1
|
Kraemer RR, Kraemer BR. The effects of peripheral hormone responses to exercise on adult hippocampal neurogenesis. Front Endocrinol (Lausanne) 2023; 14:1202349. [PMID: 38084331 PMCID: PMC10710532 DOI: 10.3389/fendo.2023.1202349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
Over the last decade, a considerable amount of new data have revealed the beneficial effects of exercise on hippocampal neurogenesis and the maintenance or improvement of cognitive function. Investigations with animal models, as well as human studies, have yielded novel understanding of the mechanisms through which endocrine signaling can stimulate neurogenesis, as well as the effects of exercise on acute and/or chronic levels of these circulating hormones. Considering the effects of aging on the decline of specific endocrine factors that affect brain health, insights in this area of research are particularly important. In this review, we discuss how different forms of exercise influence the peripheral production of specific endocrine factors, with particular emphasis on brain-derived neurotrophic factor, growth hormone, insulin-like growth factor-1, ghrelin, estrogen, testosterone, irisin, vascular endothelial growth factor, erythropoietin, and cortisol. We also describe mechanisms through which these endocrine responses to exercise induce cellular changes that increase hippocampal neurogenesis and improve cognitive function.
Collapse
Affiliation(s)
- Robert R. Kraemer
- Department of Kinesiology and Health Studies, Southeastern Louisiana University, Hammond, LA, United States
| | - Bradley R. Kraemer
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL, United States
| |
Collapse
|
2
|
Varghese N, Buergin D, Boonmann C, Stadler C, Schmid M, Eckert A, Unternaehrer E. Interplay between stress, sleep, and BDNF in a high-risk sample of young adults. Sci Rep 2023; 13:20524. [PMID: 37993570 PMCID: PMC10665413 DOI: 10.1038/s41598-023-47726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023] Open
Abstract
Children in institutional care have a high risk to experience childhood adversities (CAs), with consequences for physical and mental well-being. The long-term effects of CAs on the brain, including consequences for neuronal plasticity and sleep, are poorly understood. This study examined the interplay between stress (including CAs), sleep, and brain-derived neurotrophic factor (BDNF), a prominent marker for neuronal plasticity. Participants (N = 131, mean age = 26.3±3.4 years, 40 females) with residential youth-care history completed questionnaires measuring CAs (Childhood Trauma Questionnaire, CTQ), psychological well-being (World Health Organization-Five Well-Being Index, WHO-5), and sleep disturbances (Pittsburgh Sleep Quality Inventory, PSQI). Hair cortisol and serum BDNF concentration were measured using enzyme-linked immunosorbent assays. The analyses were conducted by using bootstrap regression models. There was no association of stress parameters or sleep with BDNF concentration. However, we found a significant association of CAs and well-being with sleep disturbances. Last, we found an association between CAs and BDNF in sleep-healthy but not sleep-disturbed participants. Our findings indicated a role of sleep disturbance in the association between stress and BDNF. Still, further studies are warranted using vulnerable groups at-risk to understand long-term effects on mental health and sleep.
Collapse
Affiliation(s)
- Nimmy Varghese
- Research Cluster, Molecular & Cognitive Neuroscience, Division of Neurobiology, University of Basel, 4002, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Medical Faculty, Psychiatric University Clinics Basel, University of Basel, 4002, Basel, Switzerland
| | - David Buergin
- Child and Adolescent Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Wilhelm Klein-Strasse 27, 4002, Basel, Switzerland
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
| | - Cyril Boonmann
- Child and Adolescent Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Wilhelm Klein-Strasse 27, 4002, Basel, Switzerland
- LUMC-Curium - Department of Child of Adolescent Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Christina Stadler
- Child and Adolescent Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Wilhelm Klein-Strasse 27, 4002, Basel, Switzerland
| | - Marc Schmid
- Child and Adolescent Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Wilhelm Klein-Strasse 27, 4002, Basel, Switzerland
| | - Anne Eckert
- Research Cluster, Molecular & Cognitive Neuroscience, Division of Neurobiology, University of Basel, 4002, Basel, Switzerland
- Neurobiology Lab for Brain Aging and Mental Health, Medical Faculty, Psychiatric University Clinics Basel, University of Basel, 4002, Basel, Switzerland
| | - Eva Unternaehrer
- Child and Adolescent Research Department, University Psychiatric Clinics Basel (UPK), University of Basel, Wilhelm Klein-Strasse 27, 4002, Basel, Switzerland.
- Department of Psychology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
3
|
Ahdoot-Levi H, Croitoru O, Bareli T, Sudai E, Peér-Nissan H, Jacob A, Gispan I, Maayan R, Weizman A, Yadid G. The Effect of Dehydroepiandrosterone Treatment on Neurogenesis, Astrogliosis and Long-Term Cocaine-Seeking Behavior in a Cocaine Self-Administration Model in Rats. Front Neurosci 2021; 15:773197. [PMID: 34899172 PMCID: PMC8662380 DOI: 10.3389/fnins.2021.773197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Cocaine addiction is an acquired behavioral state developed in vulnerable individuals after cocaine exposure. It is characterized by compulsive drug-seeking and high vulnerability to relapse even after prolonged abstinence, associated with decreased neurogenesis in the hippocampus. This addictive state is hypothesized to be a form of “memory disease” in which the drug exploits the physiological neuroplasticity mechanisms that mediate regular learning and memory processes. Therefore, a major focus of the field has been to identify the cocaine-induced neuroadaptations occurring in the usurped brain’s reward circuit. The neurosteroid dehydroepiandrosterone (DHEA) affects brain cell morphology, differentiation, neurotransmission, and memory. It also reduces drug-seeking behavior in an animal model of cocaine self-administration. Here, we examined the long-lasting effects of DHEA treatment on the attenuation of cocaine-seeking behavior. We also examined its short- and long-term influence on hippocampal cells architecture (neurons and astrocytes). Using a behavioral examination, immunohistochemical staining, and diffusion tensor imaging, we found an immediate effect on tissue density and activation of astrocytes, which has a continuous beneficial effect on neurogenesis and tissue organization. This research emphasizes the requites concert between astrocytes and neurons in the rehabilitation from addiction behavior. Thus, DHEA may serve as a treatment that corrects brain damage following exposure to and abstinence from cocaine.
Collapse
Affiliation(s)
- Hadas Ahdoot-Levi
- Neuropharmacology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Ramat-Gan, Israel
| | - Ofri Croitoru
- Neuropharmacology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Ramat-Gan, Israel
| | - Tzofnat Bareli
- Neuropharmacology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Ramat-Gan, Israel
| | - Einav Sudai
- Neuropharmacology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Ramat-Gan, Israel.,The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Ramat-Gan, Israel
| | - Hilla Peér-Nissan
- Neuropharmacology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Ramat-Gan, Israel
| | - Avi Jacob
- Neuropharmacology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Ramat-Gan, Israel
| | - Iris Gispan
- Neuropharmacology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Ramat-Gan, Israel
| | - Rachel Maayan
- The Laboratory of Biological Psychiatry, Felsenstein Medical Research Center and Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Abraham Weizman
- The Laboratory of Biological Psychiatry, Felsenstein Medical Research Center and Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Israel.,Research Unit, Geha Mental Health Center, Petah Tikva, Israel
| | - Gal Yadid
- Neuropharmacology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Ramat-Gan, Israel.,The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Ramat-Gan, Israel
| |
Collapse
|
4
|
Prakash C, Mishra M, Kumar P, Kumar V, Sharma D. Response of Voltage-Gated Sodium and Calcium Channels Subtypes on Dehydroepiandrosterone Treatment in Iron-Induced Epilepsy. Cell Mol Neurobiol 2021; 41:279-292. [PMID: 32318899 DOI: 10.1007/s10571-020-00851-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/14/2020] [Indexed: 12/28/2022]
Abstract
Epilepsy is a neurological disorder characterized by the occurrence of spontaneous and recurrent seizures. In post-traumatic epilepsy (PTE), the mechanism of epileptogenesis is very complex and seems to be linked with voltage-gated ion channels. Dehydroepiandrosterone (DHEA), a neurosteroid have shown beneficial effect against various neurological disorders. We investigated antiepileptic effect of DHEA with respect to expression of voltage-gated ion channels subtypes in iron-induced epilepsy. Iron (FeCl3) solution was intracartically injected to induce epilepsy in rats and DHEA was intraperitoneally administered for 21 days. Results showed markedly increased epileptiform seizures activity along with up-regulation of Nav1.1 and Nav1.6, and down-regulation of Cav2.1α at the mRNA and protein level in the cortex and hippocampus of epileptic rats. Moreover, the study demonstrated that these channels subtypes were predominantly expressed in the neurons. DHEA treatment has countered the epileptic seizures, down-regulated Nav1.1 and Nav1.6, and up-regulated Cav2.1α without affecting their cellular localization. In conclusion, the present study demonstrates antiepileptic potential of DHEA, escorted by regulation of Nav1.1, Nav1.6, and Cav2.1α subtypes in the neurons of iron-induced epileptic rats.
Collapse
Affiliation(s)
- Chandra Prakash
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Monika Mishra
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pavan Kumar
- Department of Developmental Neurogenetics, Medical University of South Carolina, Charleston, SC, USA
| | - Vikas Kumar
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Deepak Sharma
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Bentley C, Hazeldine J, Greig C, Lord J, Foster M. Dehydroepiandrosterone: a potential therapeutic agent in the treatment and rehabilitation of the traumatically injured patient. BURNS & TRAUMA 2019; 7:26. [PMID: 31388512 PMCID: PMC6676517 DOI: 10.1186/s41038-019-0158-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
Severe injuries are the major cause of death in those aged under 40, mainly due to road traffic collisions. Endocrine, metabolic and immune pathways respond to limit the tissue damage sustained and initiate wound healing, repair and regeneration mechanisms. However, depending on age and sex, the response to injury and patient prognosis differ significantly. Glucocorticoids are catabolic and immunosuppressive and are produced as part of the stress response to injury leading to an intra-adrenal shift in steroid biosynthesis at the expense of the anabolic and immune enhancing steroid hormone dehydroepiandrosterone (DHEA) and its sulphated metabolite dehydroepiandrosterone sulphate (DHEAS). The balance of these steroids after injury appears to influence outcomes in injured humans, with high cortisol: DHEAS ratio associated with increased morbidity and mortality. Animal models of trauma, sepsis, wound healing, neuroprotection and burns have all shown a reduction in pro-inflammatory cytokines, improved survival and increased resistance to pathological challenges with DHEA supplementation. Human supplementation studies, which have focused on post-menopausal females, older adults, or adrenal insufficiency have shown that restoring the cortisol: DHEAS ratio improves wound healing, mood, bone remodelling and psychological well-being. Currently, there are no DHEA or DHEAS supplementation studies in trauma patients, but we review here the evidence for this potential therapeutic agent in the treatment and rehabilitation of the severely injured patient.
Collapse
Affiliation(s)
- Conor Bentley
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB UK
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, Birmingham University Medical School, Birmingham, B15 2TT UK
| | - Jon Hazeldine
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB UK
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, Birmingham University Medical School, Birmingham, B15 2TT UK
| | - Carolyn Greig
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- NIHR Biomedical Research Centre, University Hospital Birmingham, Birmingham, UK
| | - Janet Lord
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB UK
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, Birmingham University Medical School, Birmingham, B15 2TT UK
- NIHR Biomedical Research Centre, University Hospital Birmingham, Birmingham, UK
| | - Mark Foster
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, B15 2WB UK
- Royal Centre for Defence Medicine, Birmingham Research Park, Birmingham, B15 2SQ UK
| |
Collapse
|
6
|
Payne P, Fiering S, Zava D, Gould TJ, Brown A, Hage P, Gaudet C, Crane-Godreau M. Digital Delivery of Meditative Movement Training Improved Health of Cigarette-Smoke-Exposed Subjects. Front Public Health 2018; 6:282. [PMID: 30406067 PMCID: PMC6202937 DOI: 10.3389/fpubh.2018.00282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Many FA who flew prior to the ban on smoking in commercial aircraft exhibit an unusual pattern of long-term pulmonary dysfunction. This randomized controlled study tested the hypothesis that digitally delivered meditative movement (MM) training improves chronic obstructive pulmonary disease (COPD)-related symptoms in flight attendants (FA) who were exposed to second-hand cigarette smoke (SHCS) while flying. Phase I of this two-phase clinical trial was a single-arm non-randomized pilot study that developed and tested methods for MM intervention; we now report on Phase II, a randomized controlled trial comparing MM to a control group of similar FA receiving health education (HE) videos. Primary outcomes were the 6-min walk test and blood levels of high sensitivity C-reactive protein (hs-CRP). Pulmonary, cardiovascular, autonomic and affective measures were also taken. There were significant improvements in the 6-min walk test, the Multidimensional Assessment of Interoceptive Awareness (MAIA) score, and the COPD Assessment Test. Non-significant trends were observed for increased dehydroepiandrosterone sulfate (DHEAS) levels, decreased anxiety scores and reduced blood hs-CRP levels, and increased peak expiratory flow (PEF). In a Survey Monkey questionnaire, 81% of participants who completed pre and post-testing expressed mild to strong positive opinions of the study contents, delivery, or impact, while 16% expressed mild negative opinions. Over the course of the year including the study, participant adoption of the MM practices showed a significant and moderately large correlation with overall health improvement; Pearson's R = 0.62, p < 0.005. These results support the hypothesized benefits of video-based MM training for this population. No adverse effects were reported. Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT02612389
Collapse
Affiliation(s)
- Peter Payne
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, PA, United States
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, PA, United States
| | - David Zava
- ZRT Laboratory, Beaverton, OR, United States
| | - Thomas J Gould
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States
| | - Anthony Brown
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Paul Hage
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Carole Gaudet
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, PA, United States
| | - Mardi Crane-Godreau
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, PA, United States
| |
Collapse
|
7
|
Vojdani A, Vojdani E. Amyloid-Beta 1-42 Cross-Reactive Antibody Prevalent in Human Sera May Contribute to Intraneuronal Deposition of A-Beta-P-42. Int J Alzheimers Dis 2018; 2018:1672568. [PMID: 30034864 PMCID: PMC6032666 DOI: 10.1155/2018/1672568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/13/2018] [Accepted: 04/29/2018] [Indexed: 12/11/2022] Open
Abstract
Antibodies against many neural antigens are detected in the sera of both patients with Alzheimer's disease (AD) and some healthy individuals. Blood-brain barrier dysfunction could make it possible for brain-reactive autoantibodies to reach the brain, where they can react with amyloid ß peptide (AßP). The origin of these autoreactive antibodies in the blood is unclear. The goals of this study were as follows: (1) to examine the immune reactivity of anti-AßP-42 with 22 neuronal and other associated antigens, some of which are involved in the pathophysiology of AD; (2) to classify antibodies to these 22 different antigens into those that cross-react with AßP-42 and those that do not; (3) to determine whether these antibodies react with BBB proteins, nerve growth factors, and enteric neuronal antigens. Using monoclonal AßP-42 antibody and ELISA methodology, we found that the antibody was highly reactive with Aß protein, tau protein, presenilin, rabaptin-5, β-NGF, BDNF, mTG, and enteric nerve. The same antibody produced equivocal to moderate reactions with glutamate-R, S100B, AQP4, GFAP, MBP, α-synuclein, tTG-2, and tTG-3, and not with the rest. These antibodies were also measured in blood samples from 47 AD patients and 47 controls. IgG antibodies were found to be elevated against AßP-42 and many other antigens in a significant percentage of controls. Overall, the mean OD values were significantly higher against 9/23 tested antigens (p <0.001) in the samples with AD. We were indeed able to classify the detected neuronal antibodies into those that cross-react with AßP-42 and those that do not. Our main finding is that although these antibodies may be harmless in a subgroup of controls, in individuals with compromised BBBs these antibodies that cross-react with AßP-42 can reach the brain, where their cross-reactivity with AßP-42 may contribute to the onset and progression of AD, and perhaps other neurodegenerative disorders.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab., Inc., 822 S. Robertson Blvd., Ste. 312, Los Angeles, CA 90035, USA
- Department of Preventive Medicine, Loma Linda University School of Medicine, 24785 Stewart St., Evans Hall, Ste. 111, Loma Linda, CA 92354, USA
| | - Elroy Vojdani
- Regenera Medical, 11860 Wilshire Blvd., Ste. 301, Los Angeles, CA 90025, USA
| |
Collapse
|
8
|
Arbo BD, Ribeiro FS, Ribeiro MF. Astrocyte Neuroprotection and Dehydroepiandrosterone. VITAMINS AND HORMONES 2018; 108:175-203. [PMID: 30029726 DOI: 10.1016/bs.vh.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) are the most abundant steroid hormones in the systemic circulation of humans. Due to their abundance and reduced production during aging, these hormones have been suggested to play a role in many aspects of health and have been used as drugs for a multiple range of therapeutic actions, including hormonal replacement and the improvement of aging-related diseases. In addition, several studies have shown that DHEA and DHEAS are neuroprotective under different experimental conditions, including models of ischemia, traumatic brain injury, spinal cord injury, glutamate excitotoxicity, and neurodegenerative diseases. Since astrocytes are responsible for the maintenance of neural tissue homeostasis and the control of neuronal energy supply, changes in astrocytic function have been associated with neuronal damage and the progression of different pathologies. Therefore, the aim of this chapter is to discuss the neuroprotective effects of DHEA against different types of brain and spinal cord injuries and how the modulation of astrocytic function by DHEA could represent an interesting therapeutic approach for the treatment of these conditions.
Collapse
Affiliation(s)
- Bruno D Arbo
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Felipe S Ribeiro
- Laboratório de Interação Neuro-Humoral, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria F Ribeiro
- Laboratório de Interação Neuro-Humoral, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
9
|
Xiao Y, Zhang E, Fu A. Promotion of SH-SY5Y Cell Growth by Gold Nanoparticles Modified with 6-Mercaptopurine and a Neuron-Penetrating Peptide. NANOSCALE RESEARCH LETTERS 2017; 12:641. [PMID: 29288282 PMCID: PMC5747560 DOI: 10.1186/s11671-017-2417-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/15/2017] [Indexed: 06/01/2023]
Abstract
Much effort has been devoted to the discovery of effective biomaterials for nerve regeneration. Here, we reported a novel application of gold nanoparticles (AuNPs) modified with 6-mercaptopurine (6MP) and a neuron-penetrating peptide (RDP) as a neurophic agent to promote proliferation and neurite growth of human neuroblastoma (SH-SY5Y) cells. When the cells were treated with 6MP-AuNPs-RDP conjugates, they showed higher metabolic activity than the control. Moreover, SH-SY5Y cells were transplanted onto the surface coated with 6MP-AuNPs-RDP to examine the effect of neurite development. It can be concluded that 6MP-AuNPs-RDP attached to the cell surface and then internalized into cells, leading to a significant increase of neurite growth. Even though 6MP-AuNPs-RDP-treated cells were recovered from frozen storage, the cells still maintained constant growth, indicating that the cells have excellent tolerance to 6MP-AuNPs-RDP. The results suggested that the 6MP-AuNPs-RDP had promising potential to be developed as a neurophic nanomaterial for neuronal growth.
Collapse
Affiliation(s)
- Yaruo Xiao
- College of Bioengineering, Chongqing University, Chongqing, 400044 People’s Republic of China
| | - Enqi Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| |
Collapse
|
10
|
Ayala-Caminero R, Pinzón-Herrera L, Martinez CAR, Almodovar J. Polymeric scaffolds for three-dimensional culture of nerve cells: a model of peripheral nerve regeneration. MRS COMMUNICATIONS 2017; 7:391-415. [PMID: 29515936 PMCID: PMC5836791 DOI: 10.1557/mrc.2017.90] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/28/2017] [Indexed: 05/09/2023]
Abstract
Understanding peripheral nerve repair requires the evaluation of 3D structures that serve as platforms for 3D cell culture. Multiple platforms for 3D cell culture have been developed, mimicking peripheral nerve growth and function, in order to study tissue repair or diseases. To recreate an appropriate 3D environment for peripheral nerve cells, key factors are to be considered including: selection of cells, polymeric biomaterials to be used, and fabrication techniques to shape and form the 3D scaffolds for cellular culture. This review focuses on polymeric 3D platforms used for the development of 3D peripheral nerve cell cultures.
Collapse
Affiliation(s)
- Radamés Ayala-Caminero
- Bioengineering Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayagüez, Puerto Rico, 00681-9000, USA
| | - Luis Pinzón-Herrera
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayaguez, Puerto Rico, 00681-9000, USA
| | - Carol A Rivera Martinez
- Bioengineering Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayagüez, Puerto Rico, 00681-9000, USA
| | - Jorge Almodovar
- Bioengineering Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayagüez, Puerto Rico, 00681-9000, USA
| |
Collapse
|
11
|
Qi XR, Luchetti S, Verwer RWH, Sluiter AA, Mason MRJ, Zhou JN, Swaab DF. Alterations in the steroid biosynthetic pathways in the human prefrontal cortex in mood disorders: A post-mortem study. Brain Pathol 2017; 28:536-547. [PMID: 28752602 DOI: 10.1111/bpa.12548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023] Open
Abstract
Altered levels of steroids have been reported in the brain, cerebral spinal fluid and plasma of patients with mood disorders. Neuroimaging studies have reported both functional and structural alterations in mood disorders, for instance in the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC). In order to determine whether the endogenous production of steroids is altered in the ACC and DLPFC of patients with major depressive disorder (MDD) or bipolar disorder (BPD), quantitative real-time PCR was performed to detect mRNA expression level of key enzymes in the steroid biosynthetic pathways. In MDD, a significant decrease in mRNA level of cytochrome P450 17A1 (CYP17A1, synthesizing C19 ketosteroids) in the ACC and a significant increase in mRNA levels of hydroxysteroid sulfotransferase 2A1 [SULT2A1, catalyzing the sulfate conjugation of dehydroepiandrosterone (DHEA)] were observed in the DLPFC, suggesting alterations in DHEA and its sulfate metabolite DHEAS levels. Decreased intensity and distribution of CYP17A1 immunohistochemical staining was found in the ACC of MDD patients. Interestingly, there was a significant positive correlation between the mRNA levels of CYP17A1 and tyrosine-related kinase B (TrkB) full length isoform. In a unique post-mortem human brain slice culture paradigm, BDNF mRNA expression was found to be significantly increased following incubation with DHEA. Together, these data indicate a close relationship between DHEA and BDNF-TrkB pathways in depression. Furthermore, in the DLPFC, higher mRNA levels of 11β-hydroxysteroid dehydrogenase-1 (HSD11B1, reducing cortisone to the active hormone cortisol) and steroidogenic acute regulatory protein (STAR, facilitating the shuttle of cholesterol through the intermembrane space) were found in the MDD patients and BPD patients, respectively. In conclusion, this study suggests the presence of a disturbance in the endogenous synthesis of DHEA and DHEAS in mood disorders, which has a close relationship with BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Xin-Rui Qi
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands.,CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Sabina Luchetti
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Ronald W H Verwer
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Arja A Sluiter
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Matthew R J Mason
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Chuang JY, Lo WL, Ko CY, Chou SY, Chen RM, Chang KY, Hung JJ, Su WC, Chang WC, Hsu TI. Upregulation of CYP17A1 by Sp1-mediated DNA demethylation confers temozolomide resistance through DHEA-mediated protection in glioma. Oncogenesis 2017; 6:e339. [PMID: 28530704 PMCID: PMC5523064 DOI: 10.1038/oncsis.2017.31] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 12/13/2022] Open
Abstract
Steroidogenesis-mediated production of neurosteroids is important for brain homeostasis. Cytochrome P450 17A1 (CYP17A1), which converts pregnenolone to dehydroepiandrosterone (DHEA) in endocrine organs and the brain, is required for prostate cancer progression and acquired chemotherapeutic resistance. However, whether CYP17A1-mediated DHEA synthesis is involved in brain tumor malignancy, especially in glioma, the most prevalent brain tumor, is unknown. To investigate the role of CYP17A1 in glioma, we determined that CYP17A1 expression is significantly increased in gliomas, which secrete more DHEA than normal astrocytes. We found that as gliomas became more malignant, both CYP17A1 and DHEA were significantly upregulated in temozolomide (TMZ)-resistant cells and highly invasive cells. In particular, the increase of CYP17A1 was caused by Sp1-mediated DNA demethylation, whereby Sp1 competed with DNMT3a for binding to the CYP17A1 promoter in TMZ-resistant glioma cells. CYP17A1 was required for the development of glioma cell invasiveness and resistance to TMZ-induced cytotoxicity. In addition, DHEA markedly attenuated TMZ-induced DNA damage and apoptosis. Together, our results suggest that components of the Sp1-CYP17A1-DHEA axis, which promotes the development of TMZ resistance, may serve as potential biomarkers and therapeutic targets in recurrent glioma.
Collapse
Affiliation(s)
- J-Y Chuang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - W-L Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Division of Neurosurgery, Taipei Medical University-Shuang-Ho Hospital, Taipei, Taiwan
| | - C-Y Ko
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - S-Y Chou
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - R-M Chen
- Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - K-Y Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - J-J Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - W-C Su
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - W-C Chang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - T-I Hsu
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.,Comprehensive Cancer Center, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Polymorphisms of STS gene and SULT2A1 gene and neurosteroid levels in Han Chinese boys with attention-deficit/hyperactivity disorder: an exploratory investigation. Sci Rep 2017; 7:45595. [PMID: 28367959 PMCID: PMC5377367 DOI: 10.1038/srep45595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/28/2017] [Indexed: 11/16/2022] Open
Abstract
This study examined the relationships among polymorphisms of the STS gene and SULT2A1 gene, dehydroepiandrosterone (DHEA) and its sulfated form (DHEA-S), and characteristics of attention-deficit/hyperactivity disorder (ADHD). We used cheek swabs to obtain the genomic DNA of 200 ADHD male probands (mean age: 8.7 years), 192 patients’ mothers and 157 patients’ fathers. Three SNPs in the STS gene (rs6639786, rs2270112, and rs17268988) and one SNP in the SULT2A1 gene (rs182420) were genotyped. Saliva samples were collected from the ADHD patients to analyze DHEA and DHEA-S levels. The behavioral symptoms were evaluated with the Swanson, Nolan, and Pelham, and Version IV Scale for ADHD (SNAP-IV), and the neuropsychological function was assessed using the Conners’ Continuous Performance Tests (CPT). We found the C allele of rs2270112 within the STS gene to be over-transmitted in males with ADHD. Polymorphisms of rs182420 within the SULT2A1 gene were not associated with ADHD. In addition, the C allele carriers of rs2270112 demonstrated significantly higher DHEA-S levels than the G allele carriers. Levels of DHEA were positively correlated with attention as measured by the CPT. These findings support a potential role in the underlying biological pathogenesis of ADHD with regard to STS polymorphisms and neurosteroid levels.
Collapse
|
14
|
Wang Y, Guo L, Jiang HF, Zheng LT, Zhang A, Zhen XC. Allosteric Modulation of Sigma-1 Receptors Elicits Rapid Antidepressant Activity. CNS Neurosci Ther 2016; 22:368-77. [PMID: 26854125 PMCID: PMC6492821 DOI: 10.1111/cns.12502] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 02/06/2023] Open
Abstract
AIMS Sigma-1 receptors are involved in the pathophysiological process of several neuropsychiatric diseases such as epilepsy, depression. Allosteric modulation represents an important mechanism for receptor functional regulation. In this study, we examined antidepressant activity of the latest identified novel and selective allosteric modulator of sigma-1 receptor 3-methyl-phenyl-2, 3, 4, 5-tetrahydro-1H-benzo[d]azepin-7-ol (SOMCL-668). METHODS AND RESULTS A single administration of SOMCL-668 decreased the immobility time in the forced swimming test (FST) and tailing suspended test in mice, which were abolished by pretreatment of sigma-1 receptor antagonist BD1047. In the chronic unpredicted mild stress (CUMS) model, chronic application of SOMCL-668 rapidly ameliorated anhedonia-like behavior (within a week), accompanying with the enhanced expression of brain-derived neurotrophic factor (BDNF) and phosphorylation of glycogen synthase kinase 3β (GSK3β) (Ser-9) in the hippocampus. SOMCL-668 also rapidly promoted the phosphorylation of GSK3β (Ser-9) in an allosteric manner in vitro. In the cultured primary neurons, SOMCL-668 enhanced the sigma-1 receptor agonist-induced neurite outgrowth and the secretion of BDNF. CONCLUSION SOMCL-668, a novel allosteric modulator of sigma-1 receptors, elicits a potent and rapid acting antidepressant effect. The present data provide the first evidence that allosteric modulation of sigma-1 receptors may represent a new approach for antidepressant drug discovery.
Collapse
Affiliation(s)
- Yun Wang
- Jiangsu Key laboratory for Translational Research for Neuropsychiatric Diseases, The Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Jiangsu, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Department of Pharmacology, Xuzhou Medical College, Jiangsu, China
| | - Lin Guo
- Jiangsu Key laboratory for Translational Research for Neuropsychiatric Diseases, The Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Jiangsu, China
| | - Hua-Feng Jiang
- Jiangsu Key laboratory for Translational Research for Neuropsychiatric Diseases, The Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Jiangsu, China
| | - Long-Tai Zheng
- Jiangsu Key laboratory for Translational Research for Neuropsychiatric Diseases, The Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Jiangsu, China
| | - Ao Zhang
- Department of Medicinal chemistry, Shanghai Institute of Material Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xue-Chu Zhen
- Jiangsu Key laboratory for Translational Research for Neuropsychiatric Diseases, The Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Jiangsu, China
| |
Collapse
|
15
|
Taylor L, Watkins SL, Marshall H, Dascombe BJ, Foster J. The Impact of Different Environmental Conditions on Cognitive Function: A Focused Review. Front Physiol 2016; 6:372. [PMID: 26779029 PMCID: PMC4701920 DOI: 10.3389/fphys.2015.00372] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023] Open
Abstract
Cognitive function defines performance in objective tasks that require conscious mental effort. Extreme environments, namely heat, hypoxia, and cold can all alter human cognitive function due to a variety of psychological and/or biological processes. The aims of this Focused Review were to discuss; (1) the current state of knowledge on the effects of heat, hypoxic and cold stress on cognitive function, (2) the potential mechanisms underpinning these alterations, and (3) plausible interventions that may maintain cognitive function upon exposure to each of these environmental stressors. The available evidence suggests that the effects of heat, hypoxia, and cold stress on cognitive function are both task and severity dependent. Complex tasks are particularly vulnerable to extreme heat stress, whereas both simple and complex task performance appear to be vulnerable at even at moderate altitudes. Cold stress also appears to negatively impact both simple and complex task performance, however, the research in this area is sparse in comparison to heat and hypoxia. In summary, this focused review provides updated knowledge regarding the effects of extreme environmental stressors on cognitive function and their biological underpinnings. Tyrosine supplementation may help individuals maintain cognitive function in very hot, hypoxic, and/or cold conditions. However, more research is needed to clarify these and other postulated interventions.
Collapse
Affiliation(s)
- Lee Taylor
- ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research CentreDoha, Qatar
- Applied Sport and Exercise Physiology Research Group, Department of Sport Science and Physical Activity, Institute for Sport and Physical Activity Research, University of BedfordshireBedford, UK
| | - Samuel L. Watkins
- Applied Sport and Exercise Physiology Research Group, Department of Sport Science and Physical Activity, Institute for Sport and Physical Activity Research, University of BedfordshireBedford, UK
| | - Hannah Marshall
- Applied Sport and Exercise Physiology Research Group, Department of Sport Science and Physical Activity, Institute for Sport and Physical Activity Research, University of BedfordshireBedford, UK
| | - Ben J. Dascombe
- Applied Sport Science and Exercise Testing Laboratory, Faculty of Science and Information Technology, University of NewcastleOurimbah, NSW, Australia
| | - Josh Foster
- Applied Sport and Exercise Physiology Research Group, Department of Sport Science and Physical Activity, Institute for Sport and Physical Activity Research, University of BedfordshireBedford, UK
| |
Collapse
|
16
|
Taylor MK, Carpenter J, Stone M, Hernandez LM, Rauh MJ, Laurent HK, Granger DA. Genetic and environmental modulation of neurotrophic and anabolic stress response: Counterbalancing forces. Physiol Behav 2015; 151:1-8. [PMID: 26136163 DOI: 10.1016/j.physbeh.2015.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 05/27/2015] [Accepted: 06/20/2015] [Indexed: 11/20/2022]
Abstract
The serotonin transporter genetic variant 5HTTLPR influences activation and feedback control of the hypothalamic-pituitary-adrenal axis, and has been shown to influence the effect of stressful life events on behavioral health. We recently reported that 5HTTLPR modulates cortisol response in healthy military men exposed to intense stress. Less is known of its combined effects with environmental factors in this context, or of its effect on neuroprotective stress responses. In this follow-up study, we examined the unique and combined effects of 5HTTLPR and prior trauma exposure on neuroprotective (salivary nerve growth factor [sNGF]), anabolic (dehydroepiandrosterone sulfate [DHEAS] and testosterone), and catabolic (cortisol) stress responses. Ninety-three healthy, active-duty military men were studied before, during, and 24h after a stressful 12-day survival course. Distinct and interactive effects of 5HTTLPR long allele carriage [L] versus homozygous short allele carriage [SS]) and prior trauma exposure (low versus high) were evaluated, after which a priori group comparisons were performed between hypothesized high resilience (L/low) and low resilience (SS/high) groups. For sNGF, L/low produced the greatest sNGF throughout stress exposure while SS/high demonstrated the smallest; L/high and SS/low bisected these two extremes and were nearly identical to each other (i.e., SS/high < SS/low = L/high < L/low). Thus, 5HTTLPR and prior trauma exposure demonstrated counterbalancing (additive) forces. Similar patterns were found for DHEAS. To our knowledge, this study is the first to report counterbalancing genetic and environmental effects on novel biomarkers related to resilience in humans exposed to real-world stress. These findings have profound implications for health, performance and training in high-stress occupational settings.
Collapse
Affiliation(s)
- Marcus K Taylor
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA, USA; School of Exercise and Nutritional Sciences, San Diego State University, ENS Building Room 351, 5500 Campanile Drive, San Diego, CA, USA; Institute for Interdisciplinary Salivary Bioscience Research, Arizona State University, 550 E. Orange Street, Tempe, AZ, USA.
| | - Jennifer Carpenter
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA, USA; School of Exercise and Nutritional Sciences, San Diego State University, ENS Building Room 351, 5500 Campanile Drive, San Diego, CA, USA.
| | - Michael Stone
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA, USA; School of Exercise and Nutritional Sciences, San Diego State University, ENS Building Room 351, 5500 Campanile Drive, San Diego, CA, USA.
| | - Lisa M Hernandez
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA, USA; School of Exercise and Nutritional Sciences, San Diego State University, ENS Building Room 351, 5500 Campanile Drive, San Diego, CA, USA.
| | - Mitchell J Rauh
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Road, San Diego, CA, USA; School of Exercise and Nutritional Sciences, San Diego State University, ENS Building Room 351, 5500 Campanile Drive, San Diego, CA, USA.
| | - Heidemarie K Laurent
- Institute for Interdisciplinary Salivary Bioscience Research, Arizona State University, 550 E. Orange Street, Tempe, AZ, USA; Department of Psychology, 1227 University of Oregon, Eugene, OR, USA.
| | - Douglas A Granger
- Institute for Interdisciplinary Salivary Bioscience Research, Arizona State University, 550 E. Orange Street, Tempe, AZ, USA; Johns Hopkins School of Nursing and Bloomberg School of Public Health, 3400 North Charles Street, Baltimore, MD, USA.
| |
Collapse
|
17
|
Verdi J, Mortazavi-Tabatabaei SA, Sharif S, Verdi H, Shoae-Hassani A. Citalopram increases the differentiation efficacy of bone marrow mesenchymal stem cells into neuronal-like cells. Neural Regen Res 2014; 9:845-50. [PMID: 25206899 PMCID: PMC4146250 DOI: 10.4103/1673-5374.131601] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2014] [Indexed: 11/04/2022] Open
Abstract
Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was significantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These findings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics.
Collapse
Affiliation(s)
- Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran ; Department of Stem Cells and Tissue Engineering, Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Abdolreza Mortazavi-Tabatabaei
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran ; Department of Stem Cells and Tissue Engineering, Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Sharif
- Department of Stem Cells and Tissue Engineering, Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran ; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Verdi
- Department of Stem Cells and Tissue Engineering, Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Shoae-Hassani
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran ; Department of Stem Cells and Tissue Engineering, Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Taylor MK, Stone M, Laurent HK, Rauh MJ, Granger DA. Neuroprotective-neurotrophic effect of endogenous dehydroepiandrosterone sulfate during intense stress exposure. Steroids 2014; 87:54-8. [PMID: 24887210 DOI: 10.1016/j.steroids.2014.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/15/2014] [Accepted: 05/22/2014] [Indexed: 12/11/2022]
Abstract
Recent reports demonstrate neurotrophic properties of dehydroepiandrosterone sulfate (DHEAS) in men at rest, as well as profound neurotrophic responses to stress in both men and women. Little is known of neuroprotective-neurotrophic effects of DHEAS during stress exposure, either in men or women. This translational study was designed to examine neuroprotective-neurotrophic effects of DHEAS throughout intense stress exposure in healthy men and women. The study took place within a stressful 12-day military survival course. Utilizing a longitudinal cross-sectional repeated measures design, One hundred sixteen healthy active-duty military personnel (80% male) were studied before, during, and 24h after the course. The dependent variable was the neurotrophin salivary nerve growth factor (sNGF). In terms of total hormone output, the effect of DHEAS on sNGF was mediated by testosterone. Unlike testosterone or cortisol, DHEAS reliably predicted sNGF at each time point, and change in DHEAS predicted change in sNGF across time points. Baseline DHEAS predicted total sNGF output across the stress trajectory. Consistent with preclinical as well as cross-sectional human research, this study demonstrates neuroprotective-neurotrophic effects of DHEAS in healthy men and women exposed to intense stress. Results are evaluated in relation to established criteria for causation.
Collapse
Affiliation(s)
- Marcus K Taylor
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, United States; Institute for Interdisciplinary Salivary Bioscience Research, Arizona State University, Tempe, AZ, United States; School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States.
| | - Michael Stone
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, United States; School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Heidemarie K Laurent
- Institute for Interdisciplinary Salivary Bioscience Research, Arizona State University, Tempe, AZ, United States; Department of Psychology, University of Oregon, Eugene, OR, United States
| | - Mitchell J Rauh
- Biobehavioral Sciences Lab, Warfighter Performance Department, Naval Health Research Center, San Diego, CA, United States; School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Douglas A Granger
- Institute for Interdisciplinary Salivary Bioscience Research, Arizona State University, Tempe, AZ, United States; Johns Hopkins School of Nursing and Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
19
|
Verdi J, Sharif S, Banafshe HR, Shoae-Hassani A. Sertraline increases the survival of retinoic acid induced neuronal cells but not glial cells from human mesenchymal stem cells. Cell Biol Int 2014; 38:901-9. [PMID: 24715678 DOI: 10.1002/cbin.10283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/07/2014] [Indexed: 01/20/2023]
Abstract
An increase in the number of viable in vitro differentiated neuronal cells is important for their use in clinics. A proportion of differentiated cells lose their viability before being used, and therefore we decided to use a pharmacological agent, sertraline, to increase neural cell differentiation and their survival. Purified endometrial stem cells (EnSCs) were examined for neuronal and glial cell specific markers after retinoic acid (RA) and sertraline treatment via RT-PCR, immunocytochemistry and Western blot analysis. The survival of differentiated cells was measured by MTT assay and the frequency of apoptosis, demonstrated by caspase-3-like activity. EnSCs were differentiated into neuronal cells after RA induction. Sertraline increased neuronal cell differentiation by 1.2-fold and their survival by 1.4-fold, and decreased from glial cell differentiation significantly. The findings indicate that sertraline could be used to improve the in vitro differentiation process of stem cells into neuronal cells, and may be involved in regenerative pharmacology in future.
Collapse
Affiliation(s)
- Javad Verdi
- Applied Cell Sciences Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Stem cell and Tissue Engineering Department, Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|