1
|
Kanuri B, Sreejit G, Biswas P, Murphy AJ, Nagareddy PR. Macrophage heterogeneity in myocardial infarction: Evolution and implications for diverse therapeutic approaches. iScience 2024; 27:110274. [PMID: 39040061 PMCID: PMC11261154 DOI: 10.1016/j.isci.2024.110274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Given the extensive participation of myeloid cells (especially monocytes and macrophages) in both inflammation and resolution phases post-myocardial infarction (MI) owing to their biphasic role, these cells are considered as crucial players in the disease pathogenesis. Multiple studies have agreed on the significant contribution of macrophage polarization theory (M2 vs. M1) while determining the underlying reasons behind the observed biphasic effects; nevertheless, this simplistic classification attracts severe drawbacks. The advent of multiple advanced technologies based on OMICS platforms facilitated a successful path to explore comprehensive cellular signatures that could expedite our understanding of macrophage heterogeneity and plasticity. While providing an overall basis behind the MI disease pathogenesis, this review delves into the literature to discuss the current knowledge on multiple macrophage clusters, including the future directions in this research arena. In the end, our focus will be on outlining the possible therapeutic implications based on the emerging observations.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Gopalkrishna Sreejit
- Department of Pathology, New York University Grossman School of Medicine, New York City, NY, USA
| | - Priosmita Biswas
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA
| | - Andrew J. Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, VIC, Australia
| | - Prabhakara R. Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| |
Collapse
|
2
|
Mares RG, Suica VI, Uyy E, Boteanu RM, Ivan L, Cocuz IG, Sabau AH, Yadav V, Szabo IA, Cotoi OS, Tomut ME, Jakobsson G, Simionescu M, Antohe F, Schiopu A. Short-term S100A8/A9 Blockade Promotes Cardiac Neovascularization after Myocardial Infarction. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10542-6. [PMID: 39009944 DOI: 10.1007/s12265-024-10542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Acute-phase inhibition of the pro-inflammatory alarmin S100A8/A9 improves cardiac function post-myocardial infarction (MI), but the mechanisms underlying the long-term benefits of this short-term treatment remain to be elucidated. Here, we assessed the effects of S100A8/A9 blockade with the small-molecule inhibitor ABR-238901 on myocardial neovascularization in mice with induced MI. The treatment significantly reduced S100A9 and increased neovascularization in the myocardium, assessed by CD31 staining. Proteomic analysis by mass-spectrometry showed strong myocardial upregulation of the pro-angiogenic proteins filamin A (~ 10-fold) and reticulon 4 (~ 5-fold), and downregulation of the anti-angiogenic proteins Ras homolog gene family member A (RhoA, ~ 4.7-fold), neutrophilic granule protein (Ngp, ~ 4.0-fold), and cathelicidin antimicrobial peptide (Camp, ~ 4.4-fold) versus controls. In-vitro, ABR-238901 protected against apoptosis induced by recombinant human S100A8/A9 in human umbilical vein endothelial cells (HUVECs). In conclusion, S100A8/A9 blockade promotes post-MI myocardial neovascularization by favorably modulating pro-angiogenic proteins in the myocardium and by inhibiting endothelial cell apoptosis.
Collapse
Affiliation(s)
- Razvan Gheorghita Mares
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania.
| | - Viorel Iulian Suica
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Elena Uyy
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Raluca Maria Boteanu
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Luminita Ivan
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Iuliu Gabriel Cocuz
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
- Clinical County Hospital, Targu Mures, Romania
| | - Adrian Horatiu Sabau
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
- Clinical County Hospital, Targu Mures, Romania
| | - Vikas Yadav
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Istvan Adorjan Szabo
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Ovidiu Simion Cotoi
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
- Clinical County Hospital, Targu Mures, Romania
| | | | - Gabriel Jakobsson
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Maya Simionescu
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Felicia Antohe
- Department of Proteomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Alexandru Schiopu
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania.
- Molecular and Cellular Pharmacology - Functional Genomics, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania.
- Department of Translational Medicine, Lund University, Malmö, Sweden.
- Department of Internal Medicine, Skane University Hospital, Lund, Sweden.
| |
Collapse
|
3
|
Li Q, Zhou Z, Xu T, Gao X, Lou Y, Chen Z, Zhang M, Fang Q, Tan J, Huang J. Relationship between cathepsins and cardiovascular diseases: a Mendelian randomized study. Front Pharmacol 2024; 15:1370350. [PMID: 39027333 PMCID: PMC11254818 DOI: 10.3389/fphar.2024.1370350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Background: Cardiovascular diseases (CVDs) are the leading age-related disorders worldwide, with their prevalence increasing annually. Cathepsins are protein-degrading enzymes essential for processes such as intracellular protein breakdown, apoptosis, and immune responses. Recent studies suggest a potential link between cathepsins and CVDs, yet the exact causal relationship remains to be elucidated. To address this, we propose using Mendelian randomization (MR) to explore the causal relationships between cathepsins and CVDs. Methods: We obtained single nucleotide polymorphism (SNP) data for cathepsins from the INTERVAL study, a publicly accessible genome-wide association study (GWAS) dataset. Outcome SNP data were sourced from seven distinct GWAS datasets, ensuring a comprehensive analysis across multiple cardiovascular outcomes. For MR analysis, we primarily employed the inverse variance weighted (IVW) method, known for its efficiency when all SNPs are valid instruments. This was supplemented by the weighted median and MR-Egger methods to provide robustness against potential violations of MR assumptions, such as pleiotropy. The IVW method offers precision and efficiency, the weighted median method adds robustness against invalid instruments, and the MR-Egger method helps identify and correct for pleiotropic biases. Cochran's Q test was utilized to assess heterogeneity, and sensitivity analyses were conducted using MR-PRESSO and the leave-one-out approach. Results: The strength of the associations between exposure and outcome was measured using odds ratios (ORs), and results were presented with 95% confidence intervals (CIs). The cathepsin E increases the risk of myocardial infarction (MI) (OR = 1.053%, 95% CI: 1.007-1.101, p = 0.024) and ischemic stroke (IS) (OR = 1.06%, 95% CI: 1.019-1.103, p = 0.004). Conversely, cathepsin L2 decreases the risk of chronic heart failure (CHF) (OR = 0.922%, 95% CI: 0.859-0.99, p = 0.025) and atrial fibrillation (AF) (OR = 0.956%, 95% CI: 0.918-0.996, p = 0.033). Cathepsin O was associated with an increased risk of IS (OR = 1.054%, 95% CI: 1.008-1.102, p = 0.021) and AF (OR = 1.058%, 95% CI: 1.02-1.098, p = 0.002). Conclusion: Our MR analysis reveals that cathepsin E is a risk factor for MI and IS, cathepsin L2 offers protective effects against CHF and AF, and cathepsin O increases the risk for IS and AF.
Collapse
Affiliation(s)
- Qiaoqiao Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongzheng Zhou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Xu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueping Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yake Lou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Muzi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghua Fang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
5
|
Amaro-Prellezo E, Gómez-Ferrer M, Hakobyan L, Ontoria-Oviedo I, Peiró-Molina E, Tarazona S, Salguero P, Ruiz-Saurí A, Selva-Roldán M, Vives-Sanchez R, Sepúlveda P. Extracellular vesicles from dental pulp mesenchymal stem cells modulate macrophage phenotype during acute and chronic cardiac inflammation in athymic nude rats with myocardial infarction. Inflamm Regen 2024; 44:25. [PMID: 38807194 PMCID: PMC11134765 DOI: 10.1186/s41232-024-00340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND/AIMS Extracellular vesicles (EVs) derived from dental pulp mesenchymal stem cells (DP-MSCs) are a promising therapeutic option for the treatment of myocardial ischemia. The aim of this study is to determine whether MSC-EVs could promote a pro-resolving environment in the heart by modulating macrophage populations. METHODS EVs derived from three independent biopsies of DP-MSCs (MSC-EVs) were isolated by tangential flow-filtration and size exclusion chromatography and were characterized by omics analyses. Biological processes associated with these molecules were analyzed using String and GeneCodis platforms. The immunomodulatory capacity of MSC-EVs to polarize macrophages towards a pro-resolving or M2-like phenotype was assessed by evaluating surface markers, cytokine production, and efferocytosis. The therapeutic potential of MSC-EVs was evaluated in an acute myocardial infarction (AMI) model in nude rats. Infarct size and the distribution of macrophage populations in the infarct area were evaluated 7 and 21 days after intramyocardial injection of MSC-EVs. RESULTS Lipidomic, proteomic, and miRNA-seq analysis of MSC-EVs revealed their association with biological processes involved in tissue regeneration and regulation of the immune system, among others. MSC-EVs promoted the differentiation of pro-inflammatory macrophages towards a pro-resolving phenotype, as evidenced by increased expression of M2 markers and decreased secretion of pro-inflammatory cytokines. Administration of MSC-EVs in rats with AMI limited the extent of the infarcted area at 7 and 21 days post-infarction. MSC-EV treatment also reduced the number of pro-inflammatory macrophages within the infarct area, promoting the resolution of inflammation. CONCLUSION EVs derived from DP-MSCs exhibited similar characteristics at the omics level irrespective of the biopsy from which they were derived. All MSC-EVs exerted effective pro-resolving responses in a rat model of AMI, indicating their potential as therapeutic agents for the treatment of inflammation associated with AMI.
Collapse
Affiliation(s)
- Elena Amaro-Prellezo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Marta Gómez-Ferrer
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Lusine Hakobyan
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Valencia, 46100, Spain
| | - Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Esteban Peiró-Molina
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
- Hospital Universitari I Politècnic La Fe, Valencia, 46026, Spain
| | - Sonia Tarazona
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Pedro Salguero
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Amparo Ruiz-Saurí
- Department of Pathology, University of Valencia, Valencia, 46010, Spain
| | - Marta Selva-Roldán
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Rosa Vives-Sanchez
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain.
- Hospital Universitari I Politècnic La Fe, Valencia, 46026, Spain.
- Department of Pathology, University of Valencia, Valencia, 46010, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), III Institute of Health, Madrid, Carlos, Spain.
| |
Collapse
|
6
|
Maheshwari S, Patel BM. Unravelling the role of cathepsins in cardiovascular diseases. Mol Biol Rep 2024; 51:579. [PMID: 38668953 DOI: 10.1007/s11033-024-09518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Lysosomal cathepsins as a regulatory medium have been assessed as potential therapeutic targets for the treatment of various cardiac diseases such as abdominal aortic aneurysm, hypertension, cardiomyopathy, coronary heart disease, atherosclerosis, etc. They are ubiquitous lysosomal proteases with papain-like folded protein structures that are involved in a variety of physiological processes, such as the digestion of proteins, activation of pro-inflammatory molecules, degradation of extracellular matrix components, and maturation of peptide hormones. Cathepsins are classified into three major groups: cysteine cathepsins, aspartic cathepsins, and serine-threonine cathepsins. Each of these groups is further divided into subgroups based on their substrate specificity, structural characteristics, and biochemical properties. Several studies suggest that cathepsins control the degradation of ECM components such as collagen and elastin fibres. These enzymes are highly expressed in macrophages and inflammatory cells, and their upregulation has been demonstrated to be critical in the progression of atherosclerotic lesions. Additionally, increased cathepsin activity has been linked to increased vascular inflammation and oxidative stress, both of which are associated with CVDs. Specifically, the inhibition of cathepsins may reduce the release of pro-apoptotic mediators such as caspase-3 and PARP-1, which are thought to contribute to plaque instability. The potential of cathepsins as biomarkers and therapeutic targets has also been supported by the identification of potential cathepsin inhibitors, which could be used to modulate the activities of cathepsins in a range of diseases. This review shall familiarise the readers with the role of cysteinyl cathepsins and their inhibitors in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
| | - Bhoomika M Patel
- School of Medico-Legal Studies, National Forensic Sciences University, Sector 9, Gandhinagar, 382007, India.
| |
Collapse
|
7
|
Xu Z, Xu H, Duan H, Li J, Hu X, Jiang K, Wang G, Zhang Y. Smartphone-Aided Fluorescence Detection of Cardiac Biomarker Myoglobin by a Ratiometric Fluorescent AuNCs-QDs Nanohybrids Probe with High Sensitivity. J Fluoresc 2024; 34:179-190. [PMID: 37166611 DOI: 10.1007/s10895-023-03246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023]
Abstract
Simple and sensitive detection of cardiac biomarkers is of great significance for early diagnosis and prevention of acute myocardial infarction (AMI). Here, a ratiometric fluorescent nanohybrids probe (AuNCs-QDs) was synthesized through the coupling of bovine serum albumin-functionalized gold nanoclusters (AuNCs) with CdSe/ZnS quantum dots (QDs) to realize simple and sensitive detection of cardiac biomarker myoglobin (Mb). The AuNCs-QDs probe shows pink fluorescence under UV light, with two emission peaks at 468 nm and 630 nm belonging to QDs and AuNCs, respectively. Importantly, the presence of Mb caused fluorescence quenching of the blue-emitting QDs, thereby inhibiting the fluorescence resonance energy transfer (FRET) process between QDs and AuNCs, and reducing the fluorescence intensity ratio (F468/F630) of AuNCs-QDs probe effectively. As the concentration of Mb increases, the ratiometric fluorescent probe also exhibits a visible fluorescence color change. The detection limit was as low as 4.99 μg/mL, and the response of the probe to Mb showed a good linear relationship up to 0.52 mg/mL. Moreover, the probe has excellent specificity for Mb. Besides, the AuNCs-QDs has been applied to detect Mb of urine samples. More importantly, we also developed an AuNCs-QDs probe modified smartphone-aided paper-based strip for on-site monitoring of Mb. As far as we know, this is the first report of a smartphone-aided paper-based strip for on-site quick monitoring of Mb, which provides a useful approach for AMI biomarker monitoring and may can be extended to other medical diagnostics.
Collapse
Affiliation(s)
- Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Hedan Xu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing University of Science and Technology, No. 12 East Road, University Town, Chongqing, 401331, People's Republic of China
| | - Hongliang Duan
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing University of Science and Technology, No. 12 East Road, University Town, Chongqing, 401331, People's Republic of China
| | - Junjie Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing University of Science and Technology, No. 12 East Road, University Town, Chongqing, 401331, People's Republic of China
| | - Xiao Hu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing University of Science and Technology, No. 12 East Road, University Town, Chongqing, 401331, People's Republic of China
| | - Kaixin Jiang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing University of Science and Technology, No. 12 East Road, University Town, Chongqing, 401331, People's Republic of China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| | - Yuanyuan Zhang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing University of Science and Technology, No. 12 East Road, University Town, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
8
|
Pearce DP, Nemcek MT, Witzenburg CM. Don't go breakin' my heart: cardioprotective alterations to the mechanical and structural properties of reperfused myocardium during post-infarction inflammation. Biophys Rev 2023; 15:329-353. [PMID: 37396449 PMCID: PMC10310682 DOI: 10.1007/s12551-023-01068-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 07/04/2023] Open
Abstract
Myocardial infarctions (MIs) kickstart an intense inflammatory response resulting in extracellular matrix (ECM) degradation, wall thinning, and chamber dilation that leaves the heart susceptible to rupture. Reperfusion therapy is one of the most effective strategies for limiting adverse effects of MIs, but is a challenge to administer in a timely manner. Late reperfusion therapy (LRT; 3 + hours post-MI) does not limit infarct size, but does reduce incidences of post-MI rupture and improves long-term patient outcomes. Foundational studies employing LRT in the mid-twentieth century revealed beneficial reductions in infarct expansion, aneurysm formation, and left ventricle dysfunction. The mechanism by which LRT acts, however, is undefined. Structural analyses, relying largely on one-dimensional estimates of ECM composition, have found few differences in collagen content between LRT and permanently occluded animal models when using homogeneous samples from infarct cores. Uniaxial testing, on the other hand, revealed slight reductions in stiffness early in inflammation, followed soon after by an enhanced resistance to failure for cases of LRT. The use of one-dimensional estimates of ECM organization and gross mechanical function have resulted in a poor understanding of the infarct's spatially variable mechanical and structural anisotropy. To resolve these gaps in literature, future work employing full-field mechanical, structural, and cellular analyses is needed to better define the spatiotemporal post-MI alterations occurring during the inflammatory phase of healing and how they are impacted following reperfusion therapy. In turn, these studies may reveal how LRT affects the likelihood of rupture and inspire novel approaches to guide scar formation.
Collapse
Affiliation(s)
- Daniel P. Pearce
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Mark T. Nemcek
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Colleen M. Witzenburg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
9
|
Rosenblum SL. Inflammation, dysregulated iron metabolism, and cardiovascular disease. FRONTIERS IN AGING 2023; 4:1124178. [PMID: 36816471 PMCID: PMC9935942 DOI: 10.3389/fragi.2023.1124178] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Iron is an essential trace element associated with both pathologic deficiency and toxic overload. Thus, systemic and cell iron metabolism are highly controlled processes regulated by protein expression and localization, as well as turnover, through the action of cytokines and iron status. Iron metabolism in the heart is challenging because both iron overload and deficiency are associated with cardiac disease. Also associated with cardiovascular disease is inflammation, as many cardiac diseases are caused by or include an inflammatory component. In addition, iron metabolism and inflammation are closely linked. Hepcidin, the master regulator of systemic iron metabolism, is induced by the cytokine IL-6 and as such is among the acute phase proteins secreted by the liver as part of the inflammatory response. In an inflammatory state, systemic iron homeostasis is dysregulated, commonly resulting in hypoferremia, or low serum iron. Less well characterized is cardiac iron metabolism in general, and even less is known about how inflammation impacts heart iron handling. This review highlights what is known with respect to iron metabolism in the heart. Expression of iron metabolism-related proteins and processes of iron uptake and efflux in these cell types are outlined. Evidence for the strong co-morbid relationship between inflammation and cardiac disease is also reviewed. Known connections between inflammatory processes and iron metabolism in the heart are discussed with the goal of linking inflammation and iron metabolism in this tissue, a connection that has been relatively under-appreciated as a component of heart function in an inflammatory state. Therapeutic options connecting inflammation and iron balance are emphasized, with the main goal of this review being to bring attention to alterations in iron balance as a component of inflammatory diseases of the cardiovascular system.
Collapse
|
10
|
Metformin confers longitudinal cardiac protection by preserving mitochondrial homeostasis following myocardial ischemia/reperfusion injury. Eur J Nucl Med Mol Imaging 2023; 50:825-838. [PMID: 36322187 DOI: 10.1007/s00259-022-06008-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Myocardial ischemia-reperfusion (I/R) injury is associated with systemic oxidative stress, cardiac mitochondrial homeostasis, and cardiomyocyte apoptosis. Metformin has been recognized to attenuate cardiomyocyte apoptosis. However, the longitudinal effects and pathomechanism of metformin on the regulation of myocardial mitohormesis following I/R treatment remain unclear. This study aimed to investigate the longitudinal effects and mechanism of metformin in regulating cardiac mitochondrial homeostasis by serial imaging with the 18-kDa translocator protein (TSPO)-targeted positron emission tomography (PET) tracer 18F-FDPA. METHODS Myocardial I/R injury was established in Sprague-Dawley rats, which were treated with or without metformin (150 mg/kg per day). Serial gated 18F-FDG and 18F-FDPA PET imaging were performed at 1, 4, and 8 weeks after surgery, followed by analysis of ventricular remodelling and cardiac mitochondrial homeostasis. The correlation between Hsp60 and 18F-FDPA uptake was analyzed. After PET imaging, the activity of antioxidant enzymes, immunostaining, and western blot analysis were performed to analyze the spatio-temporal effects and pathomechanism of metformin for cardiac protection after myocardial I/R injury. RESULTS Oxidative stress and apoptosis increased 1 week after myocardial I/R injury (before significant progression of ventricular remodelling). TSPO expression was correlated with Hsp60 expression and was co-localized with inflammatory CD68+ macrophages in the infarct area, and TSPO uptake was associated with an upregulation of AMPK-p/AMPK and a downregulation of Bcl-2/Bax. However, these effects were reversed with metformin treatment. Eight weeks after myocardial I/R injury (representing the advanced stage of heart failure), 18F-FDPA uptake in myocardial cells in the distal non-infarct area increased without CD68+ expression, whereas the activity decreased with metformin treatment. CONCLUSION Taken together, these results show that a prolonged metformin treatment has pleiotropic protective effects against myocardial I/R injury associated with a regional and temporal dynamic balance between mitochondrial homeostasis and cardiac outcome, which were assessed by TSPO-targeted imaging during cardiac remodelling.
Collapse
|
11
|
Rossi R, Douglas A, Gil SM, Jabrah D, Pandit A, Gilvarry M, McCarthy R, Prendergast J, Jood K, Redfors P, Nordanstig A, Ceder E, Dunker D, Carlqvist J, Szikora I, Thornton J, Tsivgoulis G, Psychogios K, Tatlisumak T, Rentzos A, Doyle KM. S100b in acute ischemic stroke clots is a biomarker for post-thrombectomy intracranial hemorrhages. Front Neurol 2023; 13:1067215. [PMID: 36756347 PMCID: PMC9900124 DOI: 10.3389/fneur.2022.1067215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/01/2022] [Indexed: 01/24/2023] Open
Abstract
Background and purpose Post-thrombectomy intracranial hemorrhages (PTIH) are dangerous complications of acute ischemic stroke (AIS) following mechanical thrombectomy. We aimed to investigate if S100b levels in AIS clots removed by mechanical thrombectomy correlated to increased risk of PTIH. Methods We analyzed 122 thrombi from 80 AIS patients in the RESTORE Registry of AIS clots, selecting an equal number of patients having been pre-treated or not with rtPA (40 each group). Within each subgroup, 20 patients had developed PTIH and 20 patients showed no signs of hemorrhage. Gross photos of each clot were taken and extracted clot area (ECA) was measured using ImageJ. Immunohistochemistry for S100b was performed and Orbit Image Analysis was used for quantification. Immunofluorescence was performed to investigate co-localization between S100b and T-lymphocytes, neutrophils and macrophages. Chi-square or Kruskal-Wallis test were used for statistical analysis. Results PTIH was associated with higher S100b levels in clots (0.33 [0.08-0.85] vs. 0.07 [0.02-0.27] mm2, H1 = 6.021, P = 0.014*), but S100b levels were not significantly affected by acute thrombolytic treatment (P = 0.386). PTIH was also associated with patients having higher NIHSS at admission (20.0 [17.0-23.0] vs. 14.0 [10.5-19.0], H1 = 8.006, P = 0.005) and higher number of passes during thrombectomy (2 [1-4] vs. 1 [1-2.5], H1 = 5.995, P = 0.014*). S100b co-localized with neutrophils, macrophages and with T-lymphocytes in the clots. Conclusions Higher S100b expression in AIS clots, higher NIHSS at admission and higher number of passes during thrombectomy are all associated with PTIH. Further investigation of S100b expression in AIS clots by neutrophils, macrophages and T-lymphocytes could provide insight into the role of S100b in thromboinflammation.
Collapse
Affiliation(s)
- Rosanna Rossi
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland,CÚRAM–SFI Research Centre in Medical Devices, National University of Ireland Galway, Galway, Ireland,*Correspondence: Rosanna Rossi ✉
| | - Andrew Douglas
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland,CÚRAM–SFI Research Centre in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Sara Molina Gil
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland,CÚRAM–SFI Research Centre in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Duaa Jabrah
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM–SFI Research Centre in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | | | | | - James Prendergast
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
| | - Katarina Jood
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Redfors
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Annika Nordanstig
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Ceder
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Dennis Dunker
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Jeanette Carlqvist
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - István Szikora
- Department of Neurointerventions, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - John Thornton
- Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Georgios Tsivgoulis
- Second Department of Neurology, “Attikon” University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Turgut Tatlisumak
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Alexandros Rentzos
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Karen M. Doyle
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland,CÚRAM–SFI Research Centre in Medical Devices, National University of Ireland Galway, Galway, Ireland,Karen M. Doyle ✉
| |
Collapse
|
12
|
Nian W, Huang Z, Fu C. Immune cells drive new immunomodulatory therapies for myocardial infarction: From basic to clinical translation. Front Immunol 2023; 14:1097295. [PMID: 36761726 PMCID: PMC9903069 DOI: 10.3389/fimmu.2023.1097295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
The high incidence of heart failure secondary to myocardial infarction (MI) has been difficult to effectively address. MI causes strong aseptic inflammation, and infiltration of different immune cells and changes in the local inflammatory microenvironment play a key regulatory role in ventricular remodeling. Therefore, the possibility of improving the prognosis of MI through targeted immunity has been of interest and importance in MI. However, previously developed immune-targeted therapies have not achieved significant success in clinical trials. Here, we propose that the search for therapeutic targets from different immune cells may be more precise and lead to better clinical translation. Specifically, this review summarizes the role and potential therapeutic targets of various immune cells in ventricular remodeling after MI, especially monocytes/macrophages and neutrophils, as a way to demonstrate the importance and potential of immunomodulatory therapies for MI. In addition, we analyze the reasons for the failure of previous immunomodulatory therapies and the issues that need to be addressed, as well as the prospects and targeting strategies of using immune cells to drive novel immunomodulatory therapies, hoping to advance the development of immunomodulatory therapies by providing evidence and new ideas.
Collapse
Affiliation(s)
- Wenjian Nian
- Department of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Zijian Huang
- Department of Cardiology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, China.,Anesthesia Laboratory and Training Center, Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Cong Fu
- Department of Cardiology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, China.,Anesthesia Laboratory and Training Center, Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| |
Collapse
|
13
|
Song BY, Chen C, Xu WH, Cong BL, Guo ZY, Zhao ZH, Cui L, Zhang YH. Gender Differences in the Correlations Between Immune Cells and Organ Damage Indexes of Acute Myocardial Infarction Patients. Vasc Health Risk Manag 2022; 18:839-850. [DOI: 10.2147/vhrm.s374157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
|
14
|
Wang Y, Wang G, Liu H. Tenascin-C: A Key Regulator in Angiogenesis during Wound Healing. Biomolecules 2022; 12:1689. [PMID: 36421704 PMCID: PMC9687801 DOI: 10.3390/biom12111689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Injury repair is a complex physiological process in which multiple cells and molecules are involved. Tenascin-C (TNC), an extracellular matrix (ECM) glycoprotein, is essential for angiogenesis during wound healing. This study aims to provide a comprehensive review of the dynamic changes and functions of TNC throughout tissue regeneration and to present an up-to-date synthesis of the body of knowledge pointing to multiple mechanisms of TNC at different restoration stages. (2) Methods: A review of the PubMed database was performed to include all studies describing the pathological processes of damage restoration and the role, structure, expression, and function of TNC in post-injury treatment; (3) Results: In this review, we first introduced the construction and expression signature of TNC. Then, the role of TNC during the process of damage restoration was introduced. We highlight the temporal heterogeneity of TNC levels at different restoration stages. Furthermore, we are surprised to find that post-injury angiogenesis is dynamically consistent with changes in TNC. Finally, we discuss the strategies for TNC in post-injury treatment. (4) Conclusions: The dynamic expression of TNC has a significant impact on angiogenesis and healing wounds and counters many negative aspects of poorly healing wounds, such as excessive inflammation, ischemia, scarring, and wound infection.
Collapse
Affiliation(s)
- Yucai Wang
- Department of Orthopaedic Surgery, Tangdu Hospital, AirForce Medical University, Xi’an 710000, China
| | - Guangfu Wang
- Vasculocardiology Department, The Fourth People’s Hospital of Jinan, Jinan 250000, China
| | - Hao Liu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
15
|
Briggs GD, Gelzinnis S, Meakes S, King KL, Balogh ZJ. NOT ALL CELL-FREE MITOCHONDRIAL DNA IS EQUAL IN TRAUMA PATIENTS. Shock 2022; 58:231-235. [PMID: 36125357 PMCID: PMC9512242 DOI: 10.1097/shk.0000000000001969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
ABSTRACT Mitochondrial DNA (mtDNA) acts as a proinflammatory damage-associated molecular pattern that stimulates innate immune activation via Toll-like receptor 9, similarly to bacterial DNA. A number of clinical studies have measured elevated cell-free mtDNA in the plasma of trauma patients, thought to originate from tissue injury and inflammatory processes; however, the magnitude of this increase, the absolute concentration, and the association with poor outcomes varies considerably across studies. Measurements of cell-free mtDNA in healthy individuals have shown that the majority of "cell-free" mtDNA (>95%) can be centrifuged/filtered from plasma in the size range of 0.45 to 5 μm, suggesting that there are larger forms of mtDNA-containing complexes in the plasma that could be considered cell-free. Whether this is true for trauma patients (and other relevant disease states) and the clinical relevance of the larger forms of mtDNA is unknown. These findings from healthy individuals also suggest that the centrifugation speeds used to generate cell-free plasma (which are rarely consistent among studies) could result in mixed populations of cell-free mtDNA that could confound associations with outcomes. We demonstrate in this study of 25 major trauma patients that the majority of the cell-free mtDNA in trauma patient plasma (>95%) is removed after centrifugation at 16,000g. Despite the larger forms of mtDNA being predominant, they do not correlate with outcomes or expected parameters such as injury/shock severity, multiple organ failure, and markers of inflammation, whereas low-molecular-weight cell-free mtDNA correlates strongly with these variables.
Collapse
Affiliation(s)
- Gabrielle D. Briggs
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Scott Gelzinnis
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Department of Traumatology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Simone Meakes
- Department of Traumatology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Kate L. King
- Department of Traumatology, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Zsolt J. Balogh
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Department of Traumatology, John Hunter Hospital, Newcastle, New South Wales, Australia
| |
Collapse
|
16
|
Anes E, Pires D, Mandal M, Azevedo-Pereira JM. Spatial localization of cathepsins: Implications in immune activation and resolution during infections. Front Immunol 2022; 13:955407. [PMID: 35990632 PMCID: PMC9382241 DOI: 10.3389/fimmu.2022.955407] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins were first described, as endolysosomal proteolytic enzymes in reference to the organelles where they degrade the bulk of endogenous and exogenous substrates in a slightly acidic environment. These substrates include pathogens internalized via endocytosis and/or marked for destruction by autophagy. However, the role of cathepsins during infection far exceeds that of direct digestion of the pathogen. Cathepsins have been extensively investigated in the context of tumour associated immune cells and chronic inflammation. Several cathepsin-dependent immune responses develop in the endocytic pathway while others take place in the cytosol, the nucleus, or in the extracellular space. In this review we highlight the spatial localization of cathepsins and their implications in immune activation and resolution pathways during infection.
Collapse
|
17
|
Dutta A, Das M, Ghosh A, Rana S. Molecular and cellular pathophysiology of circulating cardiomyocyte-specific cell free DNA (cfDNA): Biomarkers of heart failure and potential therapeutic targets. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
18
|
Fibronectin Functions as a Selective Agonist for Distinct Toll-like Receptors in Triple-Negative Breast Cancer. Cells 2022; 11:cells11132074. [PMID: 35805158 PMCID: PMC9265717 DOI: 10.3390/cells11132074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microenvironment of tumors is characterized by structural changes in the fibronectin matrix, which include increased deposition of the EDA isoform of fibronectin and the unfolding of the fibronectin Type III domains. The impact of these structural changes on tumor progression is not well understood. The fibronectin EDA (FnEDA) domain and the partially unfolded first Type III domain of fibronectin (FnIII-1c) have been identified as endogenous damage-associated molecular pattern molecules (DAMPs), which induce innate immune responses by serving as agonists for Toll-Like Receptors (TLRs). Using two triple-negative breast cancer (TNBC) cell lines MDA-MB-468 and MDA-MB-231, we show that FnEDA and FnIII-1c induce the pro-tumorigenic cytokine, IL-8, by serving as agonists for TLR5 and TLR2, the canonical receptors for bacterial flagellin and lipoprotein, respectively. We also find that FnIII-1c is not recognized by MDA-MB-468 cells but is recognized by MDA-MB-231 cells, suggesting a cell type rather than ligand specific utilization of TLRs. As IL-8 plays a major role in the progression of TNBC, these studies suggest that tumor-induced structural changes in the fibronectin matrix promote an inflammatory microenvironment conducive to metastatic progression.
Collapse
|
19
|
Rathod S, Agrawal Y, Sherikar A, Nakhate KT, Patil CR, Nagoor Meeran MF, Ojha S, Goyal SN. Thymoquinone Produces Cardioprotective Effect in β-Receptor Stimulated Myocardial Infarcted Rats via Subsiding Oxidative Stress and Inflammation. Nutrients 2022; 14:nu14132742. [PMID: 35807920 PMCID: PMC9268596 DOI: 10.3390/nu14132742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022] Open
Abstract
Earlier studies reported that long-term treatment with thymoquinone (TQ) at a high dose (20 mg/kg) exerts a cardioprotective effect against isoproterenol (ISO)-triggered myocardial infarction (MI) in rats. In the present study, we tested the hypothesis that TQ, as a potent molecule, can exhibit cardioprotective effects at the lower dose for a short-term regimen. The rats were administered with TQ (5 mg/kg, intraperitoneal) at the 4 h interval for 2 days. ISO (100 mg/kg/day, subcutaneous) was given for 2 days to produce MI. ISO challenge results in deformation in ECG wave front, elevated left ventricular (LV) end-diastolic pressure, and reduced LVdP/dtmax and LVdP/dtmin. The levels of the cardiac biomarker in serum, such as creatine kinase MB, alanine aminotransferase, and aspartate aminotransferase, were increased. In the myocardium, a rise in malonaldehyde and decreased superoxide dismutase, glutathione, and catalase contents were observed. Furthermore, increased levels of tumor necrotic factor-α, interleukin-6, and interleukin-1β were observed in the myocardium. TQ pretreatment significantly normalized alterations in hemodynamic parameters, strengthened the antioxidant defense system, and decreased the contents of pro-inflammatory cytokines and hepatic enzymes as compared to the ISO group. Based on the results, TQ appears to be cardioprotective at low doses, and effective even administered for a shorter duration.
Collapse
Affiliation(s)
- Sumit Rathod
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.R.); (Y.A.); (A.S.); (K.T.N.)
| | - Yogeeta Agrawal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.R.); (Y.A.); (A.S.); (K.T.N.)
| | - Abdulla Sherikar
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.R.); (Y.A.); (A.S.); (K.T.N.)
| | - Kartik T. Nakhate
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.R.); (Y.A.); (A.S.); (K.T.N.)
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India;
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (S.O.); (S.N.G.); Tel.: +971-50-3125748 (S.O.); +91-95-5291-6993 (S.N.G.)
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.R.); (Y.A.); (A.S.); (K.T.N.)
- Correspondence: (S.O.); (S.N.G.); Tel.: +971-50-3125748 (S.O.); +91-95-5291-6993 (S.N.G.)
| |
Collapse
|
20
|
Knab K, Chambers D, Krönke G. Synovial Macrophage and Fibroblast Heterogeneity in Joint Homeostasis and Inflammation. Front Med (Lausanne) 2022; 9:862161. [PMID: 35547214 PMCID: PMC9081642 DOI: 10.3389/fmed.2022.862161] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
The synovial tissue is an immunologically challenging environment where, under homeostatic conditions, highly specialized subsets of immune-regulatory macrophages and fibroblasts constantly prevent synovial inflammation in response to cartilage- and synovial fluid-derived danger signals that accumulate in response to mechanical stress. During inflammatory joint diseases, this immune-regulatory environment becomes perturbed and activated synovial fibroblasts and infiltrating immune cells start to contribute to synovial inflammation and joint destruction. This review summarizes our current understanding of the phenotypic and molecular characteristics of resident synovial macrophages and fibroblasts and highlights their crosstalk during joint homeostasis and joint inflammation, which is increasingly appreciated as vital to understand the molecular basis of prevalent inflammatory joint diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Katharina Knab
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - David Chambers
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
21
|
Knab K, Chambers D, Krönke G. [Protective macrophages : New insights into the role of synovial macrophages in inflammatory joint diseases]. Z Rheumatol 2021; 80:966-971. [PMID: 34705071 DOI: 10.1007/s00393-021-01112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
Macrophages are among the phylogenetically oldest cells of the immune system and are found in all tissues and organs. In addition to playing an important role in immune response against pathogenic microorganisms, these cells were previously described to play a vital role in chronic inflammatory diseases such as rheumatoid arthritis. Using novel techniques such as single-cell sequencing and advanced microscopy techniques it has now been shown that macrophages are far more versatile. Thus, these cells contribute considerably to tissue homeostasis and tissue regeneration. As each tissue has to fulfill special requirements, macrophages vary in their phenotype and function between organs. New data have now identified a specialised population of epithelioid macrophages that exert a protective and anti-inflammatory function in synovial tissue and prevent the initial onset as well as episodes of joint inflammation in rheumatoid arthritis.
Collapse
Affiliation(s)
- Katharina Knab
- Medizinische Klinik 3 - Rheumatologie und Immunologie, Internistisches Zentrum (INZ), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054, Erlangen, Deutschland.,Deutsches Zentrum für Immuntherapie (DZI), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - David Chambers
- Medizinische Klinik 3 - Rheumatologie und Immunologie, Internistisches Zentrum (INZ), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054, Erlangen, Deutschland.,Deutsches Zentrum für Immuntherapie (DZI), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland
| | - Gerhard Krönke
- Medizinische Klinik 3 - Rheumatologie und Immunologie, Internistisches Zentrum (INZ), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054, Erlangen, Deutschland. .,Deutsches Zentrum für Immuntherapie (DZI), Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Deutschland.
| |
Collapse
|
22
|
Bhattacharjee O, Ayyangar U, Kurbet AS, Lakshmanan V, Palakodeti D, Ginhoux F, Raghavan S. Epithelial-Macrophage Crosstalk Initiates Sterile Inflammation in Embryonic Skin. Front Immunol 2021; 12:718005. [PMID: 34721382 PMCID: PMC8553113 DOI: 10.3389/fimmu.2021.718005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages are highly responsive to the environmental cues and are the primary responders to tissue stress and damage. While much is known about the role of macrophages during inflammatory disease progression; the initial series of events that set up the inflammation remains less understood. In this study, we use next generation sequencing (NGS) of embryonic skin macrophages and the niche cells - skin epithelia and stroma in the epidermis specific knockout of integrin beta 1 (Itgβ1) model to uncover specific roles of each cell type and identify how these cell types communicate to initiate the sterile inflammatory response. We demonstrate that while the embryonic skin fibroblasts in the Itgβ1 knockout skin are relatively inactive, the keratinocytes and macrophages are the critical responders to the sterile inflammatory cues. The epidermis expresses damage associated molecular patterns (DAMPs), stress response genes, pro-inflammatory cytokines, and chemokines that aid in eliciting the inflammatory response. The macrophages, in-turn, respond by acquiring enhanced M2-like characteristics expressing ECM remodeling and matrisome signatures that exacerbate the basement membrane disruption. Depletion of macrophages by blocking the CSF1 receptor (CSF1R) results in improved basement membrane integrity and reduced ECM remodeling activity in the KO skin. Further, blocking the skin inflammation with celecoxib reveals that the acquired fate of macrophages in the KO skin is dependent on its interaction with the epidermal compartment through COX2 dependent cytokine production. Taken together, our study highlights a critical crosstalk between the epithelia and the dermal macrophages that shapes macrophage fate and initiates sterile inflammation in the skin. The insights gained from our study can be extrapolated to other inflammatory disorders to understand the early events that set up the disease.
Collapse
Affiliation(s)
- Oindrila Bhattacharjee
- Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
| | - Uttkarsh Ayyangar
- Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
| | - Ambika S. Kurbet
- Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
| | - Vairavan Lakshmanan
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
- Integrative Chemical Biology, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Dasaradhi Palakodeti
- Integrative Chemical Biology, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Srikala Raghavan
- Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
- Agency for Science, Technology and Research (A*STAR) Skin Research Lab (A*SRL), Singapore, Singapore
| |
Collapse
|
23
|
Farag MM, Khalifa AA, Elhadidy WF, Rashad RM. Thymoquinone dose-dependently attenuates myocardial injury induced by isoproterenol in rats via integrated modulations of oxidative stress, inflammation, apoptosis, autophagy, and fibrosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1787-1801. [PMID: 34216225 DOI: 10.1007/s00210-021-02087-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022]
Abstract
As rats develop myocardial infarction (MI) like lesions when injected with large doses of isoproterenol (ISO), this investigation was designed to evaluate the dose-dependent effects of thymoquinone (TQ) on ISO-induced myocardial injury in rats. Adult male rats were divided into negative control, TQ20 (20 mg/kg/day), TQ50 (50 mg/kg/day), ISO positive control, TQ20 + ISO, and TQ50 + ISO groups. In these rats, biochemical, immunobiochemical, and histopathological studies were carried out to evaluate myocardial oxidative stress, inflammation, apoptosis, fibrosis, and autophagy, and the changes in serum cardiac biomarkers. The results showed that TQ pretreatment in ISO-administered rats produced a dose-dependent significant reduction of the myocardial infarct size, markedly reduced the ISO-induced elevation in serum cardiac markers and demonstrated several other important findings related to the cardioprotective efficacy of TQ. First, this study is the first reported research work showing that TQ treatment could increase the myocardial reduced glutathione baseline level, adding an indirect antioxidant effect to its known direct free radical scavenging effect. Second, pretreatment with TQ significantly reduced the markers of myocardial oxidative stress, inflammation, fibrosis, and apoptosis. Third, TQ acted as an autophagy enhancer ameliorating myocardial cell damage and dysfunction. Thus, the morphological and biochemical changes associated with ISO-induced myocardial injury were ameliorated with TQ pretreatment. The extent of this improvement was significantly greater in the TQ50 + ISO group than in the TQ20 + ISO group. The present study, for the first time, demonstrates these dose-dependent effects of TQ in experimentally induced myocardial injury. These findings raise the possibility that TQ may serve as a promising prophylactic cardioprotective therapy for patients who are at risk of developing myocardial injury and against the progression of existent myocardial injury as in cases of MI.
Collapse
Affiliation(s)
- Mahmoud M Farag
- Department of Pharmacology, Medical Research Institute, Alexandria University, 165 El-Horria Avenue, P.O. El-Hadara 21561, Alexandria, Egypt.
| | - Asmaa A Khalifa
- Department of Pharmacology, Medical Research Institute, Alexandria University, 165 El-Horria Avenue, P.O. El-Hadara 21561, Alexandria, Egypt
| | - Wessam F Elhadidy
- Department of Pharmacology, Medical Research Institute, Alexandria University, 165 El-Horria Avenue, P.O. El-Hadara 21561, Alexandria, Egypt
| | - Radwa M Rashad
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
24
|
Wen H, Peng L, Chen Y. The effect of immune cell-derived exosomes in the cardiac tissue repair after myocardial infarction: Molecular mechanisms and pre-clinical evidence. J Cell Mol Med 2021; 25:6500-6510. [PMID: 34092017 PMCID: PMC8278122 DOI: 10.1111/jcmm.16686] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
After a myocardial infarction (MI), the inflammatory responses are induced and assist to repair ischaemic injury and restore tissue integrity, but excessive inflammatory processes promote abnormal cardiac remodelling and progress towards heart failure. Thus, a timely resolution of inflammation and a firmly regulated balance between regulatory and inflammatory mechanisms can be helpful. Molecular- and cellular-based approaches modulating immune response post-MI have emerged as a promising therapeutic strategy. Exosomes are essential mediators of cell-to-cell communications, which are effective in modulating immune responses and immune cells following MI, improving the repair process of infarcted myocardium and maintaining ventricular function via the crosstalk among immune cells or between immune cells and myocardial cells. The present review aimed to seek the role of immune cell-secreted exosomes in infarcted myocardium post-MI, together with mechanisms behind their repairing impact on the damaged myocardium. The exosomes we focus on are secreted by classic immune cells including macrophages, dendritic cells, regulatory T cells and CD4+ T cells; however, further research is demanded to determine the role of exosomes secreted by other immune cells, such as B cells, neutrophils and mast cells, in infarcted myocardium after MI. This knowledge can assist in the development of future therapeutic strategies, which may benefit MI patients.
Collapse
Affiliation(s)
- Heling Wen
- Department of CardiologySichuan Academy of Medical Science & Sichuan Provincial People's HospitalChengduChina
| | - Lei Peng
- Department of NephrologySichuan Academy of Medical Science & Sichuan Provincial People's HospitalChengduChina
| | - Yu Chen
- Department of CardiologySichuan Academy of Medical Science & Sichuan Provincial People's HospitalChengduChina
| |
Collapse
|
25
|
Imanaka-Yoshida K. Tenascin-C in Heart Diseases-The Role of Inflammation. Int J Mol Sci 2021; 22:ijms22115828. [PMID: 34072423 PMCID: PMC8198581 DOI: 10.3390/ijms22115828] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Tenascin-C (TNC) is a large extracellular matrix (ECM) glycoprotein and an original member of the matricellular protein family. TNC is transiently expressed in the heart during embryonic development, but is rarely detected in normal adults; however, its expression is strongly up-regulated with inflammation. Although neither TNC-knockout nor -overexpressing mice show a distinct phenotype, disease models using genetically engineered mice combined with in vitro experiments have revealed multiple significant roles for TNC in responses to injury and myocardial repair, particularly in the regulation of inflammation. In most cases, TNC appears to deteriorate adverse ventricular remodeling by aggravating inflammation/fibrosis. Furthermore, accumulating clinical evidence has shown that high TNC levels predict adverse ventricular remodeling and a poor prognosis in patients with various heart diseases. Since the importance of inflammation has attracted attention in the pathophysiology of heart diseases, this review will focus on the roles of TNC in various types of inflammatory reactions, such as myocardial infarction, hypertensive fibrosis, myocarditis caused by viral infection or autoimmunity, and dilated cardiomyopathy. The utility of TNC as a biomarker for the stratification of myocardial disease conditions and the selection of appropriate therapies will also be discussed from a clinical viewpoint.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Mie University Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
26
|
Abstract
Abstract
Purpose of Review
The regenerative capacity of the heart is insufficient to compensate for the pathological loss of cardiomyocytes during a large injury, such as a myocardial infarction. Therapeutic options for patients after cardiac infarction are limited: treatment with drugs that only treat the symptoms or extraordinary measures, such as heart transplantation. Cell therapies offer a promising strategy for cardiac regeneration. In this brief review, the major issues in these areas are discussed, and possible directions for future research are indicated.
Recent Findings
Cardiac regeneration can be obtained by at least two strategies: the first is direct to generate an ex vivo functional myocardial tissue that replaces damaged tissue; the second approach aims to stimulate endogenous mechanisms of cardiac repair. However, current cell therapies are still hampered by poor translation into actual clinical applications.
Summary
In this scenario, recent advancements in cell biology and biomaterial-based technologies can play a key role to design effective therapeutic approaches.
Collapse
|
27
|
Scalise RFM, De Sarro R, Caracciolo A, Lauro R, Squadrito F, Carerj S, Bitto A, Micari A, Bella GD, Costa F, Irrera N. Fibrosis after Myocardial Infarction: An Overview on Cellular Processes, Molecular Pathways, Clinical Evaluation and Prognostic Value. Med Sci (Basel) 2021; 9:medsci9010016. [PMID: 33804308 PMCID: PMC7931027 DOI: 10.3390/medsci9010016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
The ischemic injury caused by myocardial infarction activates a complex healing process wherein a powerful inflammatory response and a reparative phase follow and balance each other. An intricate network of mediators finely orchestrate a large variety of cellular subtypes throughout molecular signaling pathways that determine the intensity and duration of each phase. At the end of this process, the necrotic tissue is replaced with a fibrotic scar whose quality strictly depends on the delicate balance resulting from the interaction between multiple actors involved in fibrogenesis. An inflammatory or reparative dysregulation, both in term of excess and deficiency, may cause ventricular dysfunction and life-threatening arrhythmias that heavily affect clinical outcome. This review discusses cellular process and molecular signaling pathways that determine fibrosis and the imaging technique that can characterize the clinical impact of this process in-vivo.
Collapse
Affiliation(s)
- Renato Francesco Maria Scalise
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Rosalba De Sarro
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Alessandro Caracciolo
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Rita Lauro
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (R.L.); (F.S.); (A.B.)
| | - Francesco Squadrito
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (R.L.); (F.S.); (A.B.)
| | - Scipione Carerj
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Alessandra Bitto
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (R.L.); (F.S.); (A.B.)
| | - Antonio Micari
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, A.O.U. Policlinico “G. Martino”, 98100 Messina, Italy;
| | - Gianluca Di Bella
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Francesco Costa
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
- Correspondence: ; Tel.: +39-090-221-23-41; Fax: +39-090-221-23-81
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| |
Collapse
|
28
|
Daseke MJ, Chalise U, Becirovic-Agic M, Salomon JD, Cook LM, Case AJ, Lindsey ML. Neutrophil signaling during myocardial infarction wound repair. Cell Signal 2021; 77:109816. [PMID: 33122000 PMCID: PMC7718402 DOI: 10.1016/j.cellsig.2020.109816] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Neutrophils are key effector cells of the innate immune system, serving as a first line of defense in the response to injury and playing essential roles in the wound healing process. Following myocardial infarction (MI), neutrophils infiltrate into the infarct region to propagate inflammation and begin the initial phase of cardiac wound repair. Pro-inflammatory neutrophils release proteases to degrade extracellular matrix (ECM), a necessary step for the removal of necrotic myocytes as a prelude for scar formation. Neutrophils transition their phenotype over time to regulate MI inflammation resolution and stabilize scar formation. Neutrophils contribute to the evolution from inflammation to resolution and scar formation by serving anti-inflammatory and repair functions. As anti-inflammatory cells, neutrophils contribute ECM proteins during scar formation, in particular fibronectin, galectin-3, and vimentin. The diverse and polarizing functions that contribute to MI wound repair make this innate immune cell a viable target to improve MI outcomes. Thus, understanding the signaling involved in neutrophil physiology in the context of MI may help to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Michael J Daseke
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA; Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68198, USA
| | - Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198, USA; Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68198, USA
| | - Mediha Becirovic-Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeffrey D Salomon
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198, USA; Departments of Pediatrics, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Division of Pediatric Critical Care, Center for Heart and Vascular Research, Omaha, NE 68198, USA
| | - Adam J Case
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198, USA; Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68198, USA.
| |
Collapse
|
29
|
Xiong YY, Gong ZT, Tang RJ, Yang YJ. The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction. Am J Cancer Res 2021; 11:1046-1058. [PMID: 33391520 PMCID: PMC7738892 DOI: 10.7150/thno.53326] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of mortality around the world, and the inflammatory response plays a pivotal role in the progress of myocardial necrosis and ventricular remodeling, dysfunction and heart failure after AMI. Therapies aimed at modulating immune response after AMI on a molecular and cellular basis are urgently needed. Exosomes are a type of extracellular vesicles which contain a large amount of biologically active substances, like lipids, nucleic acids, proteins and so on. Emerging evidence suggests key roles of exosomes in immune regulation post AMI. A variety of immune cells participate in the immunomodulation after AMI, working together to clean up necrotic tissue and repair damaged myocardium. Stem cell therapy for myocardial infarction has long been a research hotspot during the last two decades and exosomes secreted by stem cells are important active substances and have similar therapeutic effects of immunomodulation, anti-apoptosis, anti-fibrotic and angiogenesis to those of stem cells themselves. Therefore, in this review, we focus on the characteristics and roles of exosomes produced by both of endogenous immune cells and exogenous stem cells in myocardial repair through immunomodulation after AMI.
Collapse
|
30
|
Chang X, Zhang W, Zhao Z, Ma C, Zhang T, Meng Q, Yan P, Zhang L, Zhao Y. Regulation of Mitochondrial Quality Control by Natural Drugs in the Treatment of Cardiovascular Diseases: Potential and Advantages. Front Cell Dev Biol 2020; 8:616139. [PMID: 33425924 PMCID: PMC7793684 DOI: 10.3389/fcell.2020.616139] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are double-membraned cellular organelles that provide the required energy and metabolic intermediates to cardiomyocytes. Mitochondrial respiratory chain defects, structure abnormalities, and DNA mutations can affect the normal function of cardiomyocytes, causing an imbalance in intracellular calcium ion homeostasis, production of reactive oxygen species, and apoptosis. Mitochondrial quality control (MQC) is an important process that maintains mitochondrial homeostasis in cardiomyocytes and involves multi-level regulatory mechanisms, such as mitophagy, mitochondrial fission and fusion, mitochondrial energy metabolism, mitochondrial antioxidant system, and mitochondrial respiratory chain. Furthermore, MQC plays a role in the pathological mechanisms of various cardiovascular diseases (CVDs). In recent years, the regulatory effects of natural plants, drugs, and active ingredients on MQC in the context of CVDs have received significant attention. Effective active ingredients in natural drugs can influence the production of energy-supplying substances in the mitochondria, interfere with the expression of genes associated with mitochondrial energy requirements, and regulate various mechanisms of MQC modulation. Thus, these ingredients have therapeutic effects against CVDs. This review provides useful information about novel treatment options for CVDs and development of novel drugs targeting MQC.
Collapse
Affiliation(s)
- Xing Chang
- China Academy of Chinese Medical Sciences, Beijing, China.,Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Wenjin Zhang
- China Academy of Chinese Medical Sciences, Beijing, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Zhenyu Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunxia Ma
- Shandong Analysis and Test Center, Qilu University of Technology, Jinan, China
| | - Tian Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingyan Meng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizheng Yan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuping Zhao
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Katare PB, Nizami HL, Paramesha B, Dinda AK, Banerjee SK. Activation of toll like receptor 4 (TLR4) promotes cardiomyocyte apoptosis through SIRT2 dependent p53 deacetylation. Sci Rep 2020; 10:19232. [PMID: 33159115 PMCID: PMC7648754 DOI: 10.1038/s41598-020-75301-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/13/2020] [Indexed: 12/31/2022] Open
Abstract
Cardiomyocyte inflammation followed by apoptosis and fibrosis is an important mediator for development and progression of heart failure. Activation of toll-like receptor 4 (TLR4), an important regulator of inflammation, causes the progression of cardiac hypertrophy and injury. However, the precise mechanism of TLR4-mediated adverse cardiac outcomes is still elusive. The present study was designed to find the role of TLR4 in cardiac fibrosis and apoptosis, and molecular mechanism thereof. Rats were treated with TLR4 agonist (LPS 12.5 μg/kg/day) through osmotic pump for 14 days. To simulate the condition in vitro, H9c2 cells were treated with LPS (1 μg/ml). Similarly, H9c2 cells were transfected with TLR4 and SIRT2 c-DNA clone for overexpression. Myocardial oxidative stress, inflammation, fibrosis and mitochondrial parameters were evaluated both in vitro and in vivo. Cardiac inflammation after LPS treatment was confirmed by increased TNF-α and IL-6 expression in rat heart. There was a marked increase in oxidative stress as observed by increased TBARS and decreased endogenous antioxidants (GSH and catalase), along with mitochondrial dysfunction as measured by mitochondrial complex activity in LPS-treated rat hearts. Histopathological examination showed the presence of cardiac fibrosis after LPS treatment. Protein expression of nuclear p53 and cleaved caspase-7/caspase-9 was significantly increased in LPS treated heart. Similar to in vivo study, nuclear translocation of p53, mitochondrial dysfunction and cellular apoptosis were observed in H9c2 cells treated with LPS. Our data also indicate that decreased expression of SIRT2 was associated with increased acetylation of p53 after LPS treatment. In conclusion, TLR4 activation in rats promotes cardiac inflammation, mitochondrial dysfunction, apoptosis and fibrosis. p53 and caspase 7/caspase 9 were found to play an important role in TLR4-mediated apoptosis. Our data suggest that, reducing TLR4 mediated fibrosis and apoptosis could be a novel approach in the treatment of heart failure, keeping in the view the major role played by TLR4 in cardiac inflammation.
Collapse
Affiliation(s)
- Parmeshwar Bajirao Katare
- Drug Discovery Research Centre (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India
| | - Hina Lateef Nizami
- Drug Discovery Research Centre (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India
| | - Bugga Paramesha
- Drug Discovery Research Centre (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India
| | - Amit K Dinda
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India
| | - Sanjay K Banerjee
- Drug Discovery Research Centre (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, 121001, India.
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, 781101, India.
| |
Collapse
|
32
|
Imanaka-Yoshida K, Tawara I, Yoshida T. Tenascin-C in cardiac disease: a sophisticated controller of inflammation, repair, and fibrosis. Am J Physiol Cell Physiol 2020; 319:C781-C796. [PMID: 32845719 DOI: 10.1152/ajpcell.00353.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tenascin-C (TNC) is a large extracellular matrix glycoprotein classified as a matricellular protein that is generally upregulated at high levels during physiological and pathological tissue remodeling and is involved in important biological signaling pathways. In the heart, TNC is transiently expressed at several important steps during embryonic development and is sparsely detected in normal adult heart but is re-expressed in a spatiotemporally restricted manner under pathological conditions associated with inflammation, such as myocardial infarction, hypertensive cardiac fibrosis, myocarditis, dilated cardiomyopathy, and Kawasaki disease. Despite its characteristic and spatiotemporally restricted expression, TNC knockout mice develop a grossly normal phenotype. However, various disease models using TNC null mice combined with in vitro experiments have revealed many important functions for TNC and multiple molecular cascades that control cellular responses in inflammation, tissue repair, and even myocardial regeneration. TNC has context-dependent diverse functions and, thus, may exert both harmful and beneficial effects in damaged hearts. However, TNC appears to deteriorate adverse ventricular remodeling by proinflammatory and profibrotic effects in most cases. Its specific expression also makes TNC a feasible diagnostic biomarker and target for molecular imaging to assess inflammation in the heart. Several preclinical studies have shown the utility of TNC as a biomarker for assessing the prognosis of patients and selecting appropriate therapy, particularly for inflammatory heart diseases.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| | - Toshimichi Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Mie University Research Center for Matrix Biology, Tsu, Japan
| |
Collapse
|
33
|
Adverse Cardiac Remodelling after Acute Myocardial Infarction: Old and New Biomarkers. DISEASE MARKERS 2020; 2020:1215802. [PMID: 32626540 PMCID: PMC7306098 DOI: 10.1155/2020/1215802] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/06/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
The prevalence of heart failure (HF) due to cardiac remodelling after acute myocardial infarction (AMI) does not decrease regardless of implementation of new technologies supporting opening culprit coronary artery and solving of ischemia-relating stenosis with primary percutaneous coronary intervention (PCI). Numerous studies have examined the diagnostic and prognostic potencies of circulating cardiac biomarkers in acute coronary syndrome/AMI and heart failure after AMI, and even fewer have depicted the utility of biomarkers in AMI patients undergoing primary PCI. Although complete revascularization at early period of acute coronary syndrome/AMI is an established factor for improved short-term and long-term prognosis and lowered risk of cardiovascular (CV) complications, late adverse cardiac remodelling may be a major risk factor for one-year mortality and postponded heart failure manifestation after PCI with subsequent blood flow resolving in culprit coronary artery. The aim of the review was to focus an attention on circulating biomarker as a promising tool to stratify AMI patients at high risk of poor cardiac recovery and developing HF after successful PCI. The main consideration affects biomarkers of inflammation, biomechanical myocardial stress, cardiac injury and necrosis, fibrosis, endothelial dysfunction, and vascular reparation. Clinical utilities and predictive modalities of natriuretic peptides, cardiac troponins, galectin 3, soluble suppressor tumorogenicity-2, high-sensitive C-reactive protein, growth differential factor-15, midregional proadrenomedullin, noncoding RNAs, and other biomarkers for adverse cardiac remodelling are discussed in the review.
Collapse
|
34
|
Ozaki Tan SJ, Floriano JF, Nicastro L, Emanueli C, Catapano F. Novel Applications of Mesenchymal Stem Cell-derived Exosomes for Myocardial Infarction Therapeutics. Biomolecules 2020; 10:E707. [PMID: 32370160 PMCID: PMC7277090 DOI: 10.3390/biom10050707] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity globally, representing approximately a third of all deaths every year. The greater part of these cases is represented by myocardial infarction (MI), or heart attack as it is better known, which occurs when declining blood flow to the heart causes injury to cardiac tissue. Mesenchymal stem cells (MSCs) are multipotent stem cells that represent a promising vector for cell therapies that aim to treat MI due to their potent regenerative effects. However, it remains unclear the extent to which MSC-based therapies are able to induce regeneration in the heart and even less clear the degree to which clinical outcomes could be improved. Exosomes, which are small extracellular vesicles (EVs) known to have implications in intracellular communication, derived from MSCs (MSC-Exos), have recently emerged as a novel cell-free vector that is capable of conferring cardio-protection and regeneration in target cardiac cells. In this review, we assess the current state of research of MSC-Exos in the context of MI. In particular, we place emphasis on the mechanisms of action by which MSC-Exos accomplish their therapeutic effects, along with commentary on the current difficulties faced with exosome research and the ongoing clinical applications of stem-cell derived exosomes in different medical contexts.
Collapse
Affiliation(s)
- Sho Joseph Ozaki Tan
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Juliana Ferreria Floriano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
- Botucatu Medical School, Sao Paulo State University, Botucatu 18618687, Brazil
| | - Laura Nicastro
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Francesco Catapano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| |
Collapse
|
35
|
Wagner MJ, Khan M, Mohsin S. Healing the Broken Heart; The Immunomodulatory Effects of Stem Cell Therapy. Front Immunol 2020; 11:639. [PMID: 32328072 PMCID: PMC7160320 DOI: 10.3389/fimmu.2020.00639] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular Disease (CVD) is a leading cause of mortality within the United States. Current treatments being administered to patients who suffered a myocardial infarction (MI) have increased patient survival, but do not facilitate the replacement of damaged myocardium. Recent studies demonstrate that stem cell-based therapies promote myocardial repair; however, the poor engraftment of the transferred stem cell populations within the infarcted myocardium is a major limitation, regardless of the cell type. One explanation for poor cell retention is attributed to the harsh inflammatory response mounted following MI. The inflammatory response coupled to cardiac repair processes is divided into two distinct phases. The first phase is initiated during ischemic injury when necrosed myocardium releases Danger Associated Molecular Patterns (DAMPs) and chemokines/cytokines to induce the activation and recruitment of neutrophils and pro-inflammatory M1 macrophages (MΦs); in turn, facilitating necrotic tissue clearance. During the second phase, a shift from the M1 inflammatory functional phenotype to the M2 anti-inflammatory and pro-reparative functional phenotype, permits the resolution of inflammation and the establishment of tissue repair. T-regulatory cells (Tregs) are also influential in mediating the establishment of the pro-reparative phase by directly regulating M1 to M2 MΦ differentiation. Current studies suggest CD4+ T-lymphocyte populations become activated when presented with autoantigens released from the injured myocardium. The identity of the cardiac autoantigens or paracrine signaling molecules released from the ischemic tissue that directly mediate the phenotypic plasticity of T-lymphocyte populations in the post-MI heart are just beginning to be elucidated. Stem cells are enriched centers that contain a diverse paracrine secretome that can directly regulate responses within neighboring cell populations. Previous studies identify that stem cell mediated paracrine signaling can influence the phenotype and function of immune cell populations in vitro, but how stem cells directly mediate the inflammatory microenvironment of the ischemic heart is poorly characterized and is a topic of extensive investigation. In this review, we summarize the complex literature that details the inflammatory microenvironment of the ischemic heart and provide novel insights regarding how paracrine mediated signaling produced by stem cell-based therapies can regulate immune cell subsets to facilitate pro-reparative myocardial wound healing.
Collapse
Affiliation(s)
- Marcus J Wagner
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Mohsin Khan
- Center for Metabolic Disease, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Sadia Mohsin
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
36
|
Konopka CJ, Woźniak M, Hedhli J, Siekierzycka A, Skokowski J, Pęksa R, Matuszewski M, Munirathinam G, Kajdacsy-Balla A, Dobrucki IT, Kalinowski L, Dobrucki LW. Quantitative imaging of the receptor for advanced glycation end-products in prostate cancer. Eur J Nucl Med Mol Imaging 2020; 47:2562-2576. [PMID: 32166512 DOI: 10.1007/s00259-020-04721-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/10/2020] [Indexed: 01/11/2023]
Abstract
PURPOSE Current screening and monitoring of prostate cancer (PCa) is insufficient, producing inaccurate diagnoses. Presence of the receptor for advanced glycation end-products (RAGE) is associated with signature characteristics of PCa development such as cell proliferation, anchorage-independent growth, angiogenesis, migration, invasion, and poor patient survival. Therefore, we developed a preclinical multimodal imaging strategy targeted at RAGE to diagnose and monitor PCa. METHODS In this work, RAGE-targeted multimodal nanoparticles (64Cu-Cy5-G4-CML) were synthesized and rendered functional for nuclear and optical imaging using previously established methods. The probe's binding affinity and targeting specificity was assessed in androgen-dependent (LNCaP) and androgen-independent (DU145) prostate cancer cells using flow cytometry and confocal microscopy. In vivo PET-CT imaging was used to evaluate RAGE levels in DU145 and LNCaP xenograft models in mice. Then, tumors were excised post-imaging for histological staining and autoradiography to further assess RAGE levels and targeting efficiency of the tracer. Finally, RAGE levels from human PCa samples of varying Gleason Scores were evaluated using Western blot and immunohistochemical staining. RESULTS PCa cell culture studies confirmed adequate RAGE-targeting with 64Cu-Cy5-G4-CML with KD between 360 and 540 nM as measured by flow cytometry. In vivo PET-CT images of PCa xenografts revealed favorable kinetics, rapid blood clearance, and a non-homogenous, enhanced uptake in tumors, which varied based on cell type and tumor size with mean uptake between 0.5 and 1.4%ID/g. RAGE quantification of human samples confirmed increased RAGE uptake corresponding to increased Gleason scoring. CONCLUSIONS Our study has shown that RAGE-targeted cancer imaging is feasible and could significantly impact PCa management.
Collapse
Affiliation(s)
- Christian J Konopka
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Marcin Woźniak
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA.,Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland
| | - Jamila Hedhli
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland
| | - Jarosław Skokowski
- Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland.,Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Rafał Pęksa
- Department of Pathology, Medical University of Gdansk, Gdansk, Poland
| | | | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | | | - Iwona T Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Beckman Institute for Advanced Science and Technology, Urbana, IL, USA. .,Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland. .,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland. .,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, MC-251, Urbana, IL, 61801, USA.
| |
Collapse
|
37
|
Sprooten J, Garg AD. Type I interferons and endoplasmic reticulum stress in health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:63-118. [PMID: 32138904 PMCID: PMC7104985 DOI: 10.1016/bs.ircmb.2019.10.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) comprise of pro-inflammatory cytokines created, as well as sensed, by all nucleated cells with the main objective of blocking pathogens-driven infections. Owing to this broad range of influence, type I IFNs also exhibit critical functions in many sterile inflammatory diseases and immunopathologies, especially those associated with endoplasmic reticulum (ER) stress-driven signaling pathways. Indeed, over the years accumulating evidence has indicated that the presence of ER stress can influence the production, or sensing of, type I IFNs induced by perturbations like pattern recognition receptor (PRR) agonists, infections (bacterial, viral or parasitic) or autoimmunity. In this article we discuss the link between type I IFNs and ER stress in various diseased contexts. We describe how ER stress regulates type I IFNs production or sensing, or how type I IFNs may induce ER stress, in various circumstances like microbial infections, autoimmunity, diabetes, cancer and other ER stress-related contexts.
Collapse
Affiliation(s)
- Jenny Sprooten
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department for Cellular and Molecular Medicine, Cell Death Research & Therapy (CDRT) Unit, KU Leuven, Leuven, Belgium.
| |
Collapse
|
38
|
Carotenuto F, Teodori L, Maccari AM, Delbono L, Orlando G, Di Nardo P. Turning regenerative technologies into treatment to repair myocardial injuries. J Cell Mol Med 2019; 24:2704-2716. [PMID: 31568640 PMCID: PMC7077550 DOI: 10.1111/jcmm.14630] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
Regenerative therapies including stem cell treatments hold promise to allow curing patients affected by severe cardiac muscle diseases. However, the clinical efficacy of stem cell therapy remains elusive, so far. The two key roadblocks that still need to be overcome are the poor cell engraftment into the injured myocardium and the limited knowledge of the ideal mixture of bioactive factors to be locally delivered for restoring heart function. Thus, therapeutic strategies for cardiac repair are directed to increase the retention and functional integration of transplanted cells in the damaged myocardium or to enhance the endogenous repair mechanisms through cell‐free therapies. In this context, biomaterial‐based technologies and tissue engineering approaches have the potential to dramatically impact cardiac translational medicine. This review intends to offer some consideration on the cell‐based and cell‐free cardiac therapies, their limitations and the possible future developments.
Collapse
Affiliation(s)
- Felicia Carotenuto
- Centro Interdipartimentale di Medicina Rigenerativa, Università di Roma Tor Vergata, Rome, Italy.,Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Rome, Italy.,Diagnostics and Metrology (FSN-TECFIS-DIM), ENEA, C.R. Frascati, Rome, Italy
| | - Laura Teodori
- Diagnostics and Metrology (FSN-TECFIS-DIM), ENEA, C.R. Frascati, Rome, Italy
| | - Anna Maria Maccari
- Centro Interdipartimentale di Medicina Rigenerativa, Università di Roma Tor Vergata, Rome, Italy.,Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Rome, Italy
| | - Luciano Delbono
- Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Giuseppe Orlando
- Wake Forest University School of Medicine, Winston Salem, NC, USA.,Department of Surgery, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Paolo Di Nardo
- Centro Interdipartimentale di Medicina Rigenerativa, Università di Roma Tor Vergata, Rome, Italy.,Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Rome, Italy.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
39
|
Long noncoding RNA MALAT1 promotes cardiomyocyte apoptosis after myocardial infarction via targeting miR-144-3p. Biosci Rep 2019; 39:BSR20191103. [PMID: 31227612 PMCID: PMC6680374 DOI: 10.1042/bsr20191103] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 01/01/2023] Open
Abstract
Our study aims to excavate the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) in myocardial infarction (MI), especially in an ischemia/reperfusion injury model and the underlying mechanism involving the MALAT1-miR144 axis. Our results demonstrated that the expression of MALAT1 has a higher level, while miR-144 expression significantly reduced in myocardial tissue after MI and also in left anterior descending (LAD)-ligation mice. This result was confirmed in vitro studies in HL-1 cardiomyocytes followed with hypoxia/reoxygenation. In addition, overexpression of MALAT1 by MALAT1-pcDNA injection into the mice with LAD increased myocardial apoptosis in vivo, while this effect was attenuated by miR-144 mimic. Bioinformatics analysis exhibits that 3′-UTR of MALAT1 is targeted to the miR-144-3p. Up-regulation miR-144 blunted the hypoxia- or MALAT1-induced cell apoptosis. In conclusion, the expression of MALAT1 was increased, whereas miR-144 expression was down-regulated in the myocardium after AMI. MALAT1 up-regulation plays a critical role in promoting cardiomyocytes apoptosis via targeting miR-144.
Collapse
|
40
|
Yan W, Abu-El-Rub E, Saravanan S, Kirshenbaum LA, Arora RC, Dhingra S. Inflammation in myocardial injury: mesenchymal stem cells as potential immunomodulators. Am J Physiol Heart Circ Physiol 2019; 317:H213-H225. [PMID: 31125258 PMCID: PMC6732476 DOI: 10.1152/ajpheart.00065.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023]
Abstract
Ischemic heart disease is a growing worldwide epidemic. Improvements in medical and surgical therapies have reduced early mortality after acute myocardial infarction and increased the number of patients living with chronic heart failure. The irreversible loss of functional cardiomyocytes puts these patients at significant risk of ongoing morbidity and mortality after their index event. Recent evidence suggests that inflammation is a key mediator of postinfarction adverse remodeling in the heart. In this review, we discuss the cardioprotective and deleterious effects of inflammation and its mediators during acute myocardial infarction. We also explore the role of mesenchymal stem cell therapy to limit secondary injury and promote myocardial healing after myocardial infarction.
Collapse
Affiliation(s)
- Weiang Yan
- Institute of Cardiovascular Sciences, Saint Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg , Canada
- Section of Cardiac Surgery, Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg , Canada
| | - Ejlal Abu-El-Rub
- Institute of Cardiovascular Sciences, Saint Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg , Canada
| | - Sekaran Saravanan
- Centre for Nanotechnology and Advanced Biomaterials, Department of Bioengineering, SASTRA University , Thanjavur, Tamil Nadu , India
| | - Lorrie A Kirshenbaum
- Institute of Cardiovascular Sciences, Saint Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg , Canada
| | - Rakesh C Arora
- Institute of Cardiovascular Sciences, Saint Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg , Canada
- Section of Cardiac Surgery, Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg , Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, Saint Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg , Canada
| |
Collapse
|
41
|
de Jager SCA, Hoefer IE. Local inflammatory responses take their toll on the heart. Int J Cardiol 2019; 293:254-255. [PMID: 31353157 DOI: 10.1016/j.ijcard.2019.07.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Saskia C A de Jager
- Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Imo E Hoefer
- Laboratory for Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, the Netherlands..
| |
Collapse
|
42
|
Bauzá MDR, Giménez CS, Locatelli P, De Lorenzi A, Hnatiuk A, Capogrossi MC, Crottogini A, Cuniberti L, Olea FD. High-dose intramyocardial HMGB1 induces long-term cardioprotection in sheep with myocardial infarction. Drug Deliv Transl Res 2019; 9:935-944. [DOI: 10.1007/s13346-019-00628-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Wu RN, Yu TY, Zhou JC, Li M, Gao HK, Zhao C, Dong RQ, Peng D, Hu ZW, Zhang XW, Wu YQ. Targeting HMGB1 ameliorates cardiac fibrosis through restoring TLR2-mediated autophagy suppression in myocardial fibroblasts. Int J Cardiol 2019; 267:156-162. [PMID: 29957254 DOI: 10.1016/j.ijcard.2018.04.103] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Extracellular high-mobility group box 1 (HMGB1) has been identified as playing a critical role in the pathogenesis of tissue fibrosis. However, the underlying mechanism of its involvement in cardiac fibrosis is still not well-defined. Here, we aim to investigate whether toll-like receptor 2 (TLR2) contributes to the extracellular HMGB1-mediated development and progression of cardiac fibrosis. METHODS A mouse model of cardiac fibrosis was induced by subcutaneous injection of isoproterenol (ISO). Glycyrrhizic acid (GA), an inhibitor of HMGB1 derived from natural products, was simultaneously administered by intraperitoneal injection. Echocardiography, H&E and Sirius red staining were used to evaluate cardiac function and fibrosis. The myocardial expression of autophagy-associated proteins was examined using immunoblotting. Cardiac fibroblasts were treated with different concentrations of HMGB1 to examine the expression levels of α-SMA, collagen I and autophagy markers. Interactions of HMGB1/TLR2 and α-SMA/p62 were examined by immunoprecipitation and immunofluorescence. RESULTS ISO-treated mice showed characteristic cardiac fibrosis, increased expression and co-localization of HMGB1 and TLR2, as well as impaired autophagic signals in myocardial tissues, which could be prevented by silencing TLR2. Exogenous administration of HMGB1 blocked the autophagic flux in fibroblasts, which caused extensive accumulation of collagen I and α-SMA. In addition, cardiac fibrosis was alleviated by GA treatment through abrogating the interaction between HMGB1 and TLR2. CONCLUSIONS Our study suggests that the interaction between TLR2 and HMGB1 contributes to the pathogenesis of cardiac fibrosis via suppressing fibroblast autophagy, and that inhibiting HMGB1 with GA provides therapeutic benefits for the treatment of fibroproliferative heart diseases.
Collapse
Affiliation(s)
- Ri-Na Wu
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Baotou Central Hospital, Inner Mongolia, China
| | - Tian-Yu Yu
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ji-Chao Zhou
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meng Li
- Department of Cardiology, Baotou Central Hospital, Inner Mongolia, China
| | - Hui-Kuan Gao
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Can Zhao
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui-Qing Dong
- Department of Cardiology, Hangzhou First People's Hospital, Nanjing Medical University, Zhejiang, China
| | - Dian Peng
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuo-Wei Hu
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao-Wei Zhang
- Molecular Immunology and Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yong-Quan Wu
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
44
|
Danger-Associated Molecular Patterns (DAMPs): the Derivatives and Triggers of Inflammation. Curr Allergy Asthma Rep 2018; 18:63. [PMID: 30267163 DOI: 10.1007/s11882-018-0817-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Allergen is an umbrella term for irritants of diverse origin. Along with other offenders such as pathogens, mutagens, xenobiotics, and pollutants, allergens can be grouped as inflammatory agents. Danger-associated molecular patterns (DAMPs) are altered metabolism products of necrotic or stressed cells, which are deemed as alarm signals by the innate immune system. Like inflammation, DAMPs play a role in correcting the altered physiological state, but in excess, they can be lethal due to their signal transduction roles. In a vicious loop, inflammatory agents are DAMP generators and DAMPs create a pro-inflammatory state. Only a handful of DAMPs such as uric acid, mtDNA, extracellular ATP, HSPs, amyloid β, S100, HMGB1, and ECM proteins have been studied till now. A large number of DAMPs are still obscure, in need to be unveiled. The identification and functional characterization of those DAMPs in inflammation pathways can be insightful. RECENT FINDINGS As inflammation and immune activation have been implicated in almost all pathologies, studies on them have been intensified in recent times. Consequently, the pathologic mechanisms of various DAMPs have emerged. Following PRR ligation, the activation of inflammasome, MAPK, and NF-kB is some of the common pathways. The limited number of recognized DAMPs are only a fraction of the vast array of other DAMPs. In fact, any misplaced or abnormal level of metabolite can be a DAMP. Sophisticated analysis studies can reveal the full profile of the DAMPs. Lowering the level of DAMPs is useful therapeutic intervention but certainly not as effective as avoiding the DAMP generators, i.e., the inflammatory agents. So, rather than mitigating DAMPs, efforts should be focused on the elimination of inflammatory agents.
Collapse
|
45
|
Clark IA, Vissel B. Therapeutic implications of how TNF links apolipoprotein E, phosphorylated tau, α-synuclein, amyloid-β and insulin resistance in neurodegenerative diseases. Br J Pharmacol 2018; 175:3859-3875. [PMID: 30097997 PMCID: PMC6151331 DOI: 10.1111/bph.14471] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/26/2018] [Accepted: 07/23/2018] [Indexed: 12/24/2022] Open
Abstract
While cytokines such as TNF have long been recognized as essential to normal cerebral physiology, the implications of their chronic excessive production within the brain are now also increasingly appreciated. Syndromes as diverse as malaria and lead poisoning, as well as non‐infectious neurodegenerative diseases, illustrate this. These cytokines also orchestrate changes in tau, α‐synuclein, amyloid‐β levels and degree of insulin resistance in most neurodegenerative states. New data on the effects of salbutamol, an indirect anti‐TNF agent, on α‐synuclein and Parkinson's disease, APOE4 and tau add considerably to the rationale of the anti‐TNF approach to understanding, and treating, these diseases. Therapeutic advances being tested, and arguably useful for a number of the neurodegenerative diseases, include a reduction of excess cerebral TNF, whether directly, with a specific anti‐TNF biological agent such as etanercept via Batson's plexus, or indirectly via surgically implanting stem cells. Inhaled salbutamol also warrants investigating further across the neurodegenerative disease spectrum. It is now timely to integrate this range of new information across the neurodegenerative disease spectrum, rather than keep seeing it through the lens of individual disease states.
Collapse
Affiliation(s)
- I A Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, NSW, Australia.,St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| |
Collapse
|
46
|
CD8+CD28+ T cells might mediate injury of cardiomyocytes in acute myocardial infarction. Mol Immunol 2018; 101:74-79. [DOI: 10.1016/j.molimm.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/03/2018] [Accepted: 05/21/2018] [Indexed: 11/18/2022]
|
47
|
Patel S, Homaei A, El-Seedi HR, Akhtar N. Cathepsins: Proteases that are vital for survival but can also be fatal. Biomed Pharmacother 2018; 105:526-532. [PMID: 29885636 PMCID: PMC7172164 DOI: 10.1016/j.biopha.2018.05.148] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
The state of enzymes in the human body determines the normal physiology or pathology, so all the six classes of enzymes are crucial. Proteases, the hydrolases, can be of several types based on the nucleophilic amino acid or the metal cofactor needed for their activity. Cathepsins are proteases with serine, cysteine, or aspartic acid residues as the nucleophiles, which are vital for digestion, coagulation, immune response, adipogenesis, hormone liberation, peptide synthesis, among a litany of other functions. But inflammatory state radically affects their normal roles. Released from the lysosomes, they degrade extracellular matrix proteins such as collagen and elastin, mediating parasite infection, autoimmune diseases, tumor metastasis, cardiovascular issues, and neural degeneration, among other health hazards. Over the years, the different types and isoforms of cathepsin, their optimal pH and functions have been studied, yet much information is still elusive. By taming and harnessing cathepsins, by inhibitors and judicious lifestyle, a gamut of malignancies can be resolved. This review discusses these aspects, which can be of clinical relevance.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA,Corresponding author.
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran,Department of Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Hesham R. El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23, Uppsala, Sweden,Ecological Chemistry Group, Department of Chemistry, School of Chemical Science and Engineering, KTH, Stockholm, Sweden
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
48
|
Wysoczynski M, Khan A, Bolli R. New Paradigms in Cell Therapy: Repeated Dosing, Intravenous Delivery, Immunomodulatory Actions, and New Cell Types. Circ Res 2018; 123:138-158. [PMID: 29976684 PMCID: PMC6050028 DOI: 10.1161/circresaha.118.313251] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Perhaps the most important advance in the field of cell therapy for heart disease has been the recognition that all stem/progenitor cells (both adult and embryonic) fail to engraft in the heart to a significant extent and thus work via paracrine mechanisms. This fundamental advance has led to 4 new paradigms that are discussed in this review and that may importantly shape, or even revolutionize, the future of the field: (1) repeated cell therapy, (2) intravenous cell therapy, (3) immunomodulatory actions of cell therapy, and (4) new cell types. Because virtually all of our current knowledge of cell therapy is predicated on the effects of a single cell dose, the idea that the full therapeutic effects of a cell product require repeated doses is disruptive and has far-reaching implications. For example, inadequate dosing (single-dose protocols) may be responsible, at least in part, for the borderline or disappointing results obtained to date in clinical trials; furthermore, future studies (both preclinical and clinical) may need to incorporate repeated cell administrations. Another disruptive idea, supported by emerging preclinical and clinical evidence, is that intravenously injected cells can produce beneficial effects on the heart, presumably via release of paracrine factors in extracardiac organs or endocrine factors into the systemic circulation. Intravenous administration would obviate the need for direct delivery of cells to the heart, making cell therapy simpler, cheaper, safer, more scalable, and more broadly available, even on an outpatient basis. Although the mechanism of action of cell therapy remains elusive, there is compelling in vitro evidence that transplanted cells modulate the function of various immune cell types via release of paracrine factors, such as extracellular vesicles, although in vivo evidence is still limited. Investigation of the new paradigms reviewed herein should be a top priority because it may profoundly transform cell therapy and finally make it a reality.
Collapse
Affiliation(s)
- Marcin Wysoczynski
- From the Institute of Molecular Cardiology, University of Louisville, KY
| | - Abdur Khan
- From the Institute of Molecular Cardiology, University of Louisville, KY
| | - Roberto Bolli
- From the Institute of Molecular Cardiology, University of Louisville, KY.
| |
Collapse
|
49
|
Perrucci GL, Rurali E, Pompilio G. Cardiac fibrosis in regenerative medicine: destroy to rebuild. J Thorac Dis 2018; 10:S2376-S2389. [PMID: 30123577 DOI: 10.21037/jtd.2018.03.82] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major limitations for cardiac regeneration in patients after myocardial infarction (MI) are the wide loss of cardiomyocytes and the adverse structural alterations of extracellular matrix (ECM). Cardiac fibroblast differentiation into myofibroblasts (MFB) leads to a huge deposition of ECM and to the subsequent loss of ventricular structural integrity. All these molecular events depict the fundamental features at the basis of the post-MI fibrosis and deserve in depth cellular and molecular studies to fill the gap in the clinical practice. Indeed, to date, there are no effective therapeutic approaches to limit the post-MI massive fibrosis development. In this review we describe the involvement of integrins and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)/ADAMTS-like (ADAMTSL) proteins in cardiac reparative pro-fibrotic response after MI, proposing some of them as novel potential pharmacological tools.
Collapse
Affiliation(s)
- Gianluca Lorenzo Perrucci
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Erica Rurali
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Giulio Pompilio
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy.,Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy.,Dipartimento di Chirurgia Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| |
Collapse
|
50
|
Willeford A, Suetomi T, Nickle A, Hoffman HM, Miyamoto S, Heller Brown J. CaMKIIδ-mediated inflammatory gene expression and inflammasome activation in cardiomyocytes initiate inflammation and induce fibrosis. JCI Insight 2018; 3:97054. [PMID: 29925681 DOI: 10.1172/jci.insight.97054] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/14/2018] [Indexed: 01/08/2023] Open
Abstract
Inflammation accompanies heart failure and is a mediator of cardiac fibrosis. CaMKIIδ plays an essential role in adverse remodeling and decompensation to heart failure. We postulated that inflammation is the mechanism by which CaMKIIδ contributes to adverse remodeling in response to nonischemic interventions. We demonstrate that deletion of CaMKIIδ in the cardiomyocyte (CKO) significantly attenuates activation of NF-κB, expression of inflammatory chemokines and cytokines, and macrophage accumulation induced by angiotensin II (Ang II) infusion. The inflammasome was activated by Ang II, and this response was also diminished in CKO mice. These events occurred prior to any evidence of Ang II-induced cell death. In addition, CaMKII-dependent inflammatory gene expression and inflammasome priming were observed as early as the third hour of infusion, a time point at which macrophage recruitment was not evident. Inhibition of either the inflammasome or monocyte chemoattractant protein 1 (MCP1) signaling attenuated macrophage accumulation, and these interventions, like cardiomyocyte CaMKIIδ deletion, diminished the fibrotic response to Ang II. Thus, activation of CaMKIIδ in the cardiomyocyte represents what we believe to be a novel mechanism for initiating inflammasome activation and an inflammatory gene program that leads to macrophage recruitment and ultimately to development of fibrosis.
Collapse
Affiliation(s)
| | | | | | - Hal M Hoffman
- Department of Medicine, and.,Department of Pediatrics, UCSD, La Jolla, California, USA
| | | | | |
Collapse
|