1
|
Avram O, Durmus B, Rakocz N, Corradetti G, An U, Nittala MG, Terway P, Rudas A, Chen ZJ, Wakatsuki Y, Hirabayashi K, Velaga S, Tiosano L, Corvi F, Verma A, Karamat A, Lindenberg S, Oncel D, Almidani L, Hull V, Fasih-Ahmad S, Esmaeilkhanian H, Cannesson M, Wykoff CC, Rahmani E, Arnold CW, Zhou B, Zaitlen N, Gronau I, Sankararaman S, Chiang JN, Sadda SR, Halperin E. Accurate prediction of disease-risk factors from volumetric medical scans by a deep vision model pre-trained with 2D scans. Nat Biomed Eng 2024:10.1038/s41551-024-01257-9. [PMID: 39354052 DOI: 10.1038/s41551-024-01257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/23/2024] [Indexed: 10/03/2024]
Abstract
The application of machine learning to tasks involving volumetric biomedical imaging is constrained by the limited availability of annotated datasets of three-dimensional (3D) scans for model training. Here we report a deep-learning model pre-trained on 2D scans (for which annotated data are relatively abundant) that accurately predicts disease-risk factors from 3D medical-scan modalities. The model, which we named SLIViT (for 'slice integration by vision transformer'), preprocesses a given volumetric scan into 2D images, extracts their feature map and integrates it into a single prediction. We evaluated the model in eight different learning tasks, including classification and regression for six datasets involving four volumetric imaging modalities (computed tomography, magnetic resonance imaging, optical coherence tomography and ultrasound). SLIViT consistently outperformed domain-specific state-of-the-art models and was typically as accurate as clinical specialists who had spent considerable time manually annotating the analysed scans. Automating diagnosis tasks involving volumetric scans may save valuable clinician hours, reduce data acquisition costs and duration, and help expedite medical research and clinical applications.
Collapse
Affiliation(s)
- Oren Avram
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Berkin Durmus
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nadav Rakocz
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Giulia Corradetti
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ulzee An
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Muneeswar G Nittala
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Prerit Terway
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Akos Rudas
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zeyuan Johnson Chen
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Wakatsuki
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | | | - Swetha Velaga
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | - Liran Tiosano
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Federico Corvi
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | - Aditya Verma
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA
| | - Ayesha Karamat
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | - Sophiana Lindenberg
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | - Deniz Oncel
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | - Louay Almidani
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | - Victoria Hull
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | - Sohaib Fasih-Ahmad
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA
| | | | - Maxime Cannesson
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Charles C Wykoff
- Retina Consultants of Texas, Retina Consultants of America, Houston, TX, USA
- Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Elior Rahmani
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Corey W Arnold
- Department of Radiology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bolei Zhou
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noah Zaitlen
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ilan Gronau
- School of Computer Science, Reichman University, Herzliya, Israel
| | - Sriram Sankararaman
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeffrey N Chiang
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Srinivas R Sadda
- Doheny Eye Institute, University of California, Los Angeles, Pasadena, CA, USA.
- Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Eran Halperin
- Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Gjela M, Askeland A, Mellergaard M, Drewes AM, Handberg A, Frøkjær JB. Intra-pancreatic fat deposition and its relation to obesity: a magnetic resonance imaging study. Scand J Gastroenterol 2024; 59:742-748. [PMID: 38557425 DOI: 10.1080/00365521.2024.2333365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES Intra-pancreatic fat deposition (IPFD) is suspected to be associated with various medical conditions. This study aimed to assess pancreatic fat content in lean and obese individuals, characterize obese individuals with and without IPFD, and explore the underlying mechanisms. MATERIALS AND METHODS Sixty-two obese individuals without diabetes and 35 lean controls underwent magnetic resonance imaging (MRI) using proton density fat fraction (PDFF) maps to evaluate pancreatic and hepatic fat content, and visceral adipose tissue (VAT) content. Pancreatic fibrosis was explored by T1 relaxation time and MR elastography (MRE) measurements. Associations between pancreatic fat, measures of obesity and metabolic syndrome were examined using uni- and multivariate regression analyses. RESULTS Pancreatic PDFF was higher in obese than in lean controls (median 8.0%, interquartile range (6.1;13.3) % vs 2.6(1.7;3.9)%, p < 0.001). Obese individuals with IPFD (PDFF ≥6.2%) had higher waist circumference (114.0 ± 12.5 cm vs 105.2 ± 8.7 cm, p = 0.007) and VAT (224.9(142.1; 316.1) cm2 vs 168.2(103.4; 195.3) cm2, p < 0.001) than those without. In univariate analysis, pancreatic PDFF in obese individuals correlated with BMI (r = 0.27, p = 0.03), waist circumference (r = 0.44, p < 0.001), VAT (r = 0.37, p = 0.004), hepatic PDFF (r = 0.25, p = 0.046) and diastolic blood pressure (r = 0.32, p = 0.01). However, in multivariate analysis, only VAT was associated to pancreatic fat content. MRI measures of pancreatic fibrosis indicated no evident fibrosis in relation to increased pancreatic fat content. CONCLUSIONS Pancreatic fat content was increased in obese individuals compared with lean controls and predominantly correlated with the amount of visceral adipose tissue. Pancreatic fat content was not clearly linked to measures of pancreatic fibrosis.
Collapse
Affiliation(s)
- Mimoza Gjela
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Askeland
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Cao L, An Y, Liu H, Jiang J, Liu W, Zhou Y, Shi M, Dai W, Lv Y, Zhao Y, Lu Y, Chen L, Xia Y. Global epidemiology of type 2 diabetes in patients with NAFLD or MAFLD: a systematic review and meta-analysis. BMC Med 2024; 22:101. [PMID: 38448943 PMCID: PMC10919055 DOI: 10.1186/s12916-024-03315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) and metabolic-associated fatty liver disease (MAFLD) shares common pathophysiological mechanisms with type 2 diabetes, making them significant risk factors for type 2 diabetes. The present study aimed to assess the epidemiological feature of type 2 diabetes in patients with NAFLD or MAFLD at global levels. METHODS Published studies were searched for terms that included type 2 diabetes, and NAFLD or MAFLD using PubMed, EMBASE, MEDLINE, and Web of Science databases from their inception to December 2022. The pooled global and regional prevalence and incidence density of type 2 diabetes in patients with NAFLD or MAFLD were evaluated using random-effects meta-analysis. Potential sources of heterogeneity were investigated using stratified meta-analysis and meta-regression. RESULTS A total of 395 studies (6,878,568 participants with NAFLD; 1,172,637 participants with MAFLD) from 40 countries or areas were included in the meta-analysis. The pooled prevalence of type 2 diabetes among NAFLD or MAFLD patients was 28.3% (95% confidence interval 25.2-31.6%) and 26.2% (23.9-28.6%) globally. The incidence density of type 2 diabetes in NAFLD or MAFLD patients was 24.6 per 1000-person year (20.7 to 29.2) and 26.9 per 1000-person year (7.3 to 44.4), respectively. CONCLUSIONS The present study describes the global prevalence and incidence of type 2 diabetes in patients with NAFLD or MAFLD. The study findings serve as a valuable resource to assess the global clinical and economic impact of type 2 diabetes in patients with NAFLD or MAFLD.
Collapse
Affiliation(s)
- Limin Cao
- The Third Central Hospital of Tianjin, Tianjin, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huiyuan Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China
| | - Jinguo Jiang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China
| | - Wenqi Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China
| | - Yuhan Zhou
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China
| | - Mengyuan Shi
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China
| | - Wei Dai
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China
| | - Yanling Lv
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China
| | - Yanhui Lu
- School of Nursing, Peking University, 38 Xueyuan Rd, Haidian District, Beijing, 100191, China.
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning, 110004, China.
- Liaoning Key Laboratory of Precision Medical Research On Major Chronic Disease, Liaoning Province, Shenyang, China.
| |
Collapse
|
4
|
Pagkali A, Makris A, Brofidi K, Agouridis AP, Filippatos TD. Pathophysiological Mechanisms and Clinical Associations of Non-Alcoholic Fatty Pancreas Disease. Diabetes Metab Syndr Obes 2024; 17:283-294. [PMID: 38283640 PMCID: PMC10813232 DOI: 10.2147/dmso.s397643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Non-Alcoholic Fatty Pancreas disease (NAFPD), characterized by fat accumulation in pancreatic tissue, is an emerging clinical entity. However, the clinical associations, the underlying molecular drivers, and the pathophysiological mechanisms of NAFPD have not yet been characterized in detail. The NAFPD spectrum not only includes infiltration and accumulation of fat within and between pancreatic cells but also involves several inflammatory processes, dysregulation of physiological metabolic pathways, and hormonal defects. A deeper understanding of the underlying molecular mechanisms is key to correlate NAFPD with clinical entities including non-alcoholic fatty liver disease, metabolic syndrome, diabetes mellitus, atherosclerosis, as well as pancreatic cancer and pancreatitis. The aim of this review is to examine the pathophysiological mechanisms of NAFPD and to assess the possible causative/predictive risk factors of NAFPD-related clinical syndromes.
Collapse
Affiliation(s)
- Antonia Pagkali
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Makris
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kalliopi Brofidi
- Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Aris P Agouridis
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Department of Internal Medicine, German Oncology Center, Limassol, Cyprus
| | | |
Collapse
|
5
|
Caldart F, de Pretis N, Luchini C, Ciccocioppo R, Frulloni L. Pancreatic steatosis and metabolic pancreatic disease: a new entity? Intern Emerg Med 2023; 18:2199-2208. [PMID: 37462859 PMCID: PMC10635967 DOI: 10.1007/s11739-023-03364-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023]
Abstract
Overweight and obesity are some of the most important health challenges. Many diseases are related to these metabolic disorders, and, among them, the pancreatic fat accumulation, also called "pancreatic steatosis" or "nonalcoholic fatty pancreas", seems to have an emerging role in different conditions. There are different method to evaluate the fat content in the pancreas, such as histology, different imaging techniques and endoscopic ultrasound, but there is no gold standard for the correct diagnosis and for the identification of "inter/intralobular" and "intra-acinar" pancreatic fat. However, the fat storage in the pancreas is linked to chronic inflammation and to several conditions, such as acute and chronic pancreatitis, type 2 diabetes mellitus and pancreatic cancer. In addition, pancreatic fat accumulation has also been demonstrated to play a role in surgical outcome after pancreatectomy, in particular for the development of postoperative pancreatic fistula. Different possible therapeutic approaches have been proposed, but there is still a lack of evidence. The aim of this review is to report the current evidence about the relationship between the obesity, the pancreatic fat accumulation and its potential role in pancreatic diseases.
Collapse
Affiliation(s)
- Federico Caldart
- Gastroenterology B Unit, University of Verona-Verona Hospital, Verona, Italy.
| | - Nicolò de Pretis
- Gastroenterology B Unit, University of Verona-Verona Hospital, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, ARC-Net Research Center, University and Hospital Trust of Verona, Verona, Italy
| | - Rachele Ciccocioppo
- Gastroenterology B Unit, University of Verona-Verona Hospital, Verona, Italy
| | - Luca Frulloni
- Gastroenterology B Unit, University of Verona-Verona Hospital, Verona, Italy
| |
Collapse
|
6
|
Marti-Aguado D, Ten-Esteve A, Baracaldo-Silva CM, Crespo A, Coello E, Merino-Murgui V, Fernandez-Paton M, Alfaro-Cervello C, Sánchez-Martín A, Bauza M, Jimenez-Pastor A, Perez-Girbes A, Benlloch S, Pérez-Rojas J, Puglia V, Ferrández A, Aguilera V, Latorre M, Monton C, Escudero-García D, Bosch-Roig I, Alberich-Bayarri Á, Marti-Bonmati L. Pancreatic steatosis and iron overload increases cardiovascular risk in non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1213441. [PMID: 37600695 PMCID: PMC10436077 DOI: 10.3389/fendo.2023.1213441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Objective To assess the prevalence of pancreatic steatosis and iron overload in non-alcoholic fatty liver disease (NAFLD) and their correlation with liver histology severity and the risk of cardiometabolic diseases. Method A prospective, multicenter study including NAFLD patients with biopsy and paired Magnetic Resonance Imaging (MRI) was performed. Liver biopsies were evaluated according to NASH Clinical Research Network, hepatic iron storages were scored, and digital pathology quantified the tissue proportionate areas of fat and iron. MRI-biomarkers of fat fraction (PDFF) and iron accumulation (R2*) were obtained from the liver and pancreas. Different metabolic traits were evaluated, cardiovascular disease (CVD) risk was estimated with the atherosclerotic CVD score, and the severity of iron metabolism alteration was determined by grading metabolic hiperferritinemia (MHF). Associations between CVD, histology and MRI were investigated. Results In total, 324 patients were included. MRI-determined pancreatic iron overload and moderate-to severe steatosis were present in 45% and 25%, respectively. Liver and pancreatic MRI-biomarkers showed a weak correlation (r=0.32 for PDFF, r=0.17 for R2*). Pancreatic PDFF increased with hepatic histologic steatosis grades and NASH diagnosis (p<0.001). Prevalence of pancreatic steatosis and iron overload increased with the number of metabolic traits (p<0.001). Liver R2* significantly correlated with MHF (AUC=0.77 [0.72-0.82]). MRI-determined pancreatic steatosis (OR=3.15 [1.63-6.09]), and iron overload (OR=2.39 [1.32-4.37]) were independently associated with high-risk CVD. Histologic diagnosis of NASH and advanced fibrosis were also associated with high-risk CVD. Conclusion Pancreatic steatosis and iron overload could be of utility in clinical decision-making and prognostication of NAFLD.
Collapse
Affiliation(s)
- David Marti-Aguado
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
| | - Amadeo Ten-Esteve
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Department of Technologies for Health and Well-Being, Polytechnic University of Valencia, Valencia, Spain
| | | | - Ana Crespo
- Digestive Disease Department, Hospital Arnau de Vilanova, Valencia, Spain
| | - Elena Coello
- Hepatology and Liver Transplantation Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Víctor Merino-Murgui
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Matias Fernandez-Paton
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
| | - Clara Alfaro-Cervello
- Pathology Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Alba Sánchez-Martín
- Pathology Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Mónica Bauza
- Pathology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Ana Jimenez-Pastor
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain
| | | | - Salvador Benlloch
- Digestive Disease Department, Hospital Arnau de Vilanova, Valencia, Spain
- CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Judith Pérez-Rojas
- Pathology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Víctor Puglia
- Pathology Department, Hospital Arnau de Vilanova, Valencia, Spain
| | - Antonio Ferrández
- Pathology Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Victoria Aguilera
- Hepatology and Liver Transplantation Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
- CIBERehd, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Latorre
- Hepatology Unit, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Cristina Monton
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Desamparados Escudero-García
- Digestive Disease Department, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ignacio Bosch-Roig
- Universitat Politècnica de València, Institute of Telecommunications and Multimedia Applications (iTEAM), Valencia, Spain
| | - Ángel Alberich-Bayarri
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain
| | - Luis Marti-Bonmati
- Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, and Imaging La Fe node at Distributed Network for Biomedical Imaging (ReDIB) Unique Scientific and Technical Infrastructures (ICTS), Valencia, Spain
- Radiology Department, La Fe University and Polytechnic Hospital, Valencia, Spain
| |
Collapse
|
7
|
Abbasoğlu A, Karçaaltıncaba M, Karaosmanoğlu AD, Özmen MN, Akata D, İdilman İS. Associations Between Hepatic and Pancreatic Steatosis with Lumbar Spinal Bone Marrow Fat: A Single-Center Magnetic Resonance Imaging Study. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:618-625. [PMID: 37303245 PMCID: PMC10441167 DOI: 10.5152/tjg.2023.22225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/12/2022] [Indexed: 06/13/2023]
Abstract
BACKGROUND To evaluate the associations between hepatic, pancreatic steatosis, and lumbar spinal bone marrow fat determined by magnetic resonance imaging-proton density fat fraction in patients with no known or suspected liver disease. METHODS A total of 200 patients who were referred to our radiology department for upper abdominal magnetic resonance imaging between November 2015 and November 2017 were included in this study. All patients underwent a magnetic resonance imaging-proton density fat fraction on a 1.5-T magnetic resonance imaging system. RESULTS The mean liver, pancreas, and lumbar magnetic resonance imaging-proton density fat fraction were 7.52 ± 4.82%, 5.25 ± 5.44%, and 46.85 ± 10.38% in the study population. There were significant correlations between liver and pancreas (rs = 0.180, P = .036), liver and lumbar (rs = 0.317, P < .001), and pancreas and lumbar magnetic resonance imaging-proton density fat fraction (rs = 0.215, P = .012) in female patients. A weak correlation was observed between liver and lumbar magnetic resonance imaging-proton density fat fraction (rs = 0.174, P = .014) in the total population. The prevalence of hepatic and pancreatic steatosis was 42.5% and 29%, respectively. The prevalence of pancreatic steatosis (42.9% vs. 22.8%, P = .004) was higher in male patients compared to female patients. In subgroup analysis, in patients with hepatic steatosis, there were higher pancreas magnetic resonance imaging-proton density fat fraction (6.07 ± 6.42% vs. 4.66 ± 4.53%, P = .036) and lumbar magnetic resonance imaging-proton density fat fraction (48.81 ± 10.01% vs. 45.40 ± 10.46%, P =.029) compared to patients without hepatic steatosis. In patients with pancreatic steatosis, there were higher liver (9.07 ± 6.08 vs. 6.87 ± 4.06, P = .009) and lumbar magnetic resonance imaging-proton density fat fraction (49.31 ± 9.13% vs.45.83 ± 10.76%, P = .032) in comparison with patients without pancreatic steatosis. CONCLUSION Based on the results of the present study, fat accumulation in liver, pancreas, and lumbar vertebra have associations with more evident in females.
Collapse
Affiliation(s)
- Akın Abbasoğlu
- Department of Radiology, Hacettepe University Faculty of Medicine, Liver Imaging Team, Ankara, Turkey
| | - Musturay Karçaaltıncaba
- Department of Radiology, Hacettepe University Faculty of Medicine, Liver Imaging Team, Ankara, Turkey
| | - Ali Devrim Karaosmanoğlu
- Department of Radiology, Hacettepe University Faculty of Medicine, Liver Imaging Team, Ankara, Turkey
| | - Mustafa Nasuh Özmen
- Department of Radiology, Hacettepe University Faculty of Medicine, Liver Imaging Team, Ankara, Turkey
| | - Deniz Akata
- Department of Radiology, Hacettepe University Faculty of Medicine, Liver Imaging Team, Ankara, Turkey
| | - İlkay S. İdilman
- Department of Radiology, Hacettepe University Faculty of Medicine, Liver Imaging Team, Ankara, Turkey
| |
Collapse
|
8
|
Osman MAA, Alkhouly M, Elmohaseb GF, Nassef EM, Mohamed IGR, El mancy IM, Sabry S, Abdulrehim MM, Eliwa A, Eisa YH, Abdel-Ghany A, Abdelghani Y. Relation Between Non-Alcoholic Fatty Pancreas and Clinical and Biochemical Parameters in Women with Polycystic Ovary Syndrome: A Multi-Centric Study. Int J Gen Med 2022; 15:8225-8233. [PMID: 36438020 PMCID: PMC9682932 DOI: 10.2147/ijgm.s384073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common endocrinological disease affecting women in the reproductive age. Non-alcoholic fatty pancreas disease (NAFPD) can promote many aspects of pancreatic dysfunction. The present study aimed to determine the prevalence of NAFPD and to identify its association with clinical and biochemical parameters in PCOS patients. METHODS The present study included 150 patients with PCOS and 150 age-matched healthy controls. All patients were submitted to careful history taking and thorough clinical examination. Performed laboratory investigations included fasting and postprandial blood glucose, lipid profile, liver function tests, serum prolactin and total testosterone. Fatty pancreas was diagnosed using abdominal ultrasound. RESULTS Among PCOS women, NAFPD was diagnosed in 57 women (38.0%) in contrast to 18 women (12.0%) in the control group (p < 0.001). Patients with NAFPD were significantly older [median (IQR): 38.0 (35.0-43.0) versus 29.0 (25.5-33.0) years, p = 0.001] with higher BMI [median (IQR): 31.5 (29.1-34.7) versus 30.4 (28.6-32.4) kg/m2, 0.042]. Moreover, they had significantly higher frequency of metabolic syndrome (84.2% versus 54.8%, p = 0.001), insulin resistance (68.4% versus 26.9%, p < 0.001) and severe NAFLD (22.8% versus 2.2%, p < 0.001). NAFPD patients had significantly lower sex hormone binding globulin (SHBG) [median (IQR): 36.0 (30.8-40.7) versus 38.1 (35.15-42.7), p = 0.002] and significantly higher free androgen index (FAI) [median (IQR): 4.08 (3.3-4.92) versus 3.47 (3.12-4.05), p < 0.001]. CONCLUSION NAFPD is prevalent PCOS. It is related to metabolic syndrome, insulin resistance, dyslipidemia and hyperandrogenism.
Collapse
Affiliation(s)
- Mustafa A A Osman
- Gynecology and Obstetrics Department, Al-Azhar University, Cairo, Egypt
| | - Mohamed Alkhouly
- Gynecology and Obstetrics Department, Al-Azhar University, Cairo, Egypt
| | | | | | | | | | - Seham Sabry
- Internal Medicine Department, Al-Azhar University, Cairo, Egypt
| | | | - Ahmed Eliwa
- Internal Medicine Department, Al-Azhar University, Cairo, Egypt
| | - Yasmine H Eisa
- Community Medicine Department, October 6 University, Giza, Egypt
| | - Ahmed Abdel-Ghany
- Gynecology and Obstetrics Department, Minia University, Minia, Egypt
| | | |
Collapse
|
9
|
Nádasdi Á, Gál V, Masszi T, Patócs A, Igaz P, Somogyi A, Firneisz G. Combined effect of pancreatic lipid content and gene variants (TCF7L2, WFS1 and 11BHSD1) on B-cell function in Middle Aged Women in a Post Hoc Analysis. Diabetol Metab Syndr 2022; 14:106. [PMID: 35897035 PMCID: PMC9331183 DOI: 10.1186/s13098-022-00876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND TCF7L2 rs7903146 and PNPLA3 rs738409 gene variants confer the strongest risk for type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD), respectively. Pancreatic triacylglycerol content (PTGC) was reported to have a role in T2DM development. We aimed to assess the correlation between PTGC and hepatic triacylglycerol content (HTGC) stratified by PNPLA3 rs738409 genotype and subsequently interactions between PTGC and gene variants associated with β-cell dysfunction (TCF7L2, WFS1) and visceral adiposity (11ΒHSD1) on β-cell function were also tested. METHODS PTGC and HTGC were assessed using MR in a post-hoc analysis of a genotype-based (PNPLA3 rs738409) recall study of 39 (lipid- and glucose lowering) drug-naïve women. Oral glucose tolerance test, HbA1c, insulin indices, anthropometric data were evaluated. The effect of minor allele carrying of TCF7L2 (rs7903146); WFS1 (rs1801214) and 11ΒHSD1 (rs4844880) variants in combination with PTGC was studied on surrogate markers of β-cell function. We used Spearman's rank-order, Mann-Whitney-U tests, and linear regression models. RESULTS PTGC and HTGC values were correlated after stratification by the rs738409 variant (only in CC genotype group R = 0.67, p = 10- 4). PTGC and HbA1c values correlated in the entire study population (R = 0.58, p = 10- 4). Insulin resistance, sensitivity and disposition indices were correlated with PTGC (HOMA2-IR: R = 0.42, p = 0.008; TyG: R = 0.38, p = 0.018; Matsuda: R= - 0.48, p = 0.002; DIbasal: R=-0.33, p = 0.039; ISSI-2: R=-0.35, p = 0.028). Surrogate markers of β-cell function (HOMA2-B, AUCinsulin/AUCglucose) correlated significantly with PTGC in subjects with the following genotypes rs7903146: CC R = 0.51, p = 0.022; rs18001214: CT + CC R = 0.55, p = 0.013; rs4844880: TA + AA R = 0.56, p = 0.016. The strongest interactions were found between PTGC and TCF7L2 rs7903146 effect on HOMA2-B (p = 0.001) and AUCinsulin/AUCglucose (p = 0.013). CONCLUSIONS The PNPLA3 rs738409 genotype has a major effect on the correlation between PTGC and HTGC. Furthermore we first report the combined effect of PTGC and individual risk gene variants of TCF7L2, WFS1 and 11ΒHSD1 on β-cell dysfunction. The correlation between pancreatic lipid accumulation and HbA1c also indicates an important role for the latter pathology.
Collapse
Affiliation(s)
- Ákos Nádasdi
- Department of Internal Medicine and Haematology, Faculty of Medicine, Semmelweis University, Szentkirályi St 46, 1088, Budapest, Hungary
| | - Viktor Gál
- Brain Imaging Centre, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Tamás Masszi
- Department of Internal Medicine and Haematology, Faculty of Medicine, Semmelweis University, Szentkirályi St 46, 1088, Budapest, Hungary
| | - Attila Patócs
- MTA-SE Hereditary Tumors Research Group, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Peter Igaz
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Endocrinology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anikó Somogyi
- Department of Internal Medicine and Haematology, Faculty of Medicine, Semmelweis University, Szentkirályi St 46, 1088, Budapest, Hungary
| | - Gábor Firneisz
- Department of Internal Medicine and Haematology, Faculty of Medicine, Semmelweis University, Szentkirályi St 46, 1088, Budapest, Hungary.
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, Budapest, Hungary.
| |
Collapse
|
10
|
Skudder-Hill L, Sequeira IR, Cho J, Ko J, Poppitt SD, Petrov MS. Fat Distribution Within the Pancreas According to Diabetes Status and Insulin Traits. Diabetes 2022; 71:1182-1192. [PMID: 35234845 DOI: 10.2337/db21-0976] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022]
Abstract
A growing body of evidence suggests that intrapancreatic fat is associated with diabetes, but whether distribution of intrapancreatic fat across the regions of the pancreas has a pathophysiologic role is unknown. The aim of this study was to investigate the differences in intrapancreatic fat deposition between the head, body, and tail of the pancreas, as well as the relationship between regional intrapancreatic fat deposition and diabetes status and insulin traits. A total of 368 adults from the general population underwent MRI on a 3 Tesla scanner, and intrapancreatic fat was manually quantified in duplicate. Statistical models included adjustment for age, sex, ethnicity, BMI, and liver fat. Intrapancreatic fat deposition in the head, body, and tail of the pancreas did not differ significantly in adjusted models in either the overall cohort or the three subgroups based on diabetes status. HOMA of insulin resistance and fasting insulin were significantly positively associated with fat in the tail and body of the pancreas. There was no significant association between regional intrapancreatic fat and HOMA of β-cell function. The association of increased intrapancreatic fat deposition in the tail and body regions with increased insulin resistance may have an important role in the early identification of patients at risk for developing insulin resistance and diseases that stem from it.
Collapse
Affiliation(s)
- Loren Skudder-Hill
- School of Medicine, University of Auckland, Auckland, New Zealand
- Department of Neurosurgery, Yuquan Hospital Affiliated to Tsinghua University School of Clinical Medicine, Beijing, People's Republic of China
| | - Ivana R Sequeira
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, University of Auckland, Auckland, New Zealand
| | - Jaelim Cho
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Juyeon Ko
- School of Medicine, University of Auckland, Auckland, New Zealand
| | - Sally D Poppitt
- School of Medicine, University of Auckland, Auckland, New Zealand
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, University of Auckland, Auckland, New Zealand
- Riddet Institute, Centre of Research Excellence (CoRE) for Food and Nutrition, Palmerston North, New Zealand
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Ware MA, Kaar JL, Behn CD, Bartlette K, Carreau AM, Lopez-Paniagua D, Scherzinger A, Xie D, Rahat H, Garcia-Reyes Y, Nadeau KJ, Cree-Green M. Pancreatic fat relates to fasting insulin and postprandial lipids but not polycystic ovary syndrome in adolescents with obesity. Obesity (Silver Spring) 2022; 30:191-200. [PMID: 34932884 PMCID: PMC10786704 DOI: 10.1002/oby.23317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/23/2021] [Accepted: 09/17/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Adolescents with polycystic ovary syndrome (PCOS) and obesity can have insulin resistance, dysglycemia, and hepatic steatosis. Excess pancreatic fat may disturb insulin secretion and relate to hepatic fat. Associations between pancreatic fat fraction (PFF) and metabolic measures in PCOS were unknown. METHODS This secondary analysis included 113 sedentary, nondiabetic adolescent girls (age = 15.4 [1.9] years), with or without PCOS and BMI ≥ 90th percentile. Participants underwent fasting labs, oral glucose tolerance tests, and magnetic resonance imaging for hepatic fat fraction (HFF) and PFF. Groups were categorized by PFF (above or below the median of 2.18%) and compared. RESULTS Visceral fat and HFF were elevated in individuals with PCOS versus control individuals, but PFF was similar. PFF did not correlate with serum androgens. Higher and lower PFF groups had similar HFF, with no correlation between PFF and HFF, although hepatic steatosis was more common in those with higher PFF (≥5.0% HFF; 60% vs. 36%; p = 0.014). The higher PFF group had higher fasting insulin (p = 0.026), fasting insulin resistance (homeostatic model assessment of insulin resistance, p = 0.032; 1/fasting insulin, p = 0.028), free fatty acids (p = 0.034), and triglycerides (p = 0.004) compared with those with lower PFF. β-Cell function and insulin sensitivity were similar between groups. CONCLUSIONS Neither PCOS status nor androgens related to PFF. However, fasting insulin and postprandial lipids were worse with higher PFF.
Collapse
Affiliation(s)
- Meredith A. Ware
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Modern Human Anatomy, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Vista University College of Osteopathic Medicine, Parker, Colorado, USA
| | - Jill L. Kaar
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cecilia Diniz Behn
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado, USA
| | - Kai Bartlette
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado, USA
| | - Anne-Marie Carreau
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Medicine, School of Medicine, Québec CHU Research Center, Laval University, Québec City, Québec, Canada
| | - Dan Lopez-Paniagua
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ann Scherzinger
- Department of Radiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Danielle Xie
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Haseeb Rahat
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Vista University College of Osteopathic Medicine, Parker, Colorado, USA
| | - Yesenia Garcia-Reyes
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristen J. Nadeau
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Ludeman Family Center for Women’s Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melanie Cree-Green
- Division of Pediatric Endocrinology, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Ludeman Family Center for Women’s Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
12
|
Wagner R, Eckstein SS, Yamazaki H, Gerst F, Machann J, Jaghutriz BA, Schürmann A, Solimena M, Singer S, Königsrainer A, Birkenfeld AL, Häring HU, Fritsche A, Ullrich S, Heni M. Metabolic implications of pancreatic fat accumulation. Nat Rev Endocrinol 2022; 18:43-54. [PMID: 34671102 DOI: 10.1038/s41574-021-00573-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Fat accumulation outside subcutaneous adipose tissue often has unfavourable effects on systemic metabolism. In addition to non-alcoholic fatty liver disease, which has received considerable attention, pancreatic fat has become an important area of research throughout the past 10 years. While a number of diagnostic approaches are available to quantify pancreatic fat, multi-echo Dixon MRI is currently the most developed method. Initial studies have shown associations between pancreatic fat and the metabolic syndrome, impaired glucose metabolism and type 2 diabetes mellitus. Pancreatic fat is linked to reduced insulin secretion, at least under specific circumstances such as prediabetes, low BMI and increased genetic risk of type 2 diabetes mellitus. This Review summarizes the possible causes and metabolic consequences of pancreatic fat accumulation. In addition, potential therapeutic approaches for addressing pancreatic fat accumulation are discussed.
Collapse
Affiliation(s)
- Robert Wagner
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sabine S Eckstein
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Hajime Yamazaki
- Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Felicia Gerst
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Section of Experimental Radiology, Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Benjamin Assad Jaghutriz
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Michele Solimena
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stephan Singer
- Institute of Pathology, University of Tübingen, Tübingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral, and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Susanne Ullrich
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Tübingen, Germany
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Tübingen, Germany.
- Department of Internal Medicine, Division of Diabetology, Endocrinology, and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany.
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
13
|
Sahin S, Karadeniz A. Pancretic Fat Accummulation is Associated with Subclinical Atherosclerosis. Angiology 2021; 73:508-513. [PMID: 34607492 DOI: 10.1177/00033197211038334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigated the relationship between pancreatic fat accumulation and markers of atherosclerosis among patients with nonalcoholic fatty liver disease (NAFLD). Patients with NAFLD have been reported to be at an increased risk of vascular events. We grouped 183 patients in whom we detected and graded hepatosteatosis (HS) on transabdominal ultrasonography into 2 groups based on the presence/absence of pancreatic fat. There were 85 participants (50 female; mean age: 53.6 ± 9.7 years) who were nonalcoholic fatty pancreas disease (NAFPD) positive and 98 participants (56 female; mean age: 51.4 ± 9.3 years) who were NAFPD negative. Carotid intima media thickness (cIMT) was significantly greater in the group where HS was accompanied by NAFPD (0.51 [0.40-0.62] vs 0.45 [0.35-0.55] mm; P < .001). Multivariable analyses showed that the independent predictors of increased cIMT were age (odds ratio [OR]: 1.108; 95% CI: 1.059-1.158, P = .001), hypertension (OR: 2.244; 95% CI: 1.099-4.579, P = .026), and the presence of NAFPD (OR: 3.078; CI 95% CI: 1.531-6.190, P = .0002). In the present study we demonstrated that, in patients with NAFLD, pancreatic fat accumulation was significantly associated with cIMT, a marker of early atherosclerosis. NAFPD may increase the risk of vascular events associated with NAFLD.
Collapse
Affiliation(s)
- Sinan Sahin
- Department of Cardiology, 420101Trabzon Ahi Evren Cardiovascular and Thoracic Surgery Research and Application Center, Trabzon, Turkey
| | - Aysegul Karadeniz
- Department of Radiology, 420101Trabzon Ahi Evren Cardiovascular and Thoracic Surgery Research and Application Center, Trabzon, Turkey
| |
Collapse
|
14
|
Ulasoglu C, Tekin ZN, Akan K, Yavuz A. Does Nonalcoholic Pancreatic Steatosis Always Correlate with Nonalcoholic Fatty Liver Disease? Clin Exp Gastroenterol 2021; 14:269-275. [PMID: 34149286 PMCID: PMC8205613 DOI: 10.2147/ceg.s317340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose To identify the correlation of nonalcoholic pancreatic steatosis (NAPS) with nonalcoholic fatty liver disease (NAFLD) in an outpatient group. Based on its metabolic and imaging properties, NAPS has been increasingly recognized in recent years; however, its interaction with NAFLD is still not clear. Patients and Methods In this cross-sectional observational study, 345 consecutive patients without any chronic illness who were referred to the senior radiologist for abdominal ultrasound (US) were included. The US report showed hepatic and pancreatic echogenicity. The patients’ demographic, anthropometric, and laboratory data were collected from medical records. Results Overall, NAPS and NAFLD were seen in 227 (65.8%) and 219 (63.5%) patients, respectively. Normal echogenicity was noted in 74 (21.4%) patients. Forty-four patients (12.8%) had steatotic liver without NAPS, 52 (15.1%) had steatotic pancreas without NAFLD, and 175 (50.7%) had steatosis in both organs. The discordance in steatosis grading between NAPS and NAFLD was 55.1%. Insulin resistance was present in 8.7, 26.7, 19, and 61.3% of patients with no steatosis, only NAFLD, only NAPS, and steatosis in both organs, respectively. Evident NAFLD and NAPS having grade 2 and 3 steatosis were present in 15.3% and 29.0% of the study group, respectively. Cholecystolithiasis was present in 6.8, 13.6, and 28.8% of patients with normal echogenic pancreas, only NAFLD, and only NAPS, respectively (p=0.01). Conclusion Based on the ultrasonographic, clinical, demographic, and anthropometric features of the included patients, we found that NAPS did not fully accompany nonalcoholic fatty liver. Despite severe pancreatic steatosis, more than a quarter of cases had normal liver echogenicity. Insulin resistance frequency was insignificantly higher in NAFLD than NAPS (p=0.694). The significantly higher frequency of cholecystolithiasis in NAPS needs further large-scale studies. The inconsistency of steatosis degree in NAPS and NAFLD in >50% cases may reflect differences in the pathophysiology of these two clinical entities.
Collapse
Affiliation(s)
- Celal Ulasoglu
- Department of Gastroenterology, Medeniyet University, Goztepe Education and Research Hospital, Istanbul, Turkey
| | - Zeynep Nilufer Tekin
- Department of Radiology, Medeniyet University, Goztepe Education and Research Hospital, Istanbul, Turkey
| | - Kubra Akan
- Department of Gastroenterology, Medeniyet University, Goztepe Education and Research Hospital, Istanbul, Turkey
| | - Arda Yavuz
- Department of Gastroenterology, Medeniyet University, Goztepe Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
15
|
Idilman IS, Low HM, Gidener T, Philbrick K, Mounajjed T, Li J, Allen AM, Yin M, Venkatesh SK. Association between Visceral Adipose Tissue and Non-Alcoholic Steatohepatitis Histology in Patients with Known or Suspected Non-Alcoholic Fatty Liver Disease. J Clin Med 2021; 10:jcm10122565. [PMID: 34200525 PMCID: PMC8228492 DOI: 10.3390/jcm10122565] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 01/29/2023] Open
Abstract
(1) Purpose: To determine the association between visceral adipose tissue (VAT) and proton density fat fraction (PDFF) with magnetic resonance imaging (MRI), and hepatic steatosis (HS), non-alcoholic steatohepatitis (NASH) and hepatic fibrosis (HF) in patients with known or suspected non-alcoholic fatty liver disease (NAFLD). (2) Methods: 135 subjects that had a liver biopsy performed within 3 months (bariatric cohort) or 1 month (NAFLD cohort) of an MRI exam formed the study group. VAT volume was quantified at L2-L3 level on opposed-phase images with signal intensity-based painting using a semi-quantitative software. Liver PDFF and pancreas PDFF were calculated on fat fraction maps. Liver volume (Lvol) and spleen volume (Svol) were also calculated using a semi-automated 3D volume tool available on PACS. A histological analysis was performed by an expert hepatopathologist blinded to imaging findings. (3) Results: The mean Lvol, Svol, liver PDFF, pancreas PDFF and VAT of the study population were 2492.2 mL, 381.6 mL, 13.2%, 12.7% and 120.6 mL, respectively. VAT showed moderate correlation with liver PDFF (r = 0.41, p < 0.001) and weak correlation with Lvol (r = 0.38, p < 0.001), Svol (r = 0.20, p = 0.025) and pancreas PDFF (rs = 0.29, p = 0.001). VAT, Lvol and liver PDFF were significantly higher in patients with HS (p < 0.001), NASH (p < 0.05) and HF (p < 0.05). VAT was also significantly higher in the presence of lobular inflammation (p = 0.019) and hepatocyte ballooning (p = 0.001). The cut-off VAT volumes for predicting HS, NASH and HF were 101.8 mL (AUC, 0.7), 111.8 mL (AUC, 0.64) and 111.6 mL (AUC, 0.66), respectively. (4) Conclusion: The MRI determined VAT can be used for predicting the presence of HS, NASH and HF in patients with known or suspected NAFLD.
Collapse
Affiliation(s)
- Ilkay S. Idilman
- Division of Abdominal Imaging, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (I.S.I.); (H.M.L.); (T.G.); (K.P.); (J.L.); (M.Y.)
- Department of Radiology, School of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Hsien Min Low
- Division of Abdominal Imaging, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (I.S.I.); (H.M.L.); (T.G.); (K.P.); (J.L.); (M.Y.)
- Department of Radiology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Tolga Gidener
- Division of Abdominal Imaging, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (I.S.I.); (H.M.L.); (T.G.); (K.P.); (J.L.); (M.Y.)
| | - Kenneth Philbrick
- Division of Abdominal Imaging, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (I.S.I.); (H.M.L.); (T.G.); (K.P.); (J.L.); (M.Y.)
| | - Taofic Mounajjed
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jiahui Li
- Division of Abdominal Imaging, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (I.S.I.); (H.M.L.); (T.G.); (K.P.); (J.L.); (M.Y.)
| | - Alina M. Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Meng Yin
- Division of Abdominal Imaging, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (I.S.I.); (H.M.L.); (T.G.); (K.P.); (J.L.); (M.Y.)
| | - Sudhakar K. Venkatesh
- Division of Abdominal Imaging, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (I.S.I.); (H.M.L.); (T.G.); (K.P.); (J.L.); (M.Y.)
- Correspondence:
| |
Collapse
|
16
|
Fang T, Huang S, Chen Y, Chen Z, Chen J, Hu W. Glucagon Like Peptide-1 Receptor Agonists Alters Pancreatic and Hepatic Histology and Regulation of Endoplasmic Reticulum Stress in High-fat Diet Mouse Model. Exp Clin Endocrinol Diabetes 2020; 129:625-633. [PMID: 32961563 DOI: 10.1055/a-1240-4936] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Obesity is a major health problem worldwide, and non-alcoholic fatty pancreas disease (NAFPD) and non-alcoholic fatty liver disease (NAFLD) are obesity-associated complications. Liraglutide, a glucagon-like peptide-1 (GLP-1) agonist, has been approved for treatment of obesity. We aimed to evaluate the therapeutic effects of liraglutide on the complications through its regulation of endoplasmic reticulum (ER) stress. METHODS A high-fat diet mouse model was established in C57BL/6J mice. Two groups of mice were fed a high-fat diet with 60% fat for 16 weeks and control mice were fed standard chow. A four-week 0.6 mg/kg/day liraglutide treatment was started in one high-fat diet group after 12 weeks of the high-fat diet. After sacrificing the mice, pancreatic and hepatic tissues were prepared for western blot and immunohistochemistry for ER stress proteins, including activating transcription factor 4 (ATF4), caspase 12, C/EBP homologous protein (CHOP) eukaryotic initiation factor 2 α (eIF2α), glucose regulated protein (GRP) 78 and protein kinase RNA-like endoplasmic reticulum kinase (PERK). RESULTS Liraglutide significantly decreased body weight gained by mice consuming a high-fat diet (27.6 g vs. 34.5 g, P<0.001), and levels of all ER proteins increased significantly in both the pancreas and liver (all P<0.05). Expression of most ER stress proteins in pancreatic tissue correlated with disease scores of NAFLD (all P<0.05). However, no significant differences were found in pancreatic ATF 4 expression between mice without NAFLD, and those with early non-alcoholic steatohepatitis (NASH) and fibrotic NASH (P=0.122). CONCLUSION Liraglutide reduces the severity of NAFPD and NAFLD may through regulating the ER stress pathway and downstream apoptosis signaling.
Collapse
Affiliation(s)
- Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Siying Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yongpeng Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Zongchi Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jiangmu Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Weitao Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
17
|
Liver and pancreas: 'Castor and Pollux' regarding the relationship between hepatic steatosis and pancreas exocrine insufficiency. Pancreatology 2020; 20:880-886. [PMID: 32475757 DOI: 10.1016/j.pan.2020.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic exocrine insufficiency (PEI) is found in 30-50% of diabetes mellitus (DM). Insulin resistance is triggering factor in both DM and nonalcoholic fatty liver disease (NAFLD). Therefore, we aimed to investigate frequency of PEI in NAFLD, and relationship of fecal pancreatic elastase (PE) levels with liver histology and pancreatic fat. METHODS Ninety-seven biopsy proven NAFLD patients and 50 controls were enrolled. Pancreas exocrine functions were measured by PE. Magnetic resonance imaging-estimated proton density fat fraction (MRI-PDFF) was used to quantify fat. RESULTS NAFLD patients had significantly lower PE levels than controls (297 [204-517] vs. 500 [298-678] μg/g, p < 0.01). PEI (PE < 200 μg/g) ratio of NAFLD patients (22.7%, n = 22) was higher than PEI ratio of controls (6%, n = 3) (p = 0.011). Among diabetic (n = 35) NAFLD patients, 9 (25.7%) exhibited PEI, compared to 13 (21%) of non-diabetics. There was no significant difference in patients with and without DM in terms of PEI (p = 0.592). Among NASH (n = 68) patients 16 (23.5%) exhibited PEI, compared to (20.7%) of non-NASH (p = 0.76). Multiple analysis revealed NAFLD as a predictor of PEI independent of age, sex and DM (OR = 4.892, p = 0,021). Mean pancreas MRI-PDFF was significantly higher in diabetics (13.7% ± 3.6% vs. 8.7% ± 5.1%, p = 0.001). There was no significant pancreas MRI-PDFF difference between NASH and non-NASH (P = 0.95). Mean pancreas MRI-PDFF was significantly higher in patients with PEI (13.7% ± 3.4% vs. 8.9% ± 5.2%, P < 0.01). CONCLUSION This is the first study demonstrating the high frequency of PEI in NAFLD independent of DM. Moreover, increasing pancreatic steatosis appears to be associated with higher frequency of PEI in NAFLD.
Collapse
|
18
|
Systematic Review with Meta-Analysis: The Effects of Probiotics in Nonalcoholic Fatty Liver Disease. Gastroenterol Res Pract 2019; 2019:1484598. [PMID: 31885541 PMCID: PMC6927028 DOI: 10.1155/2019/1484598] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 01/30/2023] Open
Abstract
Background and Aims Probiotics was considered as a potential therapy for nonalcoholic fatty liver disease (NAFLD) without approval and comprehensive assessment in recent years, which call for a meta-analysis. Methods We performed electronic and manual searches including English and Chinese databases published before April 2019, with the use of mesh term and free text of "nonalcoholic fatty liver disease" and "probiotics." Clinical trials evaluating the efficacy of probiotic therapy in NAFLD patients were included according to the eligibility criteria. With the use of random effects models, clinical outcomes were presented as weighted mean difference (WMD) with 95% confidence interval (CI), while heterogeneity and meta-regression were also assessed. Results 28 clinical trials enrolling 1555 criterion proven NAFLD patients with the use of probiotics from 4 to 28 weeks were included. Overall, probiotic therapy had beneficial effects on body mass index (WMD: -1.46, 95% CI: [-2.44, -0.48]), alanine aminotransferase (WMD: -13.40, 95% CI: [-17.03, -9.77]), aspartate transaminase (WMD: -13.54, 95% CI: [-17.86, -9.22]), gamma-glutamyl transpeptidase (WMD: -9.88, 95% CI: [-17.77, -1.99]), insulin (WMD: -1.32, 95% CI: [-2.43, -0.21]), homeostasis model assessment-insulin resistance (WMD: -0.42, 95% CI: [-0.73, -0.12]), and total cholesterol (WMD: -15.38, 95% CI: [-26.50, -4.25]), but not in fasting blood sugar, lipid profiles, or tumor necrosis factor-alpha. Conclusion The systematic review and meta-analysis support that probiotics are superior to placebo in NAFLD patients and could be utilized as a common complementary therapeutic approach.
Collapse
|
19
|
Covarrubias Y, Fowler KJ, Mamidipalli A, Hamilton G, Wolfson T, Leinhard OD, Jacobsen G, Horgan S, Schwimmer JB, Reeder SB, Sirlin CB. Pilot study on longitudinal change in pancreatic proton density fat fraction during a weight-loss surgery program in adults with obesity. J Magn Reson Imaging 2019; 50:1092-1102. [PMID: 30701611 PMCID: PMC6667307 DOI: 10.1002/jmri.26671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Quantitative-chemical-shift-encoded (CSE)-MRI methods have been applied to the liver. The feasibility and potential utility CSE-MRI in monitoring changes in pancreatic proton density fat fraction (PDFF) have not yet been demonstrated. PURPOSE To use quantitative CSE-MRI to estimate pancreatic fat changes during a weight-loss program in adults with severe obesity and nonalcoholic fatty liver disease (NAFLD). To explore the relationship of reduction in pancreatic PDFF with reductions in anthropometric indices. STUDY TYPE Prospective/longitudinal. POPULATION Nine adults with severe obesity and NAFLD enrolled in a weight-loss program. FIELD STRENGTH/SEQUENCE CSE-MRI fat quantification techniques and multistation-volumetric fat/water separation techniques were performed at 3 T. ASSESSMENT PDFF values were recorded from parametric maps colocalized across timepoints. STATISTICAL TESTS Rates of change of log-transformed variables across time were determined (linear-regression), and their significance assessed compared with no change (Wilcoxon test). Rates of change were correlated pairwise (Spearman's correlation). RESULTS Mean pancreatic PDFF decreased by 5.7% (range 0.7-17.7%) from 14.3 to 8.6%, hepatic PDFF by 11.4% (2.6-22.0%) from 14.8 to 3.4%, weight by 30.9 kg (17.3-64.2 kg) from 119.0 to 88.1 kg, body mass index by 11.0 kg/m2 (6.3-19.1 kg/m2 ) from 44.1 to 32.9 kg/m2 , waist circumference (WC) by 25.2 cm (4.0-41.0 cm) from 133.1 to 107.9 cm, HC by 23.5 cm (4.5-47.0 cm) from 135.8 to 112.3 cm, visceral adipose tissue (VAT) by 2.9 L (1.7-5.7 L) from 7.1 to 4.2 L, subcutaneous adipose tissue (SCAT) by 4.0 L (2.9-7.4 L) from 15.0 to 11.0 L. Log-transformed rate of change for pancreatic PDFF was moderately correlated with log-transformed rates for hepatic PDFF, VAT, SCAT, and WC (ρ = 0.5, 0.47, 0.45, and 0.48, respectively), although not statistically significant. DATA CONCLUSION Changes in pancreatic PDFF can be estimated by quantitative CSE-MRI in adults undergoing a weight-loss surgery program. Pancreatic and hepatic PDFF and anthropometric indices decreased significantly. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;50:1092-1102.
Collapse
Affiliation(s)
- Yesenia Covarrubias
- Liver Imaging Group, Department of Radiology, University of California, San Diego School of Medicine, La Jolla, California
| | - Kathryn J Fowler
- Liver Imaging Group, Department of Radiology, University of California, San Diego School of Medicine, La Jolla, California
| | - Adrija Mamidipalli
- Liver Imaging Group, Department of Radiology, University of California, San Diego School of Medicine, La Jolla, California
| | - Gavin Hamilton
- Liver Imaging Group, Department of Radiology, University of California, San Diego School of Medicine, La Jolla, California
| | - Tanya Wolfson
- Computational and Applied Statistics Laboratory, San Diego Supercomputer Center, University of California, San Diego, La Jolla, California
| | - Olof Dahlqvist Leinhard
- AMRA Medical AB, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping, Sweden
- Department of Medicine and Health, Linköping, University, Linköping, Sweden
| | - Garth Jacobsen
- Department of Surgery, University of California, San Diego, La Jolla, California
| | - Santiago Horgan
- Department of Surgery, University of California, San Diego, La Jolla, California
| | - Jeffrey B Schwimmer
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of California, San Diego, La Jolla, California
- Department of Gastroenterology, Rady Children’s Hospital San Diego, San Diego, California
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, Wisconsin
- Department of Medicine, University of Wisconsin - Madison, Madison, Wisconsin
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California, San Diego School of Medicine, La Jolla, California
| |
Collapse
|
20
|
Chouhan MD, Firmin L, Read S, Amin Z, Taylor SA. Quantitative pancreatic MRI: a pathology-based review. Br J Radiol 2019; 92:20180941. [PMID: 30982337 DOI: 10.1259/bjr.20180941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
MRI plays an important role in the clinical management of pancreatic disorders and interpretation is reliant on qualitative assessment of anatomy. Conventional sequences capturing pancreatic structure can however be adapted to yield quantitative measures which provide more diagnostic information, with a view to increasing diagnostic accuracy, improving patient stratification, providing robust non-invasive outcome measures for therapeutic trials and ultimately personalizing patient care. In this review, we evaluate the use of established techniques such as secretin-enhanced MR cholangiopancreatography, diffusion-weighted imaging, T 1, T 2* and fat fraction mapping, but also more experimental methods such as MR elastography and arterial spin labelling, and their application to the assessment of diffuse pancreatic disease (including chronic, acute and autoimmune pancreatitis/IgG4 disease, metabolic disease and iron deposition disorders) and cystic/solid focal pancreatic masses. Finally, we explore some of the broader challenges to their implementation and future directions in this promising area.
Collapse
Affiliation(s)
- Manil D Chouhan
- 1 University College London (UCL) Centre for Medical Imaging, Division of Medicine, UCL , London , UK.,2 Department of Imaging, University College London Hospitals (UCLH) NHS Foundation Trust , London , UK
| | - Louisa Firmin
- 2 Department of Imaging, University College London Hospitals (UCLH) NHS Foundation Trust , London , UK
| | - Samantha Read
- 2 Department of Imaging, University College London Hospitals (UCLH) NHS Foundation Trust , London , UK
| | - Zahir Amin
- 2 Department of Imaging, University College London Hospitals (UCLH) NHS Foundation Trust , London , UK
| | - Stuart A Taylor
- 1 University College London (UCL) Centre for Medical Imaging, Division of Medicine, UCL , London , UK.,2 Department of Imaging, University College London Hospitals (UCLH) NHS Foundation Trust , London , UK
| |
Collapse
|
21
|
Jaghutriz BA, Wagner R, Heni M, Lehmann R, Machann J, Stefan N, Häring HU, Fritsche A. Metabolomic Characteristics of Fatty Pancreas. Exp Clin Endocrinol Diabetes 2019; 128:804-810. [DOI: 10.1055/a-0896-8671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Objective Pancreatic steatosis is associated with impaired beta cell function in patients with prediabetes. The pathomechanisms underlying this association still remain to be elucidated. Recent data show that adipocytes are situated within the pancreatic parenchyma and therefore give raise to hypothesize that pancreatic fat together with known and unknown metabolites such as hepatokines affect insulin secretion. Applying a targeted metabolomic approach we investigated possible circulating markers of pancreatic fat in order to better understand its role in the pathophysiology of impaired beta cell function.
Methods We included 361 Caucasians, at increased risk of type 2 diabetes, from the Tübingen Family Study. All participants underwent a frequently sampled oral glucose tolerance test to assess insulin secretion and a magnetic resonance imaging to quantify pancreatic fat content, total body fat and visceral fat. Among the 152 subjects with prediabetes (IFG and/or IGT), two groups each with 20 individuals, having the lowest and highest pancreatic fat content were selected. The groups were matched for sex, age, BMI, total fat content, visceral fat content, liver fat content and insulin sensitivity. Metabolites were analyzed using the AbsoluteIDQ® p400 HR Kit by Biocrates.
Results Pancreatic fat content of all 152 subjects with prediabetes was negatively associated with insulin secretion represented by AUCC-peptide 0–120/AUCGlucose 0–120 (p=0.04; β=− 3.24). Furthermore, pancreatic fat content was positively associated with BMI, total body and visceral fat (all p<0.005). Levels of aminoacids, biogenic amines and monosaccharides were similar between the groups with high/low pancreatic fat content (p>0.90). Also, levels of polar lipids such as lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides did not differ significantly between the groups (p>0.90). Investigating the levels of neutral lipids such as aclycarnitines, diglycerides, triglycerides and cholesteryl esters also revealed no differences between the groups (p>0.90).
Conclusion The amount of pancreatic fat is not associated with the metabolomic pattern in individuals with prediabetes. This might be due to the relatively low pancreatic fat content compared to the total amount of fat stored in other depots. The impact of pancreatic steatosis on insulin secretion might be mediated by paracrine effects which cannot be detected in the circulation.
Collapse
Affiliation(s)
- Benjamin Assad Jaghutriz
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Róbert Wagner
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Rainer Lehmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Section on Experimental Radiology, Department of Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Norbert Stefan
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Diagnostic value of MRI-PDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a meta-analysis. Eur Radiol 2019; 29:3564-3573. [DOI: 10.1007/s00330-019-06072-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/21/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
|
23
|
Rosenblatt R, Mehta A, Snell D, Hissong E, Kierans AS, Kumar S. Ultrasonographic Nonalcoholic Fatty Pancreas Is Associated with Advanced Fibrosis in NAFLD: A Retrospective Analysis. Dig Dis Sci 2019; 64:262-268. [PMID: 30269271 DOI: 10.1007/s10620-018-5295-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Nonalcoholic fatty pancreas disease (NAF-P) is strongly linked with nonalcoholic fatty liver disease (NAFLD), but its relationship with advanced liver disease is unknown. AIMS This study investigated the association between NAF-P and both advanced fibrosis and nonalcoholic steatohepatitis (NASH). METHODS This retrospective study evaluated adults with biopsy-proven NAFLD with a sonogram within 1 year of liver biopsy. NAF-P was diagnosed by comparing the echogenicity of the pancreas to the kidney and was graded by severity. The primary outcome was the effect of NAF-P on the presence of advanced fibrosis and NASH, while secondary outcomes included the association of extensive NAF-P (grade II/III). Propensity score matching for independent risk factors of advanced fibrosis (age, gender, body mass index, and diabetes) was performed. RESULTS One hundred and four patients were included in the study and 91 (87.5%) had NAF-P. After propensity score matching, NAF-P was significantly associated with advanced fibrosis (OR 10.52, p < 0.001) but not NASH (p = 0.27). Extensive NAF-P was predictive of advanced fibrosis (OR 3.35, p = 0.006) and NASH (OR 5.37, p < 0.001). NAF-P had a negative predictive value (NPV) of 93% for advanced fibrosis. When matching for the NAFLD fibrosis score in addition to the variables above, both NAF-P (OR 5.36, p = 0.001) and extensive NAF-P (OR 5.38, p = 0.002) still significantly predicted advanced fibrosis. CONCLUSION NAF-P is predictive of advanced fibrosis, even when controlling for independent predictors of advanced fibrosis and the NAFLD fibrosis score. NAF-P has an excellent NPV and is a safe, inexpensive finding that can rule out advanced fibrosis.
Collapse
Affiliation(s)
- Russell Rosenblatt
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 1305 York Avenue, 4th Floor, New York, NY, 10021, USA
| | - Amit Mehta
- Department of Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10021, USA
| | - David Snell
- Department of Medicine, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10021, USA
| | - Erika Hissong
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1305 York Avenue, 4th Floor, New York, NY, 10021, USA
| | - Andrea Siobhan Kierans
- Division of Radiology, Weill Cornell Medicine, 1305 York Avenue, 3rd Floor, New York, NY, 10021, USA
| | - Sonal Kumar
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 1305 York Avenue, 4th Floor, New York, NY, 10021, USA.
| |
Collapse
|
24
|
Bray TJP, Chouhan MD, Punwani S, Bainbridge A, Hall-Craggs MA. Fat fraction mapping using magnetic resonance imaging: insight into pathophysiology. Br J Radiol 2018; 91:20170344. [PMID: 28936896 PMCID: PMC6223159 DOI: 10.1259/bjr.20170344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
Abstract
Adipose cells have traditionally been viewed as a simple, passive energy storage depot for triglycerides. However, in recent years it has become clear that adipose cells are highly physiologically active and have a multitude of endocrine, metabolic, haematological and immune functions. Changes in the number or size of adipose cells may be directly implicated in disease (e.g. in the metabolic syndrome), but may also be linked to other pathological processes such as inflammation, malignant infiltration or infarction. MRI is ideally suited to the quantification of fat, since most of the acquired signal comes from water and fat protons. Fat fraction (FF, the proportion of the acquired signal derived from fat protons) has, therefore, emerged as an objective, image-based biomarker of disease. Methods for FF quantification are becoming increasingly available in both research and clinical settings, but these methods vary depending on the scanner, manufacturer, imaging sequence and reconstruction software being used. Careful selection of the imaging method-and correct interpretation-can improve the accuracy of FF measurements, minimize potential confounding factors and maximize clinical utility. Here, we review methods for fat quantification and their strengths and weaknesses, before considering how they can be tailored to specific applications, particularly in the gastrointestinal and musculoskeletal systems. FF quantification is becoming established as a clinical and research tool, and understanding the underlying principles will be helpful to both imaging scientists and clinicians.
Collapse
Affiliation(s)
- Timothy JP Bray
- Centre for
Medical Imaging, University College London,University College London,
London, UK
| | - Manil D Chouhan
- Centre for
Medical Imaging, University College London,University College London,
London, UK
| | - Shonit Punwani
- Centre for
Medical Imaging, University College London,University College London,
London, UK
| | - Alan Bainbridge
- Department
of Medical Physics, University College London
Hospitals,University
College London Hospitals, London,
UK
| | - Margaret A Hall-Craggs
- Centre for
Medical Imaging, University College London,University College London,
London, UK
- Department
of Medical Physics, University College London
Hospitals,University
College London Hospitals, London,
UK
| |
Collapse
|
25
|
Yuan F, Song B, Huang Z, Xia C, Liu X. Quantification of pancreatic fat with dual-echo imaging at 3.0-T MR in clinical application: how do the corrections for T1 and T2* relaxation effect work and simplified correction strategy. Acta Radiol 2018; 59:1021-1028. [PMID: 29260576 DOI: 10.1177/0284185117745908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Dual-echo imaging is a routine clinical magnetic resonance (MR) sequence affected by T1 and T2* relaxation effect in fat quantification. The separate impacts of T1 and T2* relaxation effect in pancreatic fat quantification using dual-echo imaging at 3.0-T MR have not been reported in detail. Purpose To demonstrate the separate T1 and T2* relaxation effect on pancreatic fat quantification by dual-echo imaging at 3.0-T MR and the simplified correction strategy is discussed for convenient clinical application. Material and Methods Twenty-one non-alcoholic fatty liver disease (NAFLD) participants with high risk of pancreatic steatosis were included. Pancreatic fat fractions (FF) by dual-echo imaging with different corrections were compared to that of proton magnetic resonance spectroscopy (1H-MRS). Correlation analysis and Bland-Altman analysis were applied. Results The FF by 1H-MRS was 5.9 ± 1.7%. Significant positive correlation (all P < 0.01) was found between FF by 1H-MRS and each dual-echo imaging, in which T1 and T2* correction showed the best correlation (r = 0.95, FF = 6.2 ± 1.7%) and no correction showed the worst correlation (r = 0.86, FF = 5.2 ± 2.0%), and the simplified T1 and T2* correction manifested as r = 0.93 and FF = 6.3 ± 1.8%. FF by T1 and T2* correction showed the best agreement, while T1 correction showed the worst agreement as compared to that of 1H-MRS. Conclusion T1 and T2* correction shows the best performance while no correction dual-echo imaging remains clinical available which may benefit from prior OP echo. Simplified correction using single T2* (32.6 ms) of water and fat is recommended for convenient clinical application in absence of obvious pancreatic iron overload.
Collapse
Affiliation(s)
- Fang Yuan
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Bin Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Zixing Huang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Chunchao Xia
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xijiao Liu
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, PR China
| |
Collapse
|
26
|
Sakai NS, Taylor SA, Chouhan MD. Obesity, metabolic disease and the pancreas-Quantitative imaging of pancreatic fat. Br J Radiol 2018; 91:20180267. [PMID: 29869917 DOI: 10.1259/bjr.20180267] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The association between pancreatic fat, obesity and metabolic disease is well-documented, and although a potentially exciting target for novel therapies, remains poorly understood. Non-invasive quantitative imaging-derived biomarkers can provide insights into pathophysiology and potentially provide robust trial endpoints for development of new treatments. In this review, we provide an overview of the pathophysiology of non-alcoholic fatty pancreas disease and associations with metabolic factors, obesity and diabetes. We then explore approaches to pancreatic fat quantification using ultrasound, CT and MRI, reviewing the strengths, limitations and current published evidence in the assessment of pancreatic fat. Finally, we explore the broader challenges of pancreatic fat quantification as we move toward translating these methods into the clinical setting.
Collapse
Affiliation(s)
- Naomi S Sakai
- 1 UCL Centre for Medical Imaging, Division of Medicine, University College London , London , UK
| | - Stuart A Taylor
- 1 UCL Centre for Medical Imaging, Division of Medicine, University College London , London , UK
| | - Manil D Chouhan
- 1 UCL Centre for Medical Imaging, Division of Medicine, University College London , London , UK
| |
Collapse
|
27
|
The association of fatty pancreas with subclinical atherosclerosis in nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2018; 30:411-417. [PMID: 29309395 DOI: 10.1097/meg.0000000000001059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Ectopic fat accumulation in many tissues has been shown to be a risk factor for developing cardiovascular disease. No study to date has investigated whether fatty pancreas plays a role in the development of subclinical atherosclerosis. We aimed to assess the relationship between fatty pancreas and subclinical atherosclerosis in patients with biopsy-proven nonalcoholic fatty liver disease (NAFLD) and healthy controls. PATIENTS AND METHODS One hundred patients with biopsy-proven NAFLD and 38 healthy controls were included. Transabdominal ultrasonography examination was performed on all the cases with high-resolution ultrasonography (Acuson S3000) using 6 mHz convex probes. The measurements of carotid intima-media thickness (CIMT) and carotid-femoral pulse wave velocity (cf-PWV) were performed to investigate the relationship between fatty pancreas and atherosclerosis. RESULTS The rate of newly diagnosed DM and prediabetes in the NAFLD patients was 6 and 21%, respectively. Most of the patients with NAFLD (97%) were found to have an increased echogenicity of the pancreas at ultrasound examination. Grade of fatty pancreas was correlated positively with cf-PWV levels (P<0.05), whereas no correlation was found with CIMT (P>0.05). The presence of fatty pancreas was associated significantly with higher CIMT and cf-PWV levels (P<0.05). The results for cf-PWV and CIMT did not remain significant after adjustment for confounding factors. Although the levels of cf-PWV and CIMT increased with increasing grade of fatty pancreas, there was no significant association. CONCLUSION We have shown for the first time that fatty pancreas is a contributing factor for the development of atherosclerosis in patients with NAFLD. This study also confirms the strong association between NAFLD and fatty pancreas.
Collapse
|
28
|
Ultrasonographic Quantitative Analysis of Fatty Pancreas in Obese Children: Its Correlation with Metabolic Syndrome and Homeostasis Model Assessment of Insulin Resistance. J Pediatr 2018; 193:134-138.e1. [PMID: 29198767 DOI: 10.1016/j.jpeds.2017.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/08/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To evaluate pancreatic echogenicity on transabdominal ultrasonography and the correlation of fatty pancreas with metabolic syndrome (MetS), as well as insulin resistance (homeostasis model assessment of insulin resistance [HOMA-IR]). STUDY DESIGN This retrospective study included 135 obese children and adolescents who underwent transabdominal ultrasonography from January 2015 to December 2015. Fatty pancreas was quantitatively analyzed using the pancreato-perihepatic fat index (PPHFI). The correlation between the PPHFI and HOMA-IR was analyzed, and multivariate logistic regression analysis was used to determine factors that were independently correlated with MetS. Receiver operating characteristic curve analysis was performed to determine the best cut-off value of the PPHFI for diagnosing MetS. RESULTS The PPHFI and the HOMA-IR value were significantly higher in subjects with MetS than in those without MetS (P < .0001). The PPHFI also showed an association with the HOMA-IR value (r = 0.70; P <.0001). The PPHFI was an independent factor for diagnosing MetS (OR 4.36; P = .032). The best cut-off value for the PPHFI for a diagnosis of MetS was 2.34 with a sensitivity of 0.96 and specificity 0.70. CONCLUSIONS These results suggest that an increased PPHFI is significantly correlated with MetS and insulin resistance, and that the PPHFI may be a useful indicator for diagnosing MetS in obese children and adolescents. The impact of the presence of fatty pancreas in obese children and adolescents must be evaluated.
Collapse
|
29
|
Heber SD, Hetterich H, Lorbeer R, Bayerl C, Machann J, Auweter S, Storz C, Schlett CL, Nikolaou K, Reiser M, Peters A, Bamberg F. Pancreatic fat content by magnetic resonance imaging in subjects with prediabetes, diabetes, and controls from a general population without cardiovascular disease. PLoS One 2017; 12:e0177154. [PMID: 28520813 PMCID: PMC5435170 DOI: 10.1371/journal.pone.0177154] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
Background/Objective Despite the relevance of pancreatic fat content in the development of metabolic diseases, its association with impaired glucose metabolism, diabetes, and other adipose tissue compartments remains unclear. Thus, we determined differences in pancreatic fat content by magnetic resonance imaging (MRI) between subjects with prediabetes, diabetes, and normal controls in a cohort from the general population. Methods Subjects without history of cardiovascular disease with established diabetes or prediabetes as well as normal controls were included and underwent whole-body MRI on a 3T scanner. Pancreatic fat content was quantified by measuring the proton-density fat fraction (PDFFpanc) using a 3D multi-echo GRE sequence (increment: 1.23 ms, 6 echoes) by placing ROIs in the pancreatic head, body, and tail by independent readers. In addition, hepatic fat content as well as abdominal subcutaneous and visceral adipose tissue (SAT and VAT) were measured by multi-echo GRE and 3D 2-point volume-interpolated DIXON MRI, respectively. Univariate and multivariate analyses were employed to determine associations. Results A total of 385 subjects were included in the analysis (median age: 57 years, 58.2% males), of them 53 were classified as subjects with diabetes, 95 as prediabetes, and 237 as controls (13.8%, 24.7%, and 61.6%; respectively). The median PDFFpanc was 5.2% [IQR 3.3–9.4], and significantly higher in subjects with prediabetes and diabetes as compared to controls (PDFFpanc: 6.2% [IQR: 3.5–12] vs. 8.6% [IQR: 4.3–17.5] vs. 4.9% [3.1–7.4], p<0.001, respectively). After adjusting for age, gender and BMI the association was attenuated (all p>0.12). While in univariate analysis BMI, PDFFhepatic, SAT and VAT were associated with PDFFpanc (all p<0.05), only VAT predicted PDFFpanc independently (β: 0.02, 95%-confidence interval: 0.01–0.04, p<0.001). Conclusion While pancreatic fat content differs significantly between subjects with prediabetes, diabetes and controls, this association may be confounded by age, gender, and the amount of VAT in this cross-sectional study.
Collapse
Affiliation(s)
- Sophia D. Heber
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany
| | - Holger Hetterich
- Institute of Clinical Radiology, Ludwig-Maximilian-University Hospital, Munich, Germany
| | - Roberto Lorbeer
- Institute of Clinical Radiology, Ludwig-Maximilian-University Hospital, Munich, Germany
| | - Christian Bayerl
- Institute of Clinical Radiology, Ludwig-Maximilian-University Hospital, Munich, Germany
| | - Jürgen Machann
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Germany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tuebingen, Germany
- German Center for Diabetes Research (DZD), Tuebingen, Germany
| | - Sigrid Auweter
- Institute of Clinical Radiology, Ludwig-Maximilian-University Hospital, Munich, Germany
| | - Corinna Storz
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany
| | - Christopher L. Schlett
- Department of Radiology, Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany
| | - Maximilian Reiser
- Institute of Clinical Radiology, Ludwig-Maximilian-University Hospital, Munich, Germany
- German Center for Cardiovascular Disease Research (DZHK e.V.), Munich, Germany
| | - Annette Peters
- German Center for Cardiovascular Disease Research (DZHK e.V.), Munich, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilian-University-Hospital, Munich, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany
- German Center for Cardiovascular Disease Research (DZHK e.V.), Munich, Germany
- * E-mail:
| |
Collapse
|
30
|
Al-Mrabeh A, Hollingsworth KG, Steven S, Tiniakos D, Taylor R. Quantification of intrapancreatic fat in type 2 diabetes by MRI. PLoS One 2017; 12:e0174660. [PMID: 28369092 PMCID: PMC5378354 DOI: 10.1371/journal.pone.0174660] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Accumulation of intrapancreatic fat may be important in type 2 diabetes, but widely varying data have been reported. The standard quantification by MRI in vivo is time consuming and dependent upon a high level of experience. We aimed to develop a new method which would minimise inter-observer variation and to compare this against previously published datasets. METHODS A technique of 'biopsying' the image to minimise inclusion of non-parenchymal tissues was developed. Additionally, thresholding was applied to exclude both pancreatic ducts and intrusions of visceral fat, with pixels of fat values of <1% or >20% being excluded. The new MR image 'biopsy' (MR-opsy) was compared to the standard method by 6 independent observers with wide experience of image analysis but no experience of pancreas imaging. The effect of the new method was examined on datasets from two studies of weight loss in type 2 diabetes. RESULTS At low levels of intrapancreatic fat neither the result nor the inter-observer CV was changed by MR-opsy, thresholding or a combination of the methods. However, at higher levels the conventional method exhibited poor inter-observer agreement (coefficient of variation 26.9%) and the new combined method improved the CV to 4.3% (p<0.03). Using either MR-opsy alone or with thresholding, the new methods indicated a closer relationship between decrease in intrapancreatic fat and fall in blood glucose. CONCLUSION The inter-observer variation for quantifying intrapancreatic fat was substantially improved by the new method when pancreas fat levels were moderately high. The method will improve comparability of pancreas fat measurement between research groups.
Collapse
Affiliation(s)
- Ahmad Al-Mrabeh
- Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kieren G. Hollingsworth
- Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sarah Steven
- Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Dina Tiniakos
- Department of Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals and Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Roy Taylor
- Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
31
|
Singh RG, Yoon HD, Wu LM, Lu J, Plank LD, Petrov MS. Ectopic fat accumulation in the pancreas and its clinical relevance: A systematic review, meta-analysis, and meta-regression. Metabolism 2017; 69:1-13. [PMID: 28285638 DOI: 10.1016/j.metabol.2016.12.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/16/2016] [Accepted: 12/26/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Growing evidence suggests that individuals with excessive fat in the pancreas are at an increased risk of chronic metabolic disorders. The aim was to systematically review studies on non-alcoholic fatty pancreas disease (NAFPD) with a view to determine its prevalence, associations with metabolic co-morbidities, and to suggest normal pancreatic fat percentage threshold. METHODS Three electronic databases (MEDLINE, Scopus, and Embase) were queried. Studies in humans were eligible for inclusion if they provided data on NAFPD and/or pancreatic fat percentage. Where possible, data were pooled using random-effects meta-analysis and the effect of covariates analysed using meta-regression. RESULTS Pooling data on pancreatic fat percentage from nine studies (1209 healthy individuals who underwent magnetic resonance imaging), yielded the weighted mean and weighted standard deviation of 4.48% and 0.87%, respectively. Pooling data on NAFPD from eleven studies (12,675 individuals), yielded the pooled prevalence of 33% (95% confidence interval, 24% - 41%). Meta-regression analysis showed that the prevalence of NAFPD was independent of age and sex. The presence of NAFPD was associated with a significantly increased risk of arterial hypertension (risk ratio 1.67; 95% confidence interval, 1.32-2.10; p<0.0001), diabetes mellitus (risk ratio 2.08; 95% confidence interval, 1.44-3.00; p=0.0001), and metabolic syndrome (risk ratio 2.37; 95% confidence interval, 2.07-2.71; p<0.0001). CONCLUSION The findings indicate that NAFPD is a frequent clinical entity, associated with significantly increased risk of metabolic syndrome and its components. The normal pancreatic fat cut-off point of 6.2% may be recommended for use in future prospective studies.
Collapse
Affiliation(s)
- Ruma G Singh
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Harry D Yoon
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Landy M Wu
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Jun Lu
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Lindsay D Plank
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Maxim S Petrov
- Department of Surgery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
32
|
Lin SC, Heba E, Bettencourt R, Lin GY, Valasek MA, Lunde O, Hamilton G, Sirlin CB, Loomba R. Assessment of treatment response in non-alcoholic steatohepatitis using advanced magnetic resonance imaging. Aliment Pharmacol Ther 2017; 45:844-854. [PMID: 28116801 PMCID: PMC5346270 DOI: 10.1111/apt.13951] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/10/2016] [Accepted: 12/30/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Magnetic resonance imaging-derived measures of liver fat and volume are emerging as accurate, non-invasive imaging biomarkers in non-alcoholic steatohepatitis (NASH). Little is known about these measures in relation to histology longitudinally. AIM To examine any relationship between MRI-derived proton-density fat-fraction (PDFF), total liver volume (TLV), total liver fat index (TLFI), vs. histology in a NASH trial. METHODS This is a secondary analysis of a 24-week randomised, double-blind, placebo-controlled trial of 50 patients with biopsy-proven NASH randomised to oral ezetimibe 10 mg daily (n = 25) vs. placebo (n = 25). Baseline and post-treatment anthropometrics, biochemical profiling, MRI and biopsies were obtained. RESULTS Baseline mean PDFF correlated strongly with TLFI (Spearman's ρ = 0.94, n = 45, P < 0.0001) and had good correlation with TLV (ρ = 0.57, n = 45, P < 0.0001). Mean TLV correlated strongly with TLFI (ρ = 0.78, n = 45, P < 0.0001). After 24 weeks, PDFF remained strongly correlated with TLFI (ρ = 0.94, n = 45, P < 0.0001), maintaining good correlation with TLV (ρ = 0.51, n = 45, P = 0.0004). TLV remained strongly correlated with TLFI (ρ = 0.74, n = 45, P < 0.0001). Patients with Grade 1 vs. 3 steatosis had lower PDFF, TLV, and TLFI (P < 0.0001, P = 0.0003, P < 0.0001 respectively). Regression analysis of changes in MRI-PDFF vs. TLV indicates that 10% reduction in MRI-PDFF predicts 257 mL reduction in TLV. CONCLUSIONS The MRI-PDFF and TLV strongly correlated with TLFI. Decreases in steatosis were associated with an improvement in hepatomegaly. Lower values of these measures reflect lower histologic steatosis grades. MRI-derived measures of liver fat and volume may be used as dynamic and more responsive imaging biomarkers in a NASH trial, than histology.
Collapse
Affiliation(s)
- Steven C. Lin
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA,NAFLD Research Center, University of California at San Diego, La Jolla, CA
| | - Elhamy Heba
- Liver Imaging Group, Department of Radiology, University of California at San Diego, La Jolla, CA
| | - Ricki Bettencourt
- NAFLD Research Center, University of California at San Diego, La Jolla, CA,Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, CA
| | - Grace Y. Lin
- Department of Pathology, University of California at San Diego, La Jolla, CA
| | - Mark A. Valasek
- Department of Pathology, University of California at San Diego, La Jolla, CA
| | - Ottar Lunde
- Department of Medicine, University of California at San Diego, La Jolla, CA
| | - Gavin Hamilton
- Liver Imaging Group, Department of Radiology, University of California at San Diego, La Jolla, CA
| | - Claude B. Sirlin
- Liver Imaging Group, Department of Radiology, University of California at San Diego, La Jolla, CA
| | - Rohit Loomba
- NAFLD Research Center, University of California at San Diego, La Jolla, CA,Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, CA,Division of Gastroenterology, University of California at San Diego, La Jolla, CA
| |
Collapse
|
33
|
Abstract
The article provides an overview of current views on the involvement of the liver, gallbladder, and pancreas in patients with overweight and obesity. It considers the general issues of the pathogenesis of these conditions, their clinical features and diagnostic methods.
Collapse
|
34
|
Catanzaro R, Cuffari B, Italia A, Marotta F. Exploring the metabolic syndrome: Nonalcoholic fatty pancreas disease. World J Gastroenterol 2016; 22:7660-7675. [PMID: 27678349 PMCID: PMC5016366 DOI: 10.3748/wjg.v22.i34.7660] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/25/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
After the first description of fatty pancreas in 1933, the effects of pancreatic steatosis have been poorly investigated, compared with that of the liver. However, the interest of research is increasing. Fat accumulation, associated with obesity and the metabolic syndrome (MetS), has been defined as “fatty infiltration” or “nonalcoholic fatty pancreas disease” (NAFPD). The term “fatty replacement” describes a distinct phenomenon characterized by death of acinar cells and replacement by adipose tissue. Risk factors for developing NAFPD include obesity, increasing age, male sex, hypertension, dyslipidemia, alcohol and hyperferritinemia. Increasing evidence support the role of pancreatic fat in the development of type 2 diabetes mellitus, MetS, atherosclerosis, severe acute pancreatitis and even pancreatic cancer. Evidence exists that fatty pancreas could be used as the initial indicator of “ectopic fat deposition”, which is a key element of nonalcoholic fatty liver disease and/or MetS. Moreover, in patients with fatty pancreas, pancreaticoduodenectomy is associated with an increased risk of intraoperative blood loss and post-operative pancreatic fistula.
Collapse
|
35
|
Crane JD, Yellin SA, Ong FJ, Singh NP, Konyer N, Noseworthy MD, Schmidt LA, Saigal S, Morrison KM. ELBW survivors in early adulthood have higher hepatic, pancreatic and subcutaneous fat. Sci Rep 2016; 6:31560. [PMID: 27530702 PMCID: PMC4987614 DOI: 10.1038/srep31560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
Premature birth in conjunction with extremely low birth weight (<1 kg, ELBW) is associated with insulin resistance and increased cardiometabolic health risk compared to birth at full term with normal birth weight (NBW). However, little is known regarding the biologic mediators of these effects. Abdominal and ectopic lipid accumulation is linked to insulin resistance and metabolic dysfunction, yet whether ELBW survivors are predisposed to aberrant lipid deposition in adulthood is unknown. We used magnetic resonance imaging in a cohort of 16 NBW and 29 ELBW participants to determine if ELBW survivors have differences in pancreatic, hepatic, subcutaneous and visceral fat distribution compared to NBW participants. ELBW individuals had a higher proportion of liver and pancreatic fat compared to NBW subjects (P < 0.05). Abdominal subcutaneous fat, but not visceral fat, area was higher in ELBW survivors compared to NBW individuals. In multivariate analyses, tissue fat measures were most highly related to BMI and sex, but not preterm birth. This work highlights that fat deposition is enhanced in adults born preterm and suggests that ectopic fat accretion driven by their relatively greater adiposity may contribute to the higher rates of metabolic dysfunction seen in ELBW survivors.
Collapse
Affiliation(s)
- Justin D Crane
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Department of Biology, Northeastern University, Boston, MA, USA
| | - Samuel A Yellin
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Frank J Ong
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Nina P Singh
- Department of Radiology, McMaster University Medical Center, Hamilton, ON, Canada
| | - Norman Konyer
- Imaging Research Centre, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Michael D Noseworthy
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON, Canada
| | - Louis A Schmidt
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Saroj Saigal
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
36
|
Vanderheiden A, Harrison LB, Warshauer JT, Adams-Huet B, Li X, Yuan Q, Hulsey K, Dimitrov I, Yokoo T, Jaster AW, Pinho DF, Pedrosa I, Lenkinski RE, Pop LM, Lingvay I. Mechanisms of Action of Liraglutide in Patients With Type 2 Diabetes Treated With High-Dose Insulin. J Clin Endocrinol Metab 2016; 101:1798-806. [PMID: 26909799 DOI: 10.1210/jc.2015-3906] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT The mechanisms of action of incretin mimetics in patients with long-standing type 2 diabetes (T2D) and high insulin requirements have not been studied. OBJECTIVE To evaluate changes in β-cell function, glucagon secretion, and fat distribution after addition of liraglutide to high-dose insulin. DESIGN A single-center, randomized, double-blind, placebo-controlled trial. SETTING University of Texas Southwestern and Parkland Memorial Hospital clinics. PATIENTS Seventy-one patients with long-standing (median, 17 years) T2D requiring high-dose insulin treatment (>1.5 U/kg/d; average, 2.2 ± 0.9 U/kg/d). INTERVENTION Patients were randomized to liraglutide 1.8 mg/d or matching placebo for 6 months. MAIN OUTCOME MEASURES We measured changes in insulin and glucagon secretion using a 4-hour mixed-meal challenge test. Magnetic resonance-based techniques were used to estimate sc and visceral fat in the abdomen and ectopic fat in the liver and pancreas. RESULTS Glycosylated hemoglobin improved significantly with liraglutide treatment, with an end-of-trial estimated treatment difference between groups of −0.9% (95% confidence interval, −1.5, −0.4%) (P = .002). Insulin secretion improved in the liraglutide group vs placebo, as measured by the area under the curve of C-peptide (P = .002) and the area under the curves ratio of C-peptide to glucose (P = .003). Insulin sensitivity (Matsuda index) and glucagon secretion did not change significantly between groups. Liver fat and sc fat decreased in the liraglutide group vs placebo (P = .0006 and P = .01, respectively), whereas neither visceral nor pancreatic fat changed significantly. CONCLUSIONS Treatment with liraglutide significantly improved insulin secretion, even in patients with long-standing T2D requiring high-dose insulin treatment. Liraglutide also decreased liver and sc fat, but it did not alter glucagon secretion.
Collapse
Affiliation(s)
- Anna Vanderheiden
- Department of Internal Medicine (A.V., L.B.H., J.T.W., B.A.-H., L.M.P., I.L.), Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Texas Diabetes & Endocrinology (L.B.H.), Austin, Texas 78749; Departments of Clinical Sciences (B.A.-H., X.L., I.L.) and Radiology (Q.Y., K.H., T.Y., A.W.J., D.F.P., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Philips Medical Systems (I.D.), Cleveland, Ohio 44143; and Advanced Imaging Research Center (T.Y., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Lindsay B Harrison
- Department of Internal Medicine (A.V., L.B.H., J.T.W., B.A.-H., L.M.P., I.L.), Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Texas Diabetes & Endocrinology (L.B.H.), Austin, Texas 78749; Departments of Clinical Sciences (B.A.-H., X.L., I.L.) and Radiology (Q.Y., K.H., T.Y., A.W.J., D.F.P., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Philips Medical Systems (I.D.), Cleveland, Ohio 44143; and Advanced Imaging Research Center (T.Y., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jeremy T Warshauer
- Department of Internal Medicine (A.V., L.B.H., J.T.W., B.A.-H., L.M.P., I.L.), Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Texas Diabetes & Endocrinology (L.B.H.), Austin, Texas 78749; Departments of Clinical Sciences (B.A.-H., X.L., I.L.) and Radiology (Q.Y., K.H., T.Y., A.W.J., D.F.P., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Philips Medical Systems (I.D.), Cleveland, Ohio 44143; and Advanced Imaging Research Center (T.Y., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Beverley Adams-Huet
- Department of Internal Medicine (A.V., L.B.H., J.T.W., B.A.-H., L.M.P., I.L.), Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Texas Diabetes & Endocrinology (L.B.H.), Austin, Texas 78749; Departments of Clinical Sciences (B.A.-H., X.L., I.L.) and Radiology (Q.Y., K.H., T.Y., A.W.J., D.F.P., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Philips Medical Systems (I.D.), Cleveland, Ohio 44143; and Advanced Imaging Research Center (T.Y., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Xilong Li
- Department of Internal Medicine (A.V., L.B.H., J.T.W., B.A.-H., L.M.P., I.L.), Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Texas Diabetes & Endocrinology (L.B.H.), Austin, Texas 78749; Departments of Clinical Sciences (B.A.-H., X.L., I.L.) and Radiology (Q.Y., K.H., T.Y., A.W.J., D.F.P., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Philips Medical Systems (I.D.), Cleveland, Ohio 44143; and Advanced Imaging Research Center (T.Y., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Qing Yuan
- Department of Internal Medicine (A.V., L.B.H., J.T.W., B.A.-H., L.M.P., I.L.), Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Texas Diabetes & Endocrinology (L.B.H.), Austin, Texas 78749; Departments of Clinical Sciences (B.A.-H., X.L., I.L.) and Radiology (Q.Y., K.H., T.Y., A.W.J., D.F.P., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Philips Medical Systems (I.D.), Cleveland, Ohio 44143; and Advanced Imaging Research Center (T.Y., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Keith Hulsey
- Department of Internal Medicine (A.V., L.B.H., J.T.W., B.A.-H., L.M.P., I.L.), Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Texas Diabetes & Endocrinology (L.B.H.), Austin, Texas 78749; Departments of Clinical Sciences (B.A.-H., X.L., I.L.) and Radiology (Q.Y., K.H., T.Y., A.W.J., D.F.P., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Philips Medical Systems (I.D.), Cleveland, Ohio 44143; and Advanced Imaging Research Center (T.Y., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ivan Dimitrov
- Department of Internal Medicine (A.V., L.B.H., J.T.W., B.A.-H., L.M.P., I.L.), Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Texas Diabetes & Endocrinology (L.B.H.), Austin, Texas 78749; Departments of Clinical Sciences (B.A.-H., X.L., I.L.) and Radiology (Q.Y., K.H., T.Y., A.W.J., D.F.P., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Philips Medical Systems (I.D.), Cleveland, Ohio 44143; and Advanced Imaging Research Center (T.Y., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Takeshi Yokoo
- Department of Internal Medicine (A.V., L.B.H., J.T.W., B.A.-H., L.M.P., I.L.), Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Texas Diabetes & Endocrinology (L.B.H.), Austin, Texas 78749; Departments of Clinical Sciences (B.A.-H., X.L., I.L.) and Radiology (Q.Y., K.H., T.Y., A.W.J., D.F.P., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Philips Medical Systems (I.D.), Cleveland, Ohio 44143; and Advanced Imaging Research Center (T.Y., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Adam W Jaster
- Department of Internal Medicine (A.V., L.B.H., J.T.W., B.A.-H., L.M.P., I.L.), Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Texas Diabetes & Endocrinology (L.B.H.), Austin, Texas 78749; Departments of Clinical Sciences (B.A.-H., X.L., I.L.) and Radiology (Q.Y., K.H., T.Y., A.W.J., D.F.P., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Philips Medical Systems (I.D.), Cleveland, Ohio 44143; and Advanced Imaging Research Center (T.Y., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Daniella F Pinho
- Department of Internal Medicine (A.V., L.B.H., J.T.W., B.A.-H., L.M.P., I.L.), Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Texas Diabetes & Endocrinology (L.B.H.), Austin, Texas 78749; Departments of Clinical Sciences (B.A.-H., X.L., I.L.) and Radiology (Q.Y., K.H., T.Y., A.W.J., D.F.P., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Philips Medical Systems (I.D.), Cleveland, Ohio 44143; and Advanced Imaging Research Center (T.Y., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ivan Pedrosa
- Department of Internal Medicine (A.V., L.B.H., J.T.W., B.A.-H., L.M.P., I.L.), Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Texas Diabetes & Endocrinology (L.B.H.), Austin, Texas 78749; Departments of Clinical Sciences (B.A.-H., X.L., I.L.) and Radiology (Q.Y., K.H., T.Y., A.W.J., D.F.P., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Philips Medical Systems (I.D.), Cleveland, Ohio 44143; and Advanced Imaging Research Center (T.Y., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Robert E Lenkinski
- Department of Internal Medicine (A.V., L.B.H., J.T.W., B.A.-H., L.M.P., I.L.), Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Texas Diabetes & Endocrinology (L.B.H.), Austin, Texas 78749; Departments of Clinical Sciences (B.A.-H., X.L., I.L.) and Radiology (Q.Y., K.H., T.Y., A.W.J., D.F.P., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Philips Medical Systems (I.D.), Cleveland, Ohio 44143; and Advanced Imaging Research Center (T.Y., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Laurentiu M Pop
- Department of Internal Medicine (A.V., L.B.H., J.T.W., B.A.-H., L.M.P., I.L.), Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Texas Diabetes & Endocrinology (L.B.H.), Austin, Texas 78749; Departments of Clinical Sciences (B.A.-H., X.L., I.L.) and Radiology (Q.Y., K.H., T.Y., A.W.J., D.F.P., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Philips Medical Systems (I.D.), Cleveland, Ohio 44143; and Advanced Imaging Research Center (T.Y., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Ildiko Lingvay
- Department of Internal Medicine (A.V., L.B.H., J.T.W., B.A.-H., L.M.P., I.L.), Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Texas Diabetes & Endocrinology (L.B.H.), Austin, Texas 78749; Departments of Clinical Sciences (B.A.-H., X.L., I.L.) and Radiology (Q.Y., K.H., T.Y., A.W.J., D.F.P., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390; Philips Medical Systems (I.D.), Cleveland, Ohio 44143; and Advanced Imaging Research Center (T.Y., I.P., R.E.L.), University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
37
|
Yokoo T, Clark HR, Pedrosa I, Yuan Q, Dimitrov I, Zhang Y, Lingvay I, Beg MS, Bobulescu IA. Quantification of renal steatosis in type II diabetes mellitus using dixon-based MRI. J Magn Reson Imaging 2016; 44:1312-1319. [PMID: 27007212 DOI: 10.1002/jmri.25252] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/07/2016] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To evaluate renal lipid content in subjects with and without type II diabetes mellitus (DM2) using Dixon-based magnetic resonance imaging (MRI). MATERIALS AND METHODS This retrospective study was approved by the Institutional Review Board and compliant with the Health Insurance Portability and Accountability Act. Sixty-nine adults with or without DM2 (n = 29, n = 40) underwent 3T MRI of the abdomen using 3D multiecho Dixon gradient-echo acquisition and proton-density fat fraction (FF) reconstruction. FF values were recorded within segmented regions of interest in the kidneys and liver. The FF measurement error was estimated from the within-subject difference between the right and left kidneys using Bland-Altman analysis. Correlation between renal FF, hepatic FF, and body mass index (BMI) was evaluated. The association between renal FF and DM2 was evaluated by Wilcoxon rank sum test as well as by multivariate regression to correct for potential confounding effects of age, sex, BMI, creatinine, and hepatic FF. P < 0.05 was considered statistically significant. RESULTS Per-subject 95% limits of agreement of the renal FF measurement were [-3.26%, +3.22%]. BMI was significantly correlated with renal FF (r = 0.266, P = 0.027) and with liver FF (r = 0.344, P = 0.006). Correlation between renal and hepatic FF did not reach statistical significance (r = 0.215, P = 0.090). Median renal FF (±interquartile range) was 2.18% (±2.52%) in the DM2 cohort, significantly higher than 0.80% (±2.63%) in the non-DM2 cohort (P < 0.001). After correcting for potential confounders, the relationship between DM2 and renal FF remained statistically significant (P = 0.005). CONCLUSION Renal lipid content can be measured noninvasively using Dixon-based MRI and may be increased in subjects with DM2 compared to those without DM2. J. Magn. Reson. Imaging 2016;44:1312-1319.
Collapse
Affiliation(s)
- Takeshi Yokoo
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA. .,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Haley R Clark
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ivan Pedrosa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qing Yuan
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ivan Dimitrov
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Philips Medical Systems, Cleveland, Ohio, USA
| | - Yue Zhang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ildiko Lingvay
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Muhammad S Beg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - I Alexandru Bobulescu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
38
|
Hou Q, Duan ZJ. Metabonomic window into hepatitis B virus-related hepatic diseases. World J Hepatol 2016; 8:1-8. [PMID: 26783418 PMCID: PMC4705451 DOI: 10.4254/wjh.v8.i1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/15/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
Metabonomics has recently been widely used to discover the pathogenesis and find potential metabolic markers with high sensitivity and specificity. Furthermore, it develops new diagnosis and treatment methods, increases early phase diagnosis rates of certain diseases and provides a new basis for targeted therapy. This review mainly analyzes the research progress of the metabonomics of hepatitis B virus (HBV)-related hepatic diseases, hoping to discover some potential metabolic markers for identification of HBV-related hepatic diseases from other etiologies and for HBV-related hepatitis, liver cirrhosis and hepatocellular carcinoma. This can contribute to early discovery, diagnosis and treatment, eventually increasing the survival rate of HBV-related hepatic diseases.
Collapse
|
39
|
Shamsoddini A, Sobhani V, Ghamar Chehreh ME, Alavian SM, Zaree A. Effect of Aerobic and Resistance Exercise Training on Liver Enzymes and Hepatic Fat in Iranian Men With Nonalcoholic Fatty Liver Disease. HEPATITIS MONTHLY 2015; 15:e31434. [PMID: 26587039 PMCID: PMC4644631 DOI: 10.5812/hepatmon.31434] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/03/2015] [Accepted: 08/12/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has different prevalence rates in various parts of the world and is a risk factor for diabetes and cardiovascular disease that could progress to nonalcoholic steatohepatitis, cirrhosis, and liver failure. OBJECTIVES The current study aimed to investigate the effect of Aerobic Training (AT) and resistance training (RT) on hepatic fat content and liver enzyme levels in Iranian men. PATIENTS AND METHODS In a randomized clinical trial study, 30 men with clinically defined NAFLD were allocated into three groups (aerobic, resistance and control). An aerobic group program consisted of 45 minutes of aerobic exercise at 60% - 75% maximum heart rate intensity, a resistance group performed seven resistance exercises at intensity of 50% - 70% of 1 repetition maximum (1RM ) and the control group had no exercise training program during the study. Before and after training, anthropometry, insulin sensitivity, liver enzymes and hepatic fat were elevated. RESULTS After training, hepatic fat content was markedly reduced, to a similar extent, in both the aerobic and resistance exercise training groups (P ≤ 0.05). In the two exercise training groups, alanine amino transferase and aspartate amino transferase serum levels were significantly decreased compared to the control group (P = 0.002) and (P = 0.02), respectively. Moreover, body fat (%), fat mass (kg), homeostasis model assessment insulin resistance (HOMI-IR) were all improved in the AT and RT. These changes in the AT group were independent of weight loss. CONCLUSIONS This study demonstrated that RT and AT are equally effective in reducing hepatic fat content and liver enzyme levels among patients with NAFLD. However, aerobic exercise specifically improves NAFLD independent of any change in body weight.
Collapse
Affiliation(s)
- Alireza Shamsoddini
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Vahid Sobhani
- Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Mohammad Ebrahim Ghamar Chehreh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
- Corresponding Author: Seyed Moayed Alavian, Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, IR Iran. Tel: +98-2188945186, Fax: +98-2188945188, E-mail:
| | - Ali Zaree
- Department of Biochemistry, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
40
|
Patel NS, Doycheva I, Peterson MR, Hooker J, Kisselva T, Schnabl B, Seki E, Sirlin CB, Loomba R. Effect of weight loss on magnetic resonance imaging estimation of liver fat and volume in patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol 2015; 13:561-568.e1. [PMID: 25218667 PMCID: PMC4333065 DOI: 10.1016/j.cgh.2014.08.039] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/26/2014] [Accepted: 08/16/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Little is known about how weight loss affects magnetic resonance imaging (MRI) of liver fat and volume or liver histology in patients with nonalcoholic steatohepatitis (NASH). We measured changes in liver fat and liver volume associated with weight loss by using an advanced MRI method. METHODS We analyzed data collected from a previous randomized controlled trial in which 43 adult patients with biopsy-proven NASH underwent clinical evaluation, biochemical tests, and MRI and liver biopsy analyses at the start of the study and after 24 weeks. We compared data between patients who did and did not have at least 5% decrease in body mass index (BMI) during the study period. RESULTS Ten of 43 patients had at least a 5% decrease in BMI during the study period. These patients had a significant decrease in liver fat, which was based on MRI proton density fat fraction estimates (18.3% ± 7.6% to 13.6% ± 13.6%, P = .03), a relative 25.5% reduction. They also had a significant decrease in liver volume (5.3%). However, no significant changes in levels of alanine aminotransferase or aspartate aminotransferase were observed with weight loss. Thirty-three patients without at least 5% decrease in BMI had insignificant increases in estimated liver fat fraction and liver volume. CONCLUSIONS A reduction in BMI of at least 5% is associated with significant decrease in liver fat and volume in patients with biopsy-proven NASH. These data should be considered in assessing effect size in studies of patients with nonalcoholic fatty liver disease or obesity that use MRI-estimated liver fat and volume as end points.
Collapse
Affiliation(s)
- Niraj S. Patel
- Division of Internal Medicine, Department of Medicine, UC San Diego Health System, La Jolla, CA 92093
| | - Iliana Doycheva
- Division of Gastroenterology, Department of Medicine, UC San Diego Health System, La Jolla, CA 92093
| | | | - Jonathan Hooker
- Liver Imaging Group, Department of Radiology, UC San Diego Health System, La Jolla, CA 92093
| | - Tatiana Kisselva
- Department of Surgery, UC San Diego Health System, La Jolla, CA 92093
| | - Bernd Schnabl
- Division of Gastroenterology, Department of Medicine, UC San Diego Health System, La Jolla, CA 92093
| | - Ekihiro Seki
- Division of Gastroenterology, Department of Medicine, UC San Diego Health System, La Jolla, CA 92093,Department of Surgery, UC San Diego Health System, La Jolla, CA 92093
| | - Claude B. Sirlin
- Liver Imaging Group, Department of Radiology, UC San Diego Health System, La Jolla, CA 92093
| | - Rohit Loomba
- Division of Gastroenterology, Department of Medicine, University of California San Diego Health System, La Jolla, California; Division of Epidemiology, Department of Family and Preventive Medicine, University of California San Diego Health System, La Jolla, California.
| |
Collapse
|
41
|
Patel NS, Doycheva I, Peterson MR, Hooker J, Kisselva T, Schnabl B, Seki E, Sirlin CB, Loomba R. Effect of weight loss on magnetic resonance imaging estimation of liver fat and volume in patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol 2015. [PMID: 25218667 DOI: 10.1016/j.cgh.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Little is known about how weight loss affects magnetic resonance imaging (MRI) of liver fat and volume or liver histology in patients with nonalcoholic steatohepatitis (NASH). We measured changes in liver fat and liver volume associated with weight loss by using an advanced MRI method. METHODS We analyzed data collected from a previous randomized controlled trial in which 43 adult patients with biopsy-proven NASH underwent clinical evaluation, biochemical tests, and MRI and liver biopsy analyses at the start of the study and after 24 weeks. We compared data between patients who did and did not have at least 5% decrease in body mass index (BMI) during the study period. RESULTS Ten of 43 patients had at least a 5% decrease in BMI during the study period. These patients had a significant decrease in liver fat, which was based on MRI proton density fat fraction estimates (18.3% ± 7.6% to 13.6% ± 13.6%, P = .03), a relative 25.5% reduction. They also had a significant decrease in liver volume (5.3%). However, no significant changes in levels of alanine aminotransferase or aspartate aminotransferase were observed with weight loss. Thirty-three patients without at least 5% decrease in BMI had insignificant increases in estimated liver fat fraction and liver volume. CONCLUSIONS A reduction in BMI of at least 5% is associated with significant decrease in liver fat and volume in patients with biopsy-proven NASH. These data should be considered in assessing effect size in studies of patients with nonalcoholic fatty liver disease or obesity that use MRI-estimated liver fat and volume as end points.
Collapse
Affiliation(s)
- Niraj S Patel
- Division of Internal Medicine, Department of Medicine, University of California San Diego Health System, La Jolla, California
| | - Iliana Doycheva
- Division of Gastroenterology, Department of Medicine, University of California San Diego Health System, La Jolla, California
| | - Michael R Peterson
- Department of Pathology, University of California San Diego Health System, La Jolla, California
| | - Jonathan Hooker
- Liver Imaging Group, Department of Radiology, University of California San Diego Health System, La Jolla, California
| | - Tatiana Kisselva
- Department of Surgery, University of California San Diego Health System, La Jolla, California
| | - Bernd Schnabl
- Division of Gastroenterology, Department of Medicine, University of California San Diego Health System, La Jolla, California
| | - Ekihiro Seki
- Division of Gastroenterology, Department of Medicine, University of California San Diego Health System, La Jolla, California; Department of Surgery, University of California San Diego Health System, La Jolla, California
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California San Diego Health System, La Jolla, California
| | - Rohit Loomba
- Division of Gastroenterology, Department of Medicine, University of California San Diego Health System, La Jolla, California; Division of Epidemiology, Department of Family and Preventive Medicine, University of California San Diego Health System, La Jolla, California.
| |
Collapse
|
42
|
Uygun A, Kadayifci A, Demirci H, Saglam M, Sakin YS, Ozturk K, Polat Z, Karslioglu Y, Bolu E. The effect of fatty pancreas on serum glucose parameters in patients with nonalcoholic steatohepatitis. Eur J Intern Med 2015; 26:37-41. [PMID: 25491010 DOI: 10.1016/j.ejim.2014.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/07/2014] [Accepted: 11/23/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Fatty pancreas (FP) is related to obesity, and may have some clinical implications on glucose metabolism. The frequency and importance of FP in patients with nonalcoholic steatohepatitis (NASH) are not clear. This study aimed to investigate: the frequency of FP in patients with NASH, and its effects on serum glucose parameters. METHODS FP was detected and graded by transabdominal ultrasonography (USG) in patients with biopsy-proven NASH and healthy controls. Body Mass Index and waist circumference were recorded, and serum lipids, fasting serum glucose, HbA1c, OGTT 2-h, insulin level, insulin resistance, type 2 diabetes mellitus (DM) and prediabetes rates were detected. RESULTS Eighty-four subjects with NASH and 35 healthy controls were enrolled in the study. There was no FP in 41 (48.8%) of the NASH patients according to the study criteria. Forty-three of the NASH patients and 5 of the controls had different grades of fat in their pancreas (51.2% vs. 14%, p=0.001). The HbA1c and OGTT 2-h results were significantly higher in NASH patients with FP compared to those without FP (p=0.003 and p=0.018). The rates of both prediabetes and DM were also found to be significantly increased in NASH patients with FP (p=0.004). The mean waist circumference was higher in patients with FP (p=0.027). Grade of FP by USG showed no effect on study parameters in subgroup analysis. CONCLUSION FP is common in patients with NASH and increases the rate of prediabetes and DM. The coexistence of both NASH and FP has a further impact on glucose metabolism and DM frequency.
Collapse
Affiliation(s)
- Ahmet Uygun
- Division of Gastroenterology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Abdurrahman Kadayifci
- Division of Gastroenterology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey.
| | - Hakan Demirci
- Division of Gastroenterology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Mutlu Saglam
- Department of Radiology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Yusuf S Sakin
- Division of Gastroenterology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Kadir Ozturk
- Division of Gastroenterology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Zulfikar Polat
- Division of Gastroenterology, Gulhane Military Medical Academy, Ankara, Turkey
| | | | - Erol Bolu
- Division of Endocrinology, Gulhane Military Medical Academy, Ankara, Turkey
| |
Collapse
|
43
|
Pfeifer CD, Schoennagel BP, Grosse R, Wang ZJ, Graessner J, Nielsen P, Adam G, Fischer R, Yamamura J. Pancreatic iron and fat assessment by MRI-R2* in patients with iron overload diseases. J Magn Reson Imaging 2014; 42:196-203. [PMID: 25236606 DOI: 10.1002/jmri.24752] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 08/28/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND To determine the pancreatic iron (R2*) and fat content (FC) in comparison to hepatic and cardiac R2* in patients with iron overload disorders like β-thalassemia major (TM), Diamond-Blackfan anemia (DBA) or hereditary hemochromatosis. METHODS R2* rates were assessed in the liver, heart and pancreas of 42 patients with TM, 29 subjects with other iron overload diseases, and 10 controls using an ECG-gated breathhold sequence (12 echo time [TE] = 1.3-25.7 ms, readout repetition time [TR] = 244 ms). Pancreatic R2* and FC were assessed from TE dependent region of interest based signal intensities performing water-fat chemical shift relaxometry and were compared with laboratory parameters (glucose, HbA1c, amylase and lipase). RESULTS A pancreatic iron gradient from tail (R2* = 122 s(-1) ) to head (R2* = 114 s(-1) , P < 10(-4) ) was found. The close association between cardiac and pancreatic R2* was also confirmed in patients with TM and other iron overload diseases (rs = 0.64, P < 10(-4) ). Receiver operator characteristic analysis (area: 0.89, P < 10(-4) ) identified patients with elevated cardiac iron at a pancreatic R2* cut-off level of 131s(-1) (sensitivity = specificity at 81%). Highest pancreatic R2* (211s(-1) ) and FC (36%) were found in the tail region of diabetic patients with TM. CONCLUSION Pancreatic tail showed highest R2* rates and fat contents, especially in patients with thalassemia. Besides iron accumulation fatty degeneration might be an additional risk factor for the development of diabetes in β-thalassemia major, but this hypothesis needs further studies in prediabetic patients.
Collapse
Affiliation(s)
- Charlotte D Pfeifer
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Germany
| | - Bjoern P Schoennagel
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Germany
| | - Regine Grosse
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Germany
| | - Zhiyue J Wang
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Peter Nielsen
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Germany
| | - Roland Fischer
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Germany.,UCSF Benioff Children's Hospital Oakland, Oakland, California, USA
| | - Jin Yamamura
- Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
44
|
Mirrakhimov AE. Nonalcoholic fatty pancreatic disease and cardio-metabolic risk: is there is a place for obstructive sleep apnea? Cardiovasc Diabetol 2014; 13:29. [PMID: 24475948 PMCID: PMC3909423 DOI: 10.1186/1475-2840-13-29] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/29/2014] [Indexed: 02/07/2023] Open
Abstract
Background Obstructive sleep apnea is a common disorder acting as a risk factor for the development and progression of cardiometabolic derangements including non-alcoholic fatty liver disease. Recent research data suggest that non-alcoholic fatty pancreatic disease may be a more sensitive marker than non-alcoholic fatty liver disease for early subclinical metabolic risk and may contribute to the progression of subclinical disease to overt type 2 diabetes mellitus. Presentation of the hypothesis We postulate that obstructive sleep apnea may be a risk factor for non-alcoholic fatty pancreatic disease. It is well known that intermittent hypoxia related to obstructive sleep apnea leads to hormonal derangements. Excessive lipolysis, enhanced lipid synthesis and systemic and local inflammation may favor ectopic fat deposition similarly to non-alcoholic fatty liver disease. Furthermore, it is possible that obstructive sleep apnea can lead to pancreatic beta cell damage via intermittent hypoxia. Testing of the hypothesis Future research should focus on the following: first, whether non-alcoholic fatty pancreatic disease is an independent risk factor for the development of metabolic disease including diabetes mellitus or is a simple consequence of obesity; second, the prevalence of non-alcoholic fatty pancreatic disease among people with obstructive sleep apnea and vice versa, which should be compared to the prevalence of these diseases in general population; third, whether coexistence of these conditions is related to greater cardiometabolic risk than either disease alone; and fourth, whether the treatment of obstructive sleep apnea will translate into the resolution of non-alcoholic fatty pancreatic disease. Implications of the hypothesis If proven, this hypothesis will provide new knowledge on the complex interplay between various metabolic insults. Second, screening for NAFPD may identify individuals at risk for developing type 2 diabetes mellitus for targeted prevention. Third, screening for the presence of non-alcoholic fatty pancreatic disease in patients with obstructive sleep apnea may help to decrease the incidence of diabetes mellitus through a targeted prevention.
Collapse
Affiliation(s)
- Aibek E Mirrakhimov
- Kyrgyz State Medical Academy named by I,K, Akhunbaev, Akhunbaev street 92, Bishkek 720020, Kyrgyzstan.
| |
Collapse
|