1
|
Perego Junior JE, Tomazi Silva K, Balani Rando AL, Sousa Lima M, Garcia RF, Pedrosa MMD. Glucose metabolism in the perfused liver did not improve with resistance training in male Swiss mice under caloric restriction. Arch Physiol Biochem 2024:1-10. [PMID: 39392336 DOI: 10.1080/13813455.2024.2413626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT Energy homeostasis is a primary factor for the survival of mammals. Many tissues and organs, among which is the liver, keep this homeostasis in varied circumstances, including caloric restriction (CR) and physical activity. OBJECTIVE This study investigated glucose metabolism using the following groups of eight-week-old male Swiss mice: CS, sedentary and fed freely; RS, sedentary and RT, trained, both under 30% CR (n = 20-23 per group). RESULTS Organs and fat depots of groups RS and RT were similar to CS, although body weight was lower. CR did not impair training performance nor affected systemic or hepatic glucose metabolism. Training combined with CR (group RT) improved in vivo glucose tolerance and did not affect liver gluconeogenesis. CONCLUSIONS The mice tolerated the prolonged moderate CR without impairment of their well-being, glucose homeostasis, and resistance training performance. But the higher liver gluconeogenic efficiency previously demonstrated using this training protocol in mice was not evidenced under CR.
Collapse
Affiliation(s)
| | - Kauane Tomazi Silva
- Program of Graduate Studies in Physiological Sciences, State University of Maringá, Maringá, PR, Brazil
| | | | - Mateus Sousa Lima
- Department of Biology, State University of Maringá, Maringá, PR, Brazil
| | | | | |
Collapse
|
2
|
Usha Satheesan S, Chowdhury S, Kolthur-Seetharam U. Metabolic and circadian inputs encode anticipatory biogenesis of hepatic fed microRNAs. Life Sci Alliance 2024; 7:e202302180. [PMID: 38408795 PMCID: PMC10897495 DOI: 10.26508/lsa.202302180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Starvation and refeeding are mostly unanticipated in the wild in terms of duration, frequency, and nutritional value of the refed state. Notwithstanding this, organisms mount efficient and reproducible responses to restore metabolic homeostasis. Hence, it is intuitive to invoke expectant molecular mechanisms that build anticipatory responses to enable physiological toggling during fed-fast cycles. In this regard, we report anticipatory biogenesis of oscillatory hepatic microRNAs that peak during a fed state and inhibit starvation-responsive genes. Our results clearly demonstrate that the levels of primary and precursor microRNA transcripts increase during a fasting state, in anticipation of a fed response. We delineate the importance of both metabolic and circadian cues in orchestrating hepatic fed microRNA homeostasis in a physiological setting. Besides illustrating metabo-endocrine control, our findings provide a mechanistic basis for the overarching influence of starvation on anticipatory biogenesis. Importantly, by using pharmacological agents that are widely used in clinics, we point out the high potential of interventions to restore homeostasis of hepatic microRNAs, whose deregulated expression is otherwise well established to cause metabolic diseases.
Collapse
Affiliation(s)
- Sandra Usha Satheesan
- https://ror.org/03ht1xw27 Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shreyam Chowdhury
- https://ror.org/03ht1xw27 Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ullas Kolthur-Seetharam
- https://ror.org/03ht1xw27 Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- https://ror.org/03ht1xw27 Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, India
| |
Collapse
|
3
|
Salekeen R, Lustgarten MS, Khan U, Islam KMD. Model organism life extending therapeutics modulate diverse nodes in the drug-gene-microbe tripartite human longevity interactome. J Biomol Struct Dyn 2024; 42:393-411. [PMID: 36970862 DOI: 10.1080/07391102.2023.2192823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
Advances in antiaging drug/lead discovery in animal models constitute a large body of literature on novel senotherapeutics and geroprotectives. However, with little direct evidence or mechanism of action in humans-these drugs are utilized as nutraceuticals or repurposed supplements without proper testing directions, appropriate biomarkers, or consistent in-vivo models. In this study, we take previously identified drug candidates that have significant evidence of prolonging lifespan and promoting healthy aging in model organisms, and simulate them in human metabolic interactome networks. Screening for drug-likeness, toxicity, and KEGG network correlation scores, we generated a library of 285 safe and bioavailable compounds. We interrogated this library to present computational modeling-derived estimations of a tripartite interaction map of animal geroprotective compounds in the human molecular interactome extracted from longevity, senescence, and dietary restriction-associated genes. Our findings reflect previous studies in aging-associated metabolic disorders, and predict 25 best-connected drug interactors including Resveratrol, EGCG, Metformin, Trichostatin A, Caffeic Acid and Quercetin as direct modulators of lifespan and healthspan-associated pathways. We further clustered these compounds and the functionally enriched subnetworks therewith to identify longevity-exclusive, senescence-exclusive, pseudo-omniregulators and omniregulators within the set of interactome hub genes. Additionally, serum markers for drug-interactions, and interactions with potentially geroprotective gut microbial species distinguish the current study and present a holistic depiction of optimum gut microbial alteration by candidate drugs. These findings provide a systems level model of animal life-extending therapeutics in human systems, and act as precursors for expediting the ongoing global effort to find effective antiaging pharmacological interventions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, MA, USA
| | - Umama Khan
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
4
|
Wang Y, Gao T, Wang B. Application of mesenchymal stem cells for anti-senescence and clinical challenges. Stem Cell Res Ther 2023; 14:260. [PMID: 37726805 PMCID: PMC10510299 DOI: 10.1186/s13287-023-03497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Senescence is a hot topic nowadays, which shows the accumulation of senescent cells and inflammatory factors, leading to the occurrence of various senescence-related diseases. Although some methods have been identified to partly delay senescence, such as strengthening exercise, restricting diet, and some drugs, these only slow down the process of senescence and cannot fundamentally delay or even reverse senescence. Stem cell-based therapy is expected to be a potential effective way to alleviate or cure senescence-related disorders in the coming future. Mesenchymal stromal cells (MSCs) are the most widely used cell type in treating various diseases due to their potentials of self-replication and multidirectional differentiation, paracrine action, and immunoregulatory effects. Some biological characteristics of MSCs can be well targeted at the pathological features of aging. Therefore, MSC-based therapy is also a promising strategy to combat senescence-related diseases. Here we review the recent progresses of MSC-based therapies in the research of age-related diseases and the challenges in clinical application, proving further insight and reference for broad application prospects of MSCs in effectively combating senesce in the future.
Collapse
Affiliation(s)
- Yaping Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Tianyun Gao
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
5
|
Park SH, Lee J, Hwang JT, Chung MY. Physiologic and epigenetic effects of nutrients on disease pathways. Nutr Res Pract 2023; 17:13-31. [PMID: 36777807 PMCID: PMC9884588 DOI: 10.4162/nrp.2023.17.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND/OBJECTIVES Epigenetic regulation by nutrients can influence the development of specific diseases. This study sought to examine the effect of individual nutrients and nutrient families in the context of preventing chronic metabolic diseases via epigenetic regulation. The inhibition of lipid accumulation and inflammation by nutrients including proteins, lipids, vitamins, and minerals were observed, and histone acetylation by histone acetyltransferase (HAT) was measured. Correlative analyses were also performed. MATERIALS/METHODS Nutrients were selected according to information from the Korean Ministry of Food and Drug Safety. Selected nutrient functionalities, including the attenuation of fatty acid-induced lipid accumulation and lipopolysaccharide-mediated acute inflammation were evaluated in mouse macrophage Raw264.7 and mouse hepatocyte AML-12 cells. Effects of the selected nutrients on in vitro HAT inhibition were also evaluated. RESULTS Nitric oxide (NO) production correlated with HAT activity, which was regulated by the amino acids group, suggesting that amino acids potentially contribute to the attenuation of NO production via the inhibition of HAT activity. Unsaturated fatty acids tended to attenuate inflammation by inhibiting NO production, which may be attributable to the inhibition of in vitro HAT activity. In contrast to water-soluble vitamins, the lipid-soluble vitamins significantly decreased NO production. Water- and lipid-soluble vitamins both exhibited significant inhibitory activities against HAT. In addition, calcium and manganese significantly inhibited lipid accumulation, NO production, and HAT activity. CONCLUSIONS Several candidate nutrients and their family members may have roles in the prevention of diseases, including hepatic steatosis and inflammation-related diseases (i.e., nonalcoholic steatohepatitis) via epigenetic regulation. Further studies are warranted to determine which specific amino acids, unsaturated fatty acids and lipid-soluble vitamins or specific minerals influence the development of steatosis and inflammatory-related diseases.
Collapse
Affiliation(s)
- Soo-Hyun Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea
| | - Jaein Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea.,Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Jin-Taek Hwang
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea.,Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Min-Yu Chung
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Korea
| |
Collapse
|
6
|
Effect of Chronic Moderate Caloric Restriction on the Reproductive Function in Aged Male Wistar Rats. Nutrients 2022; 14:nu14061256. [PMID: 35334913 PMCID: PMC8952234 DOI: 10.3390/nu14061256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Caloric restriction (CR) has been shown to be an effective nutritional intervention for increasing longevity in some animal species. The objective of this study was to evaluate CR’s effects on metabolic and reproductive parameters in 12-month-old male Wistar rats. The rats were distributed in three groups: control, CR at 15%, and CR at 35% for 6 (up to 18 months of age) and 12 months (up to 24 months of age). At the end of CR treatment, we evaluated reproductive (male sexual behavior (MSB), sperm quality) and biochemical parameters (plasma glucose, glucose-regulating hormone, and sex steroid levels), and quantified annexin V in the seminiferous epithelium. Results showed that MSB and sperm quality were improved after 6 months of CR associated with increases in plasma testosterone and decrease annexin V in the seminiferous epithelium of the testicles compared to their control group. The metabolic profile of the CR rats also improved compared to controls. However, these effects of CR on reproductive parameters were not maintained after 12 months of CR. Findings suggest that beginning CR at the age of maturity reestablishes the behavioral sexual response and reproductive function in older animals after 6 months of CR and improves endocrine functioning during aging.
Collapse
|
7
|
Yakupova EI, Zorov DB, Plotnikov EY. Bioenergetics of the Fibrosis. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1599-1606. [PMID: 34937539 DOI: 10.1134/s0006297921120099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is known that the development of fibrosis is associated with many diseases, being both a cause and effect of the damage to organs and tissues. Replacement of functional tissue with a scar can lead to organ dysfunction, which is often a life-threatening condition. The development of effective approaches for the prevention or treatment of fibrosis requires an in-depth understanding of all aspects of its pathogenesis, from epithelial-mesenchymal transformation to fibroblast proliferation. Fibrosis can be induced by trauma, ischemic injury, inflammation, and many other pathological states accompanied by repeated cycles of tissue damage and repair. Energy metabolism is the basis of functioning of all cells in an organism and its disruptions are associated with the development of different diseases, hence, it could be a target for the therapy of such pathological processes as ischemia/reperfusion, epilepsy, diabetes, cancer, and neurological disorders. The emergence of fibrosis is also associated with the changes in cell bioenergetics. In this work, we analyzed the changes in the energy metabolism that occur with the progression of fibrosis and evaluated the possibility of affecting energetics as target in the anti-fibrotic approach.
Collapse
Affiliation(s)
- Elmira I Yakupova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
8
|
Kumar A, Rani M, Mani S, Shah P, Singh DB, Kudapa H, Varshney RK. Nutritional Significance and Antioxidant-Mediated Antiaging Effects of Finger Millet: Molecular Insights and Prospects. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.684318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aging is a multifaceted process that is associated with progressive, lethal, and unalterable changes like damage to different molecules (DNA, proteins, and lipids), cells, tissues, and organs. It is an inevitable process but can be delayed by both genetic and dietary interventions. Besides aging, premature death and age-associated diseases can be dealt with diet regulation and the use of compounds that inhibit the stress responsiveness or promote the damage repair signaling pathways. Natural compounds offer a repertoire of highly diverse structural scaffolds that can offer hopeful candidate chemical entities with antiaging potential. One such source of natural compounds is millets, which are minor cereals with an abundance of high fiber, methionine, calcium, iron, polyphenols, and secondary metabolites, responsible for numerous potential health benefits. The present review article elucidates the nature and significance of different phytochemicals derived from millets with a major focus on finger millet and highlights all the important studies supporting their health benefits with special emphasis on the antiaging effect of these compounds. The present article also proposes the possible mechanisms through which millets can play a significant role in the suppression of aging processes and aging-related diseases by influencing genetic repair, protein glycation, and stress-responsive pathways. We further discuss well-established natural compounds for their use as antiaging drugs and recommend raising awareness for designing novel formulations/combinations from them so that their maximum antiaging potential can be harnessed for the benefit of mankind.
Collapse
|
9
|
Salekeen R, Siam MHB, Sharif DI, Lustgarten MS, Billah MM, Islam KMD. In silico insights into potential gut microbial modulation of NAD+ metabolism and longevity. J Biochem Mol Toxicol 2021; 35:e22925. [PMID: 34580953 DOI: 10.1002/jbt.22925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022]
Abstract
Recent evidence has prompted the notion of gut-microbial signatures as an indirect marker of aging and aging-associated decline in humans. However, the underlying host-symbiont molecular interactions contributing to these signatures remain poorly understood. In this study, we address this gap using cheminformatic analyses to elucidate potential gut microbial metabolites that may perturb the longevity-associated NAD+ metabolic network. In silico ADMET, KEGG interaction analysis, molecular docking, molecular dynamics simulation, and molecular mechanics calculation predict a large number of safe and bioavailable microbial metabolites to be direct and/or indirect activators of NAD+-dependent sirtuin proteins. Our simulation results suggest dihydropteroate, phenylpyruvic acid, indole-3-propionic acid, phenyllactic acid, all-trans-retinoic acid, and multiple deoxy-, methyl-, and cyclic nucleotides from intestinal microbiota as the best-performing regulators of NAD+ metabolism. Retracing these molecules to their source microorganisms also suggest commensal Escherichia, Bacteroides, Bifidobacteria, and Lactobacilli to be associated with the highest number of pro-longevity metabolites. These findings from our early-stage study, therefore, provide an informatics-based context for previous evidence in the area and grant novel insights for future clinical investigation intersecting anti-aging drug discovery, probiotics, and gut microbial signatures.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Hasanul Banna Siam
- Department of Microbiology, Faculty of Biological Science, University of Dhaka, Dhaka, Bangladesh
| | - Dilara Islam Sharif
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, Bangladesh
| | - Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, Massachusetts, USA
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
10
|
Lopez-Pascual A, Trayhurn P, Martínez JA, González-Muniesa P. Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxid Redox Signal 2021; 35:642-687. [PMID: 34036800 DOI: 10.1089/ars.2019.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: In recent years, a number of studies have shown altered oxygen partial pressure at a tissue level in metabolic disorders, and some researchers have considered oxygen to be a (macro) nutrient. Oxygen availability may be compromised in obesity and several other metabolism-related pathological conditions, including sleep apnea-hypopnea syndrome, the metabolic syndrome (which is a set of conditions), type 2 diabetes, cardiovascular disease, and cancer. Recent Advances: Strategies designed to reduce adiposity and its accompanying disorders have been mainly centered on nutritional interventions and physical activity programs. However, novel therapies are needed since these approaches have not been sufficient to counteract the worldwide increasing rates of metabolic disorders. In this regard, intermittent hypoxia training and hyperoxia could be potential treatments through oxygen-related adaptations. Moreover, living at a high altitude may have a protective effect against the development of abnormal metabolic conditions. In addition, oxygen delivery systems may be of therapeutic value for supplying the tissue-specific oxygen requirements. Critical Issues: Precise in vivo methods to measure oxygenation are vital to disentangle some of the controversies related to this research area. Further, it is evident that there is a growing need for novel in vitro models to study the potential pathways involved in metabolic dysfunction to find appropriate therapeutic targets. Future Directions: Based on the existing evidence, it is suggested that oxygen availability has a key role in obesity and its related comorbidities. Oxygen should be considered in relation to potential therapeutic strategies in the treatment and prevention of metabolic disorders. Antioxid. Redox Signal. 35, 642-687.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom.,Clore Laboratory, The University of Buckingham, Buckingham, United Kingdom
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.,Precision Nutrition and Cardiometabolic Health, IMDEA Food, Madrid Institute for Advanced Studies, Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| |
Collapse
|
11
|
Budamagunta V, Foster TC, Zhou D. Cellular senescence in lymphoid organs and immunosenescence. Aging (Albany NY) 2021; 13:19920-19941. [PMID: 34382946 PMCID: PMC8386533 DOI: 10.18632/aging.203405] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Immunosenescence is a multi-faceted phenomenon at the root of age-associated immune dysfunction. It can lead to an array of pathological conditions, including but not limited to a decreased capability to surveil and clear senescent cells (SnCs) and cancerous cells, an increased autoimmune responses leading to tissue damage, a reduced ability to tackle pathogens, and a decreased competence to illicit a robust response to vaccination. Cellular senescence is a phenomenon by which oncogene-activated, stressed or damaged cells undergo a stable cell cycle arrest. Failure to efficiently clear SnCs results in their accumulation in an organism as it ages. SnCs actively secrete a myriad of molecules, collectively called senescence-associated secretory phenotype (SASP), which are factors that cause dysfunction in the neighboring tissue. Though both cellular senescence and immunosenescence have been studied extensively and implicated in various pathologies, their relationship has not been greatly explored. In the wake of an ongoing pandemic (COVID-19) that disproportionately affects the elderly, immunosenescence as a function of age has become a topic of great importance. The goal of this review is to explore the role of cellular senescence in age-associated lymphoid organ dysfunction and immunosenescence, and provide a framework to explore therapies to rejuvenate the aged immune system.
Collapse
Affiliation(s)
- Vivekananda Budamagunta
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Thomas C Foster
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
12
|
Salekeen R, Diaconeasa AG, Billah MM, Islam KMD. Energy Metabolism Focused Analysis of Sexual Dimorphism in Biological Aging and Hypothesized Sex-specificity in Sirtuin Dependency. Mitochondrion 2021; 60:85-100. [PMID: 34332101 DOI: 10.1016/j.mito.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 01/09/2023]
Abstract
The process of biological aging or senescence refers to the gradual loss of homeostasis and subsequent loss of function - leading to higher chances of mortality. Many mechanisms and driving forces have been suggested to facilitate the evolution of a molecular circuit acting as a trade-off between survival and proliferation, resulting in senescence. A major observation on biological aging and longevity in humans and model organisms is the prevalence of significant sexual divergence in the onset, mechanisms and effects of aging associated processes. In the current account, we describe possible mechanisms by which aging, sex and reproduction are evolutionarily intertwined in order to maintain systemic energy homeostasis. We also interrogate existing literature on the sexual dimorphism of genetic, cellular, metabolic, endocrine and epigenetic processes driving cellular and systemic aging. Subsequently, based on available evidence, we propose a hypothetic model of sex-limited decoupling of female longevity from sirtuins, a major family of regulator proteins of the survival-proliferation trade-off. We also provide necessary considerations to be made in order to test the hypothesis and explore the physiological and therapeutic implications of this decoupling event in male and female longevity after reaching reproductive maturity. HYPOTHESIS STATEMENT: Sirtuins provide survival benefits in a sex-nonspecific manner but the dependency on sirtuins in driving metabolic networks after reaching reproductive maturity is evolutionarily decoupled from female longevity.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| | - Amalia Gabriela Diaconeasa
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| |
Collapse
|
13
|
Rojic-Becker D, Portero-Tresserra M, Martí-Nicolovius M, Vale-Martínez A, Guillazo-Blanch G. Effects of caloric restriction on monoaminergic neurotransmission, peripheral hormones, and olfactory memory in aged rats. Behav Brain Res 2021; 409:113328. [PMID: 33930470 DOI: 10.1016/j.bbr.2021.113328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/30/2021] [Accepted: 04/25/2021] [Indexed: 01/02/2023]
Abstract
Aging is associated with a reduced ability to identify and discriminate scents, and olfactory dysfunction has been linked to preclinical stages of neurodegenerative diseases in humans. Moreover, emerging evidence suggests that smell-driven behaviors are regulated by hormones like insulin or leptin, and by metabolic parameters like glucose, which in turn may influence monoaminergic neurotransmission in brain areas related to cognition. Several studies have suggested that dietary interventions like caloric restriction (CR) can mitigate the age-induced decline in memory by modifying metabolic parameters and brain monoaminergic levels. The present study explored the effects of CR on age-dependent olfactory memory deficits, as well as their relationship with peripheral leptin, insulin and glucose levels, and brain monoamines. To this end, aged rats (24-months-old) fed on a CR diet or with ad libitum access to food, and adult rats (3-4 months), were trained in an odor discrimination task (ODT). The peripheral plasma levels of insulin, leptin, and glucose, and of monoamines and metabolites/precursors in brain areas related to olfactory learning and memory processes, such as the striatum and frontal cortex (FC), were determined. The data obtained indicated that CR attenuated the age-dependent decline in olfactory sensitivity in old animals fed ad libitum, which was correlated with the performance in ODT retention trial, as well as with leptin plasma levels. CR enhanced dopamine levels in the striatum, while it attenuated the age-related decline in serotonin levels in the striatum and FC. Such findings support a positive effect of CR on age-dependent olfactory sensitivity decline and dysfunctions in brain monoamine levels.
Collapse
Affiliation(s)
- Divka Rojic-Becker
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Portero-Tresserra
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Margarita Martí-Nicolovius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Vale-Martínez
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Guillazo-Blanch
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
14
|
He N, Yu L, Xu M, Huang Y, Wang X, Chen L, Yue S. Near-infrared fluorescent probe for evaluating the acetylcholinesterase effect in the aging process and dietary restriction via fluorescence imaging. J Mater Chem B 2021; 9:2623-2630. [PMID: 33666613 DOI: 10.1039/d0tb02833a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dietary restriction (DR), as a natural intervention, not only benefits the neuroendocrine system, but also has an antiaging action. Acetylcholinesterase (AChE) is one of the most important bioactive substances and plays a major part in choline changes in the aging process. Thus, we aim to evaluate the effect of DR on AChE in the brains of aging animals. In this study, we synthesize a NIR fluorescent probe BD-AChE for the real-time and in situ monitoring of AChE level changes in living cells and living mice, notably in brains. In situ visualization with BD-AChE verified a decrease in the AchE level in the brains of mice aging models. Evidently, the prepared probe has the excellent capability of measuring AChE variation in the brains of aging mice with DR via NIR fluorescence bioimaging, indicating that long-term DR can effectively affect AChE levels in the brain. The attenuation of AChE level in the brain of aging mice after DR could be helpful in infering the advantageous impact of DR on age-related neurodegenerative disease, as a better treatment alternative in the future.
Collapse
Affiliation(s)
- Na He
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan 250100, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Salekeen R, Ahmed A, Islam ME, Billah MM, Rahman H, Islam KMD. In-silico screening of bioactive phytopeptides for novel anti-ageing therapeutics. J Biomol Struct Dyn 2020; 40:4475-4487. [PMID: 33317397 DOI: 10.1080/07391102.2020.1859411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A metabolic network of energy-sensing molecular pathways drives the biological ageing process. Regulating certain network elements can help decelerate the ageing process and ameliorate ageing associated disorders. Bioactive phytopeptides are a prospective avenue for anti-ageing therapeutics and rejuvenation biotechnology. The present study investigates the potential of therapeutic plant peptides against cellular senescence by targeting three key proteins in the ageing network - target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 1 (SIRT1). This investigation screened a library of reported bioactive peptides using standard cheminformatic methods including in-silico ADMET, molecular docking, molecular dynamics simulation and molecular mechanics calculation. The retrieved simulation data predict 25 diverse phytopeptides as potential safe and drug-like anti-ageing biologics with half-lives >20 h and bioavailability scores >0.40. The best docked peptide, Cycloleonuripeptide B, exhibited strong binding affinity and stable complex formation with mTOR (-17.5 kCal/mol), SIRT1 (-28.54 kCal/mol) and two active sites in AMPK (-41.8 kCal/mol; -36.0 kCal/mol) during molecular dynamics simulations. The computational study acts as a foundation for future laboratory and clinical research into the potential of repurposing therapeutic phytopeptides against cellular senescence and associated pathophysiology. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Asif Ahmed
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Emdadul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Hafizur Rahman
- Department of Environmental Science and Management School of Environment and Life Sciences, Independent University Bangladesh, Dhaka, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
16
|
Pfohl M, DaSilva NA, Marques E, Agudelo J, Liu C, Goedken M, Slitt AL, Seeram NP, Ma H. Hepatoprotective and anti-inflammatory effects of a standardized pomegranate ( Punica granatum) fruit extract in high fat diet-induced obese C57BL/6 mice. Int J Food Sci Nutr 2020; 72:499-510. [PMID: 33203257 DOI: 10.1080/09637486.2020.1849041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diets rich in fats are linked to elevated systemic inflammation, which augments the progression of inflammatory-related disorders including non-alcoholic fatty liver disease (NAFLD) and neurodegenerative diseases. A phenolic-enriched pomegranate fruit extract (PE) was investigated for its hepatoprotective and anti-inflammatory effects in male C57BL/6 mice fed either a high-fat diet or a standard rodent diet with or without 1% of PE for 12 weeks. Mouse livers and hippocampi were evaluated for the expression of genes associated with NAFLD and inflammation by multiplexed gene analysis. PE alleviated diet-induced fatty liver and suppressed hepatic lipid regulating genes including Cd36, Fas, Acot2 and Slc27a1. In addition, PE suppressed gene expression of pro-inflammatory cytokines including Il-1α, Il-7, Il-11, Ifnα, Tnfα and Lepr in the hippocampi. Our findings support the protective effects of PE against high-fat diet-induced hepatic and neurological disease.
Collapse
Affiliation(s)
- Marisa Pfohl
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Nicholas A DaSilva
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Emily Marques
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Juliana Agudelo
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Chang Liu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Michael Goedken
- Rutgers Translational Sciences, Rutgers University, Piscataway, NJ, USA
| | - Angela L Slitt
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Navindra P Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
17
|
Portero-Tresserra M, Rojic-Becker D, Vega-Carbajal C, Guillazo-Blanch G, Vale-Martínez A, Martí-Nicolovius M. Caloric restriction modulates the monoaminergic system and metabolic hormones in aged rats. Sci Rep 2020; 10:19299. [PMID: 33168891 PMCID: PMC7653031 DOI: 10.1038/s41598-020-76219-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Caloric restriction (CR) can attenuate the general loss of health observed during aging, being one of the mechanisms involved the reduction of hormonal alteration, such as insulin and leptin. This change could also prevent age-specific fluctuations in brain monoamines, although few studies have addressed the effects of CR on peripheral hormones and central neurotransmitters exhaustively. Therefore, the variations in brain monoamine levels and some peripheral hormones were assessed here in adult 4-month old and 24-month old male Wistar rats fed ad libitum (AL) or maintained on a 30% CR diet from four months of age. Noradrenaline (NA), dopamine (DA), serotonin (5-HT) and its metabolites were measured by high-performance liquid chromatography with electrochemical detection (HPLC-ED) in nine brain regions: cerebellum, pons, midbrain, hypothalamus, thalamus, hippocampus, striatum, frontal cortex, and occipital cortex. In addition, the blood plasma levels of hormones like corticosterone, insulin and leptin were also evaluated, as were insulin-like growth factor 1 and other basal metabolic parameters using enzyme-linked immunosorbent assays (ELISAs): cholesterol, glucose, triglycerides, albumin, low-density lipoprotein, calcium and high-density lipoprotein (HDLc). CR was seen to increase the NA levels that are altered by aging in specific brain regions like the striatum, thalamus, cerebellum and hypothalamus, and the DA levels in the striatum, as well as modifying the 5-HT levels in the striatum, hypothalamus, pons and hippocampus. Moreover, the insulin, leptin, calcium and HDLc levels in the blood were restored in old animals maintained on a CR diet. These results suggest that a dietary intervention like CR may have beneficial health effects, recovering some negative effects on peripheral hormones, metabolic parameters and brain monoamine concentrations.
Collapse
Affiliation(s)
- Marta Portero-Tresserra
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - D Rojic-Becker
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Vega-Carbajal
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - G Guillazo-Blanch
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Vale-Martínez
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Martí-Nicolovius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Andrianova NV, Zorova LD, Pevzner IB, Popkov VA, Chernikov VP, Silachev DN, Plotnikov EY, Zorov DB. Resemblance and differences in dietary restriction nephroprotective mechanisms in young and old rats. Aging (Albany NY) 2020; 12:18693-18715. [PMID: 32970613 PMCID: PMC7585108 DOI: 10.18632/aging.103960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/21/2020] [Indexed: 01/24/2023]
Abstract
Dietary restriction (DR) is the strategy ameliorating the morbidity of various pathologies, including age-associated diseases. Acute kidney injury (AKI) remains a problem for the elderly with DR being a promising approach for diminishing its consequences. We evaluated the possible nephroprotective potential of short-term DR in young and old rats. DR in young rats resulted in pronounced beneficial effects normalizing lipid metabolism (triglycerides concentration, adiponectin level) activating autophagic-lysosomal system evaluated by LC3II/LC3I ratio, LAMP1, p62/SQSTM1 levels, and LysoTracker Green staining. DR had a remarkable recovering effect on mitochondrial structure and functions including regaining of mitochondrial membrane potential, the elevation of SIRT-3, PGC-1α, Bcl-XL levels and partial restoration of ultrastructure. The beneficial effects of DR resulted in the mitigation of oxidative stress including a decrease in levels of protein carbonylation and lipid peroxidation. Aging led to decreased activity of autophagy, elevated oxidative stress and impaired kidney regenerative capacity. Eventually, in old rats, even 8-week DR was not able to ameliorate AKI, but it caused some rejuvenating effects including elevation of mitochondrial membrane potential and Bcl-XL levels, as well as lowered severity of the oxidative stress. Thus, the age-associated decline of protective signaling demands extended DR to achieve nephroprotective potential in old animals.
Collapse
Affiliation(s)
- Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ljubava D. Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| | - Irina B. Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| | - Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| | | | - Denis N. Silachev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow 119991, Russia
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| |
Collapse
|
19
|
Arora I, Sharma M, Sun LY, Tollefsbol TO. The Epigenetic Link between Polyphenols, Aging and Age-Related Diseases. Genes (Basel) 2020; 11:genes11091094. [PMID: 32962067 PMCID: PMC7565986 DOI: 10.3390/genes11091094] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/15/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Aging is a complex process mainly categorized by a decline in tissue, cells and organ function and an increased risk of mortality. Recent studies have provided evidence that suggests a strong association between epigenetic mechanisms throughout an organism’s lifespan and age-related disease progression. Epigenetics is considered an evolving field and regulates the genetic code at several levels. Among these are DNA changes, which include modifications to DNA methylation state, histone changes, which include modifications of methylation, acetylation, ubiquitination and phosphorylation of histones, and non-coding RNA changes. As a result, these epigenetic modifications are vital targets for potential therapeutic interventions against age-related deterioration and disease progression. Dietary polyphenols play a key role in modulating these modifications thereby delaying aging and extending longevity. In this review, we summarize recent advancements linking epigenetics, polyphenols and aging as well as critical findings related to the various dietary polyphenols in different fruits and vegetables. In addition, we cover studies that relate polyphenols and their epigenetic effects to various aging-related diseases such as cardiovascular diseases, neurodegenerative diseases, autoimmune disorders, diabetes, osteoporosis and cancer.
Collapse
Affiliation(s)
- Itika Arora
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.A.); (M.S.); (L.Y.S.)
| | - Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.A.); (M.S.); (L.Y.S.)
| | - Liou Y. Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.A.); (M.S.); (L.Y.S.)
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (I.A.); (M.S.); (L.Y.S.)
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA
- Comprehensive Diabetes Center, University of Alabama Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-4573; Fax: +1-205-975-6097
| |
Collapse
|
20
|
|
21
|
Rojic-Becker D, Portero-Tresserra M, Martí-Nicolovius M, Vale-Martínez A, Guillazo-Blanch G. Caloric restriction modulates the monoaminergic and glutamatergic systems in the hippocampus, and attenuates age-dependent spatial memory decline. Neurobiol Learn Mem 2019; 166:107107. [DOI: 10.1016/j.nlm.2019.107107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
|
22
|
Zeng T, Cui H, Tang D, Garside GB, Wang Y, Wu J, Tao Z, Zhang L, Tao S. Short-term dietary restriction in old mice rejuvenates the aging-induced structural imbalance of gut microbiota. Biogerontology 2019; 20:837-848. [PMID: 31401701 PMCID: PMC6790194 DOI: 10.1007/s10522-019-09830-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022]
Abstract
The world’s aging population is growing rapidly. Incidences of multiple pathologies, such as abdominal obesity, cardiovascular and cerebrovascular diseases, type 2 diabetes, and malignant neoplasms, increase sharply with age. Aged individuals possess a significantly shifted composition of gut microbiota, which is suggested to play important roles in aging associated pathologies. Whether the existing shifted structural composition of microbiota in aged populations can be reverted non-pharmacologically has not been studied so far. Here, we show an intestinal flora imbalance in old C57BL/6J mice with a remarkable dominant proportion of microbes promoting lipid metabolism and inflammation. Intriguingly, short-term (2 months) dietary restriction was enough to significantly revert the imbalance of intestinal flora in aged mice toward a more balanced structural composition as shown in young mice. Our study provides the first evidence that short-term dietary restriction in old mice can restore the already dysfunctional aged gut microbiota. Our study provides the first evidence that short-term dietary restriction in old mice can restore the already dysfunctional aged gut microbiota, which may help ameliorate aging-related disorders plaguing the vast elderly population.
Collapse
Affiliation(s)
- Ting Zeng
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China.,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, 330006, Nanchang City, Jiangxi Province, China
| | - Hui Cui
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China.,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, 330006, Nanchang City, Jiangxi Province, China
| | - Duozhuang Tang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - George B Garside
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Yiting Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jianying Wu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China.,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, 330006, Nanchang City, Jiangxi Province, China
| | - Zhendong Tao
- Department of Medical Laboratory Medicine, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Jiangxi, China
| | - Liu Zhang
- Intensive Care Unit, Peking University People's Hospital, Beijing, China
| | - Si Tao
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, 330006, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
23
|
Molina-Serrano D, Kyriakou D, Kirmizis A. Histone Modifications as an Intersection Between Diet and Longevity. Front Genet 2019; 10:192. [PMID: 30915107 PMCID: PMC6422915 DOI: 10.3389/fgene.2019.00192] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
Histone modifications are key epigenetic regulators that control chromatin structure and gene transcription, thereby impacting on various important cellular phenotypes. Over the past decade, a growing number of studies have indicated that changes in various histone modifications have a significant influence on the aging process. Furthermore, it has been revealed that the abundance and localization of histone modifications are responsive to various environmental stimuli, such as diet, which can also affect gene expression and lifespan. This supports the notion that histone modifications can serve as a main cellular platform for signal integration. Hence, in this review we focus on the role of histone modifications during aging, report the data indicating that diet affects histone modification levels and explore the idea that histone modifications may function as an intersection through which diet regulates lifespan. A greater understanding of the epigenetic mechanisms that link environmental signals to longevity may provide new strategies for therapeutic intervention in age-related diseases and for promoting healthy aging.
Collapse
Affiliation(s)
- Diego Molina-Serrano
- UMR 6290, Centre National de la Recherche Scientifique, Rennes, France
- Institute of Genetics and Development of Rennes (IGDR), Université de Rennes 1, Rennes, France
| | - Dimitris Kyriakou
- Efevre Tech Ltd., Larnaca, Cyprus
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
24
|
Leak RK, Calabrese EJ, Kozumbo WJ, Gidday JM, Johnson TE, Mitchell JR, Ozaki CK, Wetzker R, Bast A, Belz RG, Bøtker HE, Koch S, Mattson MP, Simon RP, Jirtle RL, Andersen ME. Enhancing and Extending Biological Performance and Resilience. Dose Response 2018; 16:1559325818784501. [PMID: 30140178 PMCID: PMC6096685 DOI: 10.1177/1559325818784501] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022] Open
Abstract
Human performance, endurance, and resilience have biological limits that are genetically and epigenetically predetermined but perhaps not yet optimized. There are few systematic, rigorous studies on how to raise these limits and reach the true maxima. Achieving this goal might accelerate translation of the theoretical concepts of conditioning, hormesis, and stress adaptation into technological advancements. In 2017, an Air Force-sponsored conference was held at the University of Massachusetts for discipline experts to display data showing that the amplitude and duration of biological performance might be magnified and to discuss whether there might be harmful consequences of exceeding typical maxima. The charge of the workshop was "to examine and discuss and, if possible, recommend approaches to control and exploit endogenous defense mechanisms to enhance the structure and function of biological tissues." The goal of this white paper is to fulfill and extend this workshop charge. First, a few of the established methods to exploit endogenous defense mechanisms are described, based on workshop presentations. Next, the white paper accomplishes the following goals to provide: (1) synthesis and critical analysis of concepts across some of the published work on endogenous defenses, (2) generation of new ideas on augmenting biological performance and resilience, and (3) specific recommendations for researchers to not only examine a wider range of stimulus doses but to also systematically modify the temporal dimension in stimulus inputs (timing, number, frequency, and duration of exposures) and in measurement outputs (interval until assay end point, and lifespan). Thus, a path forward is proposed for researchers hoping to optimize protocols that support human health and longevity, whether in civilians, soldiers, athletes, or the elderly patients. The long-term goal of these specific recommendations is to accelerate the discovery of practical methods to conquer what were once considered intractable constraints on performance maxima.
Collapse
Affiliation(s)
- Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Edward J. Calabrese
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Jeffrey M. Gidday
- Departments of Ophthalmology, Neuroscience, and Physiology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Thomas E. Johnson
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - James R. Mitchell
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - C. Keith Ozaki
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Reinhard Wetzker
- Institute for Molecular Cell Biology, University of Jena, Jena, Germany
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
| | - Regina G. Belz
- Hans-Ruthenberg-Institute, Agroecology Unit, University of Hohenheim, Stuttgart, Germany
| | - Hans E. Bøtker
- Department of Clinical Medicine, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Sebastian Koch
- Department of Neurology, University of Miami, Miller School of Medicine, FL, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Roger P. Simon
- Departments of Medicine and Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Randy L. Jirtle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
25
|
Branquinho NTD, Cruz GHP, Borrasca CL, Alves LDPS, de Godoy Gomes CR, Ferreira de Godoi VA, Pedrosa MMD. Early-onset obesity and food restriction alter hepatocyte metabolism in adult Wistar rats. Arch Physiol Biochem 2017; 123:297-305. [PMID: 28502193 DOI: 10.1080/13813455.2017.1326942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Caloric restriction (CR) is suggested for overweight control. OBJECTIVE Systemic and liver glucose metabolism in the reduced-litter (RL) rat model under 30% CR was investigated. MATERIALS AND METHODS Newborn litters were organised in control (G9); RL with free diet (G3L); and RL with CR (G3R). Assessments were made at the age of 90 d. RESULTS Higher liver glycogen content and changes in systemic glucose handling were found in the RL groups. Hepatocyte glucose metabolism was similar in groups G9 and G3L, but basal glucose production and glycogenolysis were higher, while gluconeogenesis and basal glycolysis were lower in the G3R. Urea production was lower in the RL groups. DISCUSSION The altered glucose handling of the RL adult rats was not reversed by moderate (30%) CR. Hepatocyte glucose and nitrogen metabolism were changed by both early overfeeding and current feeding conditions. CONCLUSIONS RL and CR alter systemic and liver glucose metabolism.
Collapse
Affiliation(s)
- Nayra Thais D Branquinho
- a Program of Graduate Studies in Biological Sciences , State University of Maringá , Maringa, Brazil
| | | | - Cristian L Borrasca
- b Department of Biological Sciences , State University of Maringá , Maringa, Brazil
| | | | | | | | | |
Collapse
|
26
|
Bioactive Nutrients and Nutrigenomics in Age-Related Diseases. Molecules 2017; 22:molecules22010105. [PMID: 28075340 PMCID: PMC6155887 DOI: 10.3390/molecules22010105] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023] Open
Abstract
The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the "omics" technologies (transcriptomics, proteomics and metabolomics) are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.
Collapse
|
27
|
Ma L, Wang R, Dong W, Li Y, Xu B, Zhang J, Zhao Z. Long-term caloric restriction in mice may prevent age-related learning impairment via suppression of apoptosis. Behav Brain Res 2016; 315:45-50. [DOI: 10.1016/j.bbr.2016.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 11/29/2022]
|
28
|
Caloric restriction: beneficial effects on brain aging and Alzheimer’s disease. Mamm Genome 2016; 27:300-19. [DOI: 10.1007/s00335-016-9647-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/16/2016] [Indexed: 01/25/2023]
|
29
|
Van Bussel IPG, Jolink-Stoppelenburg A, De Groot CPGM, Müller MR, Afman LA. Differences in genome-wide gene expression response in peripheral blood mononuclear cells between young and old men upon caloric restriction. GENES AND NUTRITION 2016; 11:13. [PMID: 27551314 PMCID: PMC4968441 DOI: 10.1186/s12263-016-0528-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/19/2016] [Indexed: 12/02/2022]
Abstract
Background Caloric restriction (CR) is considered to increase lifespan and to prevent various age-related diseases in different nonhuman organisms. Only a limited number of CR studies have been performed on humans, and results put CR as a beneficial tool to decrease risk factors in several age-related diseases. The question remains at what age CR should be implemented to be most effective with respect to healthy aging. The aim of our study was to elucidate the role of age in the transcriptional response to a completely controlled 30 % CR diet on immune cells, as immune response is affected during aging. Ten healthy young men, aged 20–28, and nine healthy old men, aged 64–85, were subjected to a 2-week weight maintenance diet, followed by 3 weeks of 30 % CR. Before and after 30 % CR, the whole genome gene expression in peripheral blood mononuclear cells (PBMCs) was assessed. Results Expression of 554 genes showed a different response between young and old men upon CR. Gene set enrichment analysis revealed a downregulation of gene sets involved in the immune response in young but not in old men. At baseline, immune response-related genes were higher expressed in old compared to young men. Upstream regulator analyses revealed that most potential regulators were controlling the immune response. Conclusions Based on the gene expression data, we theorise that a short period of CR is not effective in old men regarding immune-related pathways while it is effective in young men. Trial registration ClinicalTrials.gov, NCT00561145 Electronic supplementary material The online version of this article (doi:10.1186/s12263-016-0528-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- I P G Van Bussel
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - A Jolink-Stoppelenburg
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - C P G M De Groot
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - M R Müller
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands ; Current Address: Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ UK
| | - L A Afman
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands ; Division of Human Nutrition, Wageningen University & Research centre, PO BOX 8129, NL-6700 EV Wageningen, The Netherlands
| |
Collapse
|
30
|
Dietary Restriction Affects Neuronal Response Property and GABA Synthesis in the Primary Visual Cortex. PLoS One 2016; 11:e0149004. [PMID: 26863207 PMCID: PMC4749323 DOI: 10.1371/journal.pone.0149004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/25/2016] [Indexed: 12/02/2022] Open
Abstract
Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability.
Collapse
|
31
|
Abstract
Epigenetic mechanisms play a pivotal role in the expression of genes and can be influenced by both the quality and quantity of diet. Dietary compounds such as sulforaphane (SFN) found in cruciferous vegetables and epigallocatechin-3-gallate (EGCG) in green tea exhibit the ability to affect various epigenetic mechanisms such as DNA methyltransferase (DNMT) inhibition, histone modifications via histone deacetylase (HDAC), histone acetyltransferase (HAT) inhibition, or noncoding RNA expression. Regulation of these epigenetic mechanisms has been shown to have notable influences on the formation and progression of various neoplasms. We have shown that an epigenetic diet can influence both cellular longevity and carcinogenesis through the modulation of certain key genes that encode telomerase and p16. Caloric restriction (CR) can also play a crucial role in aging and cancer. Reductions in caloric intake have been shown to increase both the life- and health-span in a variety of animal models. Moreover, restriction of glucose has been demonstrated to decrease the incidence of age-related diseases such as cancer and diabetes. A diet rich in compounds such as genistein, SFN and EGCG can positively modulate the epigenome and lead to many health benefits. Also, reducing the quantity of calories and glucose in the diet can confer an increased health-span, including reduced cancer incidence.
Collapse
Affiliation(s)
- Michael Daniel
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA Comprehensive Cancer Center, University of Alabama at Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
32
|
Ikuta T, Saito S, Tani H, Tatefuji T, Hashimoto K. Resveratrol derivative-rich melinjo (Gnetum gnemon L.) seed extract improves obesity and survival of C57BL/6 mice fed a high-fat diet. Biosci Biotechnol Biochem 2015; 79:2044-9. [PMID: 26103448 DOI: 10.1080/09168451.2015.1056510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Melinjo (Gnetum gnemon L.) seed extracts (MSEs) are rich in resveratrol dimers (gnemonoside A, C, D, gnetin C), trans-resveratrol, and other resveratrol derivatives. trans-Resveratrol is a widely studied caloric restriction mimetic. In mice fed a high-fat diet (HFD), trans-resveratrol protects against obesity, type 2 diabetes, and premature death. Here, treatment of HFD-fed mice with 2.0% MSE significantly reduced body weight gain (p < 0.001), blood insulin (p < 0.01), and HOMA-IR (p < 0.05) after 8 weeks compared with untreated HFD-fed mice. Additionally, 0.2% MSE treatment of HFD-fed mice significantly improved physiological activity (p < 0.05) at 18 months of age and reduced risk of death due to HFD by 25% (hazard ratio = 0.75, p = 0.036). These data show that MSE can improve several aspects of metabolic syndrome and survival in mice and may have health benefits as a dietary supplement.
Collapse
Affiliation(s)
- Tomoki Ikuta
- a Institute for Bee Products and Health Science , Yamada Bee Company, Inc. , 194 Ichiba, Kagamino-cho, Tomata-gun 708-0393 , Japan
| | - Shinichiro Saito
- a Institute for Bee Products and Health Science , Yamada Bee Company, Inc. , 194 Ichiba, Kagamino-cho, Tomata-gun 708-0393 , Japan
| | - Hiroko Tani
- a Institute for Bee Products and Health Science , Yamada Bee Company, Inc. , 194 Ichiba, Kagamino-cho, Tomata-gun 708-0393 , Japan
| | - Tomoki Tatefuji
- a Institute for Bee Products and Health Science , Yamada Bee Company, Inc. , 194 Ichiba, Kagamino-cho, Tomata-gun 708-0393 , Japan
| | - Ken Hashimoto
- a Institute for Bee Products and Health Science , Yamada Bee Company, Inc. , 194 Ichiba, Kagamino-cho, Tomata-gun 708-0393 , Japan
| |
Collapse
|
33
|
Takahashi R, Odera K. [An overview of current research of the effect of foods on aging and stress]. YAKUGAKU ZASSHI 2015; 135:33-40. [PMID: 25743896 DOI: 10.1248/yakushi.14-00208-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aging process is largely influenced by dietary factors. For example, caloric restriction can slow age-related functional deterioration and the onset or progression of age-related diseases, as well as prolong mean and maximum life span in laboratory animals. However, the dietary factors that affect the aging process comprise not only calories, but also various nutrients, such as proteins, carbohydrates, fats, and vitamins. Phytochemicals, which are found in plants, are non-nutritive, yet many phytochemicals are known to act as antioxidants and prevent diseases associated with free radical production. Furthermore, certain phytochemicals can help prevent or reduce the risk of cancer, inflammation, and cardiovascular disease by alteration of several signal transduction pathways in cells. Therefore, much focus is being placed on the effects of dietary phytochemicals on aging and stress response. This paper reviews recent advances in the study of two major dietary phytochemicals, resveratrol and curcumin, on aging and stress response.
Collapse
Affiliation(s)
- Ryoya Takahashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University
| | | |
Collapse
|
34
|
CTT1 overexpression increases life span of calorie-restricted Saccharomyces cerevisiae deficient in Sod1. Biogerontology 2015; 16:343-51. [DOI: 10.1007/s10522-015-9550-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
|
35
|
Abstract
Obesity in combination with diabetes and hypertension likely is contributing to the increasing incidence of chronic kidney disease (CKD) in the 21st century worldwide and requires novel insights and strategies for treatment. There is an increasing recognition that the kidney has an important role in the complex inter-organ communication that occurs with the development of inflammation and fibrosis with obesity. Inhibition of the adiponectin-AMPK pathway has now become established as a critical pathway regulating both inflammation and pro-fibrotic pathways for both obesity-related kidney disease and diabetic kidney disease. AMPK regulates NFκB activation and is a potent regulator of NADPH oxidases. Nox4 in particular has emerged as a key contribtor to the early inflammation of diabetic kidney disease. AMPK also regulates several transcription factors that contribute to stimulation of the transforming growth factor-beta (TGF-β) system. Another key aspect of AMPK regulation is its control of mammalian target of rapamycin (mTOR) and mitochondrial biogenesis. Inhibition of PGC-1α, the transcriptional co-activator of mitochondrial biogenesis is being recognized as a key pathway that is inhibited in diabetic kidney disease and may be linked to inhibition of mitochondrial function. Translation of this concept is emerging via the field of urine metabolomics, as several metabolites linked to mitochondria are consistently downregulated in human diabetic kidney disease. Further studies to explore the role of AMPK and related energy-sensing pathways will likely lead to a more comprehensive understanding of why the kidney is affected early on and in a progressive manner with obesity and diabetes.
Collapse
|
36
|
Whayne TF. Epigenetics in the development, modification, and prevention of cardiovascular disease. Mol Biol Rep 2014; 42:765-76. [DOI: 10.1007/s11033-014-3727-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 09/03/2014] [Indexed: 02/07/2023]
|
37
|
Kim DH, Park MH, Lee EK, Choi YJ, Chung KW, Moon KM, Kim MJ, An HJ, Park JW, Kim ND, Yu BP, Chung HY. The roles of FoxOs in modulation of aging by calorie restriction. Biogerontology 2014; 16:1-14. [PMID: 25146189 DOI: 10.1007/s10522-014-9519-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/17/2014] [Indexed: 01/29/2023]
Abstract
FoxO activity and modifications, such as its phosphorylation, acetylation, and methylation, may help drive the expression of genes involved in combating oxidative stress by causing the epigenetic modifications, and thus, preserve cellular function during aging and age-related diseases, such as diabetes, cancer, and Alzheimer disease. Insulin signaling has been postulated to influence the aging process by increasing resistance to oxidative stress, and slowing the accumulation of oxidative damage. Some antioxidative effects are mediated by a conserved family of forkhead box transcription factors (FoxOs), which in the absence of insulin signaling freely bind to promoters of antioxidant enzymes, superoxide dismutase, and catalase. On the other hand, calorie restriction (CR) extends the lifespans of several species via the insulin pathway, and extends longevity and healthspan in diverse species via a conserved mechanism. CR enhances adaptive stress responses at the cellular and organism levels and extends lifespan in a FoxO-independent manner. Thus, increased modification of FoxO is modulated via the hyperinsulinemia-induced PI3K/Akt pathway during aging, and CR reverses this process. Accordingly, FoxO plays an important role in maintenance of metabolic homeostasis and removal of oxidative stress in the aging process and in the effect of CR on lifespan.
Collapse
Affiliation(s)
- Dae Hyun Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, San 30, Jangjun-dong, Gumjung-gu, Busan, 609-735, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim DH, Park MH, Chung KW, Kim MJ, Jung YR, Bae HR, Jang EJ, Lee JS, Im DS, Yu BP, Chung HY. The essential role of FoxO6 phosphorylation in aging and calorie restriction. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9679. [PMID: 25007762 PMCID: PMC4150907 DOI: 10.1007/s11357-014-9679-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
Changes in the activities of FoxOs caused by phosphorylation, acetylation, or ubiquitination induce expressional changes in the genes involved in the modulation of oxidative stress by modifying histones and chromatins and can substantially alter cellular functions during aging and age-related diseases. However, the precise role that FoxO6, a novel member of the FoxO class of transcription factors, plays in the aging kidney has not been determined. The purpose of this study was to determine the role played by FoxO6 in the maintenance of redox homeostasis in HEK293T cells and aged kidney tissues isolated from ad libitum (AL)-fed and 40 % calorie restriction (CR) rats. The results obtained from AL-fed rats showed that diminished FoxO6 activity during aging was caused by FoxO6 phosphorylation, which disabled its transcriptional activity. In contrast, CR rats were found to have significantly higher FoxO6 activities and maintained redox balance. To determine the molecular mechanism responsible for FoxO6 modification by age-related oxidative stress, we examined H2O2-treated HEK293T cells in which FoxO6 was inactivated by phosphorylation and found that H2O2-induced oxidative stress promoted FoxO6 phosphorylation via PI3K/Akt signaling. The results of this study show that the protective role of FoxO6 in the aging process may in part be related to its ability to attenuate oxidative stress by upregulating catalase expression, as shown in CR. This delineation of the role of FoxO6 expands understanding of the pathological and physiological mechanisms of aging.
Collapse
Affiliation(s)
- Dae Hyun Kim
- />Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Gumjung-gu, Busan, 609-735 Republic of Korea
| | - Min Hi Park
- />Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Gumjung-gu, Busan, 609-735 Republic of Korea
| | - Ki Wung Chung
- />Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Gumjung-gu, Busan, 609-735 Republic of Korea
| | - Min Jo Kim
- />Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Gumjung-gu, Busan, 609-735 Republic of Korea
| | - Yu Ri Jung
- />Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Gumjung-gu, Busan, 609-735 Republic of Korea
| | - Ha Ram Bae
- />Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Gumjung-gu, Busan, 609-735 Republic of Korea
| | - Eun Ji Jang
- />Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Gumjung-gu, Busan, 609-735 Republic of Korea
| | - Jun Sik Lee
- />Department of Biology, College of Natural Science, Chosun University, Gwangju, 501-759 Republic of Korea
| | - Dong Soon Im
- />Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Gumjung-gu, Busan, 609-735 Republic of Korea
| | - Byung Pal Yu
- />Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Hae Young Chung
- />Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, Gumjung-gu, Busan, 609-735 Republic of Korea
- />Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, San 30, Jangjun-dong, Gumjung-gu, Busan, 609-735 Republic of Korea
| |
Collapse
|
39
|
Murphy T, Dias GP, Thuret S. Effects of diet on brain plasticity in animal and human studies: mind the gap. Neural Plast 2014; 2014:563160. [PMID: 24900924 PMCID: PMC4037119 DOI: 10.1155/2014/563160] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023] Open
Abstract
Dietary interventions have emerged as effective environmental inducers of brain plasticity. Among these dietary interventions, we here highlight the impact of caloric restriction (CR: a consistent reduction of total daily food intake), intermittent fasting (IF, every-other-day feeding), and diet supplementation with polyphenols and polyunsaturated fatty acids (PUFAs) on markers of brain plasticity in animal studies. Moreover, we also discuss epidemiological and intervention studies reporting the effects of CR, IF and dietary polyphenols and PUFAs on learning, memory, and mood. In particular, we evaluate the gap in mechanistic understanding between recent findings from animal studies and those human studies reporting that these dietary factors can benefit cognition, mood, and anxiety, aging, and Alzheimer's disease-with focus on the enhancement of structural and functional plasticity markers in the hippocampus, such as increased expression of neurotrophic factors, synaptic function and adult neurogenesis. Lastly, we discuss some of the obstacles to harnessing the promising effects of diet on brain plasticity in animal studies into effective recommendations and interventions to promote healthy brain function in humans. Together, these data reinforce the important translational concept that diet, a modifiable lifestyle factor, holds the ability to modulate brain health and function.
Collapse
Affiliation(s)
- Tytus Murphy
- Institute of Psychiatry, King's College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Gisele Pereira Dias
- Institute of Psychiatry, King's College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Sandrine Thuret
- Institute of Psychiatry, King's College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
40
|
Bacalini MG, Friso S, Olivieri F, Pirazzini C, Giuliani C, Capri M, Santoro A, Franceschi C, Garagnani P. Present and future of anti-ageing epigenetic diets. Mech Ageing Dev 2014; 136-137:101-15. [DOI: 10.1016/j.mad.2013.12.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 12/13/2022]
|
41
|
Santoro A, Pini E, Scurti M, Palmas G, Berendsen A, Brzozowska A, Pietruszka B, Szczecinska A, Cano N, Meunier N, de Groot CPGM, Feskens E, Fairweather-Tait S, Salvioli S, Capri M, Brigidi P, Franceschi C. Combating inflammaging through a Mediterranean whole diet approach: the NU-AGE project's conceptual framework and design. Mech Ageing Dev 2013; 136-137:3-13. [PMID: 24342354 DOI: 10.1016/j.mad.2013.12.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/25/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023]
Abstract
The development of a chronic, low grade, inflammatory status named "inflammaging" is a major characteristic of ageing, which plays a critical role in the pathogenesis of age-related diseases. Inflammaging is both local and systemic, and a variety of organs and systems contribute inflammatory stimuli that accumulate lifelong. The NU-AGE rationale is that a one year Mediterranean whole diet (considered by UNESCO a heritage of humanity), newly designed to meet the nutritional needs of the elderly, will reduce inflammaging in fully characterized subjects aged 65-79 years of age, and will have systemic beneficial effects on health status (physical and cognitive). Before and after the dietary intervention a comprehensive set of analyses, including omics (transcriptomics, epigenetics, metabolomics and metagenomics) will be performed to identify the underpinning molecular mechanisms. NU-AGE will set up a comprehensive database as a tool for a systems biology approach to inflammaging and nutrition. NU-AGE is highly interdisciplinary, includes leading research centres in Europe on nutrition and ageing, and is complemented by EU multinational food industries and SMEs, interested in the production of functional and enriched/advanced traditional food tailored for the elderly market, and European Federations targeting policy makers and major stakeholders, from consumers to EU Food & Drink Industries.
Collapse
Affiliation(s)
- Aurelia Santoro
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy.
| | - Elisa Pini
- C.I.G. Interdepartmental Centre "L. Galvani", University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Maria Scurti
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy
| | - Giustina Palmas
- C.I.G. Interdepartmental Centre "L. Galvani", University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Agnes Berendsen
- Wageningen University, Department of Human Nutrition, Wageningen, The Netherlands
| | | | | | | | - Noël Cano
- INRA-Clermont Université, Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Nathalie Meunier
- CHU Clermont-Ferrand, Unité d'Exploration en Nutrition, Clermont-Ferrand, France
| | - C P G M de Groot
- Wageningen University, Department of Human Nutrition, Wageningen, The Netherlands
| | - Edith Feskens
- Wageningen University, Department of Human Nutrition, Wageningen, The Netherlands
| | | | - Stefano Salvioli
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy
| | - Miriam Capri
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via San Giacomo 12, 40126 Bologna, Italy; C.I.G. Interdepartmental Centre "L. Galvani", University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | | |
Collapse
|
42
|
Cai H, Daimon CM, Cong WN, Wang R, Chirdon P, de Cabo R, Sévigny J, Maudsley S, Martin B. Longitudinal analysis of calorie restriction on rat taste bud morphology and expression of sweet taste modulators. J Gerontol A Biol Sci Med Sci 2013; 69:532-44. [PMID: 24077597 DOI: 10.1093/gerona/glt129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Calorie restriction (CR) is a lifestyle intervention employed to reduce body weight and improve metabolic functions primarily via reduction of ingested carbohydrates and fats. Taste perception is highly related to functional metabolic status and body adiposity. We have previously shown that sweet taste perception diminishes with age; however, relatively little is known about the effects of various lengths of CR upon taste cell morphology and function. We investigated the effects of CR on taste bud morphology and expression of sweet taste-related modulators in 5-, 17-, and 30-month-old rats. In ad libitum (AL) and CR rats, we consistently found the following parameters altered significantly with advancing age: reduction of taste bud size and taste cell numbers per taste bud and reduced expression of sonic hedgehog, type 1 taste receptor 3 (T1r3), α-gustducin, and glucagon-like peptide-1 (GLP-1). In the oldest rats, CR affected a significant reduction of tongue T1r3, GLP-1, and α-gustducin expression compared with age-matched AL rats. Leptin receptor immunopositive cells were elevated in 17- and 30-month-old CR rats compared with age-matched AL rats. These alterations of sweet taste-related modulators, specifically during advanced aging, suggest that sweet taste perception may be altered in response to different lengths of CR.
Collapse
Affiliation(s)
- Huan Cai
- *These authors contributed equally to this work
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pezzuto JM, Kondratyuk TP, Ogas T. Resveratrol derivatives: a patent review (2009 - 2012). Expert Opin Ther Pat 2013; 23:1529-46. [PMID: 24032623 DOI: 10.1517/13543776.2013.834888] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION There is currently a wealth of information on the effects of resveratrol and its derivatives in therapeutic, cosmetic and nutraceutical patent applications. Structure-activity studies of the resveratrol scaffold provide a foundation for the development of new analogs with potent activity or other beneficial properties. Ongoing research has yielded promising results and potential use in the treatment of various diseases. AREAS COVERED This review provides analysis of patents published from January 2009 to April 2013. There is a focus on different approaches for the production of resveratrol derivatives, combinations of new derivatives with old drugs, and applications in therapeutic areas, nutraceutical compositions and cosmetics. EXPERT OPINION The ability of resveratrol to interact with a disparate array of subcellular targets is uncanny. Nonetheless, even though limited or no toxicity is apparent, the molecule is not a panacea due to lack of potency and issues with bioavailability. Thus, as witnessed by a number of patents, a large assortment of derivatives have been synthesized under the guise of having superior characteristics for treating or preventing various diseases or for use as neutraceutics and cosmetics. Some of these suppositions are probably correct, but evidence-based applications are essentially nil due to a lack of commitment in terms of investing the resources necessary for the conduct of obligatory clinical trials. Current usage is largely based on anecdotes and publicity. Hopefully, at some point in time, it will be possible to follow a standard protocol with a predicable outcome.
Collapse
Affiliation(s)
- John M Pezzuto
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy , Hilo, HI 96720 , USA
| | | | | |
Collapse
|
44
|
Pallauf K, Giller K, Huebbe P, Rimbach G. Nutrition and healthy ageing: calorie restriction or polyphenol-rich "MediterrAsian" diet? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:707421. [PMID: 24069505 PMCID: PMC3771427 DOI: 10.1155/2013/707421] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/26/2013] [Indexed: 12/17/2022]
Abstract
Diet plays an important role in mammalian health and the prevention of chronic diseases such as cardiovascular disease (CVD). Incidence of CVD is low in many parts of Asia (e.g., Japan) and the Mediterranean area (e.g., Italy, Spain, Greece, and Turkey). The Asian and the Mediterranean diets are rich in fruit and vegetables, thereby providing high amounts of plant bioactives including polyphenols, glucosinolates, and antioxidant vitamins. Furthermore, oily fish which is rich in omega-3 fatty acids is an important part of the Asian (e.g., Japanese) and also of the Mediterranean diets. There are specific plant bioactives which predominantly occur in the Mediterranean (e.g., resveratrol from red wine, hydroxytyrosol, and oleuropein from olive oil) and in the Asian diets (e.g., isoflavones from soybean and epigallocatechin gallate from green tea). Interestingly, when compared to calorie restriction which has been repeatedly shown to increase healthspan, these polyphenols activate similar molecular targets such as Sirt1. We suggest that a so-called "MediterrAsian" diet combining sirtuin-activating foods (= sirtfoods) of the Asian as well as Mediterranean diet may be a promising dietary strategy in preventing chronic diseases, thereby ensuring health and healthy ageing. Future (human) studies are needed which take the concept suggested here of the MediterrAsian diet into account.
Collapse
Affiliation(s)
- Kathrin Pallauf
- Institute of Human Nutrition and Food Science, Christian-Albrechts University of Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany
| | - Katrin Giller
- Institute of Human Nutrition and Food Science, Christian-Albrechts University of Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, Christian-Albrechts University of Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Christian-Albrechts University of Kiel, Hermann-Rodewald-Straße 6, 24118 Kiel, Germany
| |
Collapse
|
45
|
Sanchis-Gomar F. Sestrins: novel antioxidant and AMPK-modulating functions regulated by exercise? J Cell Physiol 2013; 228:1647-50. [PMID: 23359071 DOI: 10.1002/jcp.24338] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/18/2013] [Indexed: 12/18/2022]
Abstract
Oxidative stress results from damage to tissues caused by free radicals and is increased by exercise. Peroxiredoxins (PRXs) maintain the cellular reducing environment by scavenging intracellular hydrogen peroxide. It has been recently noted that physical exercise has a positive effect on the PRX system, exerting a protective effect against oxidative stress-induced damage. However, other compounds, such as sestrins (SESNs), a stress-inducible protein family with antioxidant properties, should also be considered in the function of PRXs. SESNs are clearly involved in the regeneration process of PRXs and therefore may also be modulated by physical exercise. In addition, SESNs are clearly involved in TOR, AMPK, p53, FoxO, and PRXs signaling pathways. The aforementioned pathways are implicated in aging processes by inducing an increased resistance to subsequent stress, thus delaying age-related changes, such as sarcopenia and frailty, and consequently promoting longevity. Likewise, exercise also modulates these pathways. In fact, exercise is one of the most important recommended strategies to prevent sarcopenia and frailty, increase longevity, and improve health in the elderly. Loss of SESNs can cause several chronic pathologies, such as fat accumulation, mitochondrial dysfunction, cardiac arrhythmia, and/or muscle degeneration. Accordingly, physical inactivity leads to accumulation of visceral fat and consequently the activation of a network of inflammatory pathways, which promote development of insulin resistance, atherosclerosis, neurodegeneration, and tumor growth. To date, the SESNs-exercise relationship has not been explored. However, this emerging family of stress proteins may be part of the redox-based adaptive response to exercise.
Collapse
Affiliation(s)
- Fabian Sanchis-Gomar
- Department of Physiology, University of Valencia, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
| |
Collapse
|
46
|
Balistreri CR, Candore G, Accardi G, Colonna-Romano G, Lio D. NF-κB pathway activators as potential ageing biomarkers: targets for new therapeutic strategies. Immun Ageing 2013; 10:24. [PMID: 23786653 PMCID: PMC3695812 DOI: 10.1186/1742-4933-10-24] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 06/02/2013] [Indexed: 12/17/2022]
Abstract
Chronic inflammation is a major biological mechanism underpinning biological ageing process and age-related diseases. Inflammation is also the key response of host defense against pathogens and tissue injury. Current opinion sustains that during evolution the host defense and ageing process have become linked together. Thus, the large array of defense factors and mechanisms linked to the NF-κB system seem to be involved in ageing process. This concept leads us in proposing inductors of NF-κB signaling pathway as potential ageing biomarkers. On the other hand, ageing biomarkers, represented by biological indicators and selected through apposite criteria, should help to characterize biological age and, since age is a major risk factor in many degenerative diseases, could be subsequently used to identify individuals at high risk of developing age-associated diseases or disabilities. In this report, some inflammatory biomarkers will be discussed for a better understanding of the concept of biological ageing, providing ideas on eventual working hypothesis about potential targets for the development of new therapeutic strategies and improving, as consequence, the quality of life of elderly population.
Collapse
Affiliation(s)
- Carmela R Balistreri
- Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Corso Tukory 211, Palermo 90134, Italy
| | - Giuseppina Candore
- Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Corso Tukory 211, Palermo 90134, Italy
| | - Giulia Accardi
- Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Corso Tukory 211, Palermo 90134, Italy
| | - Giuseppina Colonna-Romano
- Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Corso Tukory 211, Palermo 90134, Italy
| | - Domenico Lio
- Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Corso Tukory 211, Palermo 90134, Italy
| |
Collapse
|
47
|
Abstract
Perturbations in early life environments, including intrauterine exposure to maternal gestational diabetes (GDM), are hypothesized to lead to metabolic imprinting resulting in increased risk of cardiometabolic outcomes later in life. We aimed to 1) identify candidate genes and biological pathways associated with differentially methylated regions (DMRs) in relation to exposure to GDM in utero and, 2) using mediation analysis, more definitively investigate the potential for mediation of the effect of exposure to maternal diabetes in utero on cardiometabolic traits in childhood risk through our identified DMRs. Genome-wide methylation analysis of peripheral blood mononuclear cell's DNA was conducted in 21 healthy children, ages 8-12 years. P-values from multiple linear regression analyses for >27,000 CpG sites were ranked to identify DMRs between the exposure groups. Among the top 10 ranked DMRs, we identified several genes, including NPR1, PANK1, SCAND1, and GJA4, which are known to be associated with cardiometabolic traits. Gene enrichment analysis of the top 84 genes, each with p<=0.005, identified the ubiquitin proteasome system (UPS) as the most enriched biological pathway (p = 0.07). The UPS pathway reflects biological processes known to be associated with endothelial function, inflammation, lipid metabolism, insulin resistance and β-cell apoptosis, whose derangements are central to the pathogenesis of cardiometabolic diseases. Increased methylation of PYGO1 and CLN8 had the greatest relative mediation effect (RME = 87%, p=0.005 and RME=50%, p=0.01) on the impact of exposure to maternal diabetes in utero on VCAM-1 levels in the offspring. Multiple candidate genes and the UPS were identified for future study as possible links between exposure to maternal gestational diabetes in utero and adverse cardiometabolic traits in the offspring. In particular, increased methylation of PYGO1 and CLN8 may be biological links between intrauterine exposure to maternal diabetes and significantly increased VCAM-1 levels in the offspring.
Collapse
|