1
|
Telemaco Contreras Colmenares M, de Oliveira Matos A, Henrique Dos Santos Dantas P, Rodrigues do Carmo Neto J, Silva-Sales M, Sales-Campos H. Unveiling the impact of TREM-2 + Macrophages in metabolic disorders. Cell Immunol 2024; 405-406:104882. [PMID: 39369473 DOI: 10.1016/j.cellimm.2024.104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
The Triggering Receptor Expressed on Myeloid cells 2 (TREM-2) has been widely known by its anti-inflammatory activity. It can be activated in response to microbes and tissue damage, leading to phagocytosis, autophagy, cell polarization and migration, counter inflammation, and tissue repair. So far, the receptor has been largely explored in neurodegenerative disorders, however, a growing number of studies have been investigating its contribution in different pathological conditions, including metabolic diseases, in which (resident) macrophages play a crucial role. In this regard, TREM-2 + macrophages have been implicated in the onset and development of obesity, atherosclerosis, and fibrotic liver disease. These macrophages can be detected in the brain, white adipose tissue, liver, and vascular endothelium. In this review we discuss how different murine models have been demonstrating the ability of such cells to contribute to tissue and body homeostasis by phagocytosing cellular debris and lipid structures, besides contributing to lipid homeostasis in metabolic diseases. Therefore, understanding the role of TREM-2 in metabolic disorders is crucial to expand our current knowledge concerning their immunopathology as well as to foster the development of more targeted therapies to treat such conditions.
Collapse
Affiliation(s)
| | - Amanda de Oliveira Matos
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, Brazil.
| | | | | | - Marcelle Silva-Sales
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, Brazil.
| | | |
Collapse
|
2
|
Zhan XZ, Luo P, Zhang C, Zhang LJ, Shen X, Jiang DL, Liu WJ. Age-related changes in the mitochondrial, synthesis of steroids, and cellular homeostasis of the chicken ovary. Anim Reprod Sci 2024; 267:107540. [PMID: 38908171 DOI: 10.1016/j.anireprosci.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
In poultry reproduction, the decline of ovarian function due to aging is related to dysfunction of mitochondria exacerbated by a reduction in antioxidant capacity, ultimately leading to follicle atresia and decreased egg production. However, the mechanisms of mitochondrial dysfunction in the chicken ovary in aging have remained to be understood. Hence, this study aims to investigate the effects of aging on mitochondrial function and cellular homeostasis. We collect ovarian tissue, small white follicles (SWF), large white follicles (LWF), and small yellow follicles (SYF) from three different laying periods of hens. The transmission electron microscopy (TEM) results showed that mitochondrial damage occurred in ovarian tissue during the late laying period (LP), characterized by structural swelling, scattered mitochondrial cristae, and an increase in the vacuoles. At the same time, with age, the synthesis of steroid hormones in the ovaries and follicular tissues is reduced. The levels of autophagy and cell apoptosis in ovarian tissues were both increased in the LP. In addition, aging adversely impacts mitochondrial function, leading to a decrease in mitochondrial unfolded protein response (UPRmt) functions. This study will expand the knowledge about regressing ovarian aging in hens and increasing egg production in older layers for poultry production.
Collapse
Affiliation(s)
- Xiao-Zhi Zhan
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Pei Luo
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Chen Zhang
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Liu-Jun Zhang
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Xu Shen
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Dan-Li Jiang
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Wen-Jun Liu
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China.
| |
Collapse
|
3
|
Meneghetti da Rosa J, Lidani KCF, Andrade FA, Sena L, Nisihara R, Ambrosio AR, Messias-Reason IJ. Mannose Binding Lectin and C3 Serum Levels in Coronary Artery Disease: A Cross-Sectional Study. Immunol Invest 2024; 53:752-765. [PMID: 38634569 DOI: 10.1080/08820139.2024.2337023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND The process of tissue injury in coronary artery disease (CAD) has been associated with activation of the complement system, partly due to the action of mannose-binding lectin (MBL) and C3, which are expressed in atherosclerotic lesions. OBJECTIVE The aim of this study was to evaluate the serum levels of MBL and C3 in patients with CAD and to compare them with healthy controls. Additionally, we aim to assess the correlation between MBL and C3 levels and cardiometabolic parameters. METHODS MBL and C3 serum concentration were determined by ELISA and immunoturbidimetry, respectively, in up to 119 patients undergoing coronary angiography for CAD evaluation, comprising 48 individuals diagnosed with acute myocardial infarction (MI) and 71 without MI. A total of 93 paired healthy controls were included in the study. RESULTS Individuals with CAD had MBL serum concentration higher than controls (p = .002), regardless of the presence of MI (p = .006). In addition, high concentration of MBL (>2000 ng/mL) was more frequent in patients with CAD (p = .007; OR = 2.6; 95% CI = 1.3-5.1). C3 levels were not significantly associated with any of the patient groups but were positively correlated with cardiometabolic parameters such as body mass index (BMI) and triglycerides levels. CONCLUSIONS Higher concentrations of MBL were found to be associated with CAD, whereas C3 levels were found to be associated with cardiovascular risk factors.
Collapse
Affiliation(s)
- Juliana Meneghetti da Rosa
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná (HC-UFPR), Curitiba, Brazil
| | - Kárita Cláudia Freitas Lidani
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná (HC-UFPR), Curitiba, Brazil
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná (HC-UFPR), Curitiba, Brazil
- Department of Medicine, Positivo University, Curitiba, Brazil
| | - Léia Sena
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná (HC-UFPR), Curitiba, Brazil
| | - Renato Nisihara
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná (HC-UFPR), Curitiba, Brazil
- Department of Medicine, Positivo University, Curitiba, Brazil
| | - Altair Rogerio Ambrosio
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná (HC-UFPR), Curitiba, Brazil
- Department of Medicine, Positivo University, Curitiba, Brazil
| | - Iara J Messias-Reason
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná (HC-UFPR), Curitiba, Brazil
| |
Collapse
|
4
|
Yang R, Wang D, Ding Y, Liu Q. Exploring biomarkers for autophagy-mediated macrophage pyroptosis in atherosclerosis. Cell Biol Int 2023; 47:1905-1925. [PMID: 37641197 DOI: 10.1002/cbin.12080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
This study tried to investigate the macrophage autophagy-related pyroptosis in atherosclerosis. The gene expression omnibus (GEO) dataset of GSE100927 was used for differentially expressed genes (DEG) screening, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG), CIBERSORT, weighted correlation network analysis (WGCNA), receiver operating characteristic (ROC), gene set enrichment analysis (GSEA), and correlation analysis, and GSE159677 was used for single-cell analysis, all conducted in R software. Protein-protein interaction (PPI) was constructed in STRING and analyzed in Cytoscape. Transcription factors, drugs, and tissue co-expression network were explored in NetworkAnalyst. A total of 110 autophagy-related DEG (DEATG) were identified, and GO/KEGG revealed the top items enriched in autophagy, phagosome and lysosome. CIBERSORT showed 11 cell types were markedly differentially expressed (p < .05). WGCNA found the turquoise and yellow module were positively correlated with macrophage M0 (corr = 0.5, P = 6e-6) and M2 (corr = 0.54, P = 1e-6), respectively. Then 35 immune-related DEATG were identified, and functional analysis showed immune effector process, interleukin-6 and myeloid cell activation were enriched besides autophagy. PPI and MCC algorithm identified 6 hub genes in regulating macrophage-related autophagy, and ROC indicated high prediction value (area under curve = 0.961). GSEA enriched 6 common pathways associated with autophagy and atherosclerosis pathogenesis, and immune correlation suggested these hub genes were correlated with macrophages M0/M1, monocytes and T cells. Then venn plot found 3 central genes in mediating macrophage autophagy-associated pyroptosis in atherosclerosis, and single-cell analysis demonstrated cell distribution, then validated in THPA human samples. Our data discovered hub genes responsible for macrophage autophagy-mediated pyroptosis in atherosclerosis, and functional analysis with immune cell distribution evidenced their high phenotype-trait prediction value.
Collapse
Affiliation(s)
- Rongyuan Yang
- Department of cardiovascular disease, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Zhuhai, China
| | - Dawei Wang
- Department of cardiovascular disease, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Qing Liu
- Department of cardiovascular disease, The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Zhuhai, China
| |
Collapse
|
5
|
Alidadi M, Hjazi A, Ahmad I, Mahmoudi R, Sarrafha M, Reza Hosseini-Fard S, Ebrahimzade M. Exosomal non-coding RNAs: Emerging therapeutic targets in atherosclerosis. Biochem Pharmacol 2023; 212:115572. [PMID: 37127247 DOI: 10.1016/j.bcp.2023.115572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Atherosclerosis is an LDL-driven and inflammatory disorder of the sub-endothelial space. Available data have proposed that various factors could affect atherosclerosis pathogenesis, including inflammation, oxidation of LDL particles, endothelial dysfunction, foam cell formation, proliferation, and migration of vascular smooth muscle cells (VSMCs). In addition, other research indicated that the crosstalk among atherosclerosis-induced cells is a crucial factor in modulating atherosclerosis. Extracellular vesicles arenanoparticleswith sizes ranging from 30-150 nm, playing an important role in various pathophysiological situations. Exosomes, asa form of extracellular vesicles, could affect the crosstalk between sub-endothelial cells. They can transport bioactive components like proteins, lipids, RNA, and DNA. As an important cargo in exosomes, noncoding RNAs (ncRNAs) including microRNAs, long noncoding RNAs, and circular RNAs could modulate cellular functions by regulating the transcription, epigenetic alteration, and translation. The current work aimed to investigate the underlying molecular mechanisms of exosomal ncRNA as well as their potential as a diagnostic biomarker and therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Mahdi Alidadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Sarrafha
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
Zhang X, Chen J, Brott BC, Anderson PG, Hwang P, Sherwood J, Huskin G, Yoon YS, Virmani R, Jun HW. Pro-Healing Nanomatrix-Coated Stent Analysis in an In Vitro Vascular Double-Layer System and in a Rabbit Model. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51728-51743. [PMID: 36346768 PMCID: PMC10860673 DOI: 10.1021/acsami.2c15554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cardiovascular stent technologies have significantly improved over time. However, their optimal performance remains limited by restenosis, thrombosis, inflammation, and delayed re-endothelialization. Current stent designs primarily target inhibition of neointimal proliferation but do not promote functional arterial healing (pro-healing) in order to restore normal vascular reactivity. The endothelial lining that does develop with current stents appears to have loose intracellular junctions. We have developed a pro-healing nanomatrix coating for stents that enhances healing while limiting neointimal proliferation. This builds on our prior work evaluating the effects of the pro-healing nanomatrix coating on cultures of vascular endothelial cells (ECs), smooth muscle cells (SMCs), monocytes, and platelets. However, when a stent is deployed in an artery, multiple vascular cell types interact, and their interactions affect stent performance. Thus, in our current study, an in vitro vascular double-layer (VDL) system was used to observe stent effects on communication between different vascular cell types. Additionally, we assessed the pro-healing ability and vascular cell interactions after stent deployment in the VDL system and in a rabbit model, evaluating the nanomatrix-coated stent compared to a commercial bare metal stent (BMS) and a drug eluting stent (DES). In vitro results indicated that, in a layered vascular structure, the pro-healing nanomatrix-coated stent could (1) improve endothelialization and endothelial functions, (2) regulate SMC phenotype to reduce SMC proliferation and migration, (3) suppress inflammation through a multifactorial manner, and (4) reduce foam cell formation, extracellular matrix remodeling, and calcification. Consistent with this, in vivo results demonstrated that, compared with commercial BMS and DES, this pro-healing nanomatrix-coated stent enhanced re-endothelialization with negligible restenosis, inflammation, or thrombosis. Thus, these findings indicate the unique pro-healing features of this nanomatrix stent coating with superior efficacy over commercial BMS and DES.
Collapse
Affiliation(s)
- Xixi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Jun Chen
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Brigitta C. Brott
- Department of Medicine and Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, 35233, United States
- Endomimetics, LLC, Birmingham, AL, 35242, United States
| | - Peter G. Anderson
- Department of Medicine, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Patrick Hwang
- Endomimetics, LLC, Birmingham, AL, 35242, United States
| | | | - Gillian Huskin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
| | - Young-sup Yoon
- School of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, United States
| | - Renu Virmani
- CVPath Institute, Inc., Gaithersburg, MD, 20878, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, United States
- Endomimetics, LLC, Birmingham, AL, 35242, United States
| |
Collapse
|
7
|
Cheng X, Chen Q, Sun P. Natural phytochemicals that affect autophagy in the treatment of oral diseases and infections: A review. Front Pharmacol 2022; 13:970596. [PMID: 36091810 PMCID: PMC9461701 DOI: 10.3389/fphar.2022.970596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a critical factor in eukaryotic evolution. Cells provide nutrition and energy during autophagy by destroying non-essential components, thereby allowing intracellular material conversion and managing temporary survival stress. Autophagy is linked to a variety of oral disorders, including the type and extent of oral malignancies. Furthermore, autophagy is important in lymphocyte formation, innate immunity, and the regulation of acquired immune responses. It is also required for immunological responses in the oral cavity. Knowledge of autophagy has aided in the identification and treatment of common oral disorders, most notably cancers. The involvement of autophagy in the oral immune system may offer a new understanding of the immune mechanism and provide a novel approach to eliminating harmful bacteria in the body. This review focuses on autophagy creation, innate and acquired immunological responses to autophagy, and the status of autophagy in microbial infection research. Recent developments in the regulatory mechanisms of autophagy and therapeutic applications in oral illnesses, particularly oral cancers, are also discussed. Finally, the relationship between various natural substances that may be used as medications and autophagy is investigated.
Collapse
Affiliation(s)
| | | | - Ping Sun
- *Correspondence: Ping Sun, ; Qianming Chen,
| |
Collapse
|
8
|
The effect of trehalose administration on vascular inflammation in patients with coronary artery disease. Biomed Pharmacother 2022; 147:112632. [DOI: 10.1016/j.biopha.2022.112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
|
9
|
Wang T, Zhou J, Zhang X, Wu Y, Jin K, Wang Y, Xu R, Yang G, Li W, Jiao L. X-box Binding Protein 1: An Adaptor in the Pathogenesis of Atherosclerosis. Aging Dis 2022; 14:350-369. [PMID: 37008067 PMCID: PMC10017146 DOI: 10.14336/ad.2022.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis (AS), the formation of fibrofatty lesions in the vessel wall, is the primary cause of heart disease and stroke and is closely associated with aging. Disrupted metabolic homeostasis is a primary feature of AS and leads to endoplasmic reticulum (ER) stress, which is an abnormal accumulation of unfolded proteins. By orchestrating signaling cascades of the unfolded protein response (UPR), ER stress functions as a double-edged sword in AS, where adaptive UPR triggers synthetic metabolic processes to restore homeostasis, whereas the maladaptive response programs the cell to the apoptotic pathway. However, little is known regarding their precise coordination. Herein, an advanced understanding of the role of UPR in the pathological process of AS is reviewed. In particular, we focused on a critical mediator of the UPR, X-box binding protein 1 (XBP1), and its important role in balancing adaptive and maladaptive responses. The XBP1 mRNA is processed from the unspliced isoform (XBP1u) to the spliced isoform of XBP1 (XBP1s). Compared with XBP1u, XBP1s predominantly functions downstream of inositol-requiring enzyme-1α (IRE1α) and transcript genes involved in protein quality control, inflammation, lipid metabolism, carbohydrate metabolism, and calcification, which are critical for the pathogenesis of AS. Thus, the IRE1α/XBP1 axis is a promising pharmaceutical candidate against AS.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- China International Neuroscience Institute (China-INI), Beijing, China.
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Correspondence should be addressed to: Dr. Ge Yang, Chinese Academy of Sciences, Beijing, China. , Dr. Wenjing Li, Chinese Academy of Sciences, Beijing, China. ; Dr. Liqun Jiao, Xuanwu Hospital, Capital Medical University, Beijing, China. .
| |
Collapse
|
10
|
Wu H, Feng K, Zhang C, Zhang H, Zhang J, Hua Y, Dong Z, Zhu Y, Yang S, Ma C. Metformin attenuates atherosclerosis and plaque vulnerability by upregulating KLF2-mediated autophagy in apoE -/- mice. Biochem Biophys Res Commun 2021; 557:334-341. [PMID: 33915432 DOI: 10.1016/j.bbrc.2021.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 01/22/2023]
Abstract
Atherosclerosis is a chronic lipid disfunction and inflammatory disease, which is characterized with enriched foam cells and necrotic core underneath the vascular endothelium. Therefore, the inhibition of foam cell formation is a critical step for atherosclerosis treatment. Metformin, a first-line treatment for Type 2 diabetes, is reported to be beneficial to cardiovascular disease. However, the mechanism underlying the antiatherogenic effect of metformin remains unclear. Macrophage autophagy is reported to be a highly anti-atherogenic process that promotes the catabolism of cytosolic lipid to maintain cellular lipid homeostasis. Notably, dysfunctional autophagy in macrophages plays a detrimental role during atherogenesis. Krueppel-like factor 2 (KLF2) is an important transcription factor that functions as a key regulator of the autophagy-lysosome pathway. While the role of KLF2 in foam cell formation during the atherogenesis remains elusive. In this study, we first investigated whether metformin could protect against atherogenesis via enhancing autophagy in high fat diet (HFD)-induced apoE-/- mice. Subsequently, we further determined the molecular mechanism that whether metformin could inhibit foam cell formation by activating KLF2-mediated autophagy. We show that metformin protected against HFD-induced atherosclerosis and enhanced plaque stability in apoE-/- mice. Metformin inhibits foam cell formation and cellular apoptosis partially through enhancing autophagy. Mechanistically, metformin promotes autophagy via modulating KLF2 expression. Taken together, our study demonstrates a novel antiatherogenic mechanism of metformin by upregulating KLF2-mediated autophagy.
Collapse
Affiliation(s)
- Han Wu
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ke Feng
- Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhengwei Dong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yaxian Zhu
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
| | - Shu Yang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
11
|
Carresi C, Mollace R, Macrì R, Scicchitano M, Bosco F, Scarano F, Coppoletta AR, Guarnieri L, Ruga S, Zito MC, Nucera S, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. Oxidative Stress Triggers Defective Autophagy in Endothelial Cells: Role in Atherothrombosis Development. Antioxidants (Basel) 2021; 10:antiox10030387. [PMID: 33807637 PMCID: PMC8001288 DOI: 10.3390/antiox10030387] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Atherothrombosis, a multifactorial and multistep artery disorder, represents one of the main causes of morbidity and mortality worldwide. The development and progression of atherothrombosis is closely associated with age, gender and a complex relationship between unhealthy lifestyle habits and several genetic risk factors. The imbalance between oxidative stress and antioxidant defenses is the main biological event leading to the development of a pro-oxidant phenotype, triggering cellular and molecular mechanisms associated with the atherothrombotic process. The pathogenesis of atherosclerosis and its late thrombotic complications involve multiple cellular events such as inflammation, endothelial dysfunction, proliferation of vascular smooth muscle cells (SMCs), extracellular matrix (ECM) alterations, and platelet activation, contributing to chronic pathological remodeling of the vascular wall, atheromatous plague formation, vascular stenosis, and eventually, thrombus growth and propagation. Emerging studies suggest that clotting activation and endothelial cell (EC) dysfunction play key roles in the pathogenesis of atherothrombosis. Furthermore, a growing body of evidence indicates that defective autophagy is closely linked to the overproduction of reactive oxygen species (ROS) which, in turn, are involved in the development and progression of atherosclerotic disease. This topic represents a large field of study aimed at identifying new potential therapeutic targets. In this review, we focus on the major role played by the autophagic pathway induced by oxidative stress in the modulation of EC dysfunction as a background to understand its potential role in the development of atherothrombosis.
Collapse
Affiliation(s)
- Cristina Carresi
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Correspondence: ; Tel.: +39-09613694128; Fax: +39-09613695737
| | - Rocco Mollace
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Roberta Macrì
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Miriam Scicchitano
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Francesca Bosco
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Federica Scarano
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Stefano Ruga
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Maria Caterina Zito
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Saverio Nucera
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Vincenzo Musolino
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Jessica Maiuolo
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Ernesto Palma
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| |
Collapse
|
12
|
Qian X, Wang H, Wang Y, Chen J, Guo X, Deng H. Enhanced Autophagy in GAB1-Deficient Vascular Endothelial Cells Is Responsible for Atherosclerosis Progression. Front Physiol 2021; 11:559396. [PMID: 33584322 PMCID: PMC7877249 DOI: 10.3389/fphys.2020.559396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/28/2020] [Indexed: 12/28/2022] Open
Abstract
Autophagy is a host machinery that controls cellular health. Dysfunction of autophagy is responsible for the pathogenesis of many human diseases that include atherosclerosis obliterans (ASO). Physiologically, host autophagy removes aging organelles and delays the formation of atherosclerotic plaque. However, in ischemia event, dysregulated autophagy can be induced to trigger autosis, leading to an inevitable cellular death. Grb2-associated binder 1 (GAB1) is a docking/scaffolding adaptor protein that regulates many cell processes including autophagy. Our study first reported that the protein expression of GAB1 significantly decreased in ASO. Mechanically, our results showed that inhibition of Akt (protein kinase B), the upstream of mTOR (mechanistic target of rapamycin), significantly enhanced autophagy by demonstrating the downregulation of p62/Sequestosome 1 expression and the upregulation of the ratio of LC3II/LC3I. Conversely, we found that the inhibition of ERK1/2 (extracellular signal-regulated kinases1/2), p38, and JNK (c-Jun N-terminal kinase) signaling pathway, respectively, significantly inhibited autophagy by demonstrating the upregulation of p62 expression and the downregulation of the ratio of LC3II/LC3I. Further, we demonstrated that knockdown of GAB1 significantly increased autophagy in HUVECs (human umbilical vein endothelial cells) via activation of MAPK (mitogen-activated protein kinase) pathways that include ERK1/2, p38, and JNK. Moreover, we found that knockdown of GAB1 profoundly inhibited HUVEC proliferation, migration, and tube formation. Taken together, this study first suggests that GAB1 is a key regulator of autophagy in HUVECs. Targeting GAB1 may serve as a potential strategy for the atherosclerosis treatment.
Collapse
Affiliation(s)
- Xin Qian
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Han Wang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuli Wang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaquan Chen
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangjiang Guo
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyu Deng
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Hui B, Hou X, Liu R, Liu XH, Hu Z. Gypenoside inhibits ox-LDL uptake and foam cell formation through enhancing Sirt1-FOXO1 mediated autophagy flux restoration. Life Sci 2020; 264:118721. [PMID: 33160993 DOI: 10.1016/j.lfs.2020.118721] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gypenoside (GP) is the major bioactive constituent of G. pentaphyllum, a traditional Chinese medicine. It has been reported that GP can affect autophagy and lipid metabolism in cultured cells. We hypothesize that GP can inhibit foam cell formation in cultured macrophages through autophagy modulation. METHODS THP1 cells were cultured and treated with oxidized low-density lipoprotein (ox-LDL), followed by GP treatment at different concentrations. The autophagy flux was evaluated using western blot and confocal microscope analyses. The ox-LDL uptake and foam cell formation abilities were measured. RESULTS We found that ox-LDL impaired the autophagy flux in the cultured macrophages, indicated by a significant reduction of LC3-II and autophagosome puncta quantification, as well as an accumulation of p62 proteins. GP treatment, however, dose-dependently restored the autophagy flux impaired by ox-LDL and reduced the ox-LDL uptake and foam cell transformation from THP1 cells, which can be alleviated, or exacerbated, by modulation of autophagy status using autophagy enhancer or inhibitor. Coimmunoprecipitation assays showed that GP up-regulated Srit1 and FOXO1 expression and enhanced their direct interaction, and thus contributed to the regulation of autophagy. CONCLUSION GP inhibits ox-LDL uptake and foam cell formation through enhancing Sirt1-FOXO1 mediated autophagy flux restoration, suggesting this compound has therapeutic potential for atherosclerosis.
Collapse
Affiliation(s)
- Bo Hui
- Department of Cardiology, Qingdao Municipal Hospital of Qingdao University, Qingdao, 266071, China
| | - Xuwei Hou
- School of Medicine, the University of Missouri, Columbia, MO 65201, USA
| | - Ruhui Liu
- Department of Cardiovascular Diseases, Tongji Hospital of Tongji University, Shanghai 200065, China
| | - Xiao-Hong Liu
- Cardiovascular Department of Internal Medicine, Central Hospital of Karamay, Karamay 834000, Xinjiang Uyghur Autonomous Region, China.
| | - Zhaohui Hu
- Department of Cardiovascular Diseases, Tongji Hospital of Tongji University, Shanghai 200065, China.
| |
Collapse
|
14
|
Fatahian A, Haftcheshmeh SM, Azhdari S, Farshchi HK, Nikfar B, Momtazi-Borojeni AA. Promising Anti-atherosclerotic Effect of Berberine: Evidence from In Vitro, In Vivo, and Clinical Studies. Rev Physiol Biochem Pharmacol 2020; 178:83-110. [PMID: 32789786 DOI: 10.1007/112_2020_42] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Elevated levels of plasma cholesterol, impaired vascular wall, and presence of inflammatory macrophages are important atherogenic risk factors contributing to atherosclerotic plaque formation and progression. The interventions modulating these risk factors have been found to protect against atherosclerosis development and to decrease atherosclerosis-related cardiovascular disorders. Nutritional approaches involving supplements followed by improving dietary habits and lifestyle have become growingly attractive and acceptable methods used to control atherosclerosis risk factors, mainly high levels of plasma cholesterol. There are a large number of studies that show berberine, a plant bioactive compound, could ameliorate atherosclerosis-related risk factors. In the present literature review, we put together this studies and provide integrated evidence that exhibits berberine has the potential atheroprotective effect through reducing increased levels of plasma cholesterol, particularly low-density lipoprotein (LDL) cholesterol (LDL-C) via LDL receptor (LDLR)-dependent and LDL receptor-independent mechanisms, inhibiting migration and inflammatory activity of macrophages, improving the functionality of endothelial cells via anti-oxidant activities, and suppressing proliferation of vascular smooth muscle cells. In conclusion, berberine can exert inhibitory effects on the atherosclerotic plaque development mainly through LDL-lowering activity and suppressing atherogenic functions of mentioned cells. As the second achievement of this review, among the signaling pathways through which berberine regulates intracellular processes, AMP-activated protein kinase (AMPK) has a central and critical role, showing that enhancing activity of AMPK pathway can be considered as a promising therapeutic approach for atherosclerosis treatment.
Collapse
Affiliation(s)
- Alireza Fatahian
- Department of Cardiology, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Helaleh Kaboli Farshchi
- Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal research center of IRI, FDA, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Wang B, Zhong Y, Li Q, Cui L, Huang G. Autophagy of macrophages is regulated by PI3k/Akt/mTOR signalling in the development of diabetic encephalopathy. Aging (Albany NY) 2019; 10:2772-2782. [PMID: 30346929 PMCID: PMC6224253 DOI: 10.18632/aging.101586] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023]
Abstract
The development of diabetic encephalopathy (DE) is enhanced by inflammatory macrophages, and is suppressed by macrophage autophagy. However, the molecular signaling that controls macrophage autophagy in DE remains ill-defined. Here, DE is induced in rats that received intraperitoneal injection of streptozotocin (STZ). In macrophages isolated from the brain of the rats, we detected downregulated autophagy activity and enhanced PI3k/Akt/mTOR/S6K1 signaling. In order to examine the role of autophagy and PI3k/Akt/mTOR signaling in DE development, an mTOR inhibitor, rapamycin, or an autophagy inhibitor, chloroquine (CQ), were administered to the rats that that received STZ. We found that rapamycin significantly enhanced DE development through mTOR suppression-induced augmentation of macrophage autophagy, while CQ significantly decreased DE development through suppression of macrophage autophagy. Together, our data suggest that PI3k/Akt/mTOR signaling may promote the development of DE through suppression of macrophage autophagy.
Collapse
Affiliation(s)
- Beiyun Wang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuan Zhong
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qinjie Li
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Liang Cui
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Gaozhong Huang
- Department of Priority Ward, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
16
|
Chu C, Wong MY, Chiu CH, Tseng YH, Chen CL, Huang YK. Salmonella-Infected Aortic Aneurysm: Investigating Pathogenesis Using Salmonella Serotypes. Pol J Microbiol 2019; 68:439-447. [PMID: 31880888 PMCID: PMC7260637 DOI: 10.33073/pjm-2019-043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 01/22/2023] Open
Abstract
Salmonella infection is most common in patients with infected aortic aneurysm, especially in Asia. When the aortic wall is heavily atherosclerotic, the intima is vulnerable to invasion by Salmonella, leading to the development of infected aortic aneurysm. By using THP-1 macrophage-derived foam cells to mimic atherosclerosis, we investigated the role of three Salmonella enterica serotypes – Typhimurium, Enteritidis, and Choleraesuis – in foam cell autophagy and inflammasome formation. Herein, we provide possible pathogenesis of Salmonella-associated infected aortic aneurysms. Three S. enterica serotypes with or without virulence plasmid were studied. Through Western blotting, we investigated cell autophagy induction and inflammasome formation in Salmonella-infected THP-1 macrophage-derived foam cells, detected CD36 expression after Salmonella infection through flow cytometry, and measured interleukin (IL)-1β, IL-12, and interferon (IFN)-α levels through enzyme-linked immunosorbent assay. At 0.5 h after infection, plasmid-bearing S. Enteritidis OU7130 induced the highest foam cell autophagy – significantly higher than that induced by plasmid-less OU7067. However, plasmid-bearing S. Choleraesuis induced less foam cell autophagy than did its plasmid-less strain. In foam cells, plasmid-less Salmonella infection (particularly S. Choleraesuis OU7266 infection) led to higher CD36 expression than did plasmid-bearing strains infection. OU7130 and OU7266 infection induced the highest IL-1β secretion. OU7067-infected foam cells secreted the highest IL-12p35 level. Plasmid-bearing S. Typhimurium OU5045 induced a higher IFN-α level than did other Salmonella serotypes. Salmonella serotypes are correlated with foam cell autophagy and IL-1β secretion. Salmonella may affect the course of foam cells formation, or even aortic aneurysm, through autophagy.
Collapse
Affiliation(s)
- Chishih Chu
- Department of Microbiology, Immunology, and Biopharmaceuticals, National Chiayi University , Chiayi , Taiwan
| | - Min Yi Wong
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, and College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital , Taoyuan , Taiwan ; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital and Chang Gung University , Taoyuan , Taiwan
| | - Yuan-Hsi Tseng
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, and College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Yao-Kuang Huang
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, and College of Medicine, Chang Gung University , Taoyuan , Taiwan
| |
Collapse
|
17
|
Zhu Z, Li J, Zhang X. Salidroside protects against ox-LDL-induced endothelial injury by enhancing autophagy mediated by SIRT1-FoxO1 pathway. Altern Ther Health Med 2019; 19:111. [PMID: 31146723 PMCID: PMC6543685 DOI: 10.1186/s12906-019-2526-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/21/2019] [Indexed: 02/05/2023]
Abstract
Background Atherosclerosis is a condition with the vascular accumulation of lipid plaques, and its main major contributing factor is endothelial injury induced by oxidized low-density lipoprotein (ox-LDL). Salidroside (SAL) is the primary active ingredient of Rhodiola rosea, and exhibits antioxidant properties on endothelial cells and alleviates atherosclerosis. However, the effect of SAL on autophagy in ox-LDL-induced vascular endothelial injury remains unclear. Here, we investigated the effect and underlying mechanisms of SAL on autophagy in human umbilical vein endothelial cells (HUVECs). Methods HUVECs were incubated with ox-LDL to induce in vitro atherosclerosis model. The cell viability and injury were evaluated by cell counting kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) release assay. The oxidative stress was evaluated by NADPH oxidase, malondialdehyde (MDA) and superoxide dismutase (SOD) activities. Immunofluorescence was performed to detect autophagy using LC3β antibody. Quantitative real-time PCR (qRT-PCR) and western blot were performed to measure the mRNA expressions of SIRT1 and Forkhead box O1 (FOXO1). Nicotinamide (NAM) and AS1842856 were used to inhibit activities of SIRT1 and FOXO1, respectively. Results Exposure of HUVECs to ox-LDL (100 μg/mL) reduced cell viability, increased cellular MDA, and reduced SOD in a concentration-dependent manner. The pretreatment with SAL (20, 50 and 100 μM) significantly enhanced the cell viability and decreased LDH release in HUVECs exposed to ox-LDL (100 μg/mL). ox-LDL induced autophagy in HUVECs, which was further enhanced by pretreatment with SAL. However, SAL attenuated increase in oxidative stress in HUVECs induced by ox-LDL. ox-LDL reduced mRNA and protein expressions of SIRT1 and FOXO1, which could be reversed by SAL. The protective, anti-oxidative and pro-autophagic effects of SAL could be obviously abolished by cotreatment with SIRT1 inhibitor or FOXO1 inhibitor. Conclusion Salidroside shows protective effect on endothelial cell induced by ox-LDL, and the mechanisms might be related to autophagy induction via increasing SIRT1 and FoxO1 expressions.
Collapse
|
18
|
Martinet W, Coornaert I, Puylaert P, De Meyer GRY. Macrophage Death as a Pharmacological Target in Atherosclerosis. Front Pharmacol 2019; 10:306. [PMID: 31019462 PMCID: PMC6458279 DOI: 10.3389/fphar.2019.00306] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder characterized by the gradual build-up of plaques within the vessel wall of middle-sized and large arteries. Over the past decades, treatment of atherosclerosis mainly focused on lowering lipid levels, which can be accomplished by the use of statins. However, some patients do not respond sufficiently to statin therapy and therefore still have a residual cardiovascular risk. This issue highlights the need for novel therapeutic strategies. As macrophages are implicated in all stages of atherosclerotic lesion development, they represent an important alternative drug target. A variety of anti-inflammatory strategies have recently emerged to treat or prevent atherosclerosis. Here, we review the canonical mechanisms of macrophage death and their impact on atherogenesis and plaque stability. Macrophage death is a prominent feature of advanced plaques and is a major contributor to necrotic core formation and plaque destabilization. Mechanisms of macrophage death in atherosclerosis include apoptosis, passive or accidental necrosis as well as secondary necrosis, a type of death that typically occurs when apoptotic cells are insufficiently cleared by neighboring cells via a phagocytic process termed efferocytosis. In addition, less-well characterized types of regulated necrosis in macrophages such as necroptosis, pyroptosis, ferroptosis, and parthanatos may occur in advanced plaques and are also discussed. Autophagy in plaque macrophages is an important survival pathway that protects against cell death, yet massive stimulation of autophagy promotes another type of death, usually referred to as autosis. Multiple lines of evidence indicate that a better insight into the different mechanisms of macrophage death, and how they mutually interact, will provide novel pharmacological strategies to resolve atherosclerosis and stabilize vulnerable, rupture-prone plaques.
Collapse
Affiliation(s)
- Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Isabelle Coornaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Sahebkar A, Hatamipour M, Tabatabaei SA. Trehalose administration attenuates atherosclerosis in rabbits fed a high-fat diet. J Cell Biochem 2018; 120:9455-9459. [PMID: 30506717 DOI: 10.1002/jcb.28221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Abstract
Disruption of macrophage autophagy is a major contributor to macrophage dysfunction and subsequent inflammation leading to atherosclerosis. Trehalose is a natural disaccharide that is able to induce macrophage autophagy-lysosomal biogenesis and reduce inflammation. Here, we studied the efficacy of intravenous trehalose administration in reducing atherosclerotic plaque burden in high-cholesterol-fed rabbits. Adult male New Zealand white Rabbits were fed with a high-fat diet containing 1% cholesterol for 8 weeks followed by a cholesterol-free diet for the next 4 weeks. In the latter 4-week phase of the cholesterol-free diet, one group received intravenous trehalose solution at a dose of 350 mg/kg, three times per week. In the control group, an equivalent volume of PBS (3 mL) was administered with the same protocol. At the end of the 12th week of the study, all rabbits were anesthetized and aortic arch sections were collected followed by hematoxylin and eosin staining and assessment of plaque grading. Fasting serum lipids were also measured using routine enzymatic methods. At the end of the 12th week, there were no significant differences in the body weight and blood lipids between the control- and trehalose-treated groups. Intravenous trehalose administration significantly attenuated atherosclerotic plaque development as revealed by reduced plaque grading ( P = 0.048) and intima/media thickness ratio ( P = 0.017). Intimal thickening was also found to be reduced in the trehalose versus control group, though this reduction did not reach statistical significance. The present study provided evidence as to the efficacy of short-term intravenous trehalose administration in regressing atherosclerotic plaque in high-fat-fed rabbits.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
20
|
Wang C, Xu W, Liang M, Huang D, Huang K. CTRP13 inhibits atherosclerosis
via
autophagy‐lysosome‐dependent degradation of CD36. FASEB J 2018; 33:2290-2300. [DOI: 10.1096/fj.201801267rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Cheng Wang
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenjing Xu
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Minglu Liang
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Huang
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kai Huang
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
21
|
Wang H, Zhang D, Jia S, Huang S, Xiao L, Ma L, Liu G, Gong K, Xu L. Effect of Sustained Hypoxia on Autophagy of Genioglossus Muscle-Derived Stem Cells. Med Sci Monit 2018; 24:2218-2224. [PMID: 29652869 PMCID: PMC5916094 DOI: 10.12659/msm.906195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background Previous studies have demonstrated that sustained hypoxia in people with obstructive sleep apnea (OSA) impairs upper airway muscle activity, but the underlying mechanism remains poorly understood. As autophagy acts as an important regulator under hypoxia stress, we performed an in vitro investigation of the effects of sustained hypoxia on autophagy of genioglossus muscle-derived stem cells (GG MDSC), an important component of the upper airway muscle. Material/Methods Genioglossus MDSCs were obtained from Sprague-Dawley (SD) rats and identified by using immunofluorescence staining for CD34, Sca-1, and desmin. GG MDSCs were incubated under normoxic or sustained hypoxic conditions for different periods of time. Western blotting was used to detect LC3 and Beclin 1, which are 2 important proteins in autophagy flux, and autophagolysosomes accumulation was observed by transmission electron microscopy (TEM). The mRNA and protein levels of HIF-1α and BNIP3 were evaluated by RT-PCR and Western blot analysis, respectively. Results Our study shows that sustained hypoxia promotes the expression of LC3BII and Beclin 1 in GG MDSCs in a time-dependent manner. TEM showed an increased number of autophagolysosomes in GG MDSCs under sustained hypoxia for 12 and 24 h. In addition, hypoxia activated the HIF-1α/BNIP3 signal pathway both at protein levels (shown by Western blot) and at mRNA levels (shown by RT-PCR). Conclusions Our study shows that sustained hypoxia promotes autophagy in GG MDSCs, and the HIF-1α/BNIP3 signal pathway was involved in this process.
Collapse
Affiliation(s)
- Hengkun Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland).,Department of Oral and Maxillofacial Surgery, Weihai Municipal Hospital, Weihai, Shandong, China (mainland)
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Shanshan Jia
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Lili Xiao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Li Ma
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Guangping Liu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Kun Gong
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| | - Le Xu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
22
|
Ou H, Liu C, Feng W, Xiao X, Tang S, Mo Z. Role of AMPK in atherosclerosis via autophagy regulation. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1212-1221. [PMID: 29656339 DOI: 10.1007/s11427-017-9240-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/05/2017] [Indexed: 01/12/2023]
Abstract
Atherosclerosis is characterized by the accumulation of lipids and deposition of fibrous elements in the vascular wall, which is the primary cause of cardiovascular diseases. Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor of energy metabolism that regulates multiple physiological processes, including lipid and glucose metabolism and the normalization of energy imbalances. Overwhelming evidence indicates that AMPK activation markedly attenuates atherosclerosis development. Autophagy inhibits cell apoptosis and inflammation and promotes cholesterol efflux and efferocytosis. Physiological autophagy is essential for maintaining normal cardiovascular function. Increasing evidence demonstrates that autophagy occurs in developing atherosclerotic plaques. Emerging evidence indicates that AMPK regulates autophagy via a downstream signaling pathway. The complex relationship between AMPK and autophagy has attracted the attention of many researchers because of this close relationship to atherosclerosis development. This review demonstrates the role of AMPK and autophagy in atherosclerosis. An improved understanding of this interrelationship will create novel preventive and therapeutic strategies for atherosclerosis.
Collapse
Affiliation(s)
- Hanxiao Ou
- Clinical Anatomy & Reproductive Medicine Application Institute, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Chuhao Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China.,2016 Grade Excellent Doctor Class of Medical School, University of South China, Hengyang, 421001, China
| | - Wenjie Feng
- Clinical Anatomy & Reproductive Medicine Application Institute, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China.,2015 Grade Medical Imaging Class of Medical School, University of South China, Hengyang, 421001, China
| | - Xinwen Xiao
- Clinical Anatomy & Reproductive Medicine Application Institute, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China.,2015 Grade Medical Imaging Class of Medical School, University of South China, Hengyang, 421001, China
| | - Shengsong Tang
- Clinical Anatomy & Reproductive Medicine Application Institute, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China. .,Center for Life Science, Hunan University of Medicine, Huaihua, 418000, China.
| | - Zhongcheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China.
| |
Collapse
|
23
|
Li C, Jiang F, Li YL, Jiang YH, Yang WQ, Sheng J, Xu WJ, Zhu QJ. Rhynchophylla total alkaloid rescues autophagy, decreases oxidative stress and improves endothelial vasodilation in spontaneous hypertensive rats. Acta Pharmacol Sin 2018; 39:345-356. [PMID: 29119967 DOI: 10.1038/aps.2017.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy plays an important role in alleviating oxidative stress and stabilizing atherosclerotic plaques. However, the potential role of autophagy in endothelial vasodilation function has rarely been studied. This study aimed to investigate whether rhynchophylla total alkaloid (RTA) has a positive role in enhancing autophagy through decreasing oxidative stress, and improving endothelial vasodilation. In oxidized low-density lipoprotein (ox-LDL)-treated human umbilical vein endothelial cells (HUVECs), RTA (200 mg/L) significantly suppressed ox-LDL-induced oxidative stress through rescuing autophagy, and decreased cell apoptosis. In spontaneous hypertensive rats (SHR), administration of RTA (50 mg·kg-1·d-1, ip, for 6 weeks) improved endothelin-dependent vasodilation of thoracic aorta rings. Furthermore, RTA administration significantly increased the antioxidant capacity and alleviated oxidative stress through enhancing autophagy in SHR. In ox-LDL-treated HUVECs, we found that the promotion of autophagy by RTA resulted in activation of the AMP-activated protein kinase (AMPK) signaling pathway. Our results show that RTA treatment rescues the ox-LDL-induced autophagy impairment in HUVECs and improves endothelium-dependent vasodilation function in SHR.
Collapse
|
24
|
Li J, Li Y, Gao B, Qin C, He Y, Xu F, Yang H, Lin M. Engineering mechanical microenvironment of macrophage and its biomedical applications. Nanomedicine (Lond) 2018; 13:555-576. [PMID: 29334336 DOI: 10.2217/nnm-2017-0324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Macrophages are the most plastic cells in the hematopoietic system and can be widely found in almost all tissues. Recently studies have shown that mechanical cues (e.g., matrix stiffness and stress/strain) can significantly affect macrophage behaviors. Although existing reviews on the physical and mechanical cues that regulate the macrophage's phenotype are available, engineering mechanical microenvironment of macrophages in vitro as well as a comprehensive overview and prospects for their biomedical applications (e.g., tissue engineering and immunotherapy) has yet to be summarized. Thus, this review provides an overview on the existing methods for engineering mechanical microenvironment of macrophages in vitro and then a section on their biomedical applications and further perspectives are presented.
Collapse
Affiliation(s)
- Jing Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.,Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.,Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.,Key Laboratory on Space Physics and Chemistry of Ministry of Education and Key Laboratory on Macromolecular Science & Technology of Shanxi Province, Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, 710072, P.R China
| | - Yuhui Li
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.,The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Bin Gao
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.,The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China.,Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, P.R. China
| | - Chuanguang Qin
- Key Laboratory on Space Physics and Chemistry of Ministry of Education and Key Laboratory on Macromolecular Science & Technology of Shanxi Province, Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, 710072, P.R China
| | - Yining He
- College of Food Science and Engineering, Northwest A & F University Yangling Shaanxi 712100 China
| | - Feng Xu
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.,The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China.,Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Min Lin
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.,The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
25
|
Ning H, Liu D, Yu X, Guan X. Oxidized low-density lipoprotein-induced p62/SQSTM1 accumulation in THP-1-derived macrophages promotes IL-18 secretion and cell death. Exp Ther Med 2017; 14:5417-5423. [PMID: 29285070 PMCID: PMC5740607 DOI: 10.3892/etm.2017.5221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/05/2016] [Indexed: 11/29/2022] Open
Abstract
Macrophage autophagy has a protective role in the development of atherosclerosis; however, it turns dysfunctional in advanced lesions with an increase in p62/sequestosome-1 protein. Little is known about the role and significance of p62 accumulation in atherosclerosis. The present study investigated the association between p62 expression and the process of foam cell formation. Foam cell models were established through incubation of THP-1-derived macrophages with oxidized low-density lipoprotein, and the process of foam cell formation was detected by Oil red O staining. Furthermore, the dynamic change of p62 expression was detected by western blotting and quantitative polymerase chain reaction. Additionally, using gene silencing techniques, the roles of p62 in foam cells were investigated with ELISA, MTT and flow cytometry. The results indicated that besides serving as a marker of autophagy deficiency, the p62 protein could also mediate inflammation and cytotoxicity in advanced foam cells. Additionally, the implication of p62 in autophagy inhibition and foam cell formation makes it a key atherogenic factor under autophagy-deficient conditions.
Collapse
Affiliation(s)
- Haofeng Ning
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dan Liu
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaochen Yu
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiuru Guan
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
26
|
Yang X, Li Y, Li Y, Ren X, Zhang X, Hu D, Gao Y, Xing Y, Shang H. Oxidative Stress-Mediated Atherosclerosis: Mechanisms and Therapies. Front Physiol 2017; 8:600. [PMID: 28878685 PMCID: PMC5572357 DOI: 10.3389/fphys.2017.00600] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/03/2017] [Indexed: 12/14/2022] Open
Abstract
Atherogenesis, the formation of atherosclerotic plaques, is a complex process that involves several mechanisms, including endothelial dysfunction, neovascularization, vascular proliferation, apoptosis, matrix degradation, inflammation, and thrombosis. The pathogenesis and progression of atherosclerosis are explained differently by different scholars. One of the most common theories is the destruction of well-balanced homeostatic mechanisms, which incurs the oxidative stress. And oxidative stress is widely regarded as the redox status realized when an imbalance exists between antioxidant capability and activity species including reactive oxygen (ROS), nitrogen (RNS) and halogen species, non-radical as well as free radical species. This occurrence results in cell injury due to direct oxidation of cellular protein, lipid, and DNA or via cell death signaling pathways responsible for accelerating atherogenesis. This paper discusses inflammation, mitochondria, autophagy, apoptosis, and epigenetics as they induce oxidative stress in atherosclerosis, as well as various treatments for antioxidative stress that may prevent atherosclerosis.
Collapse
Affiliation(s)
- Xinyu Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Yang Li
- Department of Cardiology, General Hospital of People's Liberation ArmyBeijing, China
| | - Yanda Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China
| | - Xiaomeng Ren
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China.,Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Dan Hu
- Masonic Medical Research LaboratoryUtica, NY, United States
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, Chinese Academy of Chinese Medical SciencesBeijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|
27
|
Zhang C, Syed TW, Liu R, Yu J. Role of Endoplasmic Reticulum Stress, Autophagy, and Inflammation in Cardiovascular Disease. Front Cardiovasc Med 2017; 4:29. [PMID: 28553639 PMCID: PMC5427082 DOI: 10.3389/fcvm.2017.00029] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/25/2017] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular diseases are a class of heart or blood vessels diseases, which are now considered to be the leading cause of death globally. A number of recent studies have reported key roles for inflammation in the progression of diseased vessels and systematic heart failure. In particular, endoplasmic reticulum (ER) stress, which is mechanistically implicated in inflammation and autophagy, has now been associated with pathophysiological states in the cardiovascular system. Autophagy has also been identified as an important process in the progression of multiple cardiovascular diseases such as in atherosclerosis plaque progression and ischemia and/or reperfusion. In light of the above, it has been proposed that a link between inflammation, autophagy, and ER stress may exist that contribute to diseases of the heart and its supporting vessels. This review highlights current knowledge on the cross talk between these three biological processes, and the potential of targeting this pathway as a therapeutic approach for cardiovascular disorders and its related diseases.
Collapse
Affiliation(s)
- Cheng Zhang
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Taha Wasim Syed
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Renjing Liu
- Agnes Ginges Laboratory for Diseases of the Aorta, Centenary Institute, University of Sydney, Camperdown, NSW, Australia,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Jun Yu
- Center for Metabolic Disease Research, Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA,*Correspondence: Jun Yu,
| |
Collapse
|
28
|
Fumagalli S, Perego C, Zangari R, De Blasio D, Oggioni M, De Nigris F, Snider F, Garred P, Ferrante AMR, De Simoni MG. Lectin Pathway of Complement Activation Is Associated with Vulnerability of Atherosclerotic Plaques. Front Immunol 2017; 8:288. [PMID: 28360913 PMCID: PMC5352714 DOI: 10.3389/fimmu.2017.00288] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
Inflammatory mechanisms may be involved in atherosclerotic plaque rupture. By using a novel histology-based method to quantify plaque instability here, we assess whether lectin pathway (LP) of complement activation, a major inflammation arm, could represent an index of plaque instability. Plaques from 42 consecutive patients undergoing carotid endarterectomy were stained with hematoxylin-eosin and the lipid core, cholesterol clefts, hemorrhagic content, thickness of tunica media, and intima, including or not infiltration of cellular debris and cholesterol, were determined. The presence of ficolin-1, -2, and -3 and mannose-binding lectin (MBL), LP initiators, was assessed in the plaques by immunofluorescence and in plasma by ELISA. LP activation was assessed in plasma by functional in vitro assays. Patients presenting low stenosis (≤75%) had higher hemorrhagic content than those with high stenosis (>75%), indicating increased erosion. Increased hemorrhagic content and tunica media thickness, as well as decreased lipid core and infiltrated content were associated with vulnerable plaques and therefore used to establish a plaque vulnerability score that allowed to classify patients according to plaque vulnerability. Ficolins and MBL were found both in plaques’ necrotic core and tunica media. Patients with vulnerable plaques showed decreased plasma levels and intraplaque deposition of ficolin-2. Symptomatic patients experiencing a transient ischemic attack had lower plasma levels of ficolin-1. We show that the LP initiators are present within the plaques and their circulating levels change in atherosclerotic patients. In particular, we show that decreased ficolin-2 levels are associated with rupture-prone vulnerable plaques, indicating its potential use as marker for cardiovascular risk assessment in atherosclerotic patients.
Collapse
Affiliation(s)
- Stefano Fumagalli
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Carlo Perego
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Rosalia Zangari
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Daiana De Blasio
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Marco Oggioni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Francesca De Nigris
- Vascular Surgery Unit, Catholic University of Sacred Heart Medical School "A. Gemelli University Hospital" Foundation , Rome , Italy
| | - Francesco Snider
- Vascular Surgery Unit, Catholic University of Sacred Heart Medical School "A. Gemelli University Hospital" Foundation , Rome , Italy
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Medical and Health Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Angela M R Ferrante
- Vascular Surgery Unit, Catholic University of Sacred Heart Medical School "A. Gemelli University Hospital" Foundation , Rome , Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| |
Collapse
|
29
|
Guo FX, Hu YW, Zheng L, Wang Q. Shear Stress in Autophagy and Its Possible Mechanisms in the Process of Atherosclerosis. DNA Cell Biol 2017; 36:335-346. [PMID: 28287831 DOI: 10.1089/dna.2017.3649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy can eliminate harmful components and maintain cellular homeostasis in response to a series of extracellular insults in eukaryotes. More and more studies show that autophagy plays vital roles in the development of atherosclerosis. Atherosclerosis is a multifactorial disease and shear stress acts as a key role in its process. Understanding the role of shear stress in autophagy may offer insight into atherosclerosis therapies, especially emerging targeted therapy. In this article, we retrospect related studies to summarize the present comprehension of the association between autophagy and atherosclerosis onset and progression.
Collapse
Affiliation(s)
- Feng-Xia Guo
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|
30
|
Systemic application of 3-methyladenine markedly inhibited atherosclerotic lesion in ApoE -/- mice by modulating autophagy, foam cell formation and immune-negative molecules. Cell Death Dis 2016; 7:e2498. [PMID: 27906187 PMCID: PMC5260998 DOI: 10.1038/cddis.2016.376] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/26/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Abstract
A growing body of evidence demonstrates that autophagy, an evolutionarily conserved intracellular degradation process, is involved in the pathogenesis of atherosclerosis and has become a potential therapeutic target. Here we tested the effect of two inhibitors of phosphatidylinositol 3-kinase, 3-methyladenine (3-MA) and 2-(4-morpholinyl)-8-phenyl-chromone (LY294002), commonly used as inhibitors of autophagy, in atherosclerosis in apolipoprotein E−/− mice. Systemic application of 3-MA but not LY294002 markedly reduced the size of atherosclerotic plaque and increased the stability of lesions in high-fat diet-fed mice as compared with controls. Furthermore, 3-MA had multiple atheroprotective effects, including modulating macrophage autophagy and foam cell formation and altering the immune microenvironment. Long-term treatment with 3-MA promoted oxidized low-density lipoprotein (oxLDL)-induced macrophage autophagy and suppressed foam cell formation and cell viability in vitro. Furthermore, systemic application of 3-MA promoted lipid droplet breakdown and decreased apoptosis, most likely associated with autophagy. 3-MA treatment strikingly enhanced the expression of immune-negative molecules such as interleukin 10 (IL-10), transforming growth factor β and IL-35, as well as forkhead box P3 (Foxp3), the specific transcriptional factor for regulatory T cells, but did not affect the level of proinflammatory cytokines in the arterial wall. We provide strong evidence for the potential therapeutic benefit of 3-MA in inhibiting atherosclerosis development and improving plaque stability.
Collapse
|
31
|
Li L, Wang Z, Hu X, Wan T, Wu H, Jiang W, Hu R. Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2016; 479:343-350. [DOI: 10.1016/j.bbrc.2016.09.078] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 10/21/2022]
|
32
|
Leng S, Iwanowycz S, Saaoud F, Wang J, Wang Y, Sergin I, Razani B, Fan D. Ursolic acid enhances macrophage autophagy and attenuates atherogenesis. J Lipid Res 2016; 57:1006-16. [PMID: 27063951 PMCID: PMC4878185 DOI: 10.1194/jlr.m065888] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/01/2016] [Indexed: 12/29/2022] Open
Abstract
Macrophage autophagy has been shown to be protective against atherosclerosis. We previously discovered that ursolic acid (UA) promoted cancer cell autophagy. In the present study, we aimed to examine whether UA enhances macrophage autophagy in the context of atherogenesis. Cell culture study showed that UA enhanced autophagy of macrophages by increasing the expression of Atg5 and Atg16l1, which led to altered macrophage function. UA reduced pro-interleukin (IL)-1β protein levels and mature IL-1β secretion in macrophages in response to lipopolysaccharide (LPS), without reducing IL-1β mRNA expression. Confocal microscopy showed that in LPS-treated macrophages, UA increased LC3 protein levels and LC3 appeared to colocalize with IL-1β. In cholesterol-loaded macrophages, UA increased cholesterol efflux to apoAI, although it did not alter mRNA or protein levels of ABCA1 and ABCG1. Electron microscopy showed that UA induced lipophagy in acetylated LDL-loaded macrophages, which may result in increased cholesterol ester hydrolysis in autophagolysosomes and presentation of free cholesterol to the cell membrane. In LDLR(-/-) mice fed a Western diet to induce atherogenesis, UA treatment significantly reduced atherosclerotic lesion size, accompanied by increased macrophage autophagy. In conclusion, the data suggest that UA promotes macrophage autophagy and, thereby, suppresses IL-1β secretion, promotes cholesterol efflux, and attenuates atherosclerosis in mice.
Collapse
Affiliation(s)
- Shuilong Leng
- Department of Human Anatomy, School of Basic Science, Guangzhou Medical University, Guangzhou, Guangdong 510182, People's Republic of China Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Stephen Iwanowycz
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Fatma Saaoud
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Junfeng Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Yuzhen Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Ismail Sergin
- Cardiovascular Division, Departments of Medicine and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Babak Razani
- Cardiovascular Division, Departments of Medicine and Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| |
Collapse
|
33
|
Gu HF, Li HZ, Tang YL, Tang XQ, Zheng XL, Liao DF. Nicotinate-Curcumin Impedes Foam Cell Formation from THP-1 Cells through Restoring Autophagy Flux. PLoS One 2016; 11:e0154820. [PMID: 27128486 PMCID: PMC4851383 DOI: 10.1371/journal.pone.0154820] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/19/2016] [Indexed: 01/28/2023] Open
Abstract
Our previous studies have indicated that a novel curcumin derivate nicotinate-curcumin (NC) has beneficial effects on the prevention of atherosclerosis, but the precise mechanisms are not fully understood. Given that autophagy regulates lipid metabolism, the present study was designed to investigate whether NC decreases foam cell formation through restoring autophagy flux in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells. Our results showed that ox-LDL (100 μg/ml) was accumulated in THP-1 cells and impaired autophagy flux. Ox-LDL-induced impairment of autophagy was enhanced by treatment with the autophagy inhibitor chloroquine (CQ) and rescued by the autophagy inducer rapamycin. The aggregation of ox-LDL was increased by CQ, but decreased by rapamycin. In addition, colocalization of lipid droplets with LC3-II was remarkably reduced in ox-LDL group. In contrast, NC (10 μM) rescued the impaired autophagy flux by significantly increasing level of LC3-II, the number of autophagolysosomes, and the degradation of p62 in ox-LDL-treated THP-1 cells. Inhibition of the PI3K-Akt-mTOR signaling was required for NC-rescued autophagy flux. Notably, our results showed that NC remarkably promoted the colocalization of lipid droplets with autophagolysosomes, increased efflux of cholesterol, and reduced ox-LDL accumulation in THP-1 cells. However, treatment with 3-methyladenine (3-MA) or CQ reduced the protective effects of NC on lipid accumulation. Collectively, the findings suggest that NC decreases lipid accumulation in THP-1 cells through restoring autophagy flux, and further implicate that NC may be a potential therapeutic reagent to reverse atherosclerosis.
Collapse
Affiliation(s)
- Hong-Feng Gu
- Department of Physiology, University of South China, Hengyang, People's Republic of China
- Institute of Neuroscience, University of South China, Hengyang, People's Republic of China
| | - Hai-Zhe Li
- Department of Neurology of the First Affiliated Hospital, University of South China, Hengyang, People's Republic of China
| | - Ya-Ling Tang
- Department of Physiology, University of South China, Hengyang, People's Republic of China
- Institute of Neuroscience, University of South China, Hengyang, People's Republic of China
| | - Xiao-Qing Tang
- Department of Physiology, University of South China, Hengyang, People's Republic of China
- Institute of Neuroscience, University of South China, Hengyang, People's Republic of China
| | - Xi-Long Zheng
- Smooth Muscle Research Group, Department of Biochemistry & Molecular Biology, Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan, Hunan University of Chinese Medicine, Changsha, People's Republic of China
| |
Collapse
|
34
|
Stow JL, Condon ND. The cell surface environment for pathogen recognition and entry. Clin Transl Immunology 2016; 5:e71. [PMID: 27195114 PMCID: PMC4855265 DOI: 10.1038/cti.2016.15] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
The surface of mammalian cells offers an interface between the cell interior and its surrounding milieu. As part of the innate immune system, macrophages have cell surface features optimised for probing and sampling as they patrol our tissues for pathogens, debris or dead cells. Their highly dynamic and constantly moving cell surface has extensions such as lamellipodia, filopodia and dorsal ruffles that help detect pathogens. Dorsal ruffles give rise to macropinosomes for rapid, high volume non-selective fluid sampling, receptor internalisation and plasma membrane turnover. Ruffles can also generate phagocytic cups for the receptor-mediated uptake of pathogens or particles. The membrane lipids, actin cytoskeleton, receptors and signalling proteins that constitute these cell surface domains are discussed. Although the cell surface is designed to counteract pathogens, many bacteria, viruses and other pathogens have evolved to circumvent or hijack these cell structures and their underlying machinery for entry and survival. Nevertheless, these features offer important potential for developing vaccines, drugs and preventative measures to help fight infection.
Collapse
Affiliation(s)
- Jennifer L Stow
- IMB Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas D Condon
- IMB Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
35
|
|
36
|
Role of Excessive Autophagy Induced by Mechanical Overload in Vein Graft Neointima Formation: Prediction and Prevention. Sci Rep 2016; 6:22147. [PMID: 26915560 PMCID: PMC4768319 DOI: 10.1038/srep22147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/08/2016] [Indexed: 12/26/2022] Open
Abstract
Little is known regarding the interplays between the mechanical and molecular bases for vein graft restenosis. We elucidated the stenosis initiation using a high-frequency ultrasonic (HFU) echogenicity platform and estimated the endothelium yield stress from von-Mises stress computation to predict the damage locations in living rats over time. The venous-arterial transition induced the molecular cascades for autophagy and apoptosis in venous endothelial cells (ECs) to cause neointimal hyperplasia, which correlated with the high echogenicity in HFU images and the large mechanical stress that exceeded the yield strength. The ex vivo perfusion of arterial laminar shear stress to isolated veins further confirmed the correlation. EC damage can be rescued by inhibiting autophagy formation using 3-methyladenine (3-MA). Pretreatment of veins with 3-MA prior to grafting reduced the pathological increases of echogenicity and neointima formation in rats. Therefore, this platform provides non-invasive temporal spatial measurement and prediction of restenosis after venous-arterial transition as well as monitoring the progression of the treatments.
Collapse
|
37
|
Cao L, Pan D, Li D, Zhang Y, Chen Q, Xu T, Li W, Wu W. Relation between anti-atherosclerotic effects of IRAK4 and modulation of vascular smooth muscle cell phenotype in diabetic rats. Am J Transl Res 2016; 8:899-910. [PMID: 27158377 PMCID: PMC4846934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Deregulation of phenotypic modulation in VSMCs is the initial stage of atherosclerosis, especially in diabetes. Functional deficiency of IRAK4 inhibits the formation of vascular lesions in ApoE-/- mice. Therefore, in this study, we examined the functions of IRAK4 in the regulation of VSMCs differentiation and phenotypic modulation at the levels of transcription and translation in T2D rats. The T2D rat model was generated by feeding a high-fat diet and injecting a low dose of streptozotocin intraperitoneally. VSMCs were isolated from the thoracic aortas of the T2D rats. VSMCs proliferation and migration were measured using water soluble tetrazolium salt-1 assay, 5-ethynyl-29-deoxyuridine staining and migration assay. IRAK4 was knocked down by siRNA and inhibited by an IRAK1/4 inhibitor. The mRNAs and proteins of signal molecules and phenotypic markers were detected by qRT-PCR and western blotting. The results demonstrated that LPS significantly increased viability, cell migration rate and amount of DNA in VSMCs. The IRAK4 inhibitor also reduced LPS-mediated protein expression of myosin heavy chain and nuclear factor κB p65 subunit and increased smooth muscle 22α expression. Moreover, IRAK4 knock-down reduced the LPS-mediated expression of mRNAs for myosin heavy chain, nuclear factor κB p65 subunit, and monocyte chemoattractant protein-1 (MCP-1), but increased the mRNA of smooth muscle 22α in VSMCs. The activation of IRAK4 phenotypically modulated VSMCs from differentiation to dedifferentiation. Inactivation of IRAK4 exerts a protective effect on VSMCs differentiation and inhibits inflammation. IRAK4 could therefore be a target for interventions to prevent and treat the initial phase of atherosclerosis.
Collapse
Affiliation(s)
- Lijuan Cao
- Institute of Cardiovascular Disease Research, Xuzhou Medical College84 West Huaihai Road, Xuzhou, Jiangsu, Peoples Republic of China
| | - Defeng Pan
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical College84 West Huaihai Road, Xuzhou, Jiangsu, Peoples Republic of China
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| | - Yanbin Zhang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| | - Qiuping Chen
- Institute of Cardiovascular Disease Research, Xuzhou Medical College84 West Huaihai Road, Xuzhou, Jiangsu, Peoples Republic of China
| | - Tongda Xu
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| | - Wenhua Li
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| | - Wanling Wu
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| |
Collapse
|
38
|
Wang L, Jiang Y, Song X, Guo C, Zhu F, Wang X, Wang Q, Shi Y, Wang J, Gao F, Zhao W, Chen YH, Zhang L. Pdcd4 deficiency enhances macrophage lipoautophagy and attenuates foam cell formation and atherosclerosis in mice. Cell Death Dis 2016; 7:e2055. [PMID: 26775706 PMCID: PMC4816189 DOI: 10.1038/cddis.2015.416] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022]
Abstract
Macrophage foam cells, a major component of the atherosclerotic lesion, have vital roles in the development of atherosclerosis. Lipoautophagy, a type of autophagy characterized by selective delivery of lipid droplet for lysosomal degradation, may impact atherosclerosis by regulating macrophage foam cell formation. Previously, we reported that programmed cell death 4 (PDCD4), a tumor suppressor, negatively regulated autophagy in tumor cells. However, its roles in macrophage lipoautophagy, foam cell formation and atherosclerosis remain to be established. Here we found that Pdcd4 deficiency clearly improved oxidized low-density lipoproteins-impaired autophagy efflux, promoted autophagy-mediated lipid breakdown in murine macrophages and thus prevented macrophage conversion into foam cells. Importantly, Pdcd4 deficiency in mice significantly upregulated macrophage autophagy in local plaques along with attenuated lipid accumulation and atherosclerotic lesions in high-fat-fed Apolipoprotein E knockout mice. Bone marrow transplantation experiment demonstrated that PDCD4-mediated autophagy in hematopoietic cells contributed to the development of atherosclerosis. These results indicate that endogenous PDCD4 promotes for macrophage foam cell formation and atherosclerosis development via inhibiting autophagy and provides new insights into atherogenesis, suggesting that promoting macrophage autophagy through downregulating PDCD4 expression may be beneficial for treating atherosclerosis.
Collapse
Affiliation(s)
- L Wang
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Y Jiang
- Department of Immunology, Shandong University School of Medicine, Jinan, China.,Department of Hematology, the Second Hospital of Shandong University, Jinan, China
| | - X Song
- Department of Immunology, Shandong University School of Medicine, Jinan, China.,Basic Research Center, Shandong Cancer Hospital, Jinan, China
| | - C Guo
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - F Zhu
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - X Wang
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Q Wang
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Y Shi
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - J Wang
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - F Gao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - W Zhao
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Y H Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - L Zhang
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
39
|
Xu YB, Zhang PJ, Liu Q, Mao XN, Wang CC. Role of autophagy related protein Beclin 1 in model of hepatic ischemia-reperfusion injury. Shijie Huaren Xiaohua Zazhi 2016; 24:209-214. [DOI: 10.11569/wcjd.v24.i2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Surgical resection is the optimal treatment for primary liver cancer, but surgery is often faced with recession of the liver function reserve, ischemia-reperfusion injury of the residual liver and other disadvantages. Autophagy is a form of programmed cell death after hepatic ischemia-reperfusion, and its role in ischemia-reperfusion injury is a hotspot of research in recent years. In the experimental research of simulated liver ischemia-reperfusion injury, the variation of autophagy related protein Beclin 1 is often detected, which suggests the change of autophagy activity. Many pretreatment methods have been found to be able to reduce the level of Beclin 1 and relieve the hepatic damage in the model of hepatic ischemia-reperfusion injury. Here we discuss the research progress in understanding the role of Beclin 1 in hepatic ischemia-reperfusion injury.
Collapse
|
40
|
TET2 might be a therapeutic target for atherosclerosis. Int J Cardiol 2016; 203:396-7. [DOI: 10.1016/j.ijcard.2015.10.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 01/08/2023]
|
41
|
Kurdi A, De Meyer GRY, Martinet W. Potential therapeutic effects of mTOR inhibition in atherosclerosis. Br J Clin Pharmacol 2015; 82:1267-1279. [PMID: 26551391 DOI: 10.1111/bcp.12820] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022] Open
Abstract
Despite significant improvement in the management of atherosclerosis, this slowly progressing disease continues to affect countless patients around the world. Recently, the mechanistic target of rapamycin (mTOR) has been identified as a pre-eminent factor in the development of atherosclerosis. mTOR is a constitutively active kinase found in two different multiprotein complexes, mTORC1 and mTORC2. Pharmacological interventions with a class of macrolide immunosuppressive drugs, called rapalogs, have shown undeniable evidence of the value of mTORC1 inhibition to prevent the development of atherosclerotic plaques in several animal models. Rapalog-eluting stents have also shown extraordinary results in humans, even though the exact mechanism for this anti-atherosclerotic effect remains elusive. Unfortunately, rapalogs are known to trigger diverse undesirable effects owing to mTORC1 resistance or mTORC2 inhibition. These adverse effects include dyslipidaemia and insulin resistance, both known triggers of atherosclerosis. Several strategies, such as combination therapy with statins and metformin, have been suggested to oppose rapalog-mediated adverse effects. Statins and metformin are known to inhibit mTORC1 indirectly via 5' adenosine monophosphate-activated protein kinase (AMPK) activation and may hold the key to exploit the full potential of mTORC1 inhibition in the treatment of atherosclerosis. Intermittent regimens and dose reduction have also been proposed to improve rapalog's mTORC1 selectivity, thereby reducing mTORC2-related side effects.
Collapse
Affiliation(s)
- Ammar Kurdi
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
42
|
Ma X, Qiu R, Dang J, Li J, Hu Q, Shan S, Xin Q, Pan W, Bian X, Yuan Q, Long F, Liu N, Li Y, Gao F, Zou C, Gong Y, Liu Q. ORMDL3 contributes to the risk of atherosclerosis in Chinese Han population and mediates oxidized low-density lipoprotein-induced autophagy in endothelial cells. Sci Rep 2015; 5:17194. [PMID: 26603569 PMCID: PMC4658630 DOI: 10.1038/srep17194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/26/2015] [Indexed: 12/19/2022] Open
Abstract
ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) is a universally confirmed susceptibility gene for asthma and has recently emerged as a crucial modulator in lipid metabolism, inflammation and endoplasmic reticulum (ER) stress-the mechanisms also closely involved in atherosclerosis (AS). Here we first presented the evidence of two single nucleotide polymorphisms regulating ORMDL3 expression (rs7216389 and rs9303277) significantly associated with AS risk and the evidence of increased ORMDL3 expression in AS cases compared to controls, in Chinese Han population. Following the detection of its statistical correlation with AS, we further explored the functional relevance of ORMDL3 and hypothesized a potential role mediating autophagy as autophagy is activated upon modified lipid, inflammation and ER stress. Our results demonstrated that in endothelial cells oxidized low-density lipoprotein (ox-LDL) up-regulated ORMDL3 expression and knockdown of ORMDL3 alleviated not only ox-LDL-induced but also basal autophagy. BECN1 is essential for autophagy initiation and silencing of ORMDL3 suppressed ox-LDL-induced as well as basal BECN1 expression. In addition, deletion of ORMDL3 resulted in greater sensitivity to ox-LDL-induced cell death. Taken together, ORMDL3 might represent a causal gene mediating autophagy in endothelial cells in the pathogenesis of AS.
Collapse
Affiliation(s)
- Xiaochun Ma
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Cardiac Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Rongfang Qiu
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Jie Dang
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics and Cell Biology, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jiangxia Li
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Qin Hu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shan Shan
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Qian Xin
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Wenying Pan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xianli Bian
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Qianqian Yuan
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Feng Long
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Na Liu
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Yan Li
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Fei Gao
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Chengwei Zou
- Department of Cardiac Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yaoqin Gong
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Qiji Liu
- The Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Department of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
43
|
Li R, Jen N, Wu L, Lee J, Fang K, Quigley K, Lee K, Wang S, Zhou B, Vergnes L, Chen YR, Li Z, Reue K, Ann DK, Hsiai TK. Disturbed Flow Induces Autophagy, but Impairs Autophagic Flux to Perturb Mitochondrial Homeostasis. Antioxid Redox Signal 2015; 23:1207-19. [PMID: 26120766 PMCID: PMC4657520 DOI: 10.1089/ars.2014.5896] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIM Temporal and spatial variations in shear stress are intimately linked with vascular metabolic effects. Autophagy is tightly regulated in intracellular bulk degradation/recycling system for maintaining cellular homeostasis. We postulated that disturbed flow modulates autophagy with an implication in mitochondrial superoxide (mtO2(•-)) production. RESULTS In the disturbed flow or oscillatory shear stress (OSS)-exposed aortic arch, we observed prominent staining of p62, a reverse marker of autophagic flux, whereas in the pulsatile shear stress (PSS)-exposed descending aorta, p62 was attenuated. OSS significantly increased (i) microtubule-associated protein light chain 3 (LC3) II to I ratios in human aortic endothelial cells, (ii) autophagosome formation as quantified by green fluorescent protein (GFP)-LC3 dots per cell, and (iii) p62 protein levels, whereas manganese superoxide dismutase (MnSOD) overexpression by recombinant adenovirus, N-acetyl cysteine treatment, or c-Jun N-terminal kinase (JNK) inhibition reduced OSS-mediated LC3-II/LC3-I ratios and mitochondrial DNA damage. Introducing bafilomycin to Earle's balanced salt solution or to OSS condition incrementally increased both LC3-II/LC3-I ratios and p62 levels, implicating impaired autophagic flux. In the OSS-exposed aortic arch, both anti-phospho-JNK and anti-8-hydroxy-2'-deoxyguanosine (8-OHdG) staining for DNA damage were prominent, whereas in the PSS-exposed descending aorta, the staining was nearly absent. Knockdown of ATG5 with siRNA increased OSS-mediated mtO2(•-), whereas starvation or rapamycin-induced autophagy reduced OSS-mediated mtO2(•-), mitochondrial respiration, and complex II activity. INNOVATION Disturbed flow-mediated oxidative stress and JNK activation induce autophagy. CONCLUSION OSS impairs autophagic flux to interfere with mitochondrial homeostasis. Antioxid. Redox Signal. 23, 1207-1219.
Collapse
Affiliation(s)
- Rongsong Li
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Nelson Jen
- 2 Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science , Los Angeles, California
| | - Lan Wu
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Juhyun Lee
- 2 Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science , Los Angeles, California
| | - Karen Fang
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Katherine Quigley
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Katherine Lee
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Sky Wang
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Bill Zhou
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Laurent Vergnes
- 3 Department of Human Genetics, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Yun-Ru Chen
- 4 Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center , Duarte, California
| | - Zhaoping Li
- 5 Department of Medicine, VA Greater Los Angeles Healthcare System, UCLA David Geffen School of Medicine , Los Angeles, California
| | - Karen Reue
- 3 Department of Human Genetics, UCLA David Geffen School of Medicine , Los Angeles, California
| | - David K Ann
- 4 Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center , Duarte, California
| | - Tzung K Hsiai
- 1 Division of Cardiology, Department of Medicine, UCLA David Geffen School of Medicine , Los Angeles, California.,2 Department of Bioengineering, UCLA Henry Samueli School of Engineering and Applied Science , Los Angeles, California.,5 Department of Medicine, VA Greater Los Angeles Healthcare System, UCLA David Geffen School of Medicine , Los Angeles, California
| |
Collapse
|
44
|
Yao F, Lv YC, Zhang M, Xie W, Tan YL, Gong D, Cheng HP, Liu D, Li L, Liu XY, Zheng XL, Tang CK. Apelin-13 impedes foam cell formation by activating Class III PI3K/Beclin-1-mediated autophagic pathway. Biochem Biophys Res Commun 2015; 466:637-43. [DOI: 10.1016/j.bbrc.2015.09.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 12/24/2022]
|
45
|
Ox-Lp(a) transiently induces HUVEC autophagy via an ROS-dependent PAPR-1-LKB1-AMPK-mTOR pathway. Atherosclerosis 2015; 243:223-35. [PMID: 26407666 DOI: 10.1016/j.atherosclerosis.2015.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/02/2015] [Accepted: 09/14/2015] [Indexed: 11/23/2022]
Abstract
Oxidised lipoprotein(a) [oxLp(a)] is considered as a more potent arteriosclerotic factor than native Lp(a). However, the molecular mechanisms underlying this potency remain unclear. Reactive oxygen species (ROS) possibly act as intracellular second messengers that participate in autophagy stimulation. In this study, the effect of oxLp(a) on endothelial cell autophagy was determined. The mechanism and effect of autophagy on endothelial cells were also investigated. Results showed that oxLp(a) could induce autophagy depending on the generation of cellular ROS. Superoxide dismutase, an antioxidant, could inhibit oxLp(a)-induced autophagy in human umbilical vascular endothelial cells. Furthermore, poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1)-liver kinase B1 (LKB1)-adenosine monophosphate-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) and LKB1-AMPK-mTOR pathways are involved in oxLp(a)-induced autophagy. These pathways are also dependent on ROS. Thus, oxLp(a) induced autophagy via LKB1-AMPK-mTOR and PAPR-1-LKB1-AMPK-mTOR pathways, which are dependent on ROS generation.
Collapse
|
46
|
Shao BZ, Wei W, Ke P, Xu ZQ, Zhou JX, Liu C. Activating cannabinoid receptor 2 alleviates pathogenesis of experimental autoimmune encephalomyelitis via activation of autophagy and inhibiting NLRP3 inflammasome. CNS Neurosci Ther 2015; 20:1021-8. [PMID: 25417929 DOI: 10.1111/cns.12349] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 12/15/2022] Open
Abstract
AIMS Activation of cannabinoid receptor 2 (CB2R) has been reported to ameliorate the pathogenesis of experimental autoimmune encephalomyelitis (EAE). In this study, we examined whether autophagy is involved in the beneficial effect of CB2R on EAE and explored the mechanism with a focus on inflammasome activation. METHODS EAE severity was analyzed with clinical score and histological score stained by hematoxylin and eosin or luxol fast blue in spinal cord. Immunoblot analysis was conducted to detect proteins of NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-related caspase-1 (Casp-1) and the maturation of interleukin (IL)-1β as well as autophagy-related light chain 3 (LC3), and Beciln 1 both in vivo and in vitro. Reverse transcription and real-time PCR were used to detect mRNA of NLRP3, IL-1β and Casp-1. Autophagy-related gene 5 (ATG5)-specific siRNA was transiently transfected in BV2 microglia, and immunofluorescence staining was carried out to detect the expression of NLRP3, caspase recruitment domain (ASC), and pro-caspase-1. RESULTS The current data indicated that deleting CB2R decreased the expression of LC3-II/LC3-I ratio, Beclin 1 and increased caspase-1 activation and IL-1β production in the spinal cord of EAE mice, whereas activation of CB2R with a specific agonist HU-308 induced inverse effects. Further study indicated that HU-308 could promote autophagy and inhibit expression and activation of NLRP3 inflammasome in BV2 microglia. Blocking autophagy by ATG5-specific siRNA dismissed the effort of CB2R in mediating NLRP3 inflammasome in vitro. CONCLUSION Collectively, our results demonstrated for the first time that CB2R plays a protective role in EAE through promoting autophagy and inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
47
|
Li C, Wang Z, Wang C, Ma Q, Zhao Y. Perivascular adipose tissue-derived adiponectin inhibits collar-induced carotid atherosclerosis by promoting macrophage autophagy. PLoS One 2015; 10:e0124031. [PMID: 26020520 PMCID: PMC4447395 DOI: 10.1371/journal.pone.0124031] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/28/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Adiponectin (APN) secreted from perivascular adipose tissue (PVAT) is one of the important anti-inflammatory adipokines to inhibit the development of atherosclerosis, but the underlying mechanism has not been clarified. In this study, we aimed to elucidate how APN regulates plaque formation in atherosclerosis. METHODS AND RESULTS To assess the role of APN secreted by PVAT in atherosclerosis progression, we performed PVAT transplantation experiments on carotid artery atherosclerosis model: ApoE knockout (ApoE-/-) mice with a perivascular collar placement around the left carotid artery in combination with a high-fat diet feeding. Our results show that the ApoE-/- mice with PVAT derived from APN knockout (APN-/-) mice exhibited accelerated plaque volume formation compared to ApoE-/- mice transplanted with wild-type littermate tissue. Conversely, autophagy in macrophages was significantly attenuated in ApoE-/- mice transplanted with APN-/- mouse-derived PVAT compared to controls. Furthermore, in vitro studies indicate that APN treatment increased autophagy in primary macrophages, as evidenced by increased LC3-I processing and Beclin1 expression, which was accompanied by down-regulation of p62. Moreover, our results demonstrate that APN promotes macrophage autophagy via suppressing the Akt/FOXO3a signaling pathway. CONCLUSIONS Our results indicate that PVAT-secreted APN suppresses plaque formation by inducing macrophage autophagy.
Collapse
Affiliation(s)
- Changlong Li
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Department of Cardiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhijian Wang
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Chunxiao Wang
- Department of Cardiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qian Ma
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Yingxin Zhao
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Department of Cardiology, Anzhen Hospital, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
48
|
Tian PG, Jiang ZX, Li JH, Zhou Z, Zhang QH. Spliced XBP1 promotes macrophage survival and autophagy by interacting with Beclin-1. Biochem Biophys Res Commun 2015; 463:518-23. [PMID: 26026678 DOI: 10.1016/j.bbrc.2015.05.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/15/2015] [Indexed: 11/17/2022]
Abstract
Macrophage autophagy plays an important role in the development of atherosclerosis, but the precise mechanism mediating this process is unclear. The potential role of the X-box binding protein 1 (XBP1), a crucial transduction factor that is involved in endoplasmic reticulum stress and the unfolded protein response, in bone marrow-derived macrophage autophagy is unknown. This study mainly explores the roles of XBP1 mRNA splicing in bone marrow-derived macrophage autophagy. The present study shows that the transient overexpression of spliced XBP1 via adenovirus-mediated gene transfer induces autophagy and promotes proliferation in bone marrow-derived macrophages via the down-regulation of Beclin-1, but that the sustained overexpression of spliced XBP1 leads to apoptosis. When XBP1 is down-regulated in bone marrow-derived macrophages using siRNA, rapamycin-induced autophagosome formation is ablated. Furthermore, we have detected the overexpression of XBP1 in areas of atherosclerotic plaques in the arteries of ApoE-/- mice. These results demonstrate that XBP1 mRNA splicing plays an important role in maintaining the function of bone marrow-derived macrophages and provide new insight into the study and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ping-Ge Tian
- Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhi-Xin Jiang
- Centre Laboratory, The 305th Hospital of the People's Liberation Army, Beijing 100017, China
| | - Jian-Hua Li
- Department of Geriatric Cardiology, Chinese PLA General Hosptial, Beijing 100853, China
| | - Zhe Zhou
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Qing-Hua Zhang
- Department of Cardiology, The 305th Hospital of the People's Liberation Army, Beijing 100017, China.
| |
Collapse
|
49
|
Burke RM, Berk BC. The Role of PB1 Domain Proteins in Endothelial Cell Dysfunction and Disease. Antioxid Redox Signal 2015; 22:1243-56. [PMID: 25686626 DOI: 10.1089/ars.2014.6182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE There are a limited number of proteins containing the Phox-Bem1 (PB1) protein interaction domain, and almost all of them play some role in endothelial cell (EC) function, health, and homeostasis. RECENT ADVANCES Most of these proteins have been shown to physically interact through PB1-PB1 binding and, as such, are linked together to form complexes that are responsive to hemodynamic force. These complexes range from redox regulation to inflammation to autophagy and back, and they employ multiple feedback mechanisms that are reliant on PB1 domain proteins. CRITICAL ISSUES Pathologic roles for PB1 domain-containing proteins have been demonstrated in multiple diseases, including vascular disease, cancer, liver disease, and myriad other concerns. Findings cited in this review show that dimerization of PB1 proteins exerts novel effects on EC function that may be important in multiple cardiovascular diseases, including atherosclerosis, thrombosis, inflammation, and hypertension. FUTURE DIRECTIONS As mechanistic understanding of the component pathways (redox regulation, cell polarity, inflammation, atheroprotection, and autophagy) is continually increasing, the larger picture of how these pathways interact with one another is evolving rapidly. We can now evaluate the PB1 domain proteins as a family in the context of multiple phenotypic readouts in EC function as well as evaluate them as drug targets against disease.
Collapse
Affiliation(s)
- Ryan M Burke
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester Medical Center , Rochester, New York
| | | |
Collapse
|
50
|
Wang Q, Zeng P, Liu Y, Wen G, Fu X, Sun X. Inhibition of autophagy ameliorates atherogenic inflammation by augmenting apigenin-induced macrophage apoptosis. Int Immunopharmacol 2015; 27:24-31. [PMID: 25899084 DOI: 10.1016/j.intimp.2015.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/30/2015] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
Abstract
Increasing evidences showed that the survival of macrophages promotes atherogenesis. Macrophage apoptosis in the early phase of atherosclerotic process negatively regulates the progression of atherosclerotic lesions. We demonstrated that a natural anti-oxidant apigenin could ameliorate atherogenesis in ApoE(-/-) mice. It reduced the number of foam cells and decreased the serum levels of tumor necrosis factor α, interleukin 1β (IL-1β) and IL-6. Our results showed that oxidized low-density lipoprotein (oxLDL) led to the secretion of pro-inflammatory cytokines. Apigenin-induced apoptosis and downregulated the secretion of TNF-α, IL-6 and IL-1β. It is further supported by the use of zVAD, a pan-caspase inhibitor, demonstrating that apigenin lowered cytokine profile through induction of macrophage apoptosis. Moreover, apigenin-induced Atg5/Atg7-dependent autophagy in macrophages pretreated with oxLDL. Results illustrated that autophagy inhibition increased apigenin-induced apoptosis through activation of Bax. The present findings suggest that oxLDL maintained the survival of macrophages and activated the secretion of pro-inflammatory cytokines to initiate atherosclerosis. Apigenin-induced apoptosis of lipid-laden macrophages and resolved inflammation to ameliorate atherosclerosis. In conclusion, combination of apigenin with autophagy inhibition may be a promising strategy to induce foam cell apoptosis and subdue atherogenic cytokines.
Collapse
Affiliation(s)
- Qun Wang
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Ping Zeng
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuanliang Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ge Wen
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuqiong Fu
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Xuegang Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China; Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|