1
|
Nyenhuis DA, Watanabe S, Bernstein R, Swenson RE, Raju N, Sabbasani VR, Mushti C, Lee D, Carter C, Tjandra N. Structural Relationships to Efficacy for Prazole-Derived Antivirals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308312. [PMID: 38447164 PMCID: PMC11095225 DOI: 10.1002/advs.202308312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Here, an in vitro characterization of a family of prazole derivatives that covalently bind to the C73 site on Tsg101 and assay their ability to inhibit viral particle production is presented. Structurally, increased steric bulk on the 4-pyridyl of the prazole expands the prazole site on the UEV domain toward the β-hairpin in the Ub-binding site and is coupled to increased inhibition of virus-like particle production in HIV-1. Increased bulk also increased toxicity, which is alleviated by increasing flexibility. Further, the formation of a novel secondary Tsg101 adduct for several of the tested compounds and the commercial drug lansoprazole. The secondary adduct involved the loss of the 4-pyridyl substituent to form an irreversible species, with implications for increasing the half-life of the active species or its specificity toward Tsg101 UEV. It is also determined that sulfide derivatives display effective viral inhibition, presumably through cellular sulfoxidation, allowing for delayed conversion within the cellular environment, and identify SARS-COV-2 as a target of prazole inhibition. These results open multiple avenues for the design of prazole derivatives for antiviral applications.
Collapse
Affiliation(s)
- David A. Nyenhuis
- Biochemistry and Biophysics CenterNHLBINIH50 South Drive, Bld 50, Rm 3503BethesdaMD20892USA
| | - Susan Watanabe
- Department of Microbiology and ImmunologyRenaissance School of MedicineStonybrook UniversityLife Sciences Bldg, Rm 248StonybrookNY11790USA
| | - Rebecca Bernstein
- Biochemistry and Biophysics CenterNHLBINIH50 South Drive, Bld 50, Rm 3503BethesdaMD20892USA
| | - Rolf E. Swenson
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Natarajan Raju
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Venkata R. Sabbasani
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Chandrasekhar Mushti
- Chemistry and Synthesis CenterNHLBINIH9800 Medical Center Drive, Bldg B, #2034RockvilleMD20850USA
| | - Duck‐Yeon Lee
- Biochemistry Core FacilityNHLBINIHBethesdaMD20892USA
| | - Carol Carter
- Department of Microbiology and ImmunologyRenaissance School of MedicineStonybrook UniversityLife Sciences Bldg, Rm 248StonybrookNY11790USA
| | - Nico Tjandra
- Biochemistry and Biophysics CenterNHLBINIH50 South Drive, Bld 50, Rm 3503BethesdaMD20892USA
| |
Collapse
|
2
|
Meissner ME, Talledge N, Mansky LM. Molecular Biology and Diversification of Human Retroviruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:872599. [PMID: 35783361 PMCID: PMC9242851 DOI: 10.3389/fviro.2022.872599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies of retroviruses have led to many extraordinary discoveries that have advanced our understanding of not only human diseases, but also molecular biology as a whole. The most recognizable human retrovirus, human immunodeficiency virus type 1 (HIV-1), is the causative agent of the global AIDS epidemic and has been extensively studied. Other human retroviruses, such as human immunodeficiency virus type 2 (HIV-2) and human T-cell leukemia virus type 1 (HTLV-1), have received less attention, and many of the assumptions about the replication and biology of these viruses are based on knowledge of HIV-1. Existing comparative studies on human retroviruses, however, have revealed that key differences between these viruses exist that affect evolution, diversification, and potentially pathogenicity. In this review, we examine current insights on disparities in the replication of pathogenic human retroviruses, with a particular focus on the determinants of structural and genetic diversity amongst HIVs and HTLV.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| |
Collapse
|
3
|
Saurav S, Tanwar J, Ahuja K, Motiani RK. Dysregulation of host cell calcium signaling during viral infections: Emerging paradigm with high clinical relevance. Mol Aspects Med 2021; 81:101004. [PMID: 34304899 PMCID: PMC8299155 DOI: 10.1016/j.mam.2021.101004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Viral infections are one of the leading causes of human illness. Viruses take over host cell signaling cascades for their replication and infection. Calcium (Ca2+) is a versatile and ubiquitous second messenger that modulates plethora of cellular functions. In last two decades, a critical role of host cell Ca2+ signaling in modulating viral infections has emerged. Furthermore, recent literature clearly implicates a vital role for the organellar Ca2+ dynamics (influx and efflux across organelles) in regulating virus entry, replication and severity of the infection. Therefore, it is not surprising that a number of viral infections including current SARS-CoV-2 driven COVID-19 pandemic are associated with dysregulated Ca2+ homeostasis. The focus of this review is to first discuss the role of host cell Ca2+ signaling in viral entry, replication and egress. We further deliberate on emerging literature demonstrating hijacking of the host cell Ca2+ dynamics by viruses. In particular, a variety of viruses including SARS-CoV-2 modulate lysosomal and cytosolic Ca2+ signaling for host cell entry and replication. Moreover, we delve into the recent studies, which have demonstrated the potential of several FDA-approved drugs targeting Ca2+ handling machinery in inhibiting viral infections. Importantly, we discuss the prospective of targeting intracellular Ca2+ signaling for better management and treatment of viral pathogenesis including COVID-19. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention.
Collapse
Affiliation(s)
- Suman Saurav
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi-110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India.
| |
Collapse
|
4
|
Host Calcium Channels and Pumps in Viral Infections. Cells 2019; 9:cells9010094. [PMID: 31905994 PMCID: PMC7016755 DOI: 10.3390/cells9010094] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 11/29/2022] Open
Abstract
Ca2+ is essential for virus entry, viral gene replication, virion maturation, and release. The alteration of host cells Ca2+ homeostasis is one of the strategies that viruses use to modulate host cells signal transduction mechanisms in their favor. Host calcium-permeable channels and pumps (including voltage-gated calcium channels, store-operated channels, receptor-operated channels, transient receptor potential ion channels, and Ca2+-ATPase) mediate Ca2+ across the plasma membrane or subcellular organelles, modulating intracellular free Ca2+. Therefore, these Ca2+ channels or pumps present important aspects of viral pathogenesis and virus–host interaction. It has been reported that viruses hijack host calcium channels or pumps, disturbing the cellular homeostatic balance of Ca2+. Such a disturbance benefits virus lifecycles while inducing host cells’ morbidity. Evidence has emerged that pharmacologically targeting the calcium channel or calcium release from the endoplasmic reticulum (ER) can obstruct virus lifecycles. Impeding virus-induced abnormal intracellular Ca2+ homeostasis is becoming a useful strategy in the development of potent antiviral drugs. In this present review, the recent identified cellular calcium channels and pumps as targets for virus attack are emphasized.
Collapse
|
5
|
Ahmed I, Akram Z, Iqbal HMN, Munn AL. The regulation of Endosomal Sorting Complex Required for Transport and accessory proteins in multivesicular body sorting and enveloped viral budding - An overview. Int J Biol Macromol 2019; 127:1-11. [PMID: 30615963 DOI: 10.1016/j.ijbiomac.2019.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 02/07/2023]
Abstract
ESCRT (Endosomal Sorting Complex Required for Transport) machinery drives different cellular processes such as endosomal sorting, organelle biogenesis, vesicular trafficking, maintenance of plasma membrane integrity, membrane fission during cytokinesis and enveloped virus budding. The normal cycle of assembly and disassembly of some ESCRT complexes at the membrane requires the AAA-ATPase vacuolar protein sorting 4 (Vps4p). A number of ESCRT proteins are hijacked by clinically significant enveloped viruses including Ebola, and Human Immunodeficiency Virus (HIV) to enable enveloped virus budding and Vps4p provides energy for the disassembly/recycling of these ESCRT proteins. Several years ago, the failure of the terminal budding process of HIV following Vps4 protein inhibition was published; although at that time a detailed understanding of the molecular players was missing. However, later it was acknowledged that the ESCRT machinery has a role in enveloped virus budding from cells due to its role in the multivesicular body (MVB) sorting pathway. The MVB sorting pathway facilitates several cellular activities in uninfected cells, such as the down-regulation of signaling through cell surface receptors as well as the process of viral budding from infected host cells. In this review, we focus on summarising the functional organisation of ESCRT proteins at the membrane and the role of ESCRT machinery and Vps4p during MVB sorting and enveloped viral budding.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia.
| | - Zain Akram
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico
| | - Alan L Munn
- School of Medical Science, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia.
| |
Collapse
|
6
|
Gordon TB, Hayward JA, Marsh GA, Baker ML, Tachedjian G. Host and Viral Proteins Modulating Ebola and Marburg Virus Egress. Viruses 2019; 11:v11010025. [PMID: 30609802 PMCID: PMC6357148 DOI: 10.3390/v11010025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/21/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
The filoviruses Ebolavirus and Marburgvirus are among the deadliest viral pathogens known to infect humans, causing emerging diseases with fatality rates of up to 90% during some outbreaks. The replication cycles of these viruses are comprised of numerous complex molecular processes and interactions with their human host, with one key feature being the means by which nascent virions exit host cells to spread to new cells and ultimately to a new host. This review focuses on our current knowledge of filovirus egress and the viral and host factors and processes that are involved. Within the virus, these factors consist of the major matrix protein, viral protein 40 (VP40), which is necessary and sufficient for viral particle release, and nucleocapsid and glycoprotein that interact with VP40 to promote egress. In the host cell, some proteins are hijacked by filoviruses in order to enhance virion budding capacity that include members of the family of E3 ubiquitin ligase and the endosomal sorting complexes required for transport (ESCRT) pathway, while others such as tetherin inhibit viral egress. An understanding of these molecular interactions that modulate viral particle egress provides an important opportunity to identify new targets for the development of antivirals to prevent and treat filovirus infections.
Collapse
Affiliation(s)
- Tamsin B Gordon
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
| | - Joshua A Hayward
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
| | - Glenn A Marsh
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC 3220, Australia.
| | - Michelle L Baker
- CSIRO Australian Animal Health Laboratory, Health and Biosecurity Business Unit, Geelong, VIC 3220, Australia.
| | - Gilda Tachedjian
- Health Security Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC 3168, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne VIC 3010, Australia.
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
7
|
Strickland M, Ehrlich LS, Watanabe S, Khan M, Strub MP, Luan CH, Powell MD, Leis J, Tjandra N, Carter CA. Tsg101 chaperone function revealed by HIV-1 assembly inhibitors. Nat Commun 2017; 8:1391. [PMID: 29123089 PMCID: PMC5680296 DOI: 10.1038/s41467-017-01426-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 09/15/2017] [Indexed: 01/08/2023] Open
Abstract
HIV-1 replication requires Tsg101, a component of cellular endosomal sorting complex required for transport (ESCRT) machinery. Tsg101 possesses an ubiquitin (Ub) E2 variant (UEV) domain with a pocket that can bind PT/SAP motifs and another pocket that can bind Ub. The PTAP motif in the viral structural precursor polyprotein, Gag, allows the recruitment of Tsg101 and other ESCRTs to virus assembly sites where they mediate budding. It is not known how or even whether the UEV Ub binding function contributes to virus production. Here, we report that disruption of UEV Ub binding by commonly used drugs arrests assembly at an early step distinct from the late stage involving PTAP binding disruption. NMR reveals that the drugs form a covalent adduct near the Ub-binding pocket leading to the disruption of Ub, but not PTAP binding. We conclude that the Ub-binding pocket has a chaperone function involved in bud initiation.
Collapse
Affiliation(s)
- Madeleine Strickland
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lorna S Ehrlich
- Department of Molecular Genetics & Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5222, USA
| | - Susan Watanabe
- Department of Molecular Genetics & Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5222, USA
| | - Mahfuz Khan
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Marie-Paule Strub
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Michael D Powell
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Jonathan Leis
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Carol A Carter
- Department of Molecular Genetics & Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5222, USA.
| |
Collapse
|
8
|
Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention. PLoS Pathog 2015; 11:e1005220. [PMID: 26513362 PMCID: PMC4634230 DOI: 10.1371/journal.ppat.1005220] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/21/2015] [Indexed: 12/19/2022] Open
Abstract
Hemorrhagic fever viruses, including the filoviruses (Ebola and Marburg) and arenaviruses (Lassa and Junín viruses), are serious human pathogens for which there are currently no FDA approved therapeutics or vaccines. Importantly, transmission of these viruses, and specifically late steps of budding, critically depend upon host cell machinery. Consequently, strategies which target these mechanisms represent potential targets for broad spectrum host oriented therapeutics. An important cellular signal implicated previously in EBOV budding is calcium. Indeed, host cell calcium signals are increasingly being recognized to play a role in steps of entry, replication, and transmission for a range of viruses, but if and how filoviruses and arenaviruses mobilize calcium and the precise stage of virus transmission regulated by calcium have not been defined. Here we demonstrate that expression of matrix proteins from both filoviruses and arenaviruses triggers an increase in host cytoplasmic Ca2+ concentration by a mechanism that requires host Orai1 channels. Furthermore, we demonstrate that Orai1 regulates both VLP and infectious filovirus and arenavirus production and spread. Notably, suppression of the protein that triggers Orai activation (Stromal Interaction Molecule 1, STIM1) and genetic inactivation or pharmacological blockade of Orai1 channels inhibits VLP and infectious virus egress. These findings are highly significant as they expand our understanding of host mechanisms that may broadly control enveloped RNA virus budding, and they establish Orai and STIM1 as novel targets for broad-spectrum host-oriented therapeutics to combat these emerging BSL-4 pathogens and potentially other enveloped RNA viruses that bud via similar mechanisms. Filoviruses (Ebola and Marburg viruses) and arenaviruses (Lassa and Junín viruses) are high-priority pathogens that hijack host proteins and pathways to complete their replication cycles and spread from cell to cell. Here we provide genetic and pharmacological evidence to demonstrate that the host calcium channel protein Orai1 and ER calcium sensor protein STIM1 regulate efficient budding and spread of BSL-4 pathogens Ebola, Marburg, Lassa, and Junín viruses. Our findings are of broad significance as they provide new mechanistic insight into fundamental, immutable, and conserved mechanisms of hemorrhagic fever virus pathogenesis. Moreover, this strategy of targeting highly conserved host cellular protein(s) and mechanisms required by these viruses to complete their life cycle should elicit minimal drug resistance.
Collapse
|
9
|
Madara JJ, Han Z, Ruthel G, Freedman BD, Harty RN. The multifunctional Ebola virus VP40 matrix protein is a promising therapeutic target. Future Virol 2015; 10:537-546. [PMID: 26120351 DOI: 10.2217/fvl.15.6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The highly virulent nature of Ebola virus, evident from the 2014 West African pandemic, highlights the need to develop vaccines or therapeutic agents that limit the pathogenesis and spread of this virus. While vaccines represent an obvious approach, targeting virus interactions with host proteins that critically regulate the virus lifecycle also represent important therapeutic strategies. Among Ebola virus proteins at this critical interface is its matrix protein, VP40, which is abundantly expressed during infection and plays a number of critical roles in the viral lifecycle. In addition to regulating viral transcription, VP40 coordinates virion assembly and budding from infected cells. Details of the molecular mechanisms underpinning these essential functions are currently being elucidated, with a particular emphasis on its interactions with host proteins that control virion assembly and egress. This review focuses on the strategies geared toward developing novel therapeutic agents that target VP40-specific control of host functions critical to virion transcription, assembly and egress.
Collapse
Affiliation(s)
- Jonathan J Madara
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Mariani C, Desdouits M, Favard C, Benaroch P, Muriaux DM. Role of Gag and lipids during HIV-1 assembly in CD4(+) T cells and macrophages. Front Microbiol 2014; 5:312. [PMID: 25009540 PMCID: PMC4069574 DOI: 10.3389/fmicb.2014.00312] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/08/2014] [Indexed: 12/25/2022] Open
Abstract
HIV-1 is an RNA enveloped virus that preferentially infects CD4+ T lymphocytes and also macrophages. In CD4+ T cells, HIV-1 mainly buds from the host cell plasma membrane. The viral Gag polyprotein targets the plasma membrane and is the orchestrator of the HIV assembly as its expression is sufficient to promote the formation of virus-like particles carrying a lipidic envelope derived from the host cell membrane. Certain lipids are enriched in the viral membrane and are thought to play a key role in the assembly process and the envelop composition. A large body of work performed on infected CD4+ T cells has provided important knowledge about the assembly process and the membrane virus lipid composition. While HIV assembly and budding in macrophages is thought to follow the same general Gag-driven mechanism as in T-lymphocytes, the HIV cycle in macrophage exhibits specific features. In these cells, new virions bud from the limiting membrane of seemingly intracellular compartments, where they accumulate while remaining infectious. These structures are now often referred to as Virus Containing Compartments (VCCs). Recent studies suggest that VCCs represent intracellularly sequestered regions of the plasma membrane, but their precise nature remains elusive. The proteomic and lipidomic characterization of virions produced by T cells or macrophages has highlighted the similarity between their composition and that of the plasma membrane of producer cells, as well as their enrichment in acidic lipids, some components of raft lipids and in tetraspanin-enriched microdomains. It is likely that Gag promotes the coalescence of these components into an assembly platform from which viral budding takes place. How Gag exactly interacts with membrane lipids and what are the mechanisms involved in the interaction between the different membrane nanodomains within the assembly platform remains unclear. Here we review recent literature regarding the role of Gag and lipids on HIV-1 assembly in CD4+ T cells and macrophages.
Collapse
Affiliation(s)
- Charlotte Mariani
- Membrane Domains and Viral Assembly, CNRS UMR-5236, Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé Montpellier, Cedex, France
| | - Marion Desdouits
- Intracellular Transport and Immunity, Immunité et Cancer, Institut Curie - Inserm U932 Paris, France
| | - Cyril Favard
- Membrane Domains and Viral Assembly, CNRS UMR-5236, Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé Montpellier, Cedex, France
| | - Philippe Benaroch
- Intracellular Transport and Immunity, Immunité et Cancer, Institut Curie - Inserm U932 Paris, France
| | - Delphine M Muriaux
- Membrane Domains and Viral Assembly, CNRS UMR-5236, Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé Montpellier, Cedex, France
| |
Collapse
|
11
|
Ehrlich LS, Medina GN, Photiadis S, Whittredge PB, Watanabe S, Taraska JW, Carter CA. Tsg101 regulates PI(4,5)P2/Ca(2+) signaling for HIV-1 Gag assembly. Front Microbiol 2014; 5:234. [PMID: 24904548 PMCID: PMC4033031 DOI: 10.3389/fmicb.2014.00234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 04/30/2014] [Indexed: 11/13/2022] Open
Abstract
Our previous studies identified the 1,4,5-inositol trisphosphate receptor (IP3R), a channel mediating release of Ca2+ from ER stores, as a cellular factor differentially associated with HIV-1 Gag that might facilitate ESCRT function in virus budding. Channel opening requires activation that is initiated by binding of 1,4,5-triphosphate (IP3), a product of phospholipase C (PLC)-mediated PI(4,5)P2 hydrolysis. The store emptying that follows stimulates store refilling which requires intact PI(4,5)P2. Raising cytosolic Ca2+ promotes viral particle production and our studies indicate that IP3R and the ER Ca2+ store are the physiological providers of Ca2+ for Gag assembly and release. Here, we show that Gag modulates ER store gating and refilling. Cells expressing Gag exhibited a higher cytosolic Ca2+ level originating from the ER store than control cells, suggesting that Gag induced release of store Ca2+. This property required the PTAP motif in Gag that recruits Tsg101, an ESCRT-1 component. Consistent with cytosolic Ca2+ elevation, Gag accumulation at the plasma membrane was found to require continuous IP3R activation. Like other IP3R channel modulators, Gag was detected in physical proximity to the ER and to endogenous IP3R, as indicated respectively by total internal reflection fluorescence (TIRF) and immunoelectron microscopy (IEM) or indirect immunofluorescence. Reciprocal co-immunoprecipitation suggested that Gag and IP3R proximity is favored when the PTAP motif in Gag is intact. Gag expression was also accompanied by increased PI(4,5)P2 accumulation at the plasma membrane, a condition favoring store refilling capacity. Supporting this notion, Gag particle production was impervious to treatment with 2-aminoethoxydiphenyl borate, an inhibitor of a refilling coupling interaction. In contrast, particle production by a Gag mutant lacking the PTAP motif was reduced. We conclude that a functional PTAP L domain, and by inference Tsg101 binding, confers Gag with an ability to modulate both ER store Ca2+ release and ER store refilling.
Collapse
Affiliation(s)
- Lorna S Ehrlich
- Molecular Genetics and Microbiology, Stony Brook University Stony Brook, NY, USA
| | - Gisselle N Medina
- Molecular Genetics and Microbiology, Stony Brook University Stony Brook, NY, USA
| | - Sara Photiadis
- Molecular Genetics and Microbiology, Stony Brook University Stony Brook, NY, USA
| | - Paul B Whittredge
- Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, National Institutes of Health Bethesda, MD, USA
| | - Susan Watanabe
- Molecular Genetics and Microbiology, Stony Brook University Stony Brook, NY, USA
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, National Institutes of Health Bethesda, MD, USA
| | - Carol A Carter
- Molecular Genetics and Microbiology, Stony Brook University Stony Brook, NY, USA
| |
Collapse
|
12
|
Spadaro F, Cecchetti S, Purificato C, Sabbatucci M, Podo F, Ramoni C, Gessani S, Fantuzzi L. Nuclear phosphoinositide-specific phospholipase C β1 controls cytoplasmic CCL2 mRNA levels in HIV-1 gp120-stimulated primary human macrophages. PLoS One 2013; 8:e59705. [PMID: 23555755 PMCID: PMC3610878 DOI: 10.1371/journal.pone.0059705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/17/2013] [Indexed: 01/21/2023] Open
Abstract
HIV-1 envelope glycoprotein gp120 induces, independently of infection, the release of CCL2 from macrophages. In turn, this chemokine acts as an autocrine factor enhancing viral replication. In this study, we show for the first time that phosphoinositide-specific phospholipase C (PI-PLC) is required for the production of CCL2 triggered by gp120 in macrophages. Using a combination of confocal laser-scanner microscopy, pharmacologic inhibition, western blotting and fluorescence-activated cell sorter analysis, we demonstrate that gp120 interaction with CCR5 leads to nuclear localization of the PI-PLC β1 isozyme mediated by mitogen-activated protein kinase ERK-1/2. Notably, phosphatidylcholine-specific phospholipase C (PC-PLC), previously reported to be required for NF-kB-mediated CCL2 production induced by gp120 in macrophages, drives both ERK1/2 activation and PI-PLC β1 nuclear localization induced by gp120. PI-PLC β1 activation through CCR5 is also triggered by the natural chemokine ligand CCL4, but independently of ERK1/2. Finally, PI-PLC inhibition neither blocks gp120-mediated NF-kB activation nor overall accumulation of CCL2 mRNA, whereas it decreases CCL2 transcript level in the cytoplasm. These results identify nuclear PI-PLC β1 as a new intermediate in the gp120-triggered PC-PLC-driven signal transduction pathway leading to CCL2 secretion in macrophages. The finding that a concerted gp120-mediated signaling involving both PC- and PI-specific PLCs is required for the expression of CCL2 in macrophages suggests that this signal transduction pathway may also be relevant for the modulation of viral replication in these cells. Thus, this study may contribute to identify novel targets for therapeutic intervention in HIV-1 infection.
Collapse
Affiliation(s)
- Francesca Spadaro
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Cecchetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Purificato
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Michela Sabbatucci
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Franca Podo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Carlo Ramoni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Sandra Gessani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Fantuzzi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|