1
|
Hung SC, Chan TF, Chan HC, Wu CY, Chan ML, Jhuang JY, Tan JQ, Mei JB, Law SH, Ponnusamy VK, Chan HC, Ke LY. Lysophosphatidylcholine Impairs the Mitochondria Homeostasis Leading to Trophoblast Dysfunction in Gestational Diabetes Mellitus. Antioxidants (Basel) 2024; 13:1007. [PMID: 39199251 PMCID: PMC11351454 DOI: 10.3390/antiox13081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy disorder associated with an increased risk of pre-eclampsia and macrosomia. Recent research has shown that the buildup of excess lipids within the placental trophoblast impairs mitochondrial function. However, the exact lipids that impact the placental trophoblast and the underlying mechanism remain unclear. GDM cases and healthy controls were recruited at Kaohsiung Medical University Hospital. The placenta and cord blood were taken during birth. Confocal and electron microscopy were utilized to examine the morphology of the placenta and mitochondria. We determined the lipid composition using liquid chromatography-mass spectrometry in data-independent analysis mode (LC/MSE). In vitro studies were carried out on choriocarcinoma cells (JEG3) to investigate the mechanism of trophoblast mitochondrial dysfunction. Results showed that the GDM placenta was distinguished by increased syncytial knots, chorangiosis, lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) overexpression, and mitochondrial dysfunction. Lysophosphatidylcholine (LPC) 16:0 was significantly elevated in the cord blood LDL of GDM patients. In vitro, we demonstrated that LPC dose-dependently disrupts mitochondrial function by increasing reactive oxygen species (ROS) levels and HIF-1α signaling. In conclusion, highly elevated LPC in cord blood plays a pivotal role in GDM, contributing to trophoblast impairment and pregnancy complications.
Collapse
Affiliation(s)
- Shao-Chi Hung
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
| | - Te-Fu Chan
- Graduate Institute of Medicine, College of Medicine & Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Hsiu-Chuan Chan
- PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (H.-C.C.); (V.K.P.)
| | - Chia-Ying Wu
- The Master Program of AI Application in Health Industry, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Mei-Lin Chan
- Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, MacKay Medical College, Taipei 104217, Taiwan;
- Department of Medicine, MacKay Medical College, New Taipei 252005, Taiwan;
| | - Jie-Yang Jhuang
- Department of Medicine, MacKay Medical College, New Taipei 252005, Taiwan;
- Department of Pathology, Mackay Memorial Hospital, Tamsui Branch, New Taipei 251404, Taiwan
| | - Ji-Qin Tan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
| | - Jia-Bin Mei
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
| | - Shi-Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
| | - Vinoth Kumar Ponnusamy
- PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (H.-C.C.); (V.K.P.)
- Department of Medicinal and Applied Chemistry & Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hua-Chen Chan
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung 824005, Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (S.-C.H.); (J.-Q.T.); (J.-B.M.); (S.-H.L.)
- Graduate Institute of Medicine, College of Medicine & Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| |
Collapse
|
2
|
Akyol O, Yang CY, Woodside DG, Chiang HH, Chen CH, Gotto AM. Comparative Analysis of Atherogenic Lipoproteins L5 and Lp(a) in Atherosclerotic Cardiovascular Disease. Curr Atheroscler Rep 2024; 26:317-329. [PMID: 38753254 PMCID: PMC11192678 DOI: 10.1007/s11883-024-01209-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE OF REVIEW Low-density lipoprotein (LDL) poses a risk for atherosclerotic cardiovascular disease (ASCVD). As LDL comprises various subtypes differing in charge, density, and size, understanding their specific impact on ASCVD is crucial. Two highly atherogenic LDL subtypes-electronegative LDL (L5) and Lp(a)-induce vascular cell apoptosis and atherosclerotic changes independent of plasma cholesterol levels, and their mechanisms warrant further investigation. Here, we have compared the roles of L5 and Lp(a) in the development of ASCVD. RECENT FINDINGS Lp(a) tends to accumulate in artery walls, promoting plaque formation and potentially triggering atherosclerosis progression through prothrombotic or antifibrinolytic effects. High Lp(a) levels correlate with calcific aortic stenosis and atherothrombosis risk. L5 can induce endothelial cell apoptosis and increase vascular permeability, inflammation, and atherogenesis, playing a key role in initiating atherosclerosis. Elevated L5 levels in certain high-risk populations may serve as a distinctive predictor of ASCVD. L5 and Lp(a) are both atherogenic lipoproteins contributing to ASCVD through distinct mechanisms. Lp(a) has garnered attention, but equal consideration should be given to L5.
Collapse
Affiliation(s)
- Omer Akyol
- Molecular Cardiology Research Laboratories, Vascular and Medicinal Research, The Texas Heart Institute, Houston, Texas, 77030, USA
| | - Chao-Yuh Yang
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030, USA
| | - Darren G Woodside
- Molecular Cardiology Research Laboratories, The Texas Heart Institute, Houston, TX, 77030, USA
| | - Huan-Hsing Chiang
- Molecular Cardiology Research Laboratories, Vascular and Medicinal Research, The Texas Heart Institute, Houston, Texas, 77030, USA
| | - Chu-Huang Chen
- Molecular Cardiology Research Laboratories, Vascular and Medicinal Research, The Texas Heart Institute, Houston, Texas, 77030, USA.
| | | |
Collapse
|
3
|
Wen J, Zhuang R, He Q, Wei C, Giri M, Chi J. Association between serum lipid and all-cause mortality in asthmatic populations: a cohort study. Lipids Health Dis 2024; 23:189. [PMID: 38907251 PMCID: PMC11191228 DOI: 10.1186/s12944-024-02179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Presently, the majority of investigations primarily evaluate the association between lipid profiles and asthma. However, few investigations explore the connection between lipids and mortality related to the disease. This study aims to explore the association of serum lipids with all-cause mortality within asthmatic adults. METHODS The investigation included 3233 eligible patients with asthma from the NHANES (2011-2018). The potential associations were explored using three Cox proportional hazards models, restricted cubic splines (RCS), threshold effect models, and CoxBoost models. In addition, subgroup analyses were conducted to investigate these associations within distinct populations. RESULTS After controlling all covariables, the Cox proportional hazards model proved a 17% decrease in the probability of death for each increased unit of low-density lipoprotein-cholesterol (LDL-C) (mmol/L). Yet, there was no association seen between blood high-density lipoprotein cholesterol (HDL-C), total cholesterol, or triglyceride and all-cause mortality in asthmatics. The application of RCS and threshold effect models verified an inverse and linear association of LDL-C with all-cause mortality. According to the results from the CoxBoost model, LDL-C exhibited the most substantial impact on the follow-up status of asthmatics among the serum lipids. CONCLUSION Our investigation concluded that in American asthmatic populations, LDL-C levels were inversely and linearly correlated with mortality. However, no independent relationship was found between triglycerides, total cholesterol, or HDL-C and mortality.
Collapse
Affiliation(s)
- Jun Wen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Rongjuan Zhuang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Qingliu He
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengcheng Wei
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mohan Giri
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Jing Chi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Lankin VZ, Tikhaze AK, Konovalova GG. Differences in Structural Changes and Pathophysiological Effects of Low-Density Lipoprotein Particles upon Accumulation of Acylhydroperoxy Derivatives in Their Outer Phospholipid Monolayer or upon Modification of Apoprotein B-100 by Natural Dicarbonyls. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1910-1919. [PMID: 38105208 DOI: 10.1134/s0006297923110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
Nanoparticles of the lipid-transporting system of the organism, low-density lipoproteins (LDL) of blood plasma, are prone to free radical peroxidation with formation of their main modified forms - oxidized LDL itself (containing hydroperoxy-acyls in phospholipids of the outer layer of particles) and dicarbonyl-modified LDL (apoprotein B-100 in which chemically modified via the Maillard reaction). Based on the study of free radical oxidation kinetics of LDLs, it was found that the existing in the literature designation of "oxidized lipoproteins" is incorrect because it does not reveal the nature of oxidative modification of LDLs. It was shown in this study that the "atherogenic" LDLs (particles of which are actively captured by the cultured macrophages) are not the oxidized LDL (in which LOOH-derivatives of phospholipids are formed by enzymatic oxidation by C-15 lipoxygenase of rabbit reticulocytes), but dicarbonyl-modified LDLs. Important role of the dicarbonyl-modified LDLs in the molecular mechanisms of atherogenesis and endothelial dysfunction is discussed.
Collapse
Affiliation(s)
- Vadim Z Lankin
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia.
| | - Alla K Tikhaze
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Galina G Konovalova
- Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| |
Collapse
|
5
|
Law SH, Chan HC, Ke GM, Kamatam S, Marathe GK, Ponnusamy VK, Ke LY. Untargeted Lipidomic Profiling Reveals Lysophosphatidylcholine and Ceramide as Atherosclerotic Risk Factors in apolipoprotein E Knockout Mice. Int J Mol Sci 2023; 24:ijms24086956. [PMID: 37108120 PMCID: PMC10138920 DOI: 10.3390/ijms24086956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the availability and use of numerous cholesterol-lowering drugs, atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of mortality globally. Many researchers have focused their effort on identifying modified lipoproteins. However, lipid moieties such as lysophosphatidylcholine (LPC) and ceramide (CER) contribute to atherogenic events. LPC and CER both cause endothelial mitochondrial dysfunction, leading to fatty acid and triglyceride (TG) accumulation. In addition, they cause immune cells to differentiate into proinflammatory phenotypes. To uncover alternative therapeutic approaches other than cholesterol- and TG-lowering medications, we conducted untargeted lipidomic investigations to assess the alteration of lipid profiles in apolipoprotein E knockout (apoE-/-) mouse model, with or without feeding a high-fat diet (HFD). Results indicated that, in addition to hypercholesterolemia and hyperlipidemia, LPC levels were two to four times higher in apoE-/- mice compared to wild-type mice in C57BL/6 background, regardless of whether they were 8 or 16 weeks old. Sphingomyelin (SM) and CER were elevated three- to five-fold in apoE-/- mice both at the basal level and after 16 weeks when compared to wild-type mice. After HFD treatment, the difference in CER levels elevated more than ten-fold. Considering the atherogenic properties of LPC and CER, they may also contribute to the early onset of atherosclerosis in apoE-/- mice. In summary, the HFD-fed apoE-/- mouse shows elevated LPC and CER contents and is a suitable model for developing LPC- and CER-lowering therapies.
Collapse
Affiliation(s)
- Shi-Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hua-Chen Chan
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Guan-Ming Ke
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Swetha Kamatam
- Department of Studies in Biochemistry and Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, India
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry and Molecular Biology, University of Mysore, Manasagangothri, Mysuru 570006, India
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
6
|
Electronegative LDL Is Associated with Plaque Vulnerability in Patients with Ischemic Stroke and Carotid Atherosclerosis. Antioxidants (Basel) 2023; 12:antiox12020438. [PMID: 36829998 PMCID: PMC9952764 DOI: 10.3390/antiox12020438] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Owing to the high risk of recurrence, identifying indicators of carotid plaque vulnerability in atherothrombotic ischemic stroke is essential. In this study, we aimed to identify modified LDLs and antioxidant enzymes associated with plaque vulnerability in plasma from patients with a recent ischemic stroke and carotid atherosclerosis. Patients underwent an ultrasound, a CT-angiography, and an 18F-FDG PET. A blood sample was obtained from patients (n = 64, 57.8% with stenosis ≥50%) and healthy controls (n = 24). Compared to the controls, patients showed lower levels of total cholesterol, LDL cholesterol, HDL cholesterol, apolipoprotein B (apoB), apoA-I, apoA-II, and apoE, and higher levels of apoJ. Patients showed lower platelet-activating factor acetylhydrolase (PAF-AH) and paraoxonase-1 (PON-1) enzymatic activities in HDL, and higher plasma levels of oxidized LDL (oxLDL) and electronegative LDL (LDL(-)). The only difference between patients with stenosis ≥50% and <50% was the proportion of LDL(-). In a multivariable logistic regression analysis, the levels of LDL(-), but not of oxLDL, were independently associated with the degree of carotid stenosis (OR: 5.40, CI: 1.15-25.44, p < 0.033), the presence of hypoechoic plaque (OR: 7.52, CI: 1.26-44.83, p < 0.027), and of diffuse neovessels (OR: 10.77, CI: 1.21-95.93, p < 0.033), indicating that an increased proportion of LDL(-) is associated with vulnerable atherosclerotic plaque.
Collapse
|
7
|
Thirty-Five-Year History of Desialylated Lipoproteins Discovered by Vladimir Tertov. Biomedicines 2022; 10:biomedicines10051174. [PMID: 35625910 PMCID: PMC9138341 DOI: 10.3390/biomedicines10051174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is one of the leading causes of death in developed and developing countries. The atherogenicity phenomenon cannot be separated from the role of modified low-density lipoproteins (LDL) in atherosclerosis development. Among the multiple modifications of LDL, desialylation deserves to be discussed separately, since its atherogenic effects and contribution to atherogenicity are often underestimated or, simply, forgotten. Vladimir Tertov is linked to the origin of the research related to desialylated lipoproteins, including the association of modified LDL with atherogenicity, autoimmune nature of atherosclerosis, and discovery of sialidase activity in blood plasma. The review will briefly discuss all the above-mentioned information, with a description of the current situation in the research.
Collapse
|
8
|
The potential pathophysiological role of altered lipid metabolism and electronegative low-density lipoprotein (LDL) in non-alcoholic fatty liver disease and cardiovascular diseases. Clin Chim Acta 2021; 523:374-379. [PMID: 34678296 DOI: 10.1016/j.cca.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 01/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an umbrella term for a range of conditions caused by a build-up of fat in the liver. It is usually seen in people who are overweight or obese. Increasingly common around the world, this disease is the most common chronic liver disease in the United States, affecting about a quarter of the population. Recently, the designation of NAFLD as 'metabolic dysfunction-associated fatty liver disease' (MAFLD) has been a subject of current debate. In this context, 'insulin resistance' is the underlying common and basic pathophysiological mechanism of metabolic dysfunction due to its association with obesity, type 2 diabetes mellitus (T2DM), metabolic syndrome, dyslipidemia and NAFLD. All these pathological conditions are among the metabolic risk factors for cardiovascular diseases, too. Also, due to the bidirectional causality between NAFLD and cardiovascular diseases, a liver-heart axis is suggested. Therefore, various factors such as insulin resistance as well as systemic inflammation, cytokines, oxidative stress, adipokines, hepatokines, genes and intestinal microbiota have been identified as possible pathogenic factors that play a role in the explanation of the complex NAFLD and cardiovascular risk relationship. Recent data and cumulative evidence show that electronegative low-density lipoprotein [LDL (-)/L5] cholesterol is a promising biomarker for complex organ interactions and diseases associated with liver-heart axis. In this mini review, we focus not only on recent data on NAFLD mechanisms, but also on the potential of the lipid mediator LDL (-)/L5 as a diagnostic and therapeutic target for liver-heart line diseases.
Collapse
|
9
|
Benitez Amaro A, Solanelles Curco A, Garcia E, Julve J, Rives J, Benitez S, Llorente Cortes V. Apolipoprotein and LRP1-Based Peptides as New Therapeutic Tools in Atherosclerosis. J Clin Med 2021; 10:jcm10163571. [PMID: 34441867 PMCID: PMC8396846 DOI: 10.3390/jcm10163571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022] Open
Abstract
Apolipoprotein (Apo)-based mimetic peptides have been shown to reduce atherosclerosis. Most of the ApoC-II and ApoE mimetics exert anti-atherosclerotic effects by improving lipid profile. ApoC-II mimetics reverse hypertriglyceridemia and ApoE-based peptides such as Ac-hE18A-NH2 reduce cholesterol and triglyceride (TG) levels in humans. Conversely, other classes of ApoE and ApoA-I mimetic peptides and, more recently, ApoJ and LRP1-based peptides, exhibit several anti-atherosclerotic actions in experimental models without influencing lipoprotein profile. These other mimetic peptides display at least one atheroprotective mechanism such as providing LDL stability against mechanical modification or conferring protection against the action of lipolytic enzymes inducing LDL aggregation in the arterial intima. Other anti-atherosclerotic effects exerted by these peptides also include protection against foam cell formation and inflammation, and induction of reverse cholesterol transport. Although the underlying mechanisms of action are still poorly described, the recent findings suggest that these mimetics could confer atheroprotection by favorably influencing lipoprotein function rather than lipoprotein levels. Despite the promising results obtained with peptide mimetics, the assessment of their stability, atheroprotective efficacy and tissue targeted delivery are issues currently under progress.
Collapse
Affiliation(s)
- Aleyda Benitez Amaro
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.A.); (E.G.)
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain;
| | | | - Eduardo Garcia
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.A.); (E.G.)
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain;
| | - Josep Julve
- Metabolic Basis of Cardiovascular Risk Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jose Rives
- Biochemistry Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08016 Barcelona, Spain
| | - Sonia Benitez
- Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Correspondence: (S.B.); or (V.L.C.)
| | - Vicenta Llorente Cortes
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; (A.B.A.); (E.G.)
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain;
- CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (S.B.); or (V.L.C.)
| |
Collapse
|
10
|
Chen DY, Sawamura T, Dixon RAF, Sánchez-Quesada JL, Chen CH. Autoimmune Rheumatic Diseases: An Update on the Role of Atherogenic Electronegative LDL and Potential Therapeutic Strategies. J Clin Med 2021; 10:1992. [PMID: 34066436 PMCID: PMC8124242 DOI: 10.3390/jcm10091992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis has been linked with an increased risk of atherosclerotic cardiovascular disease (ASCVD). Autoimmune rheumatic diseases (AIRDs) are associated with accelerated atherosclerosis and ASCVD. However, the mechanisms underlying the high ASCVD burden in patients with AIRDs cannot be explained only by conventional risk factors despite disease-specific factors and chronic inflammation. Nevertheless, the normal levels of plasma low-density lipoprotein (LDL) cholesterol observed in most patients with AIRDs do not exclude the possibility of increased LDL atherogenicity. By using anion-exchange chromatography, human LDL can be divided into five increasingly electronegative subfractions, L1 to L5, or into electropositive and electronegative counterparts, LDL (+) and LDL (-). Electronegative L5 and LDL (-) have similar chemical compositions and can induce adverse inflammatory reactions in vascular cells. Notably, the percentage of L5 or LDL (-) in total LDL is increased in normolipidemic patients with AIRDs. Electronegative L5 and LDL (-) are not recognized by the normal LDL receptor but instead signal through the lectin-like oxidized LDL receptor 1 (LOX-1) to activate inflammasomes involving interleukin 1β (IL-1β). Here, we describe the detailed mechanisms of AIRD-related ASCVD mediated by L5 or LDL (-) and discuss the potential targeting of LOX-1 or IL-1β signaling as new therapeutic modalities for these diseases.
Collapse
Affiliation(s)
- Der-Yuan Chen
- Translational Medicine Center, China Medical University Hospital, Taichung 404, Taiwan;
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Richard A. F. Dixon
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX 77030, USA;
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Biomedical Research Institute IIB Sant Pau, 08041 Barcelona, Spain;
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), 08041 Barcelona, Spain
| | - Chu-Huang Chen
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
- New York Heart Research Foundation, Mineola, NY 11501, USA
| |
Collapse
|
11
|
Changes in the Composition and Function of Lipoproteins after Bariatric Surgery in Patients with Severe Obesity. J Clin Med 2021; 10:jcm10081716. [PMID: 33923393 PMCID: PMC8071565 DOI: 10.3390/jcm10081716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
The effect of bariatric surgery on lipid profile and the qualitative characteristics of lipoproteins was analyzed in morbidly obese subjects. Thirteen obese patients underwent bariatric surgery. Plasma samples were obtained before surgery and at 6 and 12 months after the intervention. Thirteen healthy subjects comprised the control group. Lipid profile, hsCRP, and the composition and functional characteristics of VLDL, LDL, and HDL were assessed. At baseline, plasma from subjects with obesity had more triglycerides, VLDLc, and hsCRP, and less HDLc than the control group. These levels progressively normalized after surgery, although triglyceride and hsCRP levels remained higher than those in the controls. The main differences in lipoprotein composition between the obese subjects and the controls were increased apoE in VLDL, and decreased cholesterol and apoJ and increased apoC-III content in HDL. The pro-/anti-atherogenic properties of LDL and HDL were altered in the subjects with obesity at baseline compared with the controls, presenting smaller LDL particles that are more susceptible to modification and smaller HDL particles with decreased antioxidant capacity. Bariatric surgery normalized the composition of lipoproteins and improved the qualitative characteristics of LDL and HDL. In summary, patients with obesity present multiple alterations in the qualitative properties of lipoproteins compared with healthy subjects. Bariatric surgery reverted most of these alterations.
Collapse
|
12
|
Yuan J, Cai J, Zhao P, Zhao N, Hong RH, Ding J, Yang J, Fan QL, Zhu J, Zhou XJ, Li ZZ, Zhu DS, Guan YT. Association Between Low-Density Lipoprotein Cholesterol and Platelet Distribution Width in Acute Ischemic Stroke. Front Neurol 2021; 12:631227. [PMID: 33746886 PMCID: PMC7973264 DOI: 10.3389/fneur.2021.631227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Elevated low-density lipoprotein cholesterol (LDL-C) is an established risk factor for ischemic stroke; however, whether LDL-C affects the platelet deformation function in the peripheral blood circulation in patients with acute ischemic stroke (AIS) is unknown. The present study aimed to investigate the relationship between LDL-C and platelet distribution width (PDW) in AIS patients. Methods: We conducted a cross-sectional hospitalized-based study of consecutive 438 patients with AIS within 24 h. Blood samples were collected upon admission and prior to drug administration, and LDL-C and PDW (a parameter that reflects the heterogeneity of platelet volume) were assessed. The relationship between LDL-C and PDW were analyzed by linear curve fitting analyses. Crude and adjusted beta coefficients of LDL-C for PDW with 95% confidence intervals were analyzed using multivariate-adjusted linear regression models. Results: The PDW was significantly higher in the high LDL-C group compared with those in the normal LDL-C group (16.28 ± 0.37 fl vs. 16.08 ± 0.37 fl, p < 0.001). Adjusted smoothed plots suggested that there are linear relationships between LDL-C and PDW, and the Pearson's correlation coefficient (95%) was 0.387 (0.304-0.464, p < 0.001). The beta coefficients (95% CI) between LDL-C and PDW were 0.15 (0.12-0.18, p < 0.001) and 0.14 (0.11-0.18, p < 0.001), respectively, in AIS patients before and after adjusting for potential confounders. Conclusion: Our study suggested that the elevated LDL-C level was related to increased PDW among AIS patients.
Collapse
Affiliation(s)
- Jian Yuan
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jian Cai
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei Zhao
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Nan Zhao
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Rong-Hua Hong
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie Ding
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Yang
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qing-Lei Fan
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jian Zhu
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xia-Jun Zhou
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ze-Zhi Li
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - De-Sheng Zhu
- Department of Neurology, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang-Tai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
13
|
Ke LY, Law SH, Mishra VK, Parveen F, Chan HC, Lu YH, Chu CS. Molecular and Cellular Mechanisms of Electronegative Lipoproteins in Cardiovascular Diseases. Biomedicines 2020; 8:biomedicines8120550. [PMID: 33260304 PMCID: PMC7760527 DOI: 10.3390/biomedicines8120550] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of glucose and lipid metabolism increases plasma levels of lipoproteins and triglycerides, resulting in vascular endothelial damage. Remarkably, the oxidation of lipid and lipoprotein particles generates electronegative lipoproteins that mediate cellular deterioration of atherosclerosis. In this review, we examined the core of atherosclerotic plaque, which is enriched by byproducts of lipid metabolism and lipoproteins, such as oxidized low-density lipoproteins (oxLDL) and electronegative subfraction of LDL (LDL(−)). We also summarized the chemical properties, receptors, and molecular mechanisms of LDL(−). In combination with other well-known markers of inflammation, namely metabolic diseases, we concluded that LDL(−) can be used as a novel prognostic tool for these lipid disorders. In addition, through understanding the underlying pathophysiological molecular routes for endothelial dysfunction and inflammation, we may reassess current therapeutics and might gain a new direction to treat atherosclerotic cardiovascular diseases, mainly targeting LDL(−) clearance.
Collapse
Affiliation(s)
- Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
- Graduate Institute of Medicine, College of Medicine and Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Shi Hui Law
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Vineet Kumar Mishra
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Farzana Parveen
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (L.-Y.K.); (S.H.L.); (V.K.M.); (F.P.)
| | - Hua-Chen Chan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
| | - Ye-Hsu Lu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807377, Taiwan; (H.-C.C.); (Y.-H.L.)
- Division of Cardiology, Department of International Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Correspondence: ; Tel.: +886-73121101 (ext. 2297); Fax: +886-73111996
| |
Collapse
|
14
|
Search for Reliable Circulating Biomarkers to Predict Carotid Plaque Vulnerability. Int J Mol Sci 2020; 21:ijms21218236. [PMID: 33153204 PMCID: PMC7662861 DOI: 10.3390/ijms21218236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is responsible for 20% of ischemic strokes, and the plaques from the internal carotid artery the most frequently involved. Lipoproteins play a key role in carotid atherosclerosis since lipid accumulation contributes to plaque progression and chronic inflammation, both factors leading to plaque vulnerability. Carotid revascularization to prevent future vascular events is reasonable in some patients with high-grade carotid stenosis. However, the degree of stenosis alone is not sufficient to decide upon the best clinical management in some situations. In this context, it is essential to further characterize plaque vulnerability, according to specific characteristics (lipid-rich core, fibrous cap thinning, intraplaque hemorrhage). Although these features can be partly detected by imaging techniques, identifying carotid plaque vulnerability is still challenging. Therefore, the study of circulating biomarkers could provide adjunctive criteria to predict the risk of atherothrombotic stroke. In this regard, several molecules have been found altered, but reliable biomarkers have not been clearly established yet. The current review discusses the concept of vulnerable carotid plaque, and collects existing information about putative circulating biomarkers, being particularly focused on lipid-related and inflammatory molecules.
Collapse
|
15
|
Podkowińska A, Formanowicz D. Chronic Kidney Disease as Oxidative Stress- and Inflammatory-Mediated Cardiovascular Disease. Antioxidants (Basel) 2020; 9:E752. [PMID: 32823917 PMCID: PMC7463588 DOI: 10.3390/antiox9080752] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Generating reactive oxygen species (ROS) is necessary for both physiology and pathology. An imbalance between endogenous oxidants and antioxidants causes oxidative stress, contributing to vascular dysfunction. The ROS-induced activation of transcription factors and proinflammatory genes increases inflammation. This phenomenon is of crucial importance in patients with chronic kidney disease (CKD), because atherosclerosis is one of the critical factors of their cardiovascular disease (CVD) and increased mortality. The effect of ROS disrupts the excretory function of each section of the nephron. It prevents the maintenance of intra-systemic homeostasis and leads to the accumulation of metabolic products. Renal regulatory mechanisms, such as tubular glomerular feedback, myogenic reflex in the supplying arteriole, and the renin-angiotensin-aldosterone system, are also affected. It makes it impossible for the kidney to compensate for water-electrolyte and acid-base disturbances, which progress further in the mechanism of positive feedback, leading to a further intensification of oxidative stress. As a result, the progression of CKD is observed, with a spectrum of complications such as malnutrition, calcium phosphate abnormalities, atherosclerosis, and anemia. This review aimed to show the role of oxidative stress and inflammation in renal impairment, with a particular emphasis on its influence on the most common disturbances that accompany CKD.
Collapse
Affiliation(s)
| | - Dorota Formanowicz
- Department of Clinical Biochemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| |
Collapse
|
16
|
Rivas-Urbina A, Rull A, Aldana-Ramos J, Santos D, Puig N, Farre-Cabrerizo N, Benitez S, Perez A, de Gonzalo-Calvo D, Escola-Gil JC, Julve J, Ordoñez-Llanos J, Sanchez-Quesada JL. Subcutaneous Administration of Apolipoprotein J-Derived Mimetic Peptide d-[113-122]apoJ Improves LDL and HDL Function and Prevents Atherosclerosis in LDLR-KO Mice. Biomolecules 2020; 10:biom10060829. [PMID: 32485898 PMCID: PMC7356811 DOI: 10.3390/biom10060829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Mimetic peptides are potential therapeutic agents for atherosclerosis. d-[113–122]apolipoprotein (apo) J (d-[113–122]apoJ) is a 10-residue peptide that is predicted to form a class G* amphipathic helix 6 from apoJ; it shows anti-inflammatory and anti-atherogenic properties. In the present study, we analyzed the effect of d-[113–122]apoJ in low-density lipoprotein receptor knockout mice(LDLR-KO) on the development of atherosclerosis and lipoprotein function. Fifteen-week-old female LDLR-KO mice fed an atherogenic Western-type diet were treated for eight weeks with d-[113–122]apoJ peptide, a scrambled peptide, or vehicle. Peptides were administered subcutaneously three days per week (200 µg in 100 µL of saline). After euthanasia, blood and hearts were collected and the aortic arch was analyzed for the presence of atherosclerotic lesions. Lipoproteins were isolated and their composition and functionality were studied. The extent of atherosclerotic lesions was 43% lower with d-[113–122]apoJ treatment than with the vehicle or scramble. The lipid profile was similar between groups, but the high-density lipoprotein (HDL) of d-[113–122]apoJ-treated mice had a higher antioxidant capacity and increased ability to promote cholesterol efflux than the control group. In addition, low-density lipoprotein (LDL) from d-[113–122]apoJ-treated mice was more resistant to induced aggregation and presented lower electronegativity than in mice treated with d-[113–122]apoJ. Our results demonstrate that the d-[113–122]apoJ peptide prevents the extent of atherosclerotic lesions, which could be partially explained by the improvement of lipoprotein functionality.
Collapse
Affiliation(s)
- Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.R.-U.); (A.R.); (J.A.-R.); (N.P.); (S.B.); (J.O.-L.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Anna Rull
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.R.-U.); (A.R.); (J.A.-R.); (N.P.); (S.B.); (J.O.-L.)
- Hospital Universitari Joan XXIII, IISPV, Universitat Rovira i Virgili, 43005 Tarragona, Spain
| | - Joile Aldana-Ramos
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.R.-U.); (A.R.); (J.A.-R.); (N.P.); (S.B.); (J.O.-L.)
| | - David Santos
- Molecular Basis of Cardiovascular Risk, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (D.S.); (N.F.-C.); (J.C.E.-G.); (J.J.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain;
| | - Nuria Puig
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.R.-U.); (A.R.); (J.A.-R.); (N.P.); (S.B.); (J.O.-L.)
| | - Nuria Farre-Cabrerizo
- Molecular Basis of Cardiovascular Risk, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (D.S.); (N.F.-C.); (J.C.E.-G.); (J.J.)
| | - Sonia Benitez
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.R.-U.); (A.R.); (J.A.-R.); (N.P.); (S.B.); (J.O.-L.)
| | - Antonio Perez
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain;
- Endocrinology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, 25198 Lleida, Spain;
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Joan Carles Escola-Gil
- Molecular Basis of Cardiovascular Risk, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (D.S.); (N.F.-C.); (J.C.E.-G.); (J.J.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain;
| | - Josep Julve
- Molecular Basis of Cardiovascular Risk, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (D.S.); (N.F.-C.); (J.C.E.-G.); (J.J.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain;
| | - Jordi Ordoñez-Llanos
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.R.-U.); (A.R.); (J.A.-R.); (N.P.); (S.B.); (J.O.-L.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Jose Luis Sanchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (A.R.-U.); (A.R.); (J.A.-R.); (N.P.); (S.B.); (J.O.-L.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Institute of Health Carlos III, 28029 Madrid, Spain;
- Correspondence: ; Tel.: +34-35537588
| |
Collapse
|
17
|
Akyol O, Chowdhury I, Akyol HR, Tessier K, Vural H, Akyol S. Why are cardiovascular diseases more common among patients with severe mental illness? The potential involvement of electronegative low-density lipoprotein (LDL) L5. Med Hypotheses 2020; 142:109821. [PMID: 32417641 DOI: 10.1016/j.mehy.2020.109821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Despite tremendous efforts of experimental and clinical studies and knowledge, the pathophysiology of severe mental illness (SMI), including bipolar disorder (BD), unipolar depression (mood disorders, MD), and schizophrenia (SCZ), remains poorly understood. Besides their chronic course and high prevalence in society, mental and somatic comorbidities are really serious problems; patients with these disorders have increased risk of cardiovascular (CV) diseases (CVD) including coronary artery diseases (CAD, i.e. myocardial infarction and angina), stroke, sudden cardiac death, hypertension, cardiomyopathy, arrhythmia, and thromboembolic disease. Although it is determined that triglycerides, cholesterol, glucose, and low-density lipoprotein (LDL) levels are increased in MD and SCZ, the underlying reason remains unknown. Considering this, we propose that electronegative LDL (L5) is probably the main crucial element to understanding CVD induced by SMI and to discovering novel remedial approaches for these diseases. When it is hypothesized that L5 is greatly presupposed in CV system abnormalities, it follows that the anti-L5 therapies and even antioxidant treatment options may open new therapeutic opportunities to prevent CVD diseases secondary to SMI. In this review article, we tried to bring a very original subject to the attention of readers who are interested in lipoprotein metabolism in terms of experimental, clinical, and cell culture studies that corroborate the involvement of L5 in physiopathology of CVD secondary to SMI and also the new therapeutic approaches for these disorders.
Collapse
Affiliation(s)
- Omer Akyol
- Michigan Math & Science Academy, Department of Science, Warren, MI, USA.
| | - Imtihan Chowdhury
- Michigan Math & Science Academy, High School, 11th grade, Warren, MI, USA
| | - Hafsa Rana Akyol
- Illinois Institute of Technology, Biology, Sophomore, Chicago, IL, USA
| | - Kylie Tessier
- Michigan Math & Science Academy, High School, 11th grade, Warren, MI, USA
| | - Huseyin Vural
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Sumeyya Akyol
- Beaumont Health, Beaumont Research Institute, Royal Oak, MI, USA
| |
Collapse
|
18
|
Puig N, Montolio L, Camps-Renom P, Navarra L, Jiménez-Altayó F, Jiménez-Xarrié E, Sánchez-Quesada JL, Benitez S. Electronegative LDL Promotes Inflammation and Triglyceride Accumulation in Macrophages. Cells 2020; 9:cells9030583. [PMID: 32121518 PMCID: PMC7140452 DOI: 10.3390/cells9030583] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Electronegative low-density lipoprotein (LDL) (LDL(−)), a modified LDL that is present in blood and exerts atherogenic effects on endothelial cells and monocytes. This study aimed to determine the action of LDL(−) on monocytes differentiated into macrophages. LDL(−) and in vitro-modified LDLs (oxidized, aggregated, and acetylated) were added to macrophages derived from THP1 monocytes over-expressing CD14 (THP1-CD14). Then, cytokine release, cell differentiation, lipid accumulation, and gene expression were measured by ELISA, flow cytometry, thin-layer chromatography, and real-time PCR, respectively. LDL(−) induced more cytokine release in THP1-CD14 macrophages than other modified LDLs. LDL(−) also promoted morphological changes ascribed to differentiated macrophages. The addition of high-density lipoprotein (HDL) and anti-TLR4 counteracted these effects. LDL(−) was highly internalized by macrophages, and it was the major inductor of intracellular lipid accumulation in triglyceride-enriched lipid droplets. In contrast to inflammation, the addition of anti-TLR4 had no effect on lipid accumulation, thus suggesting an uptake pathway alternative to TLR4. In this regard, LDL(−) upregulated the expression of the scavenger receptors CD36 and LOX-1, as well as several genes involved in triglyceride (TG) accumulation. The importance and novelty of the current study is that LDL(−), a physiologically modified LDL, exerted atherogenic effects in macrophages by promoting differentiation, inflammation, and triglyceride-enriched lipid droplets formation in THP1-CD14 macrophages, probably through different receptors.
Collapse
Affiliation(s)
- Núria Puig
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (N.P.); (L.M.); (L.N.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Building M, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Lara Montolio
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (N.P.); (L.M.); (L.N.)
| | - Pol Camps-Renom
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, and IIB-Sant Pau, 08041 Barcelona, Spain;
| | - Laia Navarra
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (N.P.); (L.M.); (L.N.)
| | - Francesc Jiménez-Altayó
- Departament of Pharmacology. Neuroscience Institute. Faculty of Medicine, UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain;
| | - Elena Jiménez-Xarrié
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, and IIB-Sant Pau, 08041 Barcelona, Spain;
- Correspondence: (E.J.-X.); (J.L.S.-Q.); (S.B.); Tel.: +34-93-553-7595 (S.B.)
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (N.P.); (L.M.); (L.N.)
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
- Correspondence: (E.J.-X.); (J.L.S.-Q.); (S.B.); Tel.: +34-93-553-7595 (S.B.)
| | - Sonia Benitez
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (N.P.); (L.M.); (L.N.)
- Correspondence: (E.J.-X.); (J.L.S.-Q.); (S.B.); Tel.: +34-93-553-7595 (S.B.)
| |
Collapse
|
19
|
Lee AS, Wang YC, Chang SS, Lo PH, Chang CM, Lu J, Burns AR, Chen CH, Kakino A, Sawamura T, Chang KC. Detection of a High Ratio of Soluble to Membrane-Bound LOX-1 in Aspirated Coronary Thrombi From Patients With ST-Segment-Elevation Myocardial Infarction. J Am Heart Assoc 2020; 9:e014008. [PMID: 31928155 PMCID: PMC7033847 DOI: 10.1161/jaha.119.014008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background The circulating level of soluble lectin‐like oxidized low‐density lipoprotein receptor‐1 (sLOX‐1) is a valuable biomarker of acute myocardial infarction (AMI). The most electronegative low‐density lipoprotein, L5, signals through LOX‐1 to trigger atherogenesis. We examined the characteristics of LOX‐1 and the role of L5 in aspirated coronary thrombi of AMI patients. Methods and Results Intracoronary thrombi were aspirated by performing interventional thrombosuction in patients with ST‐segment–elevation myocardial infarction (STEMI; n=32) or non–ST‐segment–elevation myocardial infarction (n=12). LOX‐1 level and the ratio of sLOX‐1 to membrane‐bound LOX‐1 were higher in thrombi of STEMI patients than in those of non–ST‐segment–elevation myocardial infarction patients. In all aspirated thrombi, LOX‐1 colocalized with apoB100. When we explored the role of L5 in AMI, deconvolution microscopy showed that particles of L5 but not L1 (the least electronegative low‐density lipoprotein) quickly formed aggregates prone to retention in thrombi. Treating human monocytic THP‐1 cells with L5 or L1 showed that L5 induced cellular adhesion and promoted the differentiation of monocytes into macrophages in a dose‐dependent manner. In a second cohort of AMI patients, the L5 percentage and plasma concentration of sLOX‐1 were higher in STEMI patients (n=33) than in non–ST‐segment–elevation myocardial infarction patients (n=25), and sLOX‐1 level positively correlated with L5 level in AMI patients. Conclusions The level of LOX‐1 and the ratio of sLOX‐1 to membrane‐bound LOX‐1 in aspirated thrombi, as well as the circulating level of sLOX‐1 were higher in STEMI patients than in non–ST‐segment–elevation myocardial infarction patients. L5 may play a role in releasing a high level of sLOX‐1 into the circulation of STEMI patients.
Collapse
Affiliation(s)
- An-Sheng Lee
- Department of Medicine Mackay Medical College New Taipei City Taiwan.,Cardiovascular Research Laboratory China Medical University Hospital Taichung Taiwan
| | - Yu-Chen Wang
- Cardiovascular Research Laboratory China Medical University Hospital Taichung Taiwan.,Division of Cardiovascular Medicine Asia University Hospital Taichung Taiwan.,Department of Biotechnology Asia University Taichung Taiwan.,Division of Cardiovascular Medicine China Medical University Hospital Taichung Taiwan
| | - Shih-Sheng Chang
- Division of Cardiovascular Medicine China Medical University Hospital Taichung Taiwan
| | - Ping-Hang Lo
- Division of Cardiovascular Medicine China Medical University Hospital Taichung Taiwan
| | - Chia-Ming Chang
- Cardiovascular Research Laboratory China Medical University Hospital Taichung Taiwan
| | - Jonathan Lu
- Vascular and Medicinal Research Texas Heart Institute Houston TX.,InVitro Cell Research LLC Englewood NJ
| | - Alan R Burns
- College of Optometry University of Houston Houston TX
| | - Chu-Huang Chen
- Vascular and Medicinal Research Texas Heart Institute Houston TX.,New York Heart Research Foundation Mineola NY
| | - Akemi Kakino
- Department of Life Innovation Institute for Biomedical Sciences Shinshu University Matsumoto Japan.,Department of Molecular Pathophysiology Shinshu University School of Medicine Matsumoto Japan
| | - Tatsuya Sawamura
- Department of Life Innovation Institute for Biomedical Sciences Shinshu University Matsumoto Japan.,Department of Molecular Pathophysiology Shinshu University School of Medicine Matsumoto Japan
| | - Kuan-Cheng Chang
- Cardiovascular Research Laboratory China Medical University Hospital Taichung Taiwan.,Division of Cardiovascular Medicine China Medical University Hospital Taichung Taiwan.,Graduate Institute of Biomedical Sciences China Medical University Taichung Taiwan
| |
Collapse
|
20
|
Familial Combined Hyperlipidemia (FCH) Patients with High Triglyceride Levels Present with Worse Lipoprotein Function Than FCH Patients with Isolated Hypercholesterolemia. Biomedicines 2020; 8:biomedicines8010006. [PMID: 31935793 PMCID: PMC7168323 DOI: 10.3390/biomedicines8010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Lipoprotein characteristics were analyzed in familial combined hyperlipidemia (FCH) patients before and after statin treatment. Twenty-six FCH patients were classified according to the presence (HTG group, n = 13) or absence (normotriglyceridemic (NTG) group, n = 13) of hypertriglyceridemia. Fifteen healthy subjects comprised the control group. Lipid profile, inflammation markers, and qualitative characteristics of lipoproteins were assessed. Both groups of FCH subjects showed high levels of plasma C-reactive protein (CRP), lipoprotein-associated phospholipase A2 (Lp-PLA2) activity and apolipoprotein J. Statins reverted the increased levels of Lp-PLA2 and CRP. Lipoprotein composition alterations detected in FCH subjects were much more frequent in the HTG group, leading to dysfunctional low-density lipoproteins (LDL) and high-density lipoproteins (HDL). In the HTG group, LDL was smaller, more susceptible to oxidation, and contained more electronegative LDL (LDL(-)) compared to the NTG and control groups. Regarding HDL, the HTG group had less Lp-PLA2 activity than the NTG and control groups. HDL from both FCH groups was less anti-inflammatory than HDL from the control group. Statins increased LDL size, decreased LDL(-), and lowered Lp-PLA2 in HDL from HTG. In summary, pro-atherogenic alterations were more frequent and severe in the HTG group. Statins improved some alterations, but many remained unchanged in HTG.
Collapse
|
21
|
Faulin TDES, Kazuma SM, Tripodi GL, Cavalcante MF, Wakasuqui F, Oliveira CLP, Degenhardt MFDS, Michaloski J, Giordano RJ, Ketelhuth DFJ, Abdalla DSP. Proinflammatory Action of a New Electronegative Low-Density Lipoprotein Epitope. Biomolecules 2019; 9:biom9080386. [PMID: 31434316 PMCID: PMC6723646 DOI: 10.3390/biom9080386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/03/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023] Open
Abstract
The electronegative low-density lipoprotein, LDL (-), is an endogenously modified LDL subfraction with cytotoxic and proinflammatory actions on endothelial cells, monocytes, and macrophages contributing to the progression of atherosclerosis. In this study, epitopes of LDL (-) were mapped using a phage display library of peptides and monoclonal antibodies reactive to this modified lipoprotein. Two different peptide libraries (X6 and CX8C for 6- and 8-amino acid-long peptides, respectively) were used in the mapping. Among all tested peptides, two circular peptides, P1A3 and P2C7, were selected based on their high affinities for the monoclonal antibodies. Small-angle X-ray scattering analysis confirmed their structures as circular rings. P1A3 or P2C7 were quickly internalized by bone marrow-derived murine macrophages as shown by confocal microscopy. P2C7 increased the expression of TNFα, IL-1 β and iNOS as well as the secretion of TNFα, CCL2, and nitric oxide by murine macrophages, similar to the responses induced by LDL (-), although less intense. In contrast, P1A3 did not show pro-inflammatory effects. We identified a mimetic epitope associated with LDL (-), the P2C7 circular peptide, that activates macrophages. Our data suggest that this conformational epitope represents an important danger-associated molecular pattern of LDL (-) that triggers proinflammatory responses.
Collapse
Affiliation(s)
- Tanize do Espirito Santo Faulin
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Soraya Megumi Kazuma
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Gustavo Luis Tripodi
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Marcela Frota Cavalcante
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Felipe Wakasuqui
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | | | | | - Jussara Michaloski
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
| | - Ricardo José Giordano
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil
| | - Daniel Francisco Jacon Ketelhuth
- Centre for Molecular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institute, 17164 Stockholm, Sweden
- Department of Cardiovascular and Renal Research, Institute for Molecular Medicine, University of Southern Denmark (SDU), 5000 Odense, Denmark
| | - Dulcineia Saes Parra Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| |
Collapse
|
22
|
Puig N, Estruch M, Jin L, Sanchez-Quesada JL, Benitez S. The Role of Distinctive Sphingolipids in the Inflammatory and Apoptotic Effects of Electronegative LDL on Monocytes. Biomolecules 2019; 9:biom9080300. [PMID: 31344975 PMCID: PMC6722802 DOI: 10.3390/biom9080300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 01/18/2023] Open
Abstract
Electronegative low-density lipoprotein (LDL(-)) is a minor LDL subfraction that is present in blood with inflammatory and apoptotic effects. We aimed to evaluate the role of sphingolipids ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) in the LDL(-)-induced effect on monocytes. Total LDL was subfractioned into native LDL and LDL(-) by anion-exchange chromatography and their sphingolipid content evaluated by mass spectrometry. LDL subfractions were incubated with monocytes in the presence or absence of enzyme inhibitors: chlorpromazine (CPZ), d-erythro-2-(N-myristoyl amino)-1-phenyl-1-propanol (MAPP), and N,N-dimethylsphingosine (DMS), which inhibit Cer, Sph, and S1P generation, respectively. After incubation, we evaluated cytokine release by enzyme-linked immunosorbent assay (ELISA) and apoptosis by flow cytometry. LDL(-) had an increased content in Cer and Sph compared to LDL(+). LDL(-)-induced cytokine release from cultured monocytes was inhibited by CPZ and MAPP, whereas DMS had no effect. LDL(-) promoted monocyte apoptosis, which was inhibited by CPZ, but increased with the addition of DMS. LDL enriched with Sph increased cytokine release in monocytes, and when enriched with Cer, reproduced both the apoptotic and inflammatory effects of LDL(-). These observations indicate that Cer content contributes to the inflammatory and apoptotic effects of LDL(-) on monocytes, whereas Sph plays a more important role in LDL(-)-induced inflammation, and S1P counteracts apoptosis.
Collapse
Affiliation(s)
- Núria Puig
- Cardiovascular Biochemistry. Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain. C/Sant Quinti 77-79, 08041 Barcelona, Spain
- Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine. Building M. Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Montserrat Estruch
- Cardiovascular Biochemistry. Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain. C/Sant Quinti 77-79, 08041 Barcelona, Spain
| | - Lei Jin
- Cardiovascular Biochemistry. Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain. C/Sant Quinti 77-79, 08041 Barcelona, Spain
| | - Jose Luis Sanchez-Quesada
- Cardiovascular Biochemistry. Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain. C/Sant Quinti 77-79, 08041 Barcelona, Spain
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
| | - Sonia Benitez
- Cardiovascular Biochemistry. Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain. C/Sant Quinti 77-79, 08041 Barcelona, Spain.
| |
Collapse
|
23
|
Rivas-Urbina A, Rull A, Ordóñez-Llanos J, Sánchez-Quesada JL. Electronegative LDL: An Active Player in Atherogenesis or a By- Product of Atherosclerosis? Curr Med Chem 2019; 26:1665-1679. [PMID: 29600751 DOI: 10.2174/0929867325666180330093953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/12/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022]
Abstract
Low-density lipoproteins (LDLs) are the major plasma carriers of cholesterol. However, LDL particles must undergo various molecular modifications to promote the development of atherosclerotic lesions. Modified LDL can be generated by different mechanisms, but as a common trait, show an increased electronegative charge of the LDL particle. A subfraction of LDL with increased electronegative charge (LDL(-)), which can be isolated from blood, exhibits several pro-atherogenic characteristics. LDL(-) is heterogeneous, due to its multiple origins but is strongly related to the development of atherosclerosis. Nevertheless, the implication of LDL(-) in a broad array of pathologic conditions is complex and in some cases anti-atherogenic LDL(-) properties have been reported. In fact, several molecular modifications generating LDL(-) have been widely studied, but it remains unknown as to whether these different mechanisms are specific or common to different pathological disorders. In this review, we attempt to address these issues examining the most recent findings on the biology of LDL(-) and discussing the relationship between this LDL subfraction and the development of different diseases with increased cardiovascular risk. Finally, the review highlights the importance of minor apolipoproteins associated with LDL(-) which would play a crucial role in the different properties displayed by these modified LDL particles.
Collapse
Affiliation(s)
- Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - Anna Rull
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Hospital Universitari Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jordi Ordóñez-Llanos
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBERDEM. Institute of Health Carlos III, Madrid 28029, Spain
| |
Collapse
|
24
|
Afonso CB, Spickett CM. Lipoproteins as targets and markers of lipoxidation. Redox Biol 2018; 23:101066. [PMID: 30579928 PMCID: PMC6859580 DOI: 10.1016/j.redox.2018.101066] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 12/24/2022] Open
Abstract
Lipoproteins are essential systemic lipid transport particles, composed of apolipoproteins embedded in a phospholipid and cholesterol monolayer surrounding a cargo of diverse lipid species. Many of the lipids present are susceptible to oxidative damage by lipid peroxidation, giving rise to the formation of reactive lipid peroxidation products (rLPPs). In view of the close proximity of the protein and lipid moieties within lipoproteins, the probability of adduct formation between rLPPs and amino acid residues of the proteins, a process called lipoxidation, is high. There has been interest for many years in the biological effects of such modifications, but the field has been limited to some extent by the availability of methods to determine the sites and exact nature of such modification. More recently, the availability of a wide range of antibodies to lipoxidation products, as well as advances in analytical techniques such as liquid chromatography tandem mass spectrometry (LC-MSMS), have increased our knowledge substantially. While most work has focused on LDL, oxidation of which has long been associated with pro-inflammatory responses and atherosclerosis, some studies on HDL, VLDL and Lipoprotein(a) have also been reported. As the broader topic of LDL oxidation has been reviewed previously, this review focuses on lipoxidative modifications of lipoproteins, from the historical background through to recent advances in the field. We consider the main methods of analysis for detecting rLPP adducts on apolipoproteins, including their advantages and disadvantages, as well as the biological effects of lipoxidized lipoproteins and their potential roles in diseases. Lipoproteins can be modified by reactive Lipid Peroxidation Products (rLPPs). Lipoprotein lipoxidation is known to occur in several inflammatory diseases. Biochemical, immunochemical and mass spectrometry methods can detect rLPP adducts. Due to higher information output, MS can facilitate localization of modifications. Antibodies against some rLPPs have been used to identify lipoxidation in vivo.
Collapse
Affiliation(s)
- Catarina B Afonso
- School of Life and Health Sciences, Aston University, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
25
|
Ligi D, Benitez S, Croce L, Rivas-Urbina A, Puig N, Ordóñez-Llanos J, Mannello F, Sanchez-Quesada JL. Electronegative LDL induces MMP-9 and TIMP-1 release in monocytes through CD14 activation: Inhibitory effect of glycosaminoglycan sulodexide. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3559-3567. [PMID: 30254012 DOI: 10.1016/j.bbadis.2018.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Electronegative LDL (LDL(-)) is involved in atherosclerosis through the activation of the TLR4/CD14 inflammatory pathway in monocytes. Matrix metalloproteinases (MMP) and their inhibitors (tissue inhibitors of metalloproteinase [TIMP]) are also crucially involved in atherosclerosis, but their modulation by LDL(-) has never been investigated. The aim of this study was to examine the ability of LDL(-) to release MMPs and TIMPs in human monocytes and to determine whether sulodexide (SDX), a glycosaminoglycan-based drug, was able to affect their secretion. APPROACH AND RESULTS Native LDL (LDL(+)) and LDL(-) separated by anion-exchange chromatography were added to THP1-CD14 monocytes in the presence or absence of SDX for 24 h. A panel of 9 MMPs and 4 TIMPs was analyzed in cell supernatants with multiplex immunoassays. The gelatinolytic activity of MMP-9 was assessed by gelatin zymography. LDL(-) stimulated the release of MMP-9 (13-fold) and TIMP-1 (4-fold) in THP1-CD14 monocytes, as well as the gelatinolytic activity of MMP-9. Co-incubation of monocytes with LDL(-) and SDX for 24 h significantly reduced both the release of MMP-9 and TIMP-1 and gelatinase activity. In THP1 cells not expressing CD14, no effect of LDL(-) on MMP-9 or TIMP-1 release was observed. The uptake of DiI-labeled LDL(-) was higher than that of DiI-LDL(+) in THP1-CD14 but not in THP1 cells. This increase was inhibited by SDX. Experiments in microtiter wells coated with SDX demonstrated a specific interaction of LDL(-) with SDX. CONCLUSIONS LDL(-) induced the release of MMP-9 and TIMP-1 in monocytes through CD14. SDX affects the ability of LDL(-) to promote TIMP-1 and MMP-9 release by its interaction with LDL(-).
Collapse
Affiliation(s)
- Daniela Ligi
- Department of Biomolecular Sciences, Section of Clinical Biochemistry and Molecular Genetics, University Carlo Bo Urbino, Italy
| | - Sonia Benitez
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain; Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB). Cerdanyola del Vallès, Spain
| | - Lidia Croce
- Department of Biomolecular Sciences, Section of Clinical Biochemistry and Molecular Genetics, University Carlo Bo Urbino, Italy
| | - Andrea Rivas-Urbina
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain; Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB). Cerdanyola del Vallès, Spain
| | - Núria Puig
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain; Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB). Cerdanyola del Vallès, Spain
| | - Jordi Ordóñez-Llanos
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain; Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB). Cerdanyola del Vallès, Spain
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry and Molecular Genetics, University Carlo Bo Urbino, Italy.
| | - Jose Luis Sanchez-Quesada
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM).
| |
Collapse
|
26
|
Chu CS, Chan HC, Tsai MH, Stancel N, Lee HC, Cheng KH, Tung YC, Chan HC, Wang CY, Shin SJ, Lai WT, Yang CY, Dixon RA, Chen CH, Ke LY. Range of L5 LDL levels in healthy adults and L5's predictive power in patients with hyperlipidemia or coronary artery disease. Sci Rep 2018; 8:11866. [PMID: 30089847 PMCID: PMC6082876 DOI: 10.1038/s41598-018-30243-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/24/2018] [Indexed: 12/24/2022] Open
Abstract
Electronegative L5 low-density lipoprotein (LDL) level may be a useful biomarker for predicting cardiovascular disease. We determined the range of plasma L5 levels in healthy adults (n = 35) and examined the power of L5 levels to differentiate patients with coronary artery disease (CAD; n = 40) or patients with hyperlipidemia (HLP) without evidence of CAD (n = 35) from healthy adults. The percent L5 in total LDL (L5%) was quantified by using fast-protein liquid chromatography with an anion-exchange column. Receiver operating characteristic curve analysis was performed to determine cut-off values for L5 levels. The mean L5% and plasma concentration of L5 (ie, [L5]) were significantly higher in patients with HLP or CAD than in healthy adults (P < 0.001). The ranges of L5% and [L5] in healthy adults were determined to be <1.6% and <1.7 mg/dL, respectively. In individuals with L5% >1.6%, the odds ratio was 9.636 for HLP or CAD. In individuals with [L5] >1.7 mg/dL, the odds ratio was 17.684 for HLP or CAD. The power of L5% or [L5] to differentiate patients with HLP or CAD from healthy adults was superior to that of the LDL/high-density lipoprotein ratio. The ranges of L5% and [L5] in healthy adults determined here may be clinically useful in preventing and treating cardiovascular disease.
Collapse
Affiliation(s)
- Chih-Sheng Chu
- Lipid Science and Aging Research Center, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan.,Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan.,Department of Internal Medicine, KMU Hospital, KMU, Kaohsiung, Taiwan
| | - Hua-Chen Chan
- Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan.,Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA
| | - Ming-Hsien Tsai
- Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan
| | - Nicole Stancel
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX, USA
| | - Hsiang-Chun Lee
- Lipid Science and Aging Research Center, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan.,Department of Internal Medicine, KMU Hospital, KMU, Kaohsiung, Taiwan
| | - Kai-Hung Cheng
- Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan.,Department of Internal Medicine, KMU Hospital, KMU, Kaohsiung, Taiwan
| | - Yi-Ching Tung
- Department of Public Health and Environmental Medicine, KMU, Kaohsiung, Taiwan
| | - Hsiu-Chuan Chan
- Lipid Science and Aging Research Center, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan
| | - Chung-Ya Wang
- Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan
| | - Shyi-Jang Shin
- Lipid Science and Aging Research Center, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan.,Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan.,Department of Internal Medicine, KMU Hospital, KMU, Kaohsiung, Taiwan
| | - Wen-Ter Lai
- Lipid Science and Aging Research Center, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan.,Department of Internal Medicine, KMU Hospital, KMU, Kaohsiung, Taiwan
| | - Chao-Yuh Yang
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Richard A Dixon
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX, USA
| | - Chu-Huang Chen
- Lipid Science and Aging Research Center, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan. .,Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan. .,Department of Internal Medicine, KMU Hospital, KMU, Kaohsiung, Taiwan. .,New York Heart Research Foundation, Mineola, NY, USA.
| | - Liang-Yin Ke
- Lipid Science and Aging Research Center, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan. .,Center for Lipid Biosciences, KMU Hospital, KMU, Kaohsiung, Taiwan. .,Department of Internal Medicine, KMU Hospital, KMU, Kaohsiung, Taiwan. .,Department of Medical Laboratory Science and Biotechnology, KMU, Kaohsiung, Taiwan.
| |
Collapse
|
27
|
Estruch M, Miñambres I, Sanchez-Quesada JL, Soler M, Pérez A, Ordoñez-Llanos J, Benitez S. Increased inflammatory effect of electronegative LDL and decreased protection by HDL in type 2 diabetic patients. Atherosclerosis 2017; 265:292-298. [PMID: 28734591 DOI: 10.1016/j.atherosclerosis.2017.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Type 2 diabetic patients have an increased proportion of electronegative low-density lipoprotein (LDL(-)), an inflammatory LDL subfraction present in blood, and dysfunctional high-density lipoprotein (HDL). We aimed at examining the inflammatory effect of LDL(-) on monocytes and the counteracting effect of HDL in the context of type 2 diabetes. METHODS This was a cross-sectional study in which the population comprised 3 groups (n = 12 in each group): type 2 diabetic patients with good glycaemic control (GC-T2DM patients), type 2 diabetic patients with poor glycaemic control (PC-T2DM), and a control group. Total LDL, HDL, and monocytes were isolated from plasma of these subjects. LDL(-) was isolated from total LDL by anion-exchange chromatography. LDL(-) from the three groups of subjects was added to monocytes in the presence or absence of HDL, and cytokines released by monocytes were quantified by ELISA. RESULTS LDL(-) proportion and plasma inflammatory markers were increased in PC-T2DM patients. LDL(-) from PC-T2DM patients induced the highest IL1β, IL6, and IL10 release in monocytes compared to LDL(-) from GC-T2DM and healthy subjects, and presented the highest content of non-esterified fatty acids (NEFA). In turn, HDL from PC-T2DM patients showed the lowest ability to inhibit LDL(-)-induced cytokine release in parallel to an impaired ability to decrease NEFA content in LDL(-). CONCLUSIONS Our findings show an imbalance in the pro- and anti-inflammatory effects of lipoproteins from T2DM patients, particularly in PC-T2DM.
Collapse
Affiliation(s)
- Montserrat Estruch
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain
| | - Inka Miñambres
- Endocrinology and Nutrition Department, Hospital de la Santa Creu i Sant Pau Barcelona, C/Sant Quintí 89, 08026 Barcelona, Spain
| | - Jose Luis Sanchez-Quesada
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain; Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine, Building M. Cerdanyola del Vallès, Spain
| | - Marta Soler
- Flow Cytometry Platform, Biomedical Research Institute Sant Pau (IIB-Sant Pau), C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain
| | - Antonio Pérez
- Endocrinology and Nutrition Department, Hospital de la Santa Creu i Sant Pau Barcelona, C/Sant Quintí 89, 08026 Barcelona, Spain
| | - Jordi Ordoñez-Llanos
- Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine, Building M. Cerdanyola del Vallès, Spain; Biochemistry Department, Hospital de la Santa Creu i Sant Pau Barcelona, C/Sant Quintí 89, 08026 Barcelona, Spain
| | - Sonia Benitez
- Cardiovascular Biochemistry, Biomedical Research Institute Sant Pau (IIB-Sant Pau), C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain; Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine, Building M. Cerdanyola del Vallès, Spain.
| |
Collapse
|
28
|
Yu LE, Lai CL, Lee CT, Wang JY. Highly electronegative low-density lipoprotein L5 evokes microglial activation and creates a neuroinflammatory stress via Toll-like receptor 4 signaling. J Neurochem 2017; 142:231-245. [PMID: 28444734 DOI: 10.1111/jnc.14053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/30/2017] [Accepted: 04/19/2017] [Indexed: 12/23/2022]
Abstract
Atherogenic risk factors, such as hypercholesterolemia, are associated with increased risk of neurodegeneration, especially Alzheimer's dementia. Human plasma electronegative low-density lipoprotein [LDL(-)], especially L5, may serve as an important contributing factor. L5 promoting an inflammatory action in atherosclerosis has been extensively studied. However, the role of L5 in inducing neuroinflammation remains unknown. Here, we examined the impact of L5 on immune activation and cell viability in cultured BV-2 microglia. BV-2 cells treated with lipopolysaccharide or human LDLs (L1, L5, or oxLDL) were subjected to molecular/biochemical assays for measuring microglial activation, levels of inflammatory factors, and cell survival. A transwell BV-2/N2a co-culture was used to assess N2a cell viability following BV-2 cell exposure to L5. We found that L5 enables the activation of microglia and elicits an inflammatory response, as evidenced by increased oxygen/nitrogen free radicals (nitric oxide, reactive oxygen species, and peroxides), elevated tumor necrosis factor-α levels, decreased basal interleukin-10 levels, and augmented production of pro-inflammatory proteins (inducible nitric oxide synthase and cyclooxygenase-2). L5 also triggered BV-2 cell death primarily via apoptosis. These effects were markedly disrupted by the application of signaling pathway inhibitors, thus demonstrating that L5 interacts with Toll-like receptor 4 to modulate multiple pathways, including MAPKs, PI3K/Akt, and NF-κB. Decreased N2a cell viability in a transwell co-culture was mainly ascribed to L5-induced BV-2 cell activation. Together, our data suggest that L5 creates a neuroinflammatory stress via microglial Toll-like receptor 4, thereby leading to the death of BV-2 microglia and coexistent N2a cells. Atherogenic L5 possibly contributes to neuroinflammation-related neurodegeneration.
Collapse
Affiliation(s)
- Liang-En Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiou-Lian Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Tien Lee
- Department of Nursing, Hsin-Sheng College of Medical Care and Management, Taoyuan, Taiwan
| | - Jiz-Yuh Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Sukhorukov VN, Karagodin VP, Orekhov AN. [Atherogenic modification of low-density lipoproteins]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:391-402. [PMID: 27562992 DOI: 10.18097/pbmc20166204391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the first manifestations of atherosclerosis is accumulation of extra- and intracellular cholesterol esters in the arterial intima. Formation of foam cells is considered as a trigger in the pathogenesis of atherosclerosis. Low density lipoprotein (LDL) circulating in human blood is the source of lipids accumulated in the arterial walls. This review considered features and role in atherogenesis different modified forms of LDL: oxidized, small dense, electronegative and especially desialylated LDL. Desialylated LDL of human blood plasma is capable to induce lipid accumulation in cultured cells and it is atherogenic. LDL possesses numerous alterations of protein, carbohydrate and lipid moieties and therefore can be termed multiple-modified LDL. Multiple modification of LDL occurs in human blood plasma and represents a cascade of successive changes in the lipoprotein particle: desialylation, loss of lipids, reduction in the particle size, increase of surface electronegative charge, etc. In addition to intracellular lipid accumulation, stimulatory effects of naturally occurring multiple-modified LDL on other processes involved in the development of atherosclerotic lesions, namely cell proliferation and fibrosis, were shown.
Collapse
Affiliation(s)
- V N Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - V P Karagodin
- Plekhanov Russian University of Economics, Moscow, Russia
| | - A N Orekhov
- Institute of General Pathology and Pathophysiology, Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, PO Box #21, Moscow, Russia
| |
Collapse
|
30
|
Yang TC, Chang PY, Lu SC. L5-LDL from ST-elevation myocardial infarction patients induces IL-1β production via LOX-1 and NLRP3 inflammasome activation in macrophages. Am J Physiol Heart Circ Physiol 2016; 312:H265-H274. [PMID: 27864235 DOI: 10.1152/ajpheart.00509.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/28/2016] [Accepted: 11/11/2016] [Indexed: 12/24/2022]
Abstract
L5-LDL, the most electronegative LDL associated with major cardiovascular risks, significantly rises in patients with ST-segment elevation myocardial infarction (STEMI). The inflammatory nature of atherosclerotic vascular diseases has prompted us to investigate whether L5-LDL induces the production of inflammatory cytokines, especially vascular ischemia-related interleukin (IL)-1β, in the pathogenesis of STEMI. Clinical data showed that plasma levels of L5-LDL and IL-1β were higher in the STEMI patients than in the controls (P < 0.05). In THP-1-derived human macrophages, L5-LDL significantly increased the levels of both IL-1β and cleaved caspase-1, indicating the activation of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasomes by L5-LDL. Knockdown of NLRP3 and its adaptor protein apoptosis-associated speck-like protein containing a CARD (ASC) resulted in decreased L5-LDL-induced IL-1β. Furthermore, knock down of the lectin-type oxidized LDL receptor (LOX-1) in THP-1 cells attenuated L5-LDL-induced activation of NF-κB and caspase-1, leading to subsequent inhibition of IL-1β in macrophages. Furthermore, blockade LOX-1 with neutralizing antibody also inhibited L5-LDL-induced IL-1β in human peripheral blood mononuclear cell-derived macrophages. In conclusion, L5-LDL induces IL-1β production in macrophages by activation of NF-κB and caspase-1 through the LOX-1-dependent pathway. This study represents the evidence linking L5-LDL and the inflammatory cytokine IL-1β in STEMI, and identifies L5-LDL as a novel therapeutic target in acute myocardial infarction. NEW & NOTEWORTHY This study represents the evidence linking L5-LDL and the inflammatory cytokine IL-1β in ST-segment elevation myocardial infarction (STEMI). We elucidate the molecular mechanism underlying L5-LDL-induced production of IL-1β in macrophages. The results showed that L5-LDL induced activation of caspase-1 and NF-κB through the lectin-type oxidized LDL receptor (LOX-1)-dependent pathway, leading to the production of IL-1β.
Collapse
Affiliation(s)
- Tzu-Ching Yang
- Department of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan; and
| | - Po-Yuan Chang
- Cardiovasccular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Shao-Chun Lu
- Department of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan; and
| |
Collapse
|
31
|
Antioxidant and Antihyperlipidemic Effects of Campomanesia adamantium O. Berg Root. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7910340. [PMID: 27493705 PMCID: PMC4963595 DOI: 10.1155/2016/7910340] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/21/2016] [Accepted: 05/30/2016] [Indexed: 01/08/2023]
Abstract
Campomanesia adamantium O. Berg, popularly known as guavira, has been used in Brazilian traditional medicine for reduction of serum lipid. The present study was carried out to investigate the antioxidant and antihyperlipidemic effects of Campomanesia adamantium root aqueous extract (ExCA). Phenolic compounds were quantified in the ExCA and gallic and ellagic acids were identified by HPLC. ExCA showed efficiency in 2,2-diphenyl-1-picrylhydrazyl free radical scavenging, with IC50 similar to butylhydroxytoluene control, and protected the erythrocytes against lipid peroxidation induced by 2,2′-azobis(2-methylpropionamidine) dihydrochloride, reducing generated malondialdehyde. Hyperlipidemic Wistar rats treated daily by gavage during eight weeks with ExCA (200 mg/kg of body weight) showed reduced serum level of total cholesterol and triglycerides, similar to normolipidemic rats and hyperlipidemic rats treated with simvastatin (30 mg/kg of body weight) and ciprofibrate (2 mg/kg of body weight). Moreover, the treatment with ExCA also decreased malondialdehyde serum level in the hyperlipidemic rats. The body weight and organ mass were unmodified by ExCA in hyperlipidemic rats, except an increase of liver mass; however, the hepatic enzymes, alanine aminotransferase and aspartate aminotransferase, were unchanged. Together, these results confirm the potential value of Campomanesia adamantium root for lowering lipid peroxidation and lipid serum level, improving risk factors for cardiometabolic diseases development.
Collapse
|
32
|
Estruch M, Sanchez-Quesada JL, Ordoñez-Llanos J, Benitez S. Inflammatory intracellular pathways activated by electronegative LDL in monocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:963-969. [PMID: 27235719 DOI: 10.1016/j.bbalip.2016.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 05/10/2016] [Accepted: 05/23/2016] [Indexed: 12/12/2022]
Abstract
AIMS Electronegative LDL (LDL(-)) is a plasma LDL subfraction that induces cytokine release in monocytes through toll-like receptor 4 (TLR4) activation. However, the intracellular pathways induced by LDL(-) downstream TLR4 activation are unknown. We aimed to identify the pathways activated by LDL(-) leading to cytokine release in monocytes. METHODS AND RESULTS We determined LDL(-)-induced activation of several intracellular kinases in protein extracts from monocytes using a multikinase ELISA array. LDL(-) induced higher p38 mitogen-activated protein kinase (MAPK) phosphorylation than native LDL. This was corroborated by a specific cell-based assay and it was dependent on TLR4 and phosphoinositide 3-kinase (PI3k)/Akt pathway. P38 MAPK activation was involved in cytokine release promoted by LDL(-). A specific ELISA showed that LDL(-) activated cAMP response-element binding (CREB) in a p38 MAPK dependent manner. P38 MAPK was also involved in the nuclear factor kappa-B (NF-kB) and activating protein-1 (AP-1) activation by LDL(-). We found that NF-kB, AP-1 and CREB inhibitors decreased LDL(-)-induced cytokine release, mainly on MCP1, IL6 and IL10 release, respectively. CONCLUSIONS LDL(-) promotes p38 MAPK phosphorylation through TLR4 and PI3k/Akt pathways. Phosphorylation of p38 MAPK is involved in NF-kB, AP-1 and CREB activation, leading to LDL(-)-induced cytokine release in monocytes.
Collapse
Affiliation(s)
- Montserrat Estruch
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain.
| | - Jose Luis Sanchez-Quesada
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain; Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine, Building M. Cerdanyola del Vallès, Spain.
| | - Jordi Ordoñez-Llanos
- Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine, Building M. Cerdanyola del Vallès, Spain; Biochemistry Department, Hospital de la Santa Creu i Sant Pau Barcelona, C/Sant Quintí 89, 08026 Barcelona, Spain.
| | - Sonia Benitez
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain, C/Sant Antoni M. Claret 167, 08025 Barcelona, Spain; Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine, Building M. Cerdanyola del Vallès, Spain.
| |
Collapse
|
33
|
Thermal stability of human plasma electronegative low-density lipoprotein: A paradoxical behavior of low-density lipoprotein aggregation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1015-1024. [PMID: 27233433 DOI: 10.1016/j.bbalip.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/08/2016] [Accepted: 05/21/2016] [Indexed: 12/20/2022]
Abstract
Low-density lipoprotein (LDL) aggregation is central in triggering atherogenesis. A minor fraction of electronegative plasma LDL, termed LDL(-), plays a special role in atherogenesis. To better understand this role, we analyzed the kinetics of aggregation, fusion and disintegration of human LDL and its fractions, LDL(+) and LDL(-). Thermal denaturation of LDL was monitored by spectroscopy and electron microscopy. Initially, LDL(-) aggregated and fused faster than LDL(+), but later the order reversed. Most LDL(+) disintegrated and precipitated upon prolonged heating. In contrast, LDL(-) partially retained lipoprotein morphology and formed soluble aggregates. Biochemical analysis of all fractions showed no significant degradation of major lipids, mild phospholipid oxidation, and an increase in non-esterified fatty acid (NEFA) upon thermal denaturation. The main baseline difference between LDL subfractions was higher content of NEFA in LDL(-). Since NEFA promote lipoprotein fusion, increased NEFA content can explain rapid initial aggregation and fusion of LDL(-) but not its resistance to extensive disintegration. Partial hydrolysis of apoB upon heating was similar in LDL subfractions, suggesting that minor proteins importantly modulate LDL disintegration. Unlike LDL(+), LDL(-) contains small amounts of apoA-I and apoJ. Addition of exogenous apoA-I to LDL(+) hampered lipoprotein aggregation, fusion and precipitation, while depletion of endogenous apoJ had an opposite effect. Therefore, the initial rapid aggregation of LDL(-) is apparently counterbalanced by the stabilizing effects of minor proteins such as apoA-I and apoJ. These results help identify key determinants for LDL aggregation, fusion and coalescence into lipid droplets in vivo.
Collapse
|
34
|
Lai YS, Yang TC, Chang PY, Chang SF, Ho SL, Chen HL, Lu SC. Electronegative LDL is linked to high-fat, high-cholesterol diet–induced nonalcoholic steatohepatitis in hamsters. J Nutr Biochem 2016; 30:44-52. [DOI: 10.1016/j.jnutbio.2015.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
|
35
|
Effects of proanthocyanidin on oxidative stress biomarkers and adipokines in army cadets: a placebo-controlled, double-blind study. Eur J Nutr 2015; 56:893-900. [PMID: 26704712 DOI: 10.1007/s00394-015-1137-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 12/11/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE The relatively recent advent of polyphenol supplement for exercise studies has been tested in a variety of forms and doses. However, the dose-response on adipokines and oxidative stress biomarker effect remains unknown. The aim of the present study was to assess the effect of intense, long-duration (48-h) exercise, and a single dose of proanthocyanidin, on plasma leptin, adiponectin, and electronegative low-density lipoprotein (LDL(-)) concentrations. METHODS Fifty-four healthy male army cadets (22 ± 2 years) participated in a double-blind, randomized, placebo-controlled study and were distributed between control (CG; n = 27) and supplemented groups (SG; n = 27). Immediately before the start of the exercise, both CG and SG groups received a capsule containing starch (200 mg) or proanthocyanidin (dry Vitis vinifera extract, 200 mg), respectively. Following a 12-h fasting period, the plasma adiponectin, leptin, and LDL(-) concentrations were measured prior to the start of the exercise after 24 and 48 h of military training, and after 24 h of rest. The effects of the proanthocyanidin (supplement), exercise (time), and their interaction were investigated using factorial two-way ANOVA. RESULTS Plasma leptin concentration was only influenced by exercise (p = 0.001). Plasma adiponectin concentration was influenced by exercise (p = 0.037), and by the exercise x supplement interaction (p = 0.033). LDL(-) was influenced by the supplement (p = 0.001), exercise (p = 0.001), and their interaction (p = 0.001). CONCLUSIONS A single dose of proanthocyanidin (200 mg) was able to reduce LDL(-) concentration and increase plasma adiponectin concentration after 24 h of rest in SG group, indicating its potential protective action.
Collapse
|
36
|
Stancel N, Chen CC, Ke LY, Chu CS, Lu J, Sawamura T, Chen CH. Interplay between CRP, Atherogenic LDL, and LOX-1 and Its Potential Role in the Pathogenesis of Atherosclerosis. Clin Chem 2015; 62:320-7. [PMID: 26607724 DOI: 10.1373/clinchem.2015.243923] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/30/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Studies have shown that the classic acute-phase protein C-reactive protein (CRP) has proinflammatory effects on vascular cells and may play a causal role in the pathogenesis of coronary artery disease. A growing body of evidence has suggested that interplay between CRP, lectin-like oxidized LDL receptor-1 (LOX-1), and atherogenic LDL may underlie the mechanism of endothelial dysfunction that leads to atherosclerosis. CONTENT We review the biochemical evidence for an association of CRP, LOX-1, and either oxidized LDL (OxLDL) or electronegative L5 LDL with the pathogenesis of coronary artery disease. Artificially oxidized OxLDL has been studied extensively for its role in atherogenesis, as has electronegative L5 LDL, which is present at increased levels in patients with increased cardiovascular risks. OxLDL and L5 have been shown to stimulate human aortic endothelial cells to produce CRP, indicating that CRP is synthesized locally in the endothelium. The ligand-binding face (B-face) of CRP has been shown to bind the LOX-1 scavenger receptor and increase LOX-1 expression in endothelial cells, thereby promoting the uptake of OxLDL or L5 by LOX-1 into endothelial cells to induce endothelial dysfunction. SUMMARY CRP and LOX-1 may form a positive feedback loop with OxLDL or L5 in atherogenesis, whereby increased levels of atherogenic LDL in patients with cardiovascular risks induce endothelial cells to express CRP, which may in turn increase the expression of LOX-1 to promote the uptake of atherogenic LDL into endothelial cells. Further research is needed to confirm a causal role for CRP in atherogenesis.
Collapse
Affiliation(s)
- Nicole Stancel
- Department of Vascular and Medicinal Research, Texas Heart Institute, Houston, TX
| | - Chih-Chieh Chen
- Center for Lipid Biosciences, Kaohsiung Medical University (KMU) Hospital, KMU, Kaohsiung, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Liang-Yin Ke
- Center for Lipid Biosciences, Kaohsiung Medical University (KMU) Hospital, KMU, Kaohsiung, Taiwan; Lipid Science and Aging Research Center, KMU, Kaohsiung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, KMU, Kaohsiung, Taiwan
| | - Chih-Sheng Chu
- Center for Lipid Biosciences, Kaohsiung Medical University (KMU) Hospital, KMU, Kaohsiung, Taiwan; Department of Internal Medicine, KMU Hospital, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, KMU, Kaohsiung, Taiwan
| | - Jonathan Lu
- Department of Vascular and Medicinal Research, Texas Heart Institute, Houston, TX
| | - Tatsuya Sawamura
- Department of Physiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan;
| | - Chu-Huang Chen
- Department of Vascular and Medicinal Research, Texas Heart Institute, Houston, TX; Center for Lipid Biosciences, Kaohsiung Medical University (KMU) Hospital, KMU, Kaohsiung, Taiwan; Lipid Science and Aging Research Center, KMU, Kaohsiung, Taiwan; Cardiovascular Research Center, China Medical University (CMU) Hospital, CMU, Taichung, Taiwan; Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX; Current affiliation: New York Heart Research Foundation, Mineola, NY.
| |
Collapse
|
37
|
Estruch M, Rajamäki K, Sanchez-Quesada JL, Kovanen PT, Öörni K, Benitez S, Ordoñez-Llanos J. Electronegative LDL induces priming and inflammasome activation leading to IL-1β release in human monocytes and macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1442-9. [PMID: 26327597 DOI: 10.1016/j.bbalip.2015.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/05/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Electronegative LDL (LDL(−)), a modified LDL fraction found in blood, induces the release of inflammatory mediators in endothelial cells and leukocytes. However, the inflammatory pathways activated by LDL(−) have not been fully defined. We aim to study whether LDL(−) induced release of the first-wave proinflammatory IL-1β in monocytes and monocyte-derived macrophages (MDM) and the mechanisms involved. METHODS LDL(−) was isolated from total LDL by anion exchange chromatography. Monocytes and MDM were isolated from healthy donors and stimulated with LDL(+) and LDL(−) (100 mg apoB/L). RESULTS In monocytes, LDL(−) promoted IL-1β release in a time-dependent manner, obtaining at 20 h-incubation the double of IL-1β release induced by LDL(−) than by native LDL. LDL(−)-induced IL-1β release involved activation of the CD14-TLR4 receptor complex. LDL(−) induced priming, the first step of IL-1β release, since it increased the transcription of pro-IL-1β (8-fold) and NLRP3 (3-fold) compared to native LDL. Several findings show that LDL(−) induced inflammasome activation, the second step necessary for IL-1β release. Preincubation of monocytes with K+ channel inhibitors decreased LDL(−)-induced IL-1β release. LDL(−) induced formation of the NLRP3-ASC complex. LDL(−) triggered 2-fold caspase-1 activation compared to native LDL and IL-1β release was strongly diminished in the presence of the caspase-1 inhibitor Z-YVAD. In MDM, LDL(−) promoted IL-1β release, which was also associated with caspase-1 activation. CONCLUSIONS LDL(−) promotes release of biologically active IL-1β in monocytes and MDM by induction of the two steps involved: priming and NLRP3 inflammasome activation. SIGNIFICANCE By IL-1β release, LDL(−) could regulate inflammation in atherosclerosis.
Collapse
Affiliation(s)
- M Estruch
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona (Spain). C/Sant Antoni M. Claret, 167 08025 Barcelona, Spain.
| | - K Rajamäki
- Wihuri Research Institute (WRI). Haartmaninkatu, 8 FI-00290 Helsinki, Finland.
| | - J L Sanchez-Quesada
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona (Spain). C/Sant Antoni M. Claret, 167 08025 Barcelona, Spain; Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine, Building M. Cerdanyola del Vallès, Spain.
| | - P T Kovanen
- Wihuri Research Institute (WRI). Haartmaninkatu, 8 FI-00290 Helsinki, Finland.
| | - K Öörni
- Wihuri Research Institute (WRI). Haartmaninkatu, 8 FI-00290 Helsinki, Finland.
| | - S Benitez
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona (Spain). C/Sant Antoni M. Claret, 167 08025 Barcelona, Spain; Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine, Building M. Cerdanyola del Vallès, Spain.
| | - J Ordoñez-Llanos
- Molecular Biology and Biochemistry Department, Universitat Autònoma de Barcelona (UAB) Faculty of Medicine, Building M. Cerdanyola del Vallès, Spain; Biochemistry Department. Hospital de la Santa Creu i Sant Pau Barcelona. C/Sant Quintí, 89 08026, Barcelona, Spain.
| |
Collapse
|
38
|
Association of oxidative stress biomarkers with adiposity and clinical staging in women with breast cancer. Eur J Clin Nutr 2015; 69:1256-61. [PMID: 26039316 DOI: 10.1038/ejcn.2015.84] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/11/2015] [Accepted: 04/19/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND/OBJECTIVES Breast cancer is a disease characterised by both oxidative reactions and inflammation. However, few studies have focused on the oxidative and inflammatory biomarkers. The aim of the present study was to evaluate the association between oxidative stress markers and adiposity and clinical staging, as well as the association between the oxidative and the antioxidant biomarkers of women with breast cancer. SUBJECTS/METHODS A total of 135 cases of breast cancer occurring in 2011 and 2012 were assessed. After exclusions, 101 pre- and post-menopausal women with clinical staging I to IV were eligible to participate in the study. The anthropometric evaluation was performed by collecting data on waist circumference, body mass index and body composition. The socioeconomic and clinical profiles were determined using a standard questionnaire. For the oxidative biomarkers, thiobarbituric acid reactive substances (TBARS), oxidative DNA damage (8-hydroxy-2-deoxyguanosine (8-OHdG)), low-density lipoprotein(-) (LDL(-)), autoantibody anti-LDL(-) and liposoluble antioxidants (α-tocopherol, retinol and β-carotene) were analysed. The data were analysed using differences in the mean values, correlation tests and multiple linear regression. RESULTS The antioxidant levels were higher in postmenopausal women with clinical staging I and II and negative lymph nodes. The TBARS level was associated with clinical staging. Adiposity was associated with levels of retinol and 8-OHdG, whereas LDL(-), 8-OHdG and TBARS were correlated with liposoluble antioxidants after adjusting for the confounders. CONCLUSIONS The adiposity and clinical staging of patients were associated with oxidative stress. The oxidative and antioxidant biomarkers showed a negative correlation in patients with breast cancer.
Collapse
|
39
|
Lipid Paradox in Acute Myocardial Infarction—The Association With 30-Day In-Hospital Mortality. Crit Care Med 2015; 43:1255-64. [DOI: 10.1097/ccm.0000000000000946] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Eren E, Ellidag HY, Aydin O, Yilmaz N. HDL functionality and crystal-based sterile inflammation in atherosclerosis. Clin Chim Acta 2014; 439:18-23. [PMID: 25278350 DOI: 10.1016/j.cca.2014.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/05/2014] [Accepted: 09/22/2014] [Indexed: 01/22/2023]
Abstract
Change is inevitable. In early evolution, due to the limited availability of resources, the sole purpose of living organisms was to survive long enough to transmit their genes to the next generation. During their short lifetime, organisms used pathogen-associated and damage-associated molecular pattern pathways as an inflammatory response against pathogens (exogenous factors) and tissue damage (endogenous factors), respectively. Despite advances in human lifespan, it appears that an increasing number of diseases such as atherosclerosis are associated with inflammation. Excessive glucose, lipid and protein intake leads to the formation of endogenous crystals, i.e., cholesterol, which can induce a sterile inflammatory immune response that manifests as a vicious cycle. In this review, we evaluate the possible relationship between crystal-based sterile inflammatory response and HDL functionality.
Collapse
Affiliation(s)
- Esin Eren
- Atatürk Hospital, Biochemistry Laboratory, Antalya, Turkey
| | - Hamit Yasar Ellidag
- Central Laboratories of Antalya Training and Research Hospital, Antalya, Turkey
| | - Ozgur Aydin
- Maternity and Children's Hospital, Biochemistry Laboratory, Batman, Turkey
| | - Necat Yilmaz
- Central Laboratories of Antalya Training and Research Hospital, Antalya, Turkey
| |
Collapse
|
41
|
|
42
|
Rusting the pipes: Ingestion of oxidized lipids and vascular disease. Vascul Pharmacol 2014; 62:47-8. [DOI: 10.1016/j.vph.2014.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 03/26/2014] [Accepted: 03/29/2014] [Indexed: 11/24/2022]
|
43
|
Ceramide-enriched LDL induces cytokine release through TLR4 and CD14 in monocytes. Similarities with electronegative LDL. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2014; 26:131-7. [DOI: 10.1016/j.arteri.2013.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 11/18/2022]
|