1
|
Bajorat R, Grest SL, Bergt S, Klawitter F, Vollmar B, Reuter DA, Bajorat J. Administration of Delphinidin to Improve Survival and Neurological Outcome in Mice After Cardiac Arrest and Resuscitation. Antioxidants (Basel) 2024; 13:1469. [PMID: 39765798 PMCID: PMC11672804 DOI: 10.3390/antiox13121469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Reactive oxygen species (ROS) play an important role in ischemia-reperfusion (I/R) after cardiac arrest and cardiopulmonary resuscitation (CA-CPR). Early administration of vitamin C at a high dose in experimental models resulted in less myocardial damage and had a positive effect on survival after resuscitation. Here, we postulated that the ROS scavenging activity of an anthocyanin (i.e., delphinidin) would positively influence resuscitation outcomes. We hypothesized that administration of delphinidin immediately after CA-CPR could attenuate systemic inflammation in a standardized mouse model and thereby improve survival and long-term outcomes. Outcomes up to 28 days were evaluated in a control group (saline-treated) and a delphinidin-treated cohort. Survival, neurological and cognitive parameters were assessed. Post-CPR infusion of delphinidin deteriorated survival time after a 10 min CA. Survivors amongst the controls showed significantly more anxious behavior than in the pre-CPR phases. This tendency was also observed in the animals treated with delphinidin. In our study, we did not find an improvement in survival with delphinidin after CA-CPR and observed no effect on learning behavior. Our long-term behavioral tests clearly show that CA-CPR is associated with the development of post-interventional anxiety-like symptoms. Our findings open up scopes to investigate the intrinsic factors (e.g., oxidative stress, inflammatory and systemic-microbial response, etc.) influencing the therapeutic efficacy of anthocyanins in vivo.
Collapse
Affiliation(s)
- Rika Bajorat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Stella Line Grest
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Rostock University Medical Center, Goethestraße 18, 18055 Rostock, Germany
| | - Stefan Bergt
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
- Department of Anesthesiology and Intensive Care Medicine, Mediclin, 17192 Waren, Germany
| | - Felix Klawitter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Brigitte Vollmar
- Institute of Experimental Surgery, Rostock University Medical Center, Schillingallee 69a, 18057 Rostock, Germany
| | - Daniel A. Reuter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Jörn Bajorat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|
2
|
Sharma H, Anand A, Halagali P, Inamdar A, Pathak R, Taghizadeh‐Hesary F, Ashique S. Advancement of Nanoengineered Flavonoids for Chronic Metabolic Diseases. ROLE OF FLAVONOIDS IN CHRONIC METABOLIC DISEASES 2024:459-510. [DOI: 10.1002/9781394238071.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Grujić-Milanović J, Rajković J, Milanović S, Jaćević V, Miloradović Z, Nežić L, Novaković R. Natural Substances vs. Approved Drugs in the Treatment of Main Cardiovascular Disorders-Is There a Breakthrough? Antioxidants (Basel) 2023; 12:2088. [PMID: 38136208 PMCID: PMC10740850 DOI: 10.3390/antiox12122088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases with a very high rate of morbidity and mortality. The clinical presentation of CVDs can vary from asymptomatic to classic symptoms such as chest pain in patients with myocardial infarction. Current therapeutics for CVDs mainly target disease symptoms. The most common CVDs are coronary artery disease, acute myocardial infarction, atrial fibrillation, chronic heart failure, arterial hypertension, and valvular heart disease. In their treatment, conventional therapies and pharmacological therapies are used. However, the use of herbal medicines in the therapy of these diseases has also been reported in the literature, resulting in a need for critical evaluation of advances related to their use. Therefore, we carried out a narrative review of pharmacological and herbal therapeutic effects reported for these diseases. Data for this comprehensive review were obtained from electronic databases such as MedLine, PubMed, Web of Science, Scopus, and Google Scholar. Conventional therapy requires an individual approach to the patients, as when patients do not respond well, this often causes allergic effects or various other unwanted effects. Nowadays, medicinal plants as therapeutics are frequently used in different parts of the world. Preclinical/clinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common CVDs. The natural products analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in CVDs pharmacotherapy, and some of them have already been approved by the FDA. There are insufficient clinical studies to compare the effectiveness of natural products compared to approved therapeutics for the treatment of CVDs. Further long-term studies are needed to accelerate the potential of using natural products for these diseases. Despite this undoubted beneficence on CVDs, there are no strong breakthroughs supporting the implementation of natural products in clinical practice. Nevertheless, they are promising agents in the supplementation and co-therapy of CVDs.
Collapse
Affiliation(s)
- Jelica Grujić-Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Jovana Rajković
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia
| | - Sladjan Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department for Biomechanics, Biomedical Engineering and Physics of Complex Systems, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, 11 000 Belgrade, Serbia;
- Medical Faculty of the Military Medical Academy, University of Defense, 11 000 Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 002 Hradec Kralove, Czech Republic
| | - Zoran Miloradović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Radmila Novaković
- Institute of Molecular Genetics and Genetic Engineering, Center for Genome Sequencing and Bioinformatics, University of Belgrade, 11 000 Belgrade, Serbia;
| |
Collapse
|
4
|
Wu T, Zhu W, Chen L, Jiang T, Dong Y, Wang L, Tong X, Zhou H, Yu X, Peng Y, Wang L, Xiao Y, Zhong T. A review of natural plant extracts in beverages: Extraction process, nutritional function, and safety evaluation. Food Res Int 2023; 172:113185. [PMID: 37689936 DOI: 10.1016/j.foodres.2023.113185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
The demand for foods and beverages with therapeutic and functional features has increased as a result of rising consumer awareness of health and wellness. In natural, plants are abundant, widespread, and inexpensive, in addition to being rich in bioactive components that are beneficial to health. The bioactive substances contained in plants include polyphenols, polysaccharides, flavonoids, aromatics, aliphatics, terpenoids, etc., which have rich active functions and application potential for plant-based beverages. In this review, various existing extraction processes and their advantages and disadvantages are introduced. The antioxidant, anti-inflammatory, intestinal flora regulation, metabolism regulation, and nerve protection effects of plant beverages are described. The biotoxicity and sensory properties of plant-based beverages are also summarized. With the diversification of the food industry and commerce, plant-based beverages may become a promising new category of health functional foods in our daily lives.
Collapse
Affiliation(s)
- Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Wanying Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Linyan Chen
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Tao Jiang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Yuhe Dong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Letao Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Xinyang Tong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Hui Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao.
| |
Collapse
|
5
|
Mahnashi MH, Ashraf M, Alhasaniah AH, Ullah H, Zeb A, Ghufran M, Fahad S, Ayaz M, Daglia M. Polyphenol-enriched Desmodium elegans DC. ameliorate scopolamine-induced amnesia in animal model of Alzheimer's disease: In Vitro, In Vivo and In Silico approaches. Biomed Pharmacother 2023; 165:115144. [PMID: 37437376 DOI: 10.1016/j.biopha.2023.115144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
The current study aims to quantify HPLC-DAD polyphenolics in the crude extracts of Desmodium elegans, evaluating its cholinesterase inhibitory, antioxidant, molecular docking and protective effects against scopolamine-induced amnesia in mice. A total of 16 compounds were identified which include gallic acid (239 mg g-1), p-hydroxybenzoic acid (11.2 mg g-1), coumaric acid (10.0 mg g-1), chlorogenic acid (10.88 mg g-1), caffeic acid (13.9 mg g-1), p-coumaroylhexose (41.2 mg g-1), 3-O-caffeoylquinic acid (22.4 mg g-1), 4-O-caffeoylquinic acid (6.16 mg g-1), (+)-catechin (71.34 mg g-1), (-)-catechin (211.79 mg g-1), quercetin-3-O-glucuronide (17.9 mg g-1), kaempferol-7-O-glucuronide (13.2 mg g-1), kaempferol-7-O-rutinoside (53.67 mg g-1), quercetin-3-rutinoside (12.4 mg g-1), isorhamnetin-7-O-glucuronide (17.6 mg g-1) and isorhamnetin-3-O-rutinoside (15.0 mg g-1). In a DPPH free radical scavenging assay, the chloroform fraction showed the highest antioxidant activity, with an IC50 value of 31.43 µg mL-1. In an AChE inhibitory assay, the methanolic and chloroform fractions showed high inhibitory activities causing 89% and 86.5% inhibitions with IC50 values of 62.34 and 47.32 µg mL-1 respectively. In a BChE inhibition assay, the chloroform fraction exhibited 84.36% inhibition with IC50 values of 45.98 µg mL-1. Furthermore, molecular docking studies revealed that quercetin-3-rutinoside and quercetin-3-O-glucuronide fit perfectly in the active sites of AChE and BChE respectively. Overall, the polyphenols identified exhibited good efficacy, which is likely as a result of the compounds' electron-donating hydroxyl groups (-OH) and electron cloud density. The administration of methanolic extract improved cognitive performance and demonstrated anxiolytic behavior among tested animals.
Collapse
Affiliation(s)
- Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Muhammad Ashraf
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran, Saudi Arabia.
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan
| | - Mehreen Ghufran
- Department of Pathology, Medical Teaching Institution Bacha Khan Medical College (BKMC) Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Dir (L), Chakdara 18000, KP, Pakistan.
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Garutti M, Nevola G, Mazzeo R, Cucciniello L, Totaro F, Bertuzzi CA, Caccialanza R, Pedrazzoli P, Puglisi F. The Impact of Cereal Grain Composition on the Health and Disease Outcomes. Front Nutr 2022; 9:888974. [PMID: 35711559 PMCID: PMC9196906 DOI: 10.3389/fnut.2022.888974] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole grains are a pivotal food category for the human diet and represent an invaluable source of carbohydrates, proteins, fibers, phytocompunds, minerals, and vitamins. Many studies have shown that the consumption of whole grains is linked to a reduced risk of cancer, cardiovascular diseases, and type 2 diabetes and other chronic diseases. However, several of their positive health effects seem to disappear when grains are consumed in the refined form. Herein we review the available literature on whole grains with a focus on molecular composition and health benefits on many chronic diseases with the aim to offer an updated and pragmatic reference for physicians and nutrition professionals.
Collapse
Affiliation(s)
- Mattia Garutti
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Gerardo Nevola
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Roberta Mazzeo
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Linda Cucciniello
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Fabiana Totaro
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Carlos Alejandro Bertuzzi
- Department of Anaesthesia and Intensive Care - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Puglisi
- Department of Medical Oncology - CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
7
|
Trinei M, Carpi A, Menabo' R, Storto M, Fornari M, Marinelli A, Minardi S, Riboni M, Casciaro F, DiLisa F, Petroni K, Tonelli C, Giorgio M. Dietary intake of cyanidin-3-glucoside induces a long-lasting cardioprotection from ischemia/reperfusion injury by altering the microbiota. J Nutr Biochem 2021; 101:108921. [PMID: 34864150 DOI: 10.1016/j.jnutbio.2021.108921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
The anthocyanin class of flavonoids, including cyanidin-3-glucoside (C3G) present in berries, blood oranges and pigmented cereal crops, are food bioactives with antioxidant and anti-inflammatory action, capable to reduce myocardial ischemia/reperfusion (I/R) injury by unclear mechanism. Assessing the value of sporadic beneficial diet is critical for practical application. We aimed to determine whether and how the cardioptotective effect of dietary intake of anthocyanins persists. Gene expression, histology and resistance to I/R were investigated ex vivo in hearts from mice after a month beyond the cease of the C3G-enriched diet. Cardiac injury, oxidative stress and mitochondrial damage following I/R was effectively reduced in mice fed C3G-enriched diet, even after a month of wash out with standard diet. Cardioprotection was observed also in immune-deficient mice lacking mature B and T cells indicating the anti-inflammatory activity of C3G was not involved. Moreover, the transcription reprogramming induced by the C3G-enriched diets was rescued by the wash out treatment. Instead, we found C3G-enriched diet changed the microbiome and the transplantation of the fecal microbiota transferred the cardioprotection from mice fed C3G-enriched diet to mice fed standard diet. These findings established the effect of C3G dietary intake on gut microbiota determines long lasting cardioprotection.
Collapse
Affiliation(s)
- Mirella Trinei
- Department of Experimental Oncology, European Institute of Oncology - IEO IRCCS, Milan, Italy
| | - Andrea Carpi
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Roberta Menabo'
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Mariangela Storto
- Department of Experimental Oncology, European Institute of Oncology - IEO IRCCS, Milan, Italy
| | - Monica Fornari
- Department of BioSciences, University of Milano, Milan, Italy
| | | | - Simone Minardi
- Genomics Unit, Firc Institute for Molecular Oncology, Milan, Italy
| | - Mirko Riboni
- Genomics Unit, Firc Institute for Molecular Oncology, Milan, Italy
| | | | - Fabio DiLisa
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Katia Petroni
- Department of BioSciences, University of Milano, Milan, Italy
| | - Chiara Tonelli
- Department of BioSciences, University of Milano, Milan, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology - IEO IRCCS, Milan, Italy; Department of Biomedical Sciences, University of Padova, Padua, Italy.
| |
Collapse
|
8
|
Pharmacology of Catechins in Ischemia-Reperfusion Injury of the Heart. Antioxidants (Basel) 2021; 10:antiox10091390. [PMID: 34573022 PMCID: PMC8465198 DOI: 10.3390/antiox10091390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Catechins represent a group of polyphenols that possesses various beneficial effects in the cardiovascular system, including protective effects in cardiac ischemia-reperfusion (I/R) injury, a major pathophysiology associated with ischemic heart disease, myocardial infarction, as well as with cardioplegic arrest during heart surgery. In particular, catechin, (−)-epicatechin, and epigallocatechin gallate (EGCG) have been reported to prevent cardiac myocytes from I/R-induced cell damage and I/R-associated molecular changes, finally, resulting in improved cell viability, reduced infarct size, and improved recovery of cardiac function after ischemic insult, which has been widely documented in experimental animal studies and cardiac-derived cell lines. Cardioprotective effects of catechins in I/R injury were mediated via multiple molecular mechanisms, including inhibition of apoptosis; activation of cardioprotective pathways, such as PI3K/Akt (RISK) pathway; and inhibition of stress-associated pathways, including JNK/p38-MAPK; preserving mitochondrial function; and/or modulating autophagy. Moreover, regulatory roles of several microRNAs, including miR-145, miR-384-5p, miR-30a, miR-92a, as well as lncRNA MIAT, were documented in effects of catechins in cardiac I/R. On the other hand, the majority of results come from cell-based experiments and healthy small animals, while studies in large animals and studies including comorbidities or co-medications are rare. Human studies are lacking completely. The dosages of compounds also vary in a broad scale, thus, pharmacological aspects of catechins usage in cardiac I/R are inconclusive so far. Therefore, the aim of this focused review is to summarize the most recent knowledge on the effects of catechins in cardiac I/R injury and bring deep insight into the molecular mechanisms involved and dosage-dependency of these effects, as well as to outline potential gaps for translation of catechin-based treatments into clinical practice.
Collapse
|
9
|
Protective Role of Polyphenols in Heart Failure: Molecular Targets and Cellular Mechanisms Underlying Their Therapeutic Potential. Int J Mol Sci 2021; 22:ijms22041668. [PMID: 33562294 PMCID: PMC7914665 DOI: 10.3390/ijms22041668] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is a leading cause of death in the United States, with a 5-year mortality rate of 50% despite modern pharmacological therapies. Plant-based diets are comprised of a diverse polyphenol profile, which lends to their association with reduced cardiovascular disease risk. Whether a polyphenol-rich diet can slow the progression of or reverse HF in humans is not known. To date, in vitro and in vivo studies have reported on the protective role of polyphenols in HF. In this review, we will discuss the major mechanisms by which polyphenols mitigate HF in vitro and in vivo, including (1) reduced cardiac inflammation and oxidative stress, (2) reduced mitochondrial dysfunction, (3) improved Ca2+ homeostasis, (4) increased survival signaling, and (5) increased sirtuin 1 activity.
Collapse
|
10
|
Barrios M, Orozco LC, Stashenko EE. Cocoa ingestion protects plasma lipids in healthy males against ex vivo oxidative conditions: A randomized clinical trial. Clin Nutr ESPEN 2018; 26:1-7. [DOI: 10.1016/j.clnesp.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
|
11
|
Li F, Lang F, Wang Y, Zhai C, Zhang C, Zhang L, Hao E. Cyanidin ameliorates endotoxin-induced myocardial toxicity by modulating inflammation and oxidative stress through mitochondria and other factors. Food Chem Toxicol 2018; 120:104-111. [PMID: 29803697 DOI: 10.1016/j.fct.2018.05.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
Abstract
Cyanidin, an anthocyanin pigment, demonstrates anti-oxidant and anti-inflammatory properties. Here, we examined the mechanistic role of cyanidin in endotoxin induced myocardial injury in inflammation and oxidative stress. In lipopolysaccharide (LPS) induced myocardial injury model, cyanidin ameliorated cardiac injury (Lactate dehydrogenase or LDH, Creatine Kinase or CK, cardiac troponin I or cTnI and cardiac myosin light chains 1 or cMLC1), cell death (caspase 3 activity and PARP activity), and improved cardiac function (ejection fraction or EF and end diastolic left ventricular inner dimension or LVID). Cyanidin also attenuated endotoxin induced myocardial injury by modulating inflammatory cytokines (Tumor necrosis factor alpha or TNFα, Interleukin-1 beta or IL-1β, macrophage inflammatory protein 2 or MIP-2 and chemokine (C-C motif) ligand 2 also known as monocyte chemoattractant protein 1 or MCP1) and oxidative stress (protein nitration). Cyanidin modulated redox homeostasis through intracellular oxidized/reduced glutathione. The most striking properties of cyanidin in endotoxin induced mediated myocardial injury was the modulation of mitochondria, its oxidative damage and associated factor Opa1 and Trx1. Thus, our study demonstrated that cyanidin as a constituent of our food chain may be beneficial and has therapeutic potential in sepsis treatment or other myocardial oxidative and/or inflammation induced injuries.
Collapse
Affiliation(s)
- Fang Li
- Department of Health, Jinan Central Hospital, Affiliated with Shandong University, Jinan, China
| | - Fangfang Lang
- Department of Obstetrics and Gynecology, Jinan Central Hospital, Affiliated with Shandong University, China
| | - Yidan Wang
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China
| | - Chunxiao Zhai
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China
| | - Chuanbei Zhang
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China
| | - Liping Zhang
- Intensive Care Unit of Neurosurgery Linyi People's Hospital, China
| | - Enkui Hao
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China.
| |
Collapse
|
12
|
Loullis A, Pinakoulaki E. Carob as cocoa substitute: a review on composition, health benefits and food applications. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-3018-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Zholobenko AV, Mouithys-Mickalad A, Dostal Z, Serteyn D, Modriansky M. On the causes and consequences of the uncoupler-like effects of quercetin and dehydrosilybin in H9c2 cells. PLoS One 2017; 12:e0185691. [PMID: 28977033 PMCID: PMC5627936 DOI: 10.1371/journal.pone.0185691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/18/2017] [Indexed: 11/18/2022] Open
Abstract
Quercetin and dehydrosilybin are polyphenols which are known to behave like uncouplers of respiration in isolated mitochondria. Here we investigated whether the effect is conserved in whole cells. Following short term incubation, neither compound uncouples mitochondrial respiration in whole H9c2 cells below 50μM. However, following hypoxia, or long term incubation, leak (state IV with oligomycin) oxygen consumption is increased by quercetin. Both compounds partially protected complex I respiration, but not complex II in H9c2 cells following hypoxia. In a permeabilised H9c2 cell model, the increase in leak respiration caused by quercetin is lowered by increased [ADP] and is increased by adenine nucleotide transporter inhibitor, atractyloside, but not bongkrekic acid. Both quercetin and dehydrosilybin dissipate mitochondrial membrane potential in whole cells. In the case of quercetin, the effect is potentiated post hypoxia. Genetically encoded Ca++ sensors, targeted to the mitochondria, enabled the use of fluorescence microscopy to show that quercetin decreased mitochondrial [Ca++] while dehydrosilybin did not. Likewise, quercetin decreases accumulation of [Ca++] in mitochondria following hypoxia. Fluorescent probes were used to show that both compounds decrease plasma membrane potential and increase cytosolic [Ca++]. We conclude that the uncoupler-like effects of these polyphenols are attenuated in whole cells compared to isolated mitochondria, but downstream effects are nevertheless apparent. Results suggest that the effect of quercetin observed in whole and permeabilised cells may originate in the mitochondria, while the mechanism of action of cardioprotection by dehydrosilybin may be less dependent on mitochondrial uncoupling than originally thought. Rather, protective effects may originate due to interactions at the plasma membrane.
Collapse
Affiliation(s)
- Aleksey V. Zholobenko
- Department of Medical Chemistry & Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Ange Mouithys-Mickalad
- Centre for Oxygen, R&D (CORD), Institut de Chimie, Sart-Tilman, Université de Liège, Liège, Belgium
| | - Zdenek Dostal
- Department of Medical Chemistry & Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Didier Serteyn
- Centre for Oxygen, R&D (CORD), Institut de Chimie, Sart-Tilman, Université de Liège, Liège, Belgium
- Faculté de Médecine Vétérinaire, Sart Tilman, Liège, Belgium
| | - Martin Modriansky
- Department of Medical Chemistry & Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- * E-mail:
| |
Collapse
|
14
|
CREG protects from myocardial ischemia/reperfusion injury by regulating myocardial autophagy and apoptosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1893-1903. [DOI: 10.1016/j.bbadis.2016.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/30/2016] [Accepted: 11/08/2016] [Indexed: 12/21/2022]
|
15
|
Mattera R, Benvenuto M, Giganti MG, Tresoldi I, Pluchinotta FR, Bergante S, Tettamanti G, Masuelli L, Manzari V, Modesti A, Bei R. Effects of Polyphenols on Oxidative Stress-Mediated Injury in Cardiomyocytes. Nutrients 2017; 9:nu9050523. [PMID: 28531112 PMCID: PMC5452253 DOI: 10.3390/nu9050523] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases are the main cause of mortality and morbidity in the world. Hypertension, ischemia/reperfusion, diabetes and anti-cancer drugs contribute to heart failure through oxidative and nitrosative stresses which cause cardiomyocytes nuclear and mitochondrial DNA damage, denaturation of intracellular proteins, lipid peroxidation and inflammation. Oxidative or nitrosative stress-mediated injury lead to cardiomyocytes apoptosis or necrosis. The reactive oxygen (ROS) and nitrogen species (RNS) concentration is dependent on their production and on the expression and activity of anti-oxidant enzymes. Polyphenols are a large group of natural compounds ubiquitously expressed in plants, and epidemiological studies have shown associations between a diet rich in polyphenols and the prevention of various ROS-mediated human diseases. Polyphenols reduce cardiomyocytes damage, necrosis, apoptosis, infarct size and improve cardiac function by decreasing oxidative stress-induced production of ROS or RNS. These effects are achieved by the ability of polyphenols to modulate the expression and activity of anti-oxidant enzymes and several signaling pathways involved in cells survival. This report reviews current knowledge on the potential anti-oxidative effects of polyphenols to control the cardiotoxicity induced by ROS and RNS stress.
Collapse
Affiliation(s)
- Rosanna Mattera
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Maria Gabriella Giganti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | | | - Sonia Bergante
- IRCCS "S. Donato" Hospital, San Donato Milanese, Piazza Edmondo Malan, 20097 Milan, Italy.
| | - Guido Tettamanti
- IRCCS "S. Donato" Hospital, San Donato Milanese, Piazza Edmondo Malan, 20097 Milan, Italy.
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", 00164 Rome, Italy.
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Center for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Center for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", 00133 Rome, Italy.
| |
Collapse
|
16
|
In vitro toxicity of epigallocatechin gallate in rat liver mitochondria and hepatocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:476180. [PMID: 25918582 PMCID: PMC4397056 DOI: 10.1155/2015/476180] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/15/2015] [Accepted: 03/03/2015] [Indexed: 12/20/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) is the main compound of green tea with well-described antioxidant, anti-inflammatory, and tumor-suppressing properties. However, EGCG at high doses was reported to cause liver injury. In this study, we evaluated the effect of EGCG on primary culture of rat hepatocytes and on rat liver mitochondria in permeabilized hepatocytes. The 24-hour incubation with EGCG in concentrations of 10 μmol/L and higher led to signs of cellular injury and to a decrease in hepatocyte functions. The effect of EGCG on the formation of reactive oxygen species (ROS) was biphasic. While low doses of EGCG decreased ROS production, the highest tested dose induced a significant increase in ROS formation. Furthermore, we observed a decline in mitochondrial membrane potential in cells exposed to EGCG when compared to control cells. In permeabilized hepatocytes, EGCG caused damage of the outer mitochondrial membrane and an uncoupling of oxidative phosphorylation. EGCG in concentrations lower than 10 μmol/L was recognized as safe for hepatocytes in vitro.
Collapse
|
17
|
Tabaczar S, Domeradzka K, Czepas J, Piasecka-Zelga J, Stetkiewicz J, Gwoździński K, Koceva-Chyła A. Anti-tumor potential of nitroxyl derivative Pirolin in the DMBA-induced rat mammary carcinoma model: A comparison with quercetin. Pharmacol Rep 2015; 67:527-34. [PMID: 25933965 DOI: 10.1016/j.pharep.2014.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/21/2014] [Accepted: 12/18/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND Considering the role of oxidative stress in carcinogenesis, we investigated the effect of synthetic antioxidant Pirolin (3-carbamoyl-2,2,5,5-tetramethylpyrroline-1-oxyl) on breast cancer progression. Since the anticancer drugs may cause cardiotoxicity due to oxidative stress in the heart muscle, we also evaluated Pirolin performance in heart tissue and compared its effect with that of the natural dietary flavonoid quercetin. METHODS Sprague-Dawley rats were administered with 7,12-dimethylbenz(a)anthracene (DMBA) and then treated ip with an antioxidant (each at a dose of 10mg/kg b.w.) for 14 days. The histopathology of tumors, their size and multiplicity were assesed. The effect of antioxidants on heart tissue was evaluated by the oxidative stress markers and poly (ADP-ribose) polymerase 1 (PARP 1) cleavage. RESULTS The median number of tumors and their volume, at the end of the study, were considerably smaller in both antioxidant-treated groups. We found a better antioxidative performance of quercetin in the heart, since a restoration of the GSH pool and decreased amount of hydroperoxides were observed. Antioxidants did not prevent cardiomyocytes from apoptosis. CONCLUSION The attenuation of tumor progression by Pirolin was comparable with the action of quercetin. No negative changes were observed in the heart of animals after Pirolin treatment. Thus, its use in targeting deregulated redox pathways should be further studied.
Collapse
Affiliation(s)
- Sabina Tabaczar
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.
| | | | - Jan Czepas
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | | | | | - Krzysztof Gwoździński
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Aneta Koceva-Chyła
- Department of Thermobiology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
18
|
Korkes HA, Sass N, Moron AF, Câmara NOS, Bonetti T, Cerdeira AS, Da Silva IDCG, De Oliveira L. Lipidomic assessment of plasma and placenta of women with early-onset preeclampsia. PLoS One 2014; 9:e110747. [PMID: 25329382 PMCID: PMC4201564 DOI: 10.1371/journal.pone.0110747] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/25/2014] [Indexed: 01/09/2023] Open
Abstract
Introduction Adipose tissue is responsible for triggering chronic systemic inflammatory response and these changes may be involved in the pathophysiology of preeclampsia. Objective To characterize the lipid profile in the placenta and plasma of patients with preeclampsia. Methodology Samples were collected from placenta and plasma of 10 pregnant women with preeclampsia and 10 controls. Lipids were extracted using the Bligh–Dyer protocol and were analysed by MALDI TOF-TOF mass spectrometry. Results Approximately 200 lipid signals were quantified. The most prevalent lipid present in plasma of patients with preeclampsia was the main class Glycerophosphoserines-GP03 (PS) representing 52.30% of the total lipid composition, followed by the main classes Glycerophosphoethanolamines-GP02 (PEt), Glycerophosphocholines-GP01 (PC) and Flavanoids-PK12 (FLV), with 24.03%, 9.47% and 8.39% respectively. When compared to the control group, plasma samples of patients with preeclampsia showed an increase of PS (p<0.0001), PC (p<0.0001) and FLV (p<0.0001). Placental analysis of patients with preeclampsia, revealed the PS as the most prevalent lipid representing 56.28%, followed by the main class Macrolides/polyketides-PK04 with 32.77%, both with increased levels when compared with patients control group, PS (p<0.0001) and PK04 (p<0.0001). Conclusion Lipids found in placenta and plasma from patients with preeclampsia differ from those of pregnant women in the control group. Further studies are needed to clarify if these changes are specific and a cause or consequence of preeclampsia.
Collapse
Affiliation(s)
- Henri Augusto Korkes
- Department of Obstetrics – Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Laboratory of Clinical and Experimental Investigation – School Maternity Vila Nova Cachoeirinha, Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| | - Nelson Sass
- Department of Obstetrics – Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Laboratory of Clinical and Experimental Investigation – School Maternity Vila Nova Cachoeirinha, Sao Paulo, Sao Paulo, Brazil
| | - Antonio F. Moron
- Department of Obstetrics – Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | | | - Tatiana Bonetti
- Department of Gynecology - Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Ana Sofia Cerdeira
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Leandro De Oliveira
- Department of Obstetrics – Federal University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Laboratory of Clinical and Experimental Investigation – School Maternity Vila Nova Cachoeirinha, Sao Paulo, Sao Paulo, Brazil
- Department of Immunology – University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
Binker MG, Cosen-Binker LI. Acute pancreatitis: The stress factor. World J Gastroenterol 2014; 20:5801-5807. [PMID: 24914340 PMCID: PMC4024789 DOI: 10.3748/wjg.v20.i19.5801] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/12/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis is an inflammatory disorder of the pancreas that may cause life-threatening complications. Etiologies of pancreatitis vary, with gallstones accounting for the majority of all cases, followed by alcohol. Other causes of pancreatitis include trauma, ischemia, mechanical obstruction, infections, autoimmune, hereditary, and drugs. The main events occurring in the pancreatic acinar cell that initiate and propagate acute pancreatitis include inhibition of secretion, intracellular activation of proteases, and generation of inflammatory mediators. Small cytokines known as chemokines are released from damaged pancreatic cells and attract inflammatory cells, whose systemic action ultimately determined the severity of the disease. Indeed, severe forms of pancreatitis may result in systemic inflammatory response syndrome and multiorgan dysfunction syndrome, characterized by a progressive physiologic failure of several interdependent organ systems. Stress occurs when homeostasis is threatened, and stressors can include physical or mental forces, or combinations of both. Depending on the timing and duration, stress can result in beneficial or harmful consequences. While it is well established that a previous acute-short-term stress decreases the severity of experimentally-induced pancreatitis, the worsening effects of chronic stress on the exocrine pancreas have received relatively little attention. This review will focus on the influence of both prior acute-short-term and chronic stress in acute pancreatitis.
Collapse
|
20
|
Suo C, Sun L, Yang S. Alpinetin activates the δ receptor instead of the κ and μ receptor pathways to protect against rat myocardial cell apoptosis. Exp Ther Med 2013; 7:109-116. [PMID: 24348774 PMCID: PMC3861512 DOI: 10.3892/etm.2013.1359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/07/2013] [Indexed: 01/26/2023] Open
Abstract
Alpinetin is a natural flavonoid that protects cells against fatal injury in ischemia-reperfusion. δ receptor activation protects myocardial cells from trauma; however, the mechanism is unknown. The aim of this study was to explore the function of alpinetin in δ receptor-mediated myocardial apoptosis. The myocardial cells of newly born rats were cultivated and myocardial apoptosis was induced by serum deprivation. The MTT method was used to evaluate cell viability and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining was used to analyze apoptosis. The expression levels of opioid receptor mRNA and protein were tested using reverse transcription-polymerase reaction (RT-PCR) and western blot assays. In addition, an opioid receptor antagonist, as well as protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) inhibitors, were used to determine the inferred signaling pathway. The results showed that that alpinetin reduced the myocardial apoptosis induced by serum deprivation in a concentration-dependent manner. However, the protection conferred to the myocardial cells by alpinetin was blocked by the δ opioid receptor antagonist naltrindole, as well as by PKC and ERK inhibitors (GF109203X and U0126, respectively). In addition, it was shown that alpinetin was able to maintain the stability of the mitochondrial membrane potential, lower the level of intracytoplasmic cytochrome c and reduce Bax displacement from the cytoplasm to the mitochondria. It was concluded that alpinetin was able to activate δ receptors to induce the endogenous protection of myocardial cells via the PKC/ERK signaling pathway.
Collapse
Affiliation(s)
- Chuantao Suo
- Department of Cardiology, Daqing General Hospital Group Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| | - Libo Sun
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuang Yang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
21
|
Araújo JR, Correia-Branco A, Pereira AC, Pinho MJ, Keating E, Martel F. Oxidative stress decreases uptake of neutral amino acids in a human placental cell line (BeWo cells). Reprod Toxicol 2013; 40:76-81. [PMID: 23806338 DOI: 10.1016/j.reprotox.2013.06.073] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/29/2013] [Accepted: 06/15/2013] [Indexed: 02/07/2023]
Abstract
Increased oxidative stress (OS) is implicated in the pathophysiology of several pregnancy disorders. We aimed to investigate the effect of tert-butylhydroperoxide (TBHP)-induced OS upon the placental transport of the neutral amino acids L-methionine (L-Met) and L-alanine (L-Ala), by using a human trophoblast cell model (BeWo cells). TBHP reduced both total and Na(+)-independent (14)C-L-Met intracellular steady-state accumulation over time (Amax), by reducing non-system L-mediated uptake - most probably system y(+) - while having no effect on system L. Moreover, TBHP reduced total (14)C-L-Ala Amax through an inhibition of system A. The effect of TBHP upon total, but not system A-mediated, (14)C-L-Ala uptake was dependent upon phosphoinositide 3-kinase (PI3K) and protein kinase C (PKC) activation, and was completely prevented by the polyphenol quercetin. In conclusion, a reduction in placental uptake of neutral amino acids may contribute to the deleterious effects of pregnancy disorders associated with OS.
Collapse
Affiliation(s)
- João Ricardo Araújo
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
22
|
Bhullar KS, Rupasinghe HPV. Polyphenols: multipotent therapeutic agents in neurodegenerative diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:891748. [PMID: 23840922 PMCID: PMC3690243 DOI: 10.1155/2013/891748] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 04/29/2013] [Indexed: 12/19/2022]
Abstract
Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer's disease (AD), stroke, multiple sclerosis (MS), Parkinson's disease (PD), and Huntington's disease (HD). Polyphenols exhibit strong potential to address the etiology of neurological disorders as they attenuate their complex physiology by modulating several therapeutic targets at once. Firstly, we review the advances in the therapeutic role of polyphenols in cell and animal models of AD, PD, MS, and HD and activation of drug targets for controlling pathological manifestations. Secondly, we present principle pathways in which polyphenol intake translates into therapeutic outcomes. In particular, signaling pathways like PPAR, Nrf2, STAT, HIF, and MAPK along with modulation of immune response by polyphenols are discussed. Although current polyphenol researches have limited impact on clinical practice, they have strong evidence and testable hypothesis to contribute clinical advances and drug discovery towards age-related neurological disorders.
Collapse
Affiliation(s)
- Khushwant S. Bhullar
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada B2N 5E3
| | - H. P. Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada B2N 5E3
| |
Collapse
|
23
|
Xu T, Li D, Jiang D. Targeting cell signaling and apoptotic pathways by luteolin: cardioprotective role in rat cardiomyocytes following ischemia/reperfusion. Nutrients 2012; 4:2008-19. [PMID: 23235403 PMCID: PMC3546619 DOI: 10.3390/nu4122008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/28/2012] [Accepted: 12/05/2012] [Indexed: 11/16/2022] Open
Abstract
Myocardial ischemia often results in damaged heart structure and function, which can be restored through ischemia/reperfusion (I/R) in most cases. However, I/R can exacerbate myocardial ischemia reperfusion injury (IRI). Luteolin, a widely distributed flavonoid, a member of a group of naturally occurring polyphenolic compounds found in many fruits, vegetables and medicinal herbs, has been reported to exhibit anti-inflammatory, antioxidant and anti-carcinogenic activities. In recent years, luteolin has been shown to play an important role in the cardioprotection of IRI. However, its role and mechanism in cardioprotection against IRI has not been clearly elucidated with respect to the apoptosis pathway. The purpose of this paper is to review luteolin's anti-apoptotic role and mechanism following I/R in rats, and indicate luteolin as a potential candidate for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Tongda Xu
- The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, Jiangsu 210046, China; E-Mail:
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China; E-Mail:
| | - Dongye Li
- The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, Jiangsu 210046, China; E-Mail:
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-0516-8558-2763; Fax: +86-0516-8558-2753
| | - Dehua Jiang
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China; E-Mail:
| |
Collapse
|