collapse
|
18
|
McKenzie S, Zang P, Blackcloud P, Cohen B, Truong A, Worswick S, Arzeno J. Case series of cutaneous mucormycosis in the setting of Herpesviridae infection. Br J Dermatol 2019; 181:373-374. [PMID: 30633321 DOI: 10.1111/bjd.17631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S McKenzie
- David Geffen School of Medicine, University of California, Los Angeles, CA, U.S.A
| | - P Zang
- Keck School of Medicine, University of Southern California, Los Angeles, CA, U.S.A
| | - P Blackcloud
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, U.S.A
| | - B Cohen
- Department of Dermatology, University of Southern California, Los Angeles, CA, U.S.A
| | - A Truong
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, U.S.A
| | - S Worswick
- Department of Dermatology, University of Southern California, Los Angeles, CA, U.S.A
| | - J Arzeno
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, U.S.A
| |
Collapse
|
19
|
|
20
|
Modulation of the innate immune response by human cytomegalovirus. INFECTION GENETICS AND EVOLUTION 2018; 64:105-114. [DOI: 10.1016/j.meegid.2018.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
|
21
|
WDR5 Facilitates Human Cytomegalovirus Replication by Promoting Capsid Nuclear Egress. J Virol 2018; 92:JVI.00207-18. [PMID: 29437978 DOI: 10.1128/jvi.00207-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 01/27/2023] Open
Abstract
WD repeat-containing protein 5 (WDR5) is essential for assembling the VISA-associated complex to induce a type I interferon antiviral response to Sendai virus infection. However, the roles of WDR5 in DNA virus infections are not well described. Here, we report that human cytomegalovirus exploits WDR5 to facilitate capsid nuclear egress. Overexpression of WDR5 in fibroblasts slightly enhanced the infectious virus yield. However, WDR5 knockdown dramatically reduced infectious virus titers with only a small decrease in viral genome replication or gene expression. Further investigation of late steps of viral replication found that WDR5 knockdown significantly impaired formation of the viral nuclear egress complex and induced substantially fewer infoldings of the inner nuclear membrane. In addition, fewer capsids were associated with these infoldings, and there were fewer capsids in the cytoplasm. Restoration of WDR5 partially reversed these effects. These results suggest that WDR5 knockdown impairs the nuclear egress of capsids, which in turn decreases virus titers. These findings reveal an important role for a host factor whose function(s) is usurped by a viral pathogen to promote efficient replication. Thus, WDR5 represents an interesting regulatory mechanism and a potential antiviral target.IMPORTANCE Human cytomegalovirus (HCMV) has a large (∼235-kb) genome with over 170 open reading frames and exploits numerous cellular factors to facilitate its replication. HCMV infection increases protein levels of WD repeat-containing protein 5 (WDR5) during infection, overexpression of WDR5 enhances viral replication, and knockdown of WDR5 dramatically attenuates viral replication. Our results indicate that WDR5 promotes the nuclear egress of viral capsids, the depletion of WDR5 resulting in a significant decrease in production of infectious virions. This is the first report that WDR5 favors HCMV, a DNA virus, replication and highlights a novel target for antiviral therapy.
Collapse
|
22
|
Zingoni A, Molfetta R, Fionda C, Soriani A, Paolini R, Cippitelli M, Cerboni C, Santoni A. NKG2D and Its Ligands: "One for All, All for One". Front Immunol 2018; 9:476. [PMID: 29662484 PMCID: PMC5890157 DOI: 10.3389/fimmu.2018.00476] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/22/2018] [Indexed: 01/30/2023] Open
Abstract
The activating receptor NKG2D is peculiar in its capability to bind to numerous and highly diversified MHC class I-like self-molecules. These ligands are poorly expressed on normal cells but can be induced on damaged, transformed or infected cells, with the final NKG2D ligand expression resulting from multiple levels of regulation. Although redundant molecular mechanisms can converge in the regulation of all NKG2D ligands, different stimuli can induce specific cellular responses, leading to the expression of one or few ligands. A large body of evidence demonstrates that NK cell activation can be triggered by different NKG2D ligands, often expressed on the same cell, suggesting a functional redundancy of these molecules. However, since a number of evasion mechanisms can reduce membrane expression of these molecules both on virus-infected and tumor cells, the co-expression of different ligands and/or the presence of allelic forms of the same ligand guarantee NKG2D activation in various stressful conditions and cell contexts. Noteworthy, NKG2D ligands can differ in their ability to down-modulate NKG2D membrane expression in human NK cells supporting the idea that NKG2D transduces different signals upon binding various ligands. Moreover, whether proteolytically shed and exosome-associated soluble NKG2D ligands share with their membrane-bound counterparts the same ability to induce NKG2D-mediated signaling is still a matter of debate. Here, we will review recent studies on the NKG2D/NKG2D ligand biology to summarize and discuss the redundancy and/or diversity in ligand expression, regulation, and receptor specificity.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
23
|
Banas B, Steubl D, Renders L, Chittka D, Banas MC, Wekerle T, Koch M, Witzke O, Mühlfeld A, Sommerer C, Habicht A, Hugo C, Hünig T, Lindemann M, Schmidt T, Rascle A, Barabas S, Deml L, Wagner R, Krämer BK, Krüger B. Clinical validation of a novel enzyme-linked immunosorbent spot assay-basedin vitrodiagnostic assay to monitor cytomegalovirus-specific cell-mediated immunity in kidney transplant recipients: a multicenter, longitudinal, prospective, observational study. Transpl Int 2018; 31:436-450. [DOI: 10.1111/tri.13110] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/17/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Bernhard Banas
- Department of Nephrology; University Medical Center Regensburg; Regensburg Germany
| | - Dominik Steubl
- Department of Nephrology; Klinikum rechts der Isar; Technical University Munich; Munich Germany
| | - Lutz Renders
- Department of Nephrology; Klinikum rechts der Isar; Technical University Munich; Munich Germany
| | - Dominik Chittka
- Department of Nephrology; University Medical Center Regensburg; Regensburg Germany
| | - Miriam C. Banas
- Department of Nephrology; University Medical Center Regensburg; Regensburg Germany
| | - Thomas Wekerle
- Department of Surgery; Medical University of Vienna; Vienna Austria
| | - Martina Koch
- Transplantation Immunology Research Group; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Oliver Witzke
- Departments of Nephrology and of Infectious Disease; University Hospital Essen; Essen Germany
| | | | - Claudia Sommerer
- Division of Nephrology; University Hospital Heidelberg; Heidelberg Germany
| | - Antje Habicht
- Transplantation Center; Ludwig-Maximilians-University Medical Center Munich; Munich Germany
| | - Christian Hugo
- Department of Nephrology; Carl Gustav Carus University Medical Center Dresden; Dresden Germany
| | - Thomas Hünig
- Institute of Virology and Immunobiology; University Medical Center Würzburg; Würzburg Germany
| | - Monika Lindemann
- Institute for Transfusion Medicine; University Hospital Essen; Essen Germany
| | | | | | | | | | - Ralf Wagner
- Lophius Biosciences; Regensburg Germany
- Institute of Clinical Microbiology and Hygiene; University Medical Center Regensburg; Regensburg Germany
| | - Bernhard K. Krämer
- Vth Department of Medicine; University Medical Center Mannheim; Mannheim Germany
| | - Bernd Krüger
- Vth Department of Medicine; University Medical Center Mannheim; Mannheim Germany
| |
Collapse
|
24
|
APOBEC3A Is Upregulated by Human Cytomegalovirus (HCMV) in the Maternal-Fetal Interface, Acting as an Innate Anti-HCMV Effector. J Virol 2017; 91:JVI.01296-17. [PMID: 28956761 DOI: 10.1128/jvi.01296-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the leading cause of congenital infection and is associated with a wide range of neurodevelopmental disabilities and intrauterine growth restriction. Yet our current understanding of the mechanisms modulating transplacental HCMV transmission is poor. The placenta, given its critical function in protecting the fetus, has evolved effective yet largely uncharacterized innate immune barriers against invading pathogens. Here we show that the intrinsic cellular restriction factor apolipoprotein B editing catalytic subunit-like 3A (APOBEC3A [A3A]) is profoundly upregulated following ex vivo HCMV infection in human decidual tissues-constituting the maternal aspect of the placenta. We directly demonstrated that A3A severely restricted HCMV replication upon controlled overexpression in epithelial cells, acting by a cytidine deamination mechanism to introduce hypermutations into the viral genome. Importantly, we further found that A3 editing of HCMV DNA occurs both ex vivo in HCMV-infected decidual organ cultures and in vivo in amniotic fluid samples obtained during natural congenital infection. Our results reveal a previously unexplored role for A3A as an innate anti-HCMV effector, activated by HCMV infection in the maternal-fetal interface. These findings pave the way to new insights into the potential impact of APOBEC proteins on HCMV pathogenesis.IMPORTANCE In view of the grave outcomes associated with congenital HCMV infection, there is an urgent need to better understand the innate mechanisms acting to limit transplacental viral transmission. Toward this goal, our findings reveal the role of the intrinsic cellular restriction factor A3A (which has never before been studied in the context of HCMV infection and vertical viral transmission) as a potent anti-HCMV innate barrier, activated by HCMV infection in the authentic tissues of the maternal-fetal interface. The detection of naturally occurring hypermutations in clinical amniotic fluid samples of congenitally infected fetuses further supports the idea of the occurrence of A3 editing of the viral genome in the setting of congenital HCMV infection. Given the widely differential tissue distribution characteristics and biological functions of the members of the A3 protein family, our findings should pave the way to future studies examining the potential impact of A3A as well as of other A3s on HCMV pathogenesis.
Collapse
|
25
|
Brief Report: Soluble CD163 in CMV-Infected and CMV-Uninfected Subjects on Virologically Suppressive Antiretroviral Therapy in the ICONA Cohort. J Acquir Immune Defic Syndr 2017; 74:347-352. [PMID: 27828874 DOI: 10.1097/qai.0000000000001232] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS To contribute to the understanding of the role played by cytomegalovirus (CMV) in sustaining monocyte/macrophage-mediated immune activation in antiretroviral therapy treated HIV-infected subjects. DESIGN AND METHODS We selected 23 CMV-uninfected and 46 CMV-infected HIV+ subjects, matched for age, CD4 nadir, HIV infection duration, and viral hepatitis serostatus. All subjects were on successful antiretroviral therapy since at least 1 year. A group of 16 healthy donors with similar age and sex was also included. Plasma levels of tumor necrosis factor-alpha, interleukin-6, sCD163, sCD14, and CMV immunoglobulin G levels were measured in duplicate with human enzyme-linked immunosorbent assay kits. RESULTS We found significantly higher sCD163 plasma levels in HIV+CMV+ compared with HIV+CMV- subjects and healthy donors. This augmentation was confirmed also when subjects positive for hepatitis C virus-Ab were excluded from analysis. Interestingly, a correlation between anti-CMV immunoglobulin G levels and sCD163, tumor necrosis factor-alpha, interleukin-6, and sCD14 in HIV+CMV+ subjects was found. CONCLUSIONS CMV coinfection could be a major driver of monocyte/macrophage activation in virally suppressed HIV+ individuals and might explain the increased risk of non-AIDS morbidity/mortality in HIV/CMV-coinfected subjects.
Collapse
|
26
|
Pollmann J, Rölle A, Hofmann M, Cerwenka A. Hepatitis C Virus and Human Cytomegalovirus-Natural Killer Cell Subsets in Persistent Viral Infections. Front Immunol 2017; 8:566. [PMID: 28567042 PMCID: PMC5434107 DOI: 10.3389/fimmu.2017.00566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) and human cytomegalovirus (HCMV) are prominent examples of RNA and DNA viruses, respectively, that establish a persistent infection in their host. HCV affects over 185 million patients worldwide, who are at high risk for developing liver fibrosis, liver cirrhosis, and ultimately hepatocellular carcinoma. Recent breakthroughs in HCV therapy, using direct-acting antivirals have provided the opportunity to monitor natural killer (NK) cells after clearance of a chronic infection. There is now increasing evidence that the individual NK cell repertoire before infection is predictive for the course of disease. HCMV affects the majority of the global population. While being asymptomatic in healthy individuals, HCMV represents a severe clinical challenge in immunocompromised patients. Both viral infections, HCV and HCMV, lead to long-lasting and profound alterations within the entire NK cell compartment. This review article, will discuss the diverse range of changes in the NK cell compartment as well as potential consequences for the course of disease.
Collapse
Affiliation(s)
- Julia Pollmann
- Research Group Innate Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Rölle
- Clinical Cooperation Unit Applied Tumor-Immunity, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Maike Hofmann
- Faculty of Medicine, Department of Medicine II, University Hospital Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Adelheid Cerwenka
- Research Group Innate Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty Mannheim, Division of Immunbiochemistry, University Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Banas B, Böger CA, Lückhoff G, Krüger B, Barabas S, Batzilla J, Schemmerer M, Köstler J, Bendfeldt H, Rascle A, Wagner R, Deml L, Leicht J, Krämer BK. Validation of T-Track® CMV to assess the functionality of cytomegalovirus-reactive cell-mediated immunity in hemodialysis patients. BMC Immunol 2017; 18:15. [PMID: 28270092 PMCID: PMC5339958 DOI: 10.1186/s12865-017-0194-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/10/2017] [Indexed: 11/24/2022] Open
Abstract
Background Uncontrolled cytomegalovirus (CMV) replication in immunocompromised solid-organ transplant recipients is a clinically relevant issue and an indication of impaired CMV-specific cell-mediated immunity (CMI). Primary aim of this study was to assess the suitability of the immune monitoring tool T-Track® CMV to determine CMV-reactive CMI in a cohort of hemodialysis patients representative of patients eligible for renal transplantation. Positive and negative agreement of T-Track® CMV with CMV serology was examined in 124 hemodialysis patients, of whom 67 (54%) revealed a positive CMV serostatus. Secondary aim of the study was to evaluate T-Track® CMV performance against two unrelated CMV-specific CMI monitoring assays, QuantiFERON®-CMV and a cocktail of six class I iTAg™ MHC Tetramers. Results Positive T-Track® CMV results were obtained in 90% (60/67) of CMV-seropositive hemodialysis patients. In comparison, 73% (45/62) and 77% (40/52) positive agreement with CMV serology was achieved using QuantiFERON®-CMV and iTAg™ MHC Tetramer. Positive T-Track® CMV responses in CMV-seropositive patients were dominated by pp65-reactive cells (58/67 [87%]), while IE-1-responsive cells contributed to an improved (87% to 90%) positive agreement of T-Track® CMV with CMV serology. Interestingly, T-Track® CMV, QuantiFERON®-CMV and iTAg™ MHC Tetramers showed 79% (45/57), 87% (48/55) and 93% (42/45) negative agreement with serology, respectively, and a strong inter-assay variability. Notably, T-Track® CMV was able to detect IE-1-reactive cells in blood samples of patients with a negative CMV serology, suggesting either a previous exposure to CMV that yielded a cellular but no humoral immune response, or TCR cross-reactivity with foreign antigens, both suggesting a possible protective immunity against CMV in these patients. Conclusion T-Track® CMV is a highly sensitive assay, enabling the functional assessment of CMV-responsive cells in hemodialysis patients prior to renal transplantation. T-Track® CMV thus represents a valuable immune monitoring tool to identify candidate transplant recipients potentially at increased risk for CMV-related clinical complications. Electronic supplementary material The online version of this article (doi:10.1186/s12865-017-0194-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bernhard Banas
- Department of Nephrology, University Medical Center Regensburg, Regensburg, Germany.
| | - Carsten A Böger
- Department of Nephrology, University Medical Center Regensburg, Regensburg, Germany
| | | | - Bernd Krüger
- 5th Department of Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University Heidelberg, Mannheim, Germany
| | | | | | - Mathias Schemmerer
- Lophius Biosciences GmbH, Regensburg, Germany.,Institute of Clinical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Josef Köstler
- Institute of Clinical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | | | - Anne Rascle
- Lophius Biosciences GmbH, Regensburg, Germany
| | - Ralf Wagner
- Institute of Clinical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Ludwig Deml
- Lophius Biosciences GmbH, Regensburg, Germany
| | | | - Bernhard K Krämer
- 5th Department of Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University Heidelberg, Mannheim, Germany
| |
Collapse
|
28
|
Khairallah C, Déchanet-Merville J, Capone M. γδ T Cell-Mediated Immunity to Cytomegalovirus Infection. Front Immunol 2017; 8:105. [PMID: 28232834 PMCID: PMC5298998 DOI: 10.3389/fimmu.2017.00105] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
γδ T lymphocytes are unconventional immune cells, which have both innate- and adaptive-like features allowing them to respond to a wide spectrum of pathogens. For many years, we and others have reported on the role of these cells in the immune response to human cytomegalovirus in transplant patients, pregnant women, neonates, immunodeficient children, and healthy people. Indeed, and as described for CD8+ T cells, CMV infection leaves a specific imprint on the γδ T cell compartment: (i) driving a long-lasting expansion of oligoclonal γδ T cells in the blood of seropositive individuals, (ii) inducing their differentiation into effector/memory cells expressing a TEMRA phenotype, and (iii) enhancing their antiviral effector functions (i.e., cytotoxicity and IFNγ production). Recently, two studies using murine CMV (MCMV) have corroborated and extended these observations. In particular, they have illustrated the ability of adoptively transferred MCMV-induced γδ T cells to protect immune-deficient mice against virus-induced death. In vivo, expansion of γδ T cells is associated with the clearance of CMV infection as well as with reduced cancer occurrence or leukemia relapse risk in kidney transplant patients and allogeneic stem cell recipients, respectively. Taken together, all these studies show that γδ T cells are important immune effectors against CMV and cancer, which are life-threatening diseases affecting transplant recipients. The ability of CMV-induced γδ T cells to act independently of other immune cells opens the door to the development of novel cellular immunotherapies that could be particularly beneficial for immunocompromised transplant recipients.
Collapse
Affiliation(s)
| | | | - Myriam Capone
- Immunoconcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
| |
Collapse
|
29
|
Fan YH, Roy S, Mukhopadhyay R, Kapoor A, Duggal P, Wojcik GL, Pass RF, Arav-Boger R. Role of nucleotide-binding oligomerization domain 1 (NOD1) and its variants in human cytomegalovirus control in vitro and in vivo. Proc Natl Acad Sci U S A 2016; 113:E7818-E7827. [PMID: 27856764 PMCID: PMC5137695 DOI: 10.1073/pnas.1611711113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Induction of nucleotide-binding oligomerization domain 2 (NOD2) and downstream receptor-interacting serine/threonine-protein kinase 2 (RIPK2) by human cytomegalovirus (HCMV) is known to up-regulate antiviral responses and suppress virus replication. We investigated the role of nucleotide-binding oligomerization domain 1 (NOD1), which also signals through RIPK2, in HCMV control. NOD1 activation by Tri-DAP (NOD1 agonist) suppressed HCMV and induced IFN-β. Mouse CMV was also inhibited through NOD1 activation. NOD1 knockdown (KD) or inhibition of its activity with small molecule ML130 enhanced HCMV replication in vitro. NOD1 mutations displayed differential effects on HCMV replication and antiviral responses. In cells overexpressing the E56K mutation in the caspase activation and recruitment domain, virus replication was enhanced, but in cells overexpressing the E266K mutation in the nucleotide-binding domain or the wild-type NOD1, HCMV was inhibited, changes that correlated with IFN-β expression. The interaction of NOD1 and RIPK2 determined the outcome of virus replication, as evidenced by enhanced virus growth in NOD1 E56K mutant cells (which failed to interact with RIPK2). NOD1 activities were executed through IFN-β, given that IFN-β KD reduced the inhibitory effect of Tri-DAP on HCMV. Signaling through NOD1 resulting in HCMV suppression was IKKα-dependent and correlated with nuclear translocation and phosphorylation of IRF3. Finally, NOD1 polymorphisms were significantly associated with the risk of HCMV infection in women who were infected with HCMV during participation in a glycoprotein B vaccine trial. Collectively, our data indicate a role for NOD1 in HCMV control via RIPK2- IKKα-IRF3 and suggest that its polymorphisms predict the risk of infection.
Collapse
Affiliation(s)
- Yi-Hsin Fan
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Sujayita Roy
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Rupkatha Mukhopadhyay
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Arun Kapoor
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Priya Duggal
- Department of Genetic Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21231
| | - Genevieve L Wojcik
- Department of Genetic Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21231
| | - Robert F Pass
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ravit Arav-Boger
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287;
| |
Collapse
|
30
|
Pignoloni B, Fionda C, Dell'Oste V, Luganini A, Cippitelli M, Zingoni A, Landolfo S, Gribaudo G, Santoni A, Cerboni C. Distinct Roles for Human Cytomegalovirus Immediate Early Proteins IE1 and IE2 in the Transcriptional Regulation of MICA and PVR/CD155 Expression. THE JOURNAL OF IMMUNOLOGY 2016; 197:4066-4078. [PMID: 27733551 DOI: 10.4049/jimmunol.1502527] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 09/09/2016] [Indexed: 12/22/2022]
Abstract
Elimination of virus-infected cells by cytotoxic lymphocytes is triggered by activating receptors, among which NKG2D and DNAM-1/CD226 play an important role. Their ligands, that is, MHC class I-related chain (MIC) A/B and UL16-binding proteins (ULBP)1-6 (NKG2D ligand), Nectin-2/CD112, and poliovirus receptor (PVR)/CD155 (DNAM-1 ligand), are often induced on virus-infected cells, although some viruses, including human CMV (HCMV), can block their expression. In this study, we report that infection of different cell types with laboratory or low-passage HCMV strains upregulated MICA, ULBP3, and PVR, with NKG2D and DNAM-1 playing a role in NK cell-mediated lysis of infected cells. Inhibition of viral DNA replication with phosphonoformic acid did not prevent ligand upregulation, thus indicating that early phases of HCMV infection are involved in ligand increase. Indeed, the major immediate early (IE) proteins IE1 and IE2 stimulated the expression of MICA and PVR, but not ULBP3. IE2 directly activated MICA promoter via its binding to an IE2-responsive element that we identified within the promoter and that is conserved among different alleles of MICA. Both IE proteins were instead required for PVR upregulation via a mechanism independent of IE DNA binding activity. Finally, inhibiting IE protein expression during HCMV infection confirmed their involvement in ligand increase. We also investigated the contribution of the DNA damage response, a pathway activated by HCMV and implicated in ligand regulation. However, silencing of ataxia telangiectasia mutated, ataxia telangiectasia and Rad3-related protein, and DNA-dependent protein kinase did not influence ligand expression. Overall, these data reveal that MICA and PVR are directly regulated by HCMV IE proteins, and this may be crucial for the onset of an early host antiviral response.
Collapse
Affiliation(s)
- Benedetta Pignoloni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Valentina Dell'Oste
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; and
| | - Marco Cippitelli
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; and
| | - Angela Santoni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy; .,Mediterranean Neurological Institute-Neuromed, 86077 Pozzilli (Isernia), Italy
| | - Cristina Cerboni
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy;
| |
Collapse
|
31
|
Ashshi AM. Aberrant expression of interleukin-6 and its receptor in Fallopian tubes bearing an ectopic pregnancy with and without tubal cytomegalovirus infection. Virusdisease 2016; 27:340-350. [PMID: 28004013 DOI: 10.1007/s13337-016-0342-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/22/2016] [Indexed: 01/02/2023] Open
Abstract
Cytomegalovirus (CMV) has recently been suggested as a potential risk factor for the development of ectopic pregnancy (EP) following upper genital tract infection in women. However, little is known about its associated underlying pathogenic mechanisms. This was a prospective case-control study that measured the prevalence of CMV infection in Fallopian tubes (FT) bearing an EP and its effects on the tubal expression of interleukin (IL)-6 and its signaling molecules, which are known to play significant roles in the immune response against CMV infection as well as embryo implantation. Fresh FTs from 96 EPs during salpingectomy and another 61 women at the midluteal phase during total abdominal hysterectomy (TAH) were collected to measure the rate of CMV by an IVD CE PCR kit. The participants were then classified to measure the expression of IL-6, its receptor (IL6R) and intracellular mediators (gp-130, STAT3) by immunohistochemistry and quantitative RT-PCR. The results showed significantly higher (P = 0.01) rates of CMV in FTs obtained from EP (22.9 %) compared with controls (8.2 %). IL-6 (P = 0.003), IL6Rα (P = 0.02), gp 130 (P = 0.008) and STAT3 (P = 0.03) were significantly higher in TAH-positive (n = 5) compared with TAH-negative FTs by immunohistochemistry. Furthermore, the expression in the non-infected EP samples was significantly higher for IL-6 (P = 0.004), IL6R (P = 0.007), gp130 (P = 0.006) and STAT3 (P = 0.007) compared with negative TAH. Similar results were observed by quantitative PCR. CMV-positive EP samples showed the highest significant increase of the studied molecules by all techniques. In conclusion, Fallopian tubal infection with CMV is higher in EP and could predispose to embryo implantation by up-regulating the expression of IL-6 and its related molecules as part of tubal innate immune response. Further in vitro and in vivo studies are compulsory to illustrate the roles of IL-6 and CMV in the pathogenesis of EP.
Collapse
Affiliation(s)
- Ahmed Mohamed Ashshi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, Holy Makkah, PO Box 7607, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
32
|
Karimi MH, Shariat A, Yaghobi R, Mokhtariazad T, Moazzeni SM. Role of cytomegalovirus on the maturation and function of monocyte derived dendritic cells of liver transplant patients. World J Transplant 2016; 6:336-346. [PMID: 27358779 PMCID: PMC4919738 DOI: 10.5500/wjt.v6.i2.336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/24/2016] [Accepted: 04/22/2016] [Indexed: 02/05/2023] Open
Abstract
AIM: To study the impact of association between cytomegalovirus (CMV) pathogenesis with dendritic cell (DC) maturation and function was evaluated in CMV reactivated liver transplanted patients in comparing with non-reactivated ones, and healthy controls.
METHODS: Monocyte derived dendritic cells (MoDCs) was generated from collected ethylenediaminetetraacetic acid-treated blood samples from patient groups and controls. In these groups, expression rates and mean fluorescent intensity of DC markers were evaluated using flowcytometry technique. Secretion of cytokines including: interleukin (IL)-6, IL-12 and IL-23 were determined using enzyme-linked immunosorbent assay methods. The gene expression of toll-like receptor 2 (TLR2), TLR4 and IL-23 were analyzed using in-house real-time polymerase chain reaction protocols.
RESULTS: Results have been shown significant decreases in: Expression rates of MoDC markers including CD83, CD1a and human leukocyte antigen DR (HLA-DR), the mean fluorescence intensitys for CD1a and HLA-DR, and secretion of IL-12 in CMV reactivated compared with non-reactivated liver transplanted patients. On the other hand, significant increases have been shown in the secretions of IL-6 and IL-23 and gene expression levels of TLR2, TLR4 and IL-23 from MoDCs in CMV reactivated compared with non-reactivated liver transplanted recipients.
CONCLUSION: DC functional defects in CMV reactivated recipients, such as decrease in expression of DC maturation markers, increase in secretion of proinflammatory cytokines, and TLRs can emphasize on the importance of CMV infectivity in development of liver rejection in transplanted patients.
Collapse
|
33
|
Ciáurriz M, Zabalza A, Beloki L, Mansilla C, Pérez-Valderrama E, Lachén M, Bandrés E, Olavarría E, Ramírez N. The immune response to cytomegalovirus in allogeneic hematopoietic stem cell transplant recipients. Cell Mol Life Sci 2015; 72:4049-62. [PMID: 26174234 PMCID: PMC11113937 DOI: 10.1007/s00018-015-1986-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/22/2015] [Accepted: 07/03/2015] [Indexed: 02/08/2023]
Abstract
Approximately, up to 70 % of the human population is infected with cytomegalovirus (CMV) that persists for life in a latent state. In healthy people, CMV reactivation induces the expansion of CMV-specific T cells up to 10 % of the entire T cell repertoire. On the contrary, CMV infection is a major opportunistic viral pathogen that remains a leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Due to the delayed CMV-specific immune recovery, the incidence of CMV reactivation during post-transplant period is very high. Several methods are currently available for the monitoring of CMV-specific responses that help in clinical monitoring. In this review, essential aspects in the immune recovery against CMV are discussed to improve the better understanding of the immune system relying on CMV infection and, thereby, helping the avoidance of CMV disease or reactivation following hematopoietic stem cell transplantation with severe consequences for the transplanted patients.
Collapse
Affiliation(s)
- Miriam Ciáurriz
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Amaya Zabalza
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
- Hematology Department, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Navarra, Spain
| | - Lorea Beloki
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Cristina Mansilla
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Estela Pérez-Valderrama
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Mercedes Lachén
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
| | - Eva Bandrés
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
- Hematology Department, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Navarra, Spain
- Immunity Unit, Complejo Hospitalario de Navarra, Navarra Health Service, IDISNA, Pamplona, Navarra, Spain
| | - Eduardo Olavarría
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain
- Hammersmith Hospital-Imperial College Healthcare NHS, London, UK
| | - Natalia Ramírez
- Oncohematology Research Group, Navarrabiomed-Fundación Miguel Servet, IDISNA (Navarra's Health Research Institute), Irunlarrea 3 Street, 31008, Pamplona, Navarra, Spain.
| |
Collapse
|
34
|
Weisblum Y, Panet A, Zakay-Rones Z, Vitenshtein A, Haimov-Kochman R, Goldman-Wohl D, Oiknine-Djian E, Yamin R, Meir K, Amsalem H, Imbar T, Mandelboim O, Yagel S, Wolf DG. Human cytomegalovirus induces a distinct innate immune response in the maternal-fetal interface. Virology 2015; 485:289-96. [PMID: 26318261 DOI: 10.1016/j.virol.2015.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 11/16/2022]
Abstract
The initial interplay between human cytomegalovirus (HCMV) and innate tissue response in the human maternal-fetal interface, though crucial for determining the outcome of congenital HCMV infection, has remained unknown. We studied the innate response to HCMV within the milieu of the human decidua, the maternal aspect of the maternal-fetal interface, maintained ex vivo as an integral tissue. HCMV infection triggered a rapid and robust decidual-tissue innate immune response predominated by interferon (IFN)γ and IP-10 induction, dysregulating the decidual cytokine/chemokine environment in a distinctive fashion. The decidual-tissue response was already elicited during viral-tissue contact, and was not affected by neutralizing HCMV antibodies. Of note, IFNγ induction, reflecting immune-cell activation, was distinctive to the maternal decidua, and was not observed in concomitantly-infected placental (fetal) villi. Our studies in a clinically-relevant surrogate human model, provide a novel insight into the first-line decidual tissue response which could affect the outcome of congenital infection.
Collapse
Affiliation(s)
- Yiska Weisblum
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Amos Panet
- Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Zichria Zakay-Rones
- Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Alon Vitenshtein
- The Lautenberg Center for General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Ronit Haimov-Kochman
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Debra Goldman-Wohl
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Department of Biochemistry and the Chanock Center for Virology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Rachel Yamin
- The Lautenberg Center for General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Karen Meir
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Hagai Amsalem
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Tal Imbar
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Simcha Yagel
- Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Dana G Wolf
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
35
|
Slots J. Periodontal herpesviruses: prevalence, pathogenicity, systemic risk. Periodontol 2000 2015; 69:28-45. [DOI: 10.1111/prd.12085] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2014] [Indexed: 12/13/2022]
|
36
|
Subcellular quantitative proteomic analysis reveals host proteins involved in human cytomegalovirus infection. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:967-78. [DOI: 10.1016/j.bbapap.2015.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/19/2015] [Accepted: 04/15/2015] [Indexed: 12/17/2022]
|
37
|
Abstract
As with all human herpesviruses, human cytomegalovirus (HCMV) persists for the lifetime of the host by establishing a latent infection, which is broken by periodic reactivation events. One site of HCMV latency is in the progenitor cells of the myeloid lineage such as CD34+ cells and their CD14+ derivatives. The development of experimental techniques to isolate and culture these primary cells in vitro is enabling detailed analysis of the events that occur during virus latency and reactivation. Ex vivo differentiation of latently infected primary myeloid cells to dendritic cells and macrophages results in the reactivation of latent virus and provides model systems in which to analyse the viral and cellular functions involved in latent carriage and reactivation. Such analyses have shown that, in contrast to primary lytic infection or reactivation which is characterised by a regulated cascade of expression of all viral genes, latent infection is associated with a much more restricted viral transcription programme with expression of only a small number of viral genes. Additionally, concomitant changes in the expression of cellular miRNAs and cellular proteins occur, and this includes changes in the expression of a number of secreted cellular proteins and intracellular anti-apoptotic proteins, which all have profound effects on the latently infected cells. In this review, we concentrate on the effects of one of the latency-associated viral proteins, LAcmvIL-10, and describe how it causes a decrease in the cellular miRNA, hsa-miR-92a, and a concomitant upregulation of the GATA2 myeloid transcription factor, which, in turn, drives the expression of cellular IL-10. Taken together, we argue that HCMV latency, rather than a period of viral quiescence, is associated with the virally driven manipulation of host cell functions, perhaps every bit as complex as lytic infection. A full understanding of these changes in cellular and viral gene expression during latent infection could have far-reaching implications for therapeutic intervention.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, Box 157, University of Cambridge, Addenbrooke’s Hospital, Level 5 Laboratories Block, Hills Road, Cambridge, CB2 0QQ UK
| | - John Sinclair
- Department of Medicine, Box 157, University of Cambridge, Addenbrooke’s Hospital, Level 5 Laboratories Block, Hills Road, Cambridge, CB2 0QQ UK
| |
Collapse
|
38
|
Park JY, Shin DJ, Lee SH, Lee JJ, Suh GH, Cho D, Kim SK. The anti-canine distemper virus activities of ex vivo-expanded canine natural killer cells. Vet Microbiol 2015; 176:239-49. [DOI: 10.1016/j.vetmic.2015.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 12/19/2022]
|
39
|
Human cytomegalovirus exploits interferon-induced transmembrane proteins to facilitate morphogenesis of the virion assembly compartment. J Virol 2014; 89:3049-61. [PMID: 25552713 DOI: 10.1128/jvi.03416-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Recently, interferon-induced transmembrane proteins (IFITMs) have been identified to be key effector molecules in the host type I interferon defense system. The invasion of host cells by a large range of RNA viruses is inhibited by IFITMs during the entry step. However, the roles of IFITMs in DNA virus infections have not been studied in detail. In this study, we report that human cytomegalovirus (HCMV), a large human DNA virus, exploits IFITMs to facilitate the formation of the virion assembly compartment (vAC) during infection of human fibroblasts. We found that IFITMs were expressed constitutively in human embryonic lung fibroblasts (MRC5 cells). HCMV infection inhibited IFITM protein accumulation in the later stages of infection. Overexpression of an IFITM protein in MRC5 cells slightly enhanced HCMV production and knockdown of IFITMs by RNA interference reduced the virus titer by about 100-fold on day 8 postinfection, according to the findings of a virus yield assay at a low multiplicity of infection. Virus gene expression and DNA synthesis were not affected, but the typical round structure of the vAC was not formed after the suppression of IFITMs, thereby resulting in defective virion assembly and the production of less infectious virion particles. Interestingly, the replication of herpes simplex virus, a human herpesvirus that is closely related to HCMV, was not affected by the suppression of IFITMs in MRC5 cells. These results indicate that IFITMs are involved in a specific pathway required for HCMV replication. IMPORTANCE HCMV is known to repurpose the interferon-stimulated genes (ISGs) viperin and tetherin to facilitate its replication. Our results expand the range of ISGs that can be exploited by HCMV for its replication. This is also the first report of a proviral function of IFITMs in DNA virus replication. In addition, whereas previous studies showed that IFITMs modulate virus entry, which is a very early stage in the virus life cycle, we identified a new function of IFITMs during the very late stage of virus replication, i.e., virion assembly. Virus entry and assembly both involve vesicle transport and membrane fusion; thus, a common biochemical activity of IFITMs is likely to be involved. Therefore, our findings may provide a new platform for dissecting the molecular mechanism of action of IFITMs during the blocking or enhancement of virus infection, which are under intense investigation in this field.
Collapse
|
40
|
Paolini R, Bernardini G, Molfetta R, Santoni A. NK cells and interferons. Cytokine Growth Factor Rev 2014; 26:113-20. [PMID: 25443799 DOI: 10.1016/j.cytogfr.2014.11.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 12/20/2022]
Abstract
The role of Natural Killer cells in host defense against infections as well as in tumour surveillance has been widely appreciated for a number of years. Upon recognition of "altered" cells, NK cells release the content of cytolytic granules, leading to the death of target cells. Moreover, NK cells are powerful producers of chemokines and cytokines, particularly Interferon-γ (IFN-γ), of which they are the earliest source upon a variety of infections. Despite being armed to fight against pathogens, NK cells become fully functional upon an initial phase of activation that requires the action of several cytokines, including type I IFNs. Type I IFNs are now recognized as key players in antiviral defense and immune regulation, and evidences from both mouse models of disease and in vitro studies support the existence of an alliance between type I IFNs and NK cells to ensure effective protection against viral infections. This review will focus on the role of type I IFNs in regulating NK cell functions to elicit antiviral response and on NK cell-produced IFN-γ beneficial and pathological effects.
Collapse
Affiliation(s)
- Rossella Paolini
- Department of Molecular Medicine, Istituto Pasteur Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Istituto Pasteur Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Istituto Pasteur Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Istituto Pasteur Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Italy; IRCCS, Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
41
|
PUL21a-Cyclin A2 interaction is required to protect human cytomegalovirus-infected cells from the deleterious consequences of mitotic entry. PLoS Pathog 2014; 10:e1004514. [PMID: 25393019 PMCID: PMC4231158 DOI: 10.1371/journal.ppat.1004514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/11/2014] [Indexed: 12/02/2022] Open
Abstract
Entry into mitosis is accompanied by dramatic changes in cellular architecture, metabolism and gene expression. Many viruses have evolved cell cycle arrest strategies to prevent mitotic entry, presumably to ensure sustained, uninterrupted viral replication. Here we show for human cytomegalovirus (HCMV) what happens if the viral cell cycle arrest mechanism is disabled and cells engaged in viral replication enter into unscheduled mitosis. We made use of an HCMV mutant that, due to a defective Cyclin A2 binding motif in its UL21a gene product (pUL21a), has lost its ability to down-regulate Cyclin A2 and, therefore, to arrest cells at the G1/S transition. Cyclin A2 up-regulation in infected cells not only triggered the onset of cellular DNA synthesis, but also promoted the accumulation and nuclear translocation of Cyclin B1-CDK1, premature chromatin condensation and mitotic entry. The infected cells were able to enter metaphase as shown by nuclear lamina disassembly and, often irregular, metaphase spindle formation. However, anaphase onset was blocked by the still intact anaphase promoting complex/cyclosome (APC/C) inhibitory function of pUL21a. Remarkably, the essential viral IE2, but not the related chromosome-associated IE1 protein, disappeared upon mitotic entry, suggesting an inherent instability of IE2 under mitotic conditions. Viral DNA synthesis was impaired in mitosis, as demonstrated by the abnormal morphology and strongly reduced BrdU incorporation rates of viral replication compartments. The prolonged metaphase arrest in infected cells coincided with precocious sister chromatid separation and progressive fragmentation of the chromosomal material. We conclude that the Cyclin A2-binding function of pUL21a contributes to the maintenance of a cell cycle state conducive for the completion of the HCMV replication cycle. Unscheduled mitotic entry during the course of the HCMV replication has fatal consequences, leading to abortive infection and cell death. Cyclin A2 is a key regulator of the cell division cycle. Interactors of Cyclin A2 typically contain short sequence elements (RXL/Cy motifs) that bind with high affinity to a hydrophobic patch in the Cyclin A2 protein. Two types of RXL/Cy-containing factors are known: i) cyclin-dependent kinase (CDK) substrates, which are processed by the CDK subunit that complexes to Cyclin A2, and ii) CDK inhibitors, which stably associate to Cyclin A2-CDK due to the lack of CDK phosphorylation sites. Human cytomegalovirus (HCMV) has evolved a novel type of RXL/Cy-containing protein. Its UL21a gene product, a small and highly unstable protein, binds to Cyclin A2 via an RXL/Cy motif in its N-terminus, leading to efficient degradation of Cyclin A2 by the proteasome. Here, we show that this mechanism is not only essential for viral inhibition of cellular DNA synthesis, but also to prevent entry of infected cells into mitosis. Unscheduled mitotic entry is followed by aberrant spindle formation, metaphase arrest, precocious separation of sister chromatids, chromosomal fragmentation and cell death. Viral DNA replication and expression of the essential viral IE2 protein are abrogated in mitosis. Thus, pUL21a-Cyclin A2 interaction protects HCMV from a collapse of viral and cellular functions in mitosis.
Collapse
|
42
|
Evers A, Atanasova S, Fuchs-Moll G, Petri K, Wilker S, Zakrzewicz A, Hirschburger M, Padberg W, Grau V. Adaptive and innate immune responses in a rat orthotopic lung transplant model of chronic lung allograft dysfunction. Transpl Int 2014; 28:95-107. [PMID: 25179205 DOI: 10.1111/tri.12444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/20/2014] [Accepted: 08/28/2014] [Indexed: 01/15/2023]
Abstract
Acute rejection and respiratory infections are major risk factors for chronic lung allograft dysfunction (CLAD) after lung transplantation. To shed light on the enigmatic etiology of CLAD, we test the following hypotheses using a new experimental model: (i) Alloimmune-independent pulmonary inflammation reactivates alloimmunity. (ii) Alloimmunity enhances the susceptibility of the graft toward pathogen-associated molecular patterns. Pulmonary Fischer 344 to Lewis rat allografts were treated with lipopolysaccharide (LPS), which consistently results in lesions typical for CLAD. Grafts, local lymph nodes, and spleens were harvested before (day 28) and after LPS application (days 29, 33, and 40) for real-time RT-PCR and immunohistochemistry. Mixed lymphocyte reactions were performed on day 33. Four weeks after transplantation, lung allografts displayed mononuclear infiltrates compatible with acute rejection and overexpressed most components of the toll-like receptor system. Allografts but not secondary lymphoid organs expressed increased levels of Th1-type transcription factors and cytokines. LPS induced macrophage infiltration as well as mRNA expression of pro-inflammatory cytokines and effector molecules of innate immunity. Unexpectedly, T-cell reactivity was not enhanced by LPS. We conclude that prevention of CLAD might be accomplished by local suppression of Th1 cells in stable grafts and by controlling innate immunity during alloimmune-independent pulmonary inflammation.
Collapse
Affiliation(s)
- Alena Evers
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Member of the German Centre for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Skert C, Fogli M, Garrafa E, Perucca S, Fiorentini S, Cancelli V, Turra A, Ribolla R, Filì C, Malagola M, Bergonzi C, Cattina F, Bernardi S, Caruso A, Di Palma A, Russo D. A specific Toll-like receptor profile on T lymphocytes and values of monocytes correlate with bacterial, fungal, and cytomegalovirus infections in the early period of allogeneic stem cell transplantation. Transpl Infect Dis 2014; 16:697-712. [DOI: 10.1111/tid.12264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/10/2014] [Accepted: 04/21/2014] [Indexed: 01/30/2023]
Affiliation(s)
- C. Skert
- Hematology; Stem Cell Transplantation Unit; University of Brescia; Brescia Italy
| | - M. Fogli
- Section of Microbiology; Department of Experimental and Applied Medicine; University of Brescia; Brescia Italy
| | - E. Garrafa
- Section of Microbiology; Department of Experimental and Applied Medicine; University of Brescia; Brescia Italy
| | - S. Perucca
- Hematology; Stem Cell Transplantation Unit; University of Brescia; Brescia Italy
| | - S. Fiorentini
- Section of Microbiology; Department of Experimental and Applied Medicine; University of Brescia; Brescia Italy
| | - V. Cancelli
- Hematology; Stem Cell Transplantation Unit; University of Brescia; Brescia Italy
| | - A. Turra
- Hematology; Stem Cell Transplantation Unit; University of Brescia; Brescia Italy
| | - R. Ribolla
- Hematology; Stem Cell Transplantation Unit; University of Brescia; Brescia Italy
| | - C. Filì
- Hematology; Stem Cell Transplantation Unit; University of Brescia; Brescia Italy
| | - M. Malagola
- Hematology; Stem Cell Transplantation Unit; University of Brescia; Brescia Italy
| | - C. Bergonzi
- Hematology; Stem Cell Transplantation Unit; University of Brescia; Brescia Italy
| | - F. Cattina
- Hematology; Stem Cell Transplantation Unit; University of Brescia; Brescia Italy
| | - S. Bernardi
- Hematology; Stem Cell Transplantation Unit; University of Brescia; Brescia Italy
| | - A. Caruso
- Section of Microbiology; Department of Experimental and Applied Medicine; University of Brescia; Brescia Italy
| | - A. Di Palma
- Hematology; Stem Cell Transplantation Unit; University of Brescia; Brescia Italy
| | - D. Russo
- Hematology; Stem Cell Transplantation Unit; University of Brescia; Brescia Italy
| |
Collapse
|
44
|
Hanley PJ, Bollard CM. Controlling cytomegalovirus: helping the immune system take the lead. Viruses 2014; 6:2242-58. [PMID: 24872114 PMCID: PMC4074926 DOI: 10.3390/v6062242] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 02/07/2023] Open
Abstract
Cytomegalovirus, of the Herpesviridae family, has evolved alongside humans for thousands of years with an intricate balance of latency, immune evasion, and transmission. While upwards of 70% of humans have evidence of CMV infection, the majority of healthy people show little to no clinical symptoms of primary infection and CMV disease is rarely observed during persistent infection in immunocompetent hosts. Despite the fact that the majority of infected individuals are asymptomatic, immunologically, CMV hijacks the immune system by infecting and remaining latent in antigen-presenting cells that occasionally reactivate subclinically and present antigen to T cells, eventually causing the inflation of CMV-specific T cells until they can compromise up to 10% of the entire T cell repertoire. Because of this impact on the immune system, as well as its importance in fields such as stem cell and organ transplant, the relationship between CMV and the immune response has been studied in depth. Here we provide a review of many of these studies and insights into how CMV-specific T cells are currently being used therapeutically.
Collapse
Affiliation(s)
- Patrick J Hanley
- Program for Cell Enhancement and Technologies for Immunotherapy, Sheikh Zayed Institute for Pediatric Surgical Innovation, and Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA.
| | - Catherine M Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Sheikh Zayed Institute for Pediatric Surgical Innovation, and Center for Cancer and Immunology Research, Children's National Health System, Washington, DC 20010, USA.
| |
Collapse
|
45
|
Assinger A, Kral JB, Yaiw KC, Schrottmaier WC, Kurzejamska E, Wang Y, Mohammad AA, Religa P, Rahbar A, Schabbauer G, Butler LM, Söderberg-Naucler C. Human cytomegalovirus-platelet interaction triggers toll-like receptor 2-dependent proinflammatory and proangiogenic responses. Arterioscler Thromb Vasc Biol 2014; 34:801-9. [PMID: 24558109 DOI: 10.1161/atvbaha.114.303287] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Human cytomegalovirus (HCMV) is a widespread pathogen that correlates with various clinical complications, including atherosclerosis. HCMV is released into the circulation during primary infection and periodic viral reactivation, allowing virus-platelet interactions. Platelets are important in the onset and development of atherosclerosis, but the consequences of platelet-HCMV interactions are unclear. APPROACH AND RESULTS We studied the effects of HCMV-platelet interactions in blood from healthy donors using the purified clinical HCMV isolate VR1814. We demonstrated that HCMV bound to a Toll-like receptor (TLR) 2-positive platelet subpopulation, which resulted in signal transduction, degranulation, and release of proinflammatory CD40L and interleukin-1β and proangiogenic vascular endothelial-derived growth factor. In mice, murine CMV activated wild-type but not TLR2-deficient platelets. However, supernatant from murine CMV-stimulated wild-type platelets also activated TLR2-deficient platelets, indicating that activated platelets generated soluble mediators that triggered further platelet activation, independent of TLR2 expression. Inhibitor studies, using ADP receptor antagonists and apyrase, revealed that ADP release is important to trigger secondary platelet activation in response to HCMV. HCMV-activated platelets rapidly bound to and activated neutrophils, supporting their adhesion and transmigration through endothelial monolayers. In an in vivo model, murine CMV induced systemic upregulation of platelet-leukocyte aggregates and plasma vascular endothelial-derived growth factor in mice and showed a tendency to enhance neutrophil extravasation in a TLR2-dependent fashion. CONCLUSIONS HCMV is a well-adapted pathogen that does not induce immediate thrombotic events. However, HCMV-platelet interactions lead to proinflammatory and proangiogenic responses, which exacerbate tissue damage and contribute to atherogenesis. Therefore, platelets might contribute to the effects of HCMV in accelerating atherosclerosis.
Collapse
Affiliation(s)
- Alice Assinger
- From the Department of Medicine, Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.A., K.C.Y., E.K., Y.W., A.-A.M., P.R., A.R., L.M.B., C.S.-N.); Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (A.A., J.B.K., W.C.S., G.S.); Postgraduate School of Molecular Medicine, Department of Internal Medicine and Hypertension, Medical University of Warsaw, Warsaw, Poland (E.K.); and Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China (Y.W.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cytomegalovirus infection impairs immunosuppressive and antimicrobial effector functions of human multipotent mesenchymal stromal cells. Mediators Inflamm 2014; 2014:898630. [PMID: 24782599 PMCID: PMC3981523 DOI: 10.1155/2014/898630] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/10/2014] [Indexed: 12/31/2022] Open
Abstract
Human mesenchymal stromal cells (MSC) possess immunosuppressive and antimicrobial effects that are partly mediated by the tryptophan-catabolizing enzyme indoleamine-2,3-dioxygenase (IDO). Therefore MSC represent a promising novel cellular immunosuppressant which has the potential to control steroid-refractory acute graft versus host disease (GvHD). In addition, MSC are capable of reducing the risk of infection in patients after haematopoietic stem cell transplantation (HST). Recent data indicate that signals from the microenvironment including those from microbes may modulate MSC effector functions. As Cytomegalovirus (CMV) represents a prominent pathogen in immunocompromised hosts, especially in patients following HST, we investigated the impact of CMV infection on MSC-mediated effects on the immune system. We demonstrate that CMV-infected MSC lose their cytokine-induced immunosuppressive capacity and are no longer able to restrict microbial growth. IDO expression is substantially impaired following CMV infection of MSC and this interaction critically depends on intact virus and the number of MSC as well as the viral load. Since overt CMV infection may undermine the clinical efficacy of MSC in the treatment of GvHD in transplant patients, we recommend that patients scheduled for MSC therapy should undergo thorough evaluation for an active CMV infection and receive CMV-directed antiviral therapy prior to the administration of MSC.
Collapse
|
47
|
Jakovljevic A, Andric M. Human Cytomegalovirus and Epstein-Barr Virus in Etiopathogenesis of Apical Periodontitis: A Systematic Review. J Endod 2014; 40:6-15. [DOI: 10.1016/j.joen.2013.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 02/06/2023]
|
48
|
SAMHD1 restricts herpes simplex virus 1 in macrophages by limiting DNA replication. J Virol 2013; 87:12949-56. [PMID: 24067963 DOI: 10.1128/jvi.02291-13] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Macrophages play important roles in host immune defense against virus infection. During infection by herpes simplex virus 1 (HSV-1), macrophages acquire enhanced antiviral potential. Restriction of HSV-1 replication and progeny production is important to prevent viral spread, but the cellular mechanisms that inhibit the DNA virus in macrophages are unknown. SAMHD1 was recently identified as a retrovirus restriction factor highly expressed in macrophages. The SAMHD1 protein is expressed in both undifferentiated monocytes and differentiated macrophages, but retroviral restriction is limited to differentiated cells by modulation of SAMHD1 phosphorylation. It is proposed to block reverse transcription of retroviral RNA into DNA by depleting cellular deoxynucleotide triphosphates (dNTPs). Viruses with DNA genomes do not employ reverse transcription during infection, but replication of their viral genomes is also dependent on intracellular dNTP concentrations. Here, we demonstrate that SAMHD1 restricts replication of the HSV-1 DNA genome in differentiated macrophage cell lines. Depleting SAMHD1 in THP-1 cells enhanced HSV-1 replication, while ectopic overexpression of SAMHD1 in U937 cells repressed HSV-1 replication. SAMHD1 did not impact viral gene expression from incoming HSV-1 viral genomes. HSV-1 restriction involved the dNTP triphosphohydrolase activity of SAMHD1 and was partially overcome by addition of exogenous deoxynucleosides. Unlike retroviruses, restriction of HSV-1 was not affected by SAMHD1 phosphorylation status. Our results suggest that SAMHD1 functions broadly to inhibit replication of DNA viruses in nondividing macrophages.
Collapse
|
49
|
Wujcicka W, Wilczyński J, Nowakowska D. Alterations in TLRs as new molecular markers of congenital infections with Human cytomegalovirus? Pathog Dis 2013; 70:3-16. [PMID: 23929630 DOI: 10.1111/2049-632x.12083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/28/2013] [Accepted: 07/31/2013] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in non-specific immunity against various infections. The most common intrauterine infection, caused by Human cytomegalovirus (HCMV), results in perinatal morbidity and mortality of primary infected fetuses. The induction of immune response by TLRs was observed in HCMV infections in murine models and cell lines cultured in vitro. Studies reported an immunological response in pregnant women with primary HCMV infection and TLR2 activity in collecting of HCMV particles in placental syncytiotrophoblasts (STs) in vivo and cultured ST, and in stimulation of tumor necrosis factor (TNF)-α expression and damage of villous trophoblast. Expression levels of TLRs are associated with cell type, stage of pregnancy and response to microorganisms. We show the effect of HCMV infection on the development of pregnancy as well as the effect of TLR single-nucleotide polymorphisms on the occurrence and course of infectious diseases, immune response and diseases of pregnancy. We report the impact of TLRs on the function of miRNAs and the altered expression levels of these molecules, as observed in HCMV infections. We suggest that the methylation status of TLR gene promoter regions as epigenetic modifications may be significant in the immune response to HCMV infections. We conclude that it is important to study in detail the molecular mechanisms of TLR function in the immune response to HCMV infections in pregnancy.
Collapse
Affiliation(s)
- Wioletta Wujcicka
- Department of Fetal-Maternal Medicine and Gynecology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | | | | |
Collapse
|
50
|
Zingoni A, Ardolino M, Santoni A, Cerboni C. NKG2D and DNAM-1 activating receptors and their ligands in NK-T cell interactions: role in the NK cell-mediated negative regulation of T cell responses. Front Immunol 2013; 3:408. [PMID: 23316196 PMCID: PMC3540764 DOI: 10.3389/fimmu.2012.00408] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/17/2012] [Indexed: 11/13/2022] Open
Abstract
The negative regulation of adaptive immunity is relevant to maintain lymphocyte homeostasis. Several studies on natural killer (NK) cells have shown a previously unappreciated immunomodulatory role, as they can negatively regulate T cell-mediated immune responses by direct killing and by secretion of inhibitory cytokines. The molecular mechanisms of T cell suppression by NK cells, however, remained elusive. Only in the last few years has it become evident that, upon activation, human T cells express MICA-B, ULBP1-3, and PVR, ligands of the activating receptors NKG2D and DNAM-1, respectively. Their expression renders T cells targets of NK cell lysis, representing a new mechanism taking part to the negative regulation of T cell responses. Studies on the expression of NKG2D and DNAM-1 ligands on T cells have also contributed in understanding that the activation of ATM (ataxia-telangiectasia, mutated)/ATR (ATM/Rad3-related) kinases and the DNA damage response is a common pathway regulating the expression of activating ligands in different types of cells and under different conditions. The functional consequences of NKG2D and DNAM-1 ligand expression on activated T cells are discussed in the context of physiologic and pathologic processes such as infections, autoimmunity, and graft versus host disease.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome Rome, Italy
| | | | | | | |
Collapse
|