1
|
Chittapun S, Suwanmanee K, Kongsinkaew C, Pornpukdeewattana S, Chisti Y, Charoenrat T. Thermal degradation kinetics and purification of C-phycocyanin from thermophilic and mesophilic cyanobacteria. J Biotechnol 2025; 398:76-86. [PMID: 39617332 DOI: 10.1016/j.jbiotec.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
The natural blue colorant C-phycocyanin (C-PC) has many potential applications but its poor heat stability limits its commercial use. This study compares the production and thermal stability of C-PC from two cyanobacteria: the thermophilic Thermosynechococcus sp. TUBT-T01 and the mesophilic Synechococcus cedrorum TISTR8589. Thermosynechococcus sp. produced nearly 1.9-fold more C-PC than S. cedrorum. Batch adsorption using a chromatographic cationic ion exchange resin (Streamline Direct HST1) was used to effectively purify the C-PC. The equilibrium adsorption capacity (Qeq) of the resin for C-PC was the highest at pH 5. At this pH, the Qeq for the thermophilic C-PC was 5.5 ± 0.1 mg mL⁻¹ , whereas for the mesophilic C-PC it was 1.5 ± 0.2 mg mL⁻¹ . Purification increased the concentration of the thermophilic C-PC by 5.9-fold, and that of mesophilic C-PC by 4.2-fold. The purity ratios of the final products from the two cyanobacteria were similar at ∼2.2. At 60 °C and pH 7, the C-PC of Thermosynechococcus sp. had ∼12-times longer half-life than the mesophilic C-PC; however, the productivity of the thermophilic C-PC was comparatively low because of a low biomass productivity of Thermosynechococcus sp.
Collapse
Affiliation(s)
- Supenya Chittapun
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani 12120, Thailand
| | - Kattiya Suwanmanee
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani 12120, Thailand
| | - Chatchol Kongsinkaew
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani 12120, Thailand
| | | | - Yusuf Chisti
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Theppanya Charoenrat
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani 12120, Thailand.
| |
Collapse
|
2
|
Salgado MTSF, Sebastião Silva MC, da Silva RC, Arantes Campos ML, Fratelli C, Cavalcante Braga AR, Stockler-Pinto MB, de Souza Votto AP, Paiva LSD. C-phycocyanin acts as a positive immunomodulator in different primary and secondary organs of mice. Immunopharmacol Immunotoxicol 2025:1-12. [PMID: 39828896 DOI: 10.1080/08923973.2024.2448801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Objective: C-Phycocyanin (C-PC) is a photosynthetic pigment with interesting therapeutic properties. However, its effectiveness in modulating the immune system cell populations has not been elucidated. We analyzed the action of C-PC on the modulation of mice immune system. Methods: The animals were treated subcutaneously with C-PC for 3 consecutive days. On the fourth day, the animals were euthanized and cells from different organs were analyzed by flow cytometry. Cytotoxicity was analyzed using biochemical parameters. Results: The results showed that C-PC increased the total cellularity in percentage and absolute number in the inguinal lymph node as well as the absolute number of B cells, CD4+ and CD8+ T cells and myeloid cells. The percentage of B cells was also increased in the lymph node. In the bone marrow, there was a reduction in immature and mature B cells. In contrast, C-PC increased the percentage and absolute number of myeloid cells in the bone marrow. C-PC administration also promoted an increase of CD4+ and CD8+ T cells in the thymus, and a reduction in these populations in the spleen. Conclusion: The data show for the first time the positive immunomodulatory role of C-PC by recruiting distinct populations of immune system cells to the treatment-draining lymphoid organ.
Collapse
Affiliation(s)
- Mariana Teixeira Santos Figueiredo Salgado
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, Rio Grande, Brazil
- Laboratório de Cultura Celular, ICB, FURG, Rio Grande, Brazil
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Mayara Cristini Sebastião Silva
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Brazil
| | - Ricardo Correia da Silva
- Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Luísa Arantes Campos
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Brazil
| | - Camilly Fratelli
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Vila Mathias, Santos, Brazil
| | | | - Milena Barcza Stockler-Pinto
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal Fluminense Federal (UFF), Niterói, Brazil
| | - Ana Paula de Souza Votto
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, Rio Grande, Brazil
- Laboratório de Cultura Celular, ICB, FURG, Rio Grande, Brazil
| | - Luciana Souza de Paiva
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
3
|
Mummaleti G, Udo T, Mohan A, Kong F. Synthesis, characterization and application of microbial pigments in foods as natural colors. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39466660 DOI: 10.1080/10408398.2024.2417802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Colorants have played a crucial role in various applications, particularly in food processing, with natural sources such as mineral ores, plants, insects, and animals being commonly used. However, the nineteenth century saw the development of synthetic dyes, which replaced these natural colorants. In recent years, there has been a growing demand for natural products, driving an increased interest in natural colorants. Microbial pigments have emerged as promising sources of natural pigments due to their numerous health benefits. They can be produced in large quantities rapidly and from more affordable substrates, making them economically attractive. This review focuses on the current advancements in the low-cost synthesis of microbial pigments, exploring their biological activities and commercial applications. Microbial pigments offer a sustainable and economically viable alternative to natural and synthetic colorants, meeting the growing demand for natural products. These pigments are relatively nontoxic and exhibit significant health benefits, making them suitable for a wide range of applications. As interest in natural products continues to rise, microbial pigments hold great potential in shaping the future of colorant production across various sectors.
Collapse
Affiliation(s)
- Gopinath Mummaleti
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Toshifumi Udo
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Anand Mohan
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Sinetova MA, Kupriyanova EV, Los DA. Spirulina/Arthrospira/Limnospira-Three Names of the Single Organism. Foods 2024; 13:2762. [PMID: 39272527 PMCID: PMC11395459 DOI: 10.3390/foods13172762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Recent advances in research techniques have enabled rapid progress in the study of spirulina, an ancient edible cyanobacteria. Nowadays, spirulina species are classified into three genera: Spirulina, Arthrospira, and Limnospira. The latter now refers to industrially manufactured spirulina strains. Whole-genome sequencing revealed gene clusters involved in metabolite production, and the physiology of spirulina. Omics technologies demonstrated the absence of hazardous compounds in spirulina cells, confirming the safety of this biomass as a food product. Spirulina is a good source of different chemicals used in food manufacturing, food supplements, and pharmaceuticals. Spirulina's enrichment with inherent biologically active substances makes it a potential supplier of natural products for dietary and pharmaceutical applications. Spirulina is also a prospective component of both terrestrial and space-based life support systems. Here, we review current breakthroughs in spirulina research and clarify fallacies that can be found in both professional literature and public media.
Collapse
Affiliation(s)
- Maria A Sinetova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Elena V Kupriyanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Dmitry A Los
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| |
Collapse
|
5
|
Aoki J, Ozaki T, Koshikawa R, Sasaki D, Kitajima K, Yoshida Y, Nakajima H, Asayama M. Effective cultivation conditions and safety evaluation of filamentous cyanobacteria producing phycocyanins with antiglycation activities. J Biotechnol 2024; 391:64-71. [PMID: 38844247 DOI: 10.1016/j.jbiotec.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
We investigated suitable culture conditions for the production of the blue pigment phycocyanin (PC) from the unique filamentous cyanobacteria Pseudanabaena sp. ABRG5-3 and Limnothrix sp. SK1-2-1. White, green, or red LED irradiation at 30 μmol photons/m2/s was effective for phycocyanin production when compared with Arthrospira platensis (Spirulina) sp. NIES-39, which is generally grown under high light irradiation. To investigate the safety of the cyanobacteria, ABRG5-3 cells were subjected to Ames (reverse mutation) tests and single oral-dose rat studies, which revealed non-mutagenic and non-toxic properties. When three purified phycocyanins (abPC, skPC, and spPC) were subjected to agarose gel electrophoresis, they showed different mobility, indicating that each phycocyanin has unique properties. abPC exhibited strong antiglycation activities as novel function.
Collapse
Affiliation(s)
- Jinichi Aoki
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Takato Ozaki
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Runa Koshikawa
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Daisaku Sasaki
- BioX Chemical Industries Co. Ltd., Hiroshima 733-0844, Japan
| | - Katsuyoshi Kitajima
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Yuta Yoshida
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Hiromi Nakajima
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Munehiko Asayama
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan.
| |
Collapse
|
6
|
Motamedzadeh A, Rahmati-Dehkordi F, Heydari H, Behnam M, Rashidi Noshabad FZ, Tamtaji Z, Taheri AT, Nabavizadeh F, Aschner M, Mirzaei H, Tamtaji OR. Therapeutic potential of Phycocyanin in gastrointestinal cancers and related disorders. Mol Biol Rep 2024; 51:741. [PMID: 38874869 DOI: 10.1007/s11033-024-09675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Gastrointestinal cancer is the most fatal cancer worldwide. The etiology of gastrointestinal cancer has yet to be fully characterized. Alcohol consumption, obesity, tobacco, Helicobacter pylori and gastrointestinal disorders, including gastroesophageal reflux disease, gastric ulcer, colon polyps and non-alcoholic fatty liver disease are among the several risks factors for gastrointestinal cancers. Phycocyanin which is abundant in Spirulina. Phycocyanin, a member of phycobiliprotein family with intense blue color, is an anti-diabetic, neuroprotective, anti-oxidative, anti-inflammatory, and anticancer compound. Evidence exists supporting that phycocyanin has antitumor effects, exerting its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, cell-cycle arrest, migration and Wnt/β-catenin signaling. Phycocyanin has also been applied in treatment of several gastrointestinal disorders such as, gastric ulcer, ulcerative colitis and fatty liver that is known as a risk factor for progression to cancer. Herein, we summarize various cellular and molecular pathways that are affected by phycocyanin, its efficacy upon combined drug treatment, and the potential for nanotechnology in its gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoora Heydari
- Student Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Behnam
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolkarim Talebi Taheri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| |
Collapse
|
7
|
Shi K, Wang W, Sun J, Jiang C, Hao J. A rapid one-step affinity purification of C-phycocyanin from Spirulina platensis. J Chromatogr A 2024; 1720:464801. [PMID: 38479154 DOI: 10.1016/j.chroma.2024.464801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
The high-purity phycocyanin has a high commercial value. Most current purification methods of C-phycocyanin involve multiple steps, which are complicated and time-consuming. To solve the problem, this research was studied, and an efficient affinity chromatography purification for C-phycocyanin from Spirulina platensis was developed. Through molecular docking simulation, virtual screening of ligands was performed, and ursolic acid was identified as the specific affinity ligand, which coupled to Affi-Gel 102 gel via 1-ethyl (3-dimethylaminopropyl)-3-carbodiimide, hydrochloride as coupling agent. With this customized and synthesized resin, a high-efficiency one-step purification procedure for C-phycocyanin was developed and optimized, the purity was determined to be 4.53, and the yield was 69 %. This one-step purification protocol provides a new approach for purifying other phycobilin proteins.
Collapse
Affiliation(s)
- Ke Shi
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jingjing Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Chengcheng Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianhua Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang 222005, China.
| |
Collapse
|
8
|
Nova M, Citterio S, Martegani E, Colombo S. Unraveling the Anti-Aging Properties of Phycocyanin from the Cyanobacterium Spirulina ( Arthrospira platensis). Int J Mol Sci 2024; 25:4215. [PMID: 38673801 PMCID: PMC11050328 DOI: 10.3390/ijms25084215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, marine natural products have become one of the most important resources of novel lead compounds for critical diseases associated with age. Spirulina, a dietary supplement made from blue-green algae (cyanobacteria: scientific name Arthrospira platensis), is particularly rich in phycocyanin, a phycobiliprotein, which accounts for up to 20% of this cyanobacterium's dry weight and is considered responsible for its anti-cancer, anti-inflammatory and antioxidant activities. Although the anti-aging activity of phycocyanin has been investigated, how exactly this compound works against aging remains elusive. The aim of our research is to use the yeast Saccharomyces cerevisiae as a model organism to investigate the anti-aging properties of phycocyanin from A. platensis. Our results show that phycocyanin has a powerful anti-aging effect, greatly extending the chronological life span of yeast cells in a dose-dependent way, as the effect was also pronounced when cells were grown in SD medium under calorie restriction conditions (0.2% glucose). Both ROS and accumulation of dead cells were followed by staining chronologically aged cells with dihydrorhodamine 123 (DHR123) and propidium iodide (PI). Interestingly, we found that most of the aged phycocyanin-treated cells, which were unable to form colonies, were actually ROS+/PI-. Finally, we show that the moment in which phycocyanin is added to the culture does not substantially influence its effectiveness in counteracting chronological aging.
Collapse
Affiliation(s)
| | | | | | - Sonia Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (M.N.); (S.C.); (E.M.)
| |
Collapse
|
9
|
Teixeira IR, Marczak LDF, Mercali GD, Jaeschke DP. Saline extraction assisted by ultrasound: a method to obtain purified phycocyanin. J Biotechnol 2024; 384:38-44. [PMID: 38395362 DOI: 10.1016/j.jbiotec.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/22/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The influence of ultrasound intensity and saline solution concentration (NH4Cl and CaCl2) on phycocyanin extraction from Arthrospira platensis was evaluated. The intensity had a significant effect on phycocyanin content and purity, while the saline solution concentration only had an effect on purity. The optimum extraction condition was obtained at 41% of intensity and 8.5 g.L-1 of CaCl2 solution. In this condition, ultrasound promoted cell disruption efficiently, increasing the extraction yield. The combination of ultrasound with CaCl2 solution reduced the co-extraction of chlorophylls and other proteins, providing more purified extracts. The freezing and thawing method was compared to the best condition obtained, and it showed no significant difference for phycocyanin content but better results for purity. Overall, ultrasound treatment may be considered a promising technology to obtain phycocyanin by the food industry without additional purification techniques due to the reduced extraction time, less use of energy, and easy scale-up.
Collapse
Affiliation(s)
- Ingrid Rocha Teixeira
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, 2777, Ramiro Barcelos St., Porto Alegre, RS 90.035-007, Brazil
| | - Ligia Damasceno Ferreira Marczak
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, 2777, Ramiro Barcelos St., Porto Alegre, RS 90.035-007, Brazil
| | - Giovana Domeneghini Mercali
- Department of Food Science, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, 9500, Bento Gonçalves Av., Porto Alegre, RS, Brazil
| | - Débora Pez Jaeschke
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil.
| |
Collapse
|
10
|
Rahim A, Salhi S, El Khelfaoui N, Badaoui B, Essamadi A, El Amiri B. Effect of C-phycocyanin purified from Spirulina platensis on cooled ram semen quality and in vivo fertility. Theriogenology 2024; 215:234-240. [PMID: 38100995 DOI: 10.1016/j.theriogenology.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
This research sought to purify C-phycocyanin (C-PC) from Spirulina platensis and investigate its potential in enhancing the quality parameters and in vivo fertility of ram semen subjected to cooled storage at 5 °C, when using a skim milk (SM) based semen extender. The purification process of C-PC involved cold maceration, pre-purification using chitosan and activated charcoal, followed by purification through aqueous two-phase extraction (ATPE) and ion-exchange chromatography. Afterward, fifty ejaculates were collected from 4 fertile Boujaâd rams and extended using the SM extender at 37 °C, enriched with 0 μg/mL (control), 1.2 μg/mL, 2.4 μg/mL, 3.6 μg/mL, or 4.8 μg/mL of C-PC. The diluted semen was subsequently cooled to 5 °C using a controlled cooling process, with a gradual cooling rate of approximately 0.5 °C per minute, and its quality parameters were evaluated after 0, 4, 8, and 24 h of cooling storage. Then, its fertilization ability after 4 h of cooling storage was evaluated using artificial insemination. The adopted purification process yielded a grade analytical purity of 4.06. Additionally, semen extended in SM with a 2.4 μg/mL C-PC supplement displayed significant (P < 0.0001) enhancement in total motility, progressive motility, curvilinear velocity, straight-line velocity, average path velocity, viability and lipid peroxidation of ram semen at 0, 4, 8, and 24 h of cooling storage. These improvements were observed in direct comparison to both the control group and the other C-PC concentrations. Regarding fertility rates, semen extended in SM with a 2.4 μg/mL C-PC recorded a 76 % rate, a notable increment from the 63 % observed in ewes inseminated by semen extended in SM alone, although the difference was not statistically significant (p > 0.05). These findings underscore the promising potential of C-PC as a natural supplement for enhancing semen quality, warranting further investigations.
Collapse
Affiliation(s)
- Abdellatif Rahim
- Animal Production Unit, Regional Center Agricultural Research of Settat, National Institute for Agricultural Research (INRA), Avenue Ennasr, P.O. Box 415 Rabat Principal, 10090, Rabat, Morocco; Hassan First University of Settat, Faculty of Sciences and Techniques, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, P.O. Box 577, 26000, Settat, Morocco
| | - Saad Salhi
- Animal Production Unit, Regional Center Agricultural Research of Settat, National Institute for Agricultural Research (INRA), Avenue Ennasr, P.O. Box 415 Rabat Principal, 10090, Rabat, Morocco; Hassan First University of Settat, Faculty of Sciences and Techniques, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, P.O. Box 577, 26000, Settat, Morocco
| | - Nora El Khelfaoui
- Animal Production Unit, Regional Center Agricultural Research of Settat, National Institute for Agricultural Research (INRA), Avenue Ennasr, P.O. Box 415 Rabat Principal, 10090, Rabat, Morocco; Namur Research Institute for Life Sciences, NARILIS, UNamur, Belgium
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Department of Biology, Mohammed V University in Rabat, Rabat, Morocco; African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco
| | - Abdelkhalid Essamadi
- Hassan First University of Settat, Faculty of Sciences and Techniques, Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, P.O. Box 577, 26000, Settat, Morocco
| | - Bouchra El Amiri
- Animal Production Unit, Regional Center Agricultural Research of Settat, National Institute for Agricultural Research (INRA), Avenue Ennasr, P.O. Box 415 Rabat Principal, 10090, Rabat, Morocco; African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, Morocco.
| |
Collapse
|
11
|
Stiefelmaier J, Strieth D, Schaefer S, Wrabl B, Kronenberger D, Bröckel U, Ulber R. A new easy method for determination of surface adhesion of phototrophic biofilms. Biotechnol Bioeng 2023; 120:3518-3528. [PMID: 37641171 DOI: 10.1002/bit.28536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
Terrestrial cyanobacteria grow as phototrophic biofilms and offer a wide spectrum of interesting products. For cultivation of phototrophic biofilms different reactor concepts have been developed in the last years. One of the main influencing factors is the surface material and the adhesion strength of the chosen production strain. In this work a flow chamber was developed, in which, in combination with optical coherence tomography and computational fluid dynamics simulation, an easy analysis of adhesion forces between different biofilms and varied surface materials is possible. Hereby, differences between two cyanobacteria strains and two surface materials were shown. With longer cultivation time of biofilms adhesion increased in all experiments. Additionally, the content of extracellular polymeric substances was analyzed and its role in surface adhesion was evaluated. To test the comparability of obtained results from the flow chamber with other methods, analogous experiments were conducted with a rotational rheometer, which proved to be successful. Thus, with the presented flow chamber an easy to implement method for analysis of biofilm adhesion was developed, which can be used in future research for determination of suitable combinations of microorganisms with cultivation surfaces on lab scale in advance of larger processes.
Collapse
Affiliation(s)
- Judith Stiefelmaier
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Dorina Strieth
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Susanne Schaefer
- Environmental Campus Birkenfeld, Institute of Microprocess Engineering and Particle Technology, University of Applied Sciences Trier, Birkenfeld, Germany
| | - Björn Wrabl
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Daniel Kronenberger
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Ulrich Bröckel
- Environmental Campus Birkenfeld, Institute of Microprocess Engineering and Particle Technology, University of Applied Sciences Trier, Birkenfeld, Germany
| | - Roland Ulber
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| |
Collapse
|
12
|
Chen H, Deng J, Li L, Liu Z, Sun S, Xiong P. Recent Progress of Natural and Recombinant Phycobiliproteins as Fluorescent Probes. Mar Drugs 2023; 21:572. [PMID: 37999396 PMCID: PMC10672124 DOI: 10.3390/md21110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 11/25/2023] Open
Abstract
Phycobiliproteins (PBPs) are natural water-soluble pigment proteins, which constitute light-collecting antennae, and function in algae photosynthesis, existing in cyanobacteria, red algae, and cryptomonads. They are special pigment-protein complexes in algae with a unique structure and function. According to their spectral properties, PBPs can be mainly divided into three types: allophycocyanin, phycocyanin, and PE. At present, there are two main sources of PBPs: one is natural PBPs extracted from algae and the other way is recombinant PBPs which are produced in engineered microorganisms. The covalent connection between PBP and streptavidin was realized by gene fusion. The bridge cascade reaction not only improved the sensitivity of PBP as a fluorescent probe but also saved the preparation time of the probe, which expands the application range of PBPs as fluorescent probes. In addition to its function as a light-collecting antenna in photosynthesis, PBPs also have the functions of biological detection, ion detection, and fluorescence imaging. Notably, increasing studies have designed novel PBP-based far-red fluorescent proteins, which enable the tracking of gene expression and cell fate.
Collapse
Affiliation(s)
- Huaxin Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China (P.X.)
| | | | | | | | | | | |
Collapse
|
13
|
Ibrahim TNBT, Feisal NAS, Kamaludin NH, Cheah WY, How V, Bhatnagar A, Ma Z, Show PL. Biological active metabolites from microalgae for healthcare and pharmaceutical industries: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 372:128661. [PMID: 36690215 DOI: 10.1016/j.biortech.2023.128661] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Microalgae are photoautotrophic microorganisms which comprise of species from several phyla. Microalgae are promising in producing a varieties of products, including food, feed supplements, chemicals, and biofuels. Medicinal supplements derived from microalgae are of a significant market in which compounds such as -carotene, astaxanthin, polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and polysaccharides such as -glucan, are prominent. Microalgae species which are commonly applied for commercial productions include Isochrysis sp., Chaetoceros (Chlorella sp.), Arthrospira sp. (Spirulina Bioactive) and many more. In this present review, microalgae species which are feasible in metabolites production are being summarized. Metabolites produced by microalgae as well as their prospective applications in the healthcare and pharmaceutical industries, are comprehensively discussed. This evaluation is greatly assisting industrial stakeholders, investors, and researchers in making business decisions, investing in ventures, and moving the production of microalgae-based metabolites forward.
Collapse
Affiliation(s)
- Tengku Nilam Baizura Tengku Ibrahim
- Department of Environmental Health, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Azalina Suzianti Feisal
- Department of Environmental Health, Faculty of Health Sciences, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Noor Haziqah Kamaludin
- Center of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam 42300, Selangor, Malaysia
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Malaysia; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
14
|
Peña-Medina RL, Fimbres-Olivarría D, Enríquez-Ocaña LF, Martínez-Córdova LR, Del-Toro-Sánchez CL, López-Elías JA, González-Vega RI. Erythroprotective Potential of Phycobiliproteins Extracted from Porphyridium cruentum. Metabolites 2023; 13:metabo13030366. [PMID: 36984806 PMCID: PMC10057957 DOI: 10.3390/metabo13030366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
There are multiple associations between the different blood groups (ABO and RhD) and the incidence of oxidative stress-related diseases, such as certain carcinomas and COVID-19. Bioactive compounds represent an alternative to its prevention and treatment. Phycobiliproteins (PBP) are bioactive compounds present in the microalga Porphyridium cruentum and, despite its antioxidant activity, their inhibitory effect on hemolysis has not been reported. The aim of this work was to evaluate the erythroprotective potential of phycobiliproteins from P. cruentum in different blood groups. The microalga was cultured in F/2 medium under controlled laboratory conditions. Day 10 of culture was determined as the harvest point. The microalgal biomass was lyophilized and a methanolic (MetOH), Tris HCl (T-HCl), and a physiological solution (PS) ultrasound-assisted extraction were performed. Extract pigments were quantified by spectrophotometry. The antioxidant activity of the extracts was evaluated with the ABTS+•, DPPH•, and FRAP methods, finding that the main antioxidant mechanism on the aqueous extracts was HAT (hydrogen atom transfer), while for MetOH it was SET (single electron transfer). The results of the AAPH, hypotonicity, and heat-induced hemolysis revealed a probable relationship between the different antigens (ABO and RhD) with the antihemolytic effect, highlighting the importance of bio-directed drugs.
Collapse
Affiliation(s)
- Rubria Lucía Peña-Medina
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Diana Fimbres-Olivarría
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
- Correspondence: (D.F.-O.); (R.I.G.-V.)
| | - Luis Fernando Enríquez-Ocaña
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Luis Rafael Martínez-Córdova
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Carmen Lizette Del-Toro-Sánchez
- Department of Research and Postgraduate in Food, University of Sonora, Blvd Luis Encinas y Rosales S/N, Col. Centro, Hermosillo 83000, Mexico
| | - José Antonio López-Elías
- Department of Scientific and Technological Research, University of Sonora, Blvd Luis Encinas y Reforma S/N, Col. Centro, Hermosillo 83000, Mexico
| | - Ricardo Iván González-Vega
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), University of Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, Mexico
- Correspondence: (D.F.-O.); (R.I.G.-V.)
| |
Collapse
|
15
|
Rashed SA, Hammad SF, Eldakak MM, Khalil IA, Osman A. Assessment of the Anticancer Potentials of the Free and Metal-Organic Framework (UiO-66) - Delivered Phycocyanobilin. J Pharm Sci 2023; 112:213-224. [PMID: 36087776 DOI: 10.1016/j.xphs.2022.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Phycocyanin (C-PC) is a constitutive chromoprotein of Arthrospira platensis, which exhibits promising efficacy against different types of cancer. In this study, we cleaved C-PC's chromophore phycocyanobilin (PCB) and demonstrated its ability as an anti-cancer drug for Colorectal cancer (CRC). PCB displayed an anti-cancer effect for CRC (HT-29) cells with IC50 of 108 µg/ml. Assessing the transcripts levels of some biomarkers revealed that the PCB caused an upregulation in the anti-metastatic gene NME1 level and downregulation of the COX-2 level. The flow cytometric results showed the effect of PCB on the arrest of the cell cycle's G1 phase. In addition, we successfully synthesized the UiO-66 (Zr-MOF). We incorporated the PCB into UiO-66 nanoparticles with a loading percentage of 46 %. Assessment of the cytotoxic effects of UiO-66@PCB showed a 2-fold improvement in the IC50 compared to the free PCB. In conclusion, we have shown that PCB displayed a promising potential as an anti-cancer agent. Yet, it is considered a safe and natural substance that can help to mitigate cancer spread and symptoms. In the meantime, UiO-66 can be used as a safe nano-delivery tool for PCB.
Collapse
Affiliation(s)
- Suzan A Rashed
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Borg El-Arab, Egypt; Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Sherif F Hammad
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Borg El-Arab, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Moustafa M Eldakak
- Genetics Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Islam A Khalil
- Pharmaceutics Department, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 6 October, Egypt
| | - Ahmed Osman
- Biotechnology Program, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Borg El-Arab, Egypt; Department of Biochemistry, Faculty of Science, Ain shams University, Cairo, Egypt
| |
Collapse
|
16
|
A Review on a Hidden Gem: Phycoerythrin from Blue-Green Algae. Mar Drugs 2022; 21:md21010028. [PMID: 36662201 PMCID: PMC9863059 DOI: 10.3390/md21010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Phycoerythrin (PE) is a pink/red-colored pigment found in rhodophytes, cryptophytes, and blue-green algae (cyanobacteria). The interest in PE is emerging from its role in delivering health benefits. Unfortunately, the current cyanobacterial-PE (C-PE) knowledge is still in the infant stage. It is essential to acquire a more comprehensive understanding of C-PE. This study aimed to review the C-PE structure, up and downstream processes of C-PE, application of C-PE, and strategies to enhance its stability and market value. In addition, this study also presented a strengths, weaknesses, opportunities, and threats (SWOT) analysis on C-PE. Cyanobacteria appeared to be the more promising PE producers compared to rhodophytes, cryptophytes, and macroalgae. Green/blue light is preferred to accumulate higher PE content in cyanobacteria. Currently, the prominent C-PE extraction method is repeated freezing-thawing. A combination of precipitation and chromatography approaches is proposed to obtain greater purity of C-PE. C-PE has been widely exploited in various fields, such as nutraceuticals, pharmaceuticals, therapeutics, cosmetics, biotechnology, food, and feed, owing to its bioactivities and fluorescent properties. This review provides insight into the state-of-art nature of C-PE and advances a step further in commercializing this prospective pigment.
Collapse
|
17
|
Selective Extraction of Chlorophyll a/Photosystem Polypeptides from Spirulina maxima Using Aqueous Two Phase Extraction. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
C-Phycocyanin and Lycium barbarum Polysaccharides Protect against Aspirin-Induced Inflammation and Apoptosis in Gastric RGM-1 Cells. Nutrients 2022; 14:nu14235113. [PMID: 36501143 PMCID: PMC9736128 DOI: 10.3390/nu14235113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Aspirin causes gastrotoxicity and damaged epithelial defense via cyclooxygenase inhibition. C-phycocyanin (CPC) and Lycium barbarum polysaccharides (LBP), an active ingredient of Spirulina platensis and wolfberry, respectively, exerted antioxidation, anti-inflammation, and/or immunoregulation. The actions of CPC and/or LBP on gastric damage induced by aspirin were explored in rat gastric mucosal RGM-1 cells. Gastric injury was performed by 21 mM aspirin for 3 h after the pretreatment of CPC and/or LBP (100-500 μg/mL) for 24 h in RGM-1 cells. Proinflammatory, anti-inflammatory, and apoptotic markers were examined by ELISA or gel electrophoresis and Western blotting. Cell viability and interleukin 10 (IL-10) were reduced by aspirin. Increased proinflammatory markers, caspase 3 activity, and Bax protein were observed in RGM-1 cells with aspirin treatment. Aspirin elevated nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) activation, while CPC and/or LBP increased IL-10, and attenuated proinflammatory markers, Bax protein, NF-κB, and the activation of ERK and JNK. Therefore, CPC and/or LBP possess anti-inflammation by restraining the activation of the ERK signaling pathway, and LBP decreases apoptosis by suppressing the JNK signaling pathway activation in gastric RGM-1 cells with aspirin-induced epithelial damage.
Collapse
|
19
|
Chakroun I, Fedhila K, Maatallah M, Mzoughi R, Bakhrouf A, Krichen Y. The Synbiotic Effect of Probiotics and Dried Spirulina platensis or Phycocyanin on Biofilm Formation by Salmonella Typhimurium and Staphylococcus aureus. Foodborne Pathog Dis 2022; 19:655-662. [PMID: 36126311 DOI: 10.1089/fpd.2022.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate the synbiotic effect of probiotics and dried Spirulina platensis or phycocyanin on autoaggregation, coaggregation, and the inhibition of biofilm formation by Salmonella Typhimurium and Staphylococcus aureus on 96-well microtiter plates and Human colon carcinoma cells-116 surfaces. The results showed that the probiotics strains cultured in the presence of S. platensis exhibited the highest autoaggregation values, ranging between 68.5 and 74.2% after 24 h. All probiotic strains with or without S. platensis and phycocyanin showed coaggregation abilities with S. Typhimurium and S. aureus. Interestingly, significant effect of S. platensis and phycocyanin supplementation was observed on the inhibition of the biofilm formation by the selected pathogens during the competition, exclusion, and displacement on abiotic and biotic surfaces.
Collapse
Affiliation(s)
- Ibtissem Chakroun
- Laboratory of Analysis, Treatment and Valorisation of Environment Pollutants and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Kais Fedhila
- Laboratory of Analysis, Treatment and Valorisation of Environment Pollutants and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Makaoui Maatallah
- Laboratory of Analysis, Treatment and Valorisation of Environment Pollutants and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Ridha Mzoughi
- Laboratory of Analysis, Treatment and Valorisation of Environment Pollutants and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | - Amina Bakhrouf
- Laboratory of Analysis, Treatment and Valorisation of Environment Pollutants and Products, Faculty of Pharmacy, University of Monastir, Tunisia
| | | |
Collapse
|
20
|
The Antioxidant Activity of a Commercial and a Fractionated Phycocyanin on Human Skin Cells In Vitro. Molecules 2022; 27:molecules27165276. [PMID: 36014514 PMCID: PMC9413548 DOI: 10.3390/molecules27165276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
The protective effects for cells against chemical and UVA stress of a commercial phycocyanin (PC) for food use and a PC extracted from Arthrospira platensis (Spirulina) in phosphate buffer were assessed. The purity of the commercial PC, spectrophotometrically estimated as A620/A280 and confirmed by HPLC, was higher than that of the fractionated PC (2.0 vs. 1.5) but was twofold less concentrated. The oxygen radical antioxidant capacities (ORACs) of the commercial and fractionated PCs were 12,141 ± 1928 and 32,680 ± 3295 TE/100 g, respectively. The degradation of PCs upon exposure to UVA was spectrophotometrically estimated, and cytotoxicity was evaluated with the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) test on human fibroblasts and keratinocytes. A lower level of reactive oxygen species (ROS) was recorded in the two cell lines incubated with the commercial PC after menadione treatment (p < 0.01) and UVA exposure (p < 0.001) on fibroblasts after 5 min and keratinocytes up to 25 min, compared with controls. Differently, the fractionated PC was not protective and showed significant (p < 0.01) paradoxical prooxidant effects. Overall, the PC for food consumption demonstrated a high safety threshold and antioxidant ability to cells that, along with its coloring power, make it an excellent candidate for cosmetic formulations.
Collapse
|
21
|
Dufossé L. Back to nature, microbial production of pigments and colorants for food use. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 102:93-122. [PMID: 36064297 DOI: 10.1016/bs.afnr.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pigments-producing microorganisms are quite common in Nature. However, there is a long journey from the Petri dish to the market place. Twenty-five years ago, scientists wondered if such productions would remain a scientific oddity or become an industrial reality. The answer is not straightforward as processes using fungi, bacteria or yeasts can now indeed provide carotenoids or phycocyanin at an industrial level. Another production factor to consider is peculiar as Monascus red colored food is consumed by more than one billion Asian people; however, still banned in many other countries. European and American consumers will follow as soon as "100%-guaranteed" toxin-free strains (molecular engineered strains, citrinin gene deleted strains) will be developed and commercialized at a world level. For other pigmented biomolecules, some laboratories and companies invested and continue to invest a lot of money as any combination of new source and/or new pigment requires a lot of experimental work, process optimization, toxicological studies, and regulatory approval. Time will tell whether investments in pigments such as azaphilones or anthraquinones were justified. Future trends involve combinatorial engineering, gene knock-out, and the production of niche pigments not found in plants such as C50 carotenoids or aryl carotenoids.
Collapse
Affiliation(s)
- Laurent Dufossé
- Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, ESIROI Agroalimentaire, Ile de La Réunion, France.
| |
Collapse
|
22
|
Gogna S, Kaur J, Sharma K, Prasad R, Singh J, Bhadariya V, Kumar P, Jarial S. Spirulina- An Edible Cyanobacterium with Potential Therapeutic Health Benefits and Toxicological Consequences. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022:1-14. [PMID: 35916491 DOI: 10.1080/27697061.2022.2103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Spirulina is a blue-green algae which is cultivated not only for its maximum protein content but also due to the presence of other essential nutrients such as carbohydrates and vitamins (A, C and E). It is also a storehouse of minerals including iron, calcium, chromium, copper, magnesium, manganese, phosphorus, potassium, sodium and zinc. Simultaneously, γ- linolenic acid (an essential fatty acid), as well as pigments such as chlorophyll A and phycobiliproteins (C-phycocyanin, allophycocyanin and β-carotene), is also a major component of its rich nutritional profile. Spirulina is known to have various promising effects on the prevention of cancer, oxidative stress, obesity, diabetes, cardiovascular diseases and anemia. Moreover, it also plays a positive role in treating muscular cramps. The safety recommended dosage of Spirulina is approximately 3-10 g/d for adults and it's biological value (BV) is 75 with a net protein utilization (NPU) of 62. Spirulina does not have pericardium due to which it does not hinder the absorption of iron by chelation with phytates or oxalates. On the contrasting note, it may have some adverse effects due to the toxins (microcystins, β-methylamino-L-alanine (BMAA)) produced by Spirulina which might contribute to acute poisoning, cancer, liver damage as well as gastrointestinal disturbances. Its long-term consumption may also lead to the pathogenesis of Alzheimer's disease and Parkinson's disease. The current review focuses on the various aspects of spirulina including its cultivation, nutritional composition, extraction techniques, health benefits, adverse effects, industrial scope and market value which could be beneficial for its utilization in the development of value-added products and supplementary foods due to its high content of protein and bioavailability of nutrients.
Collapse
Affiliation(s)
- Simran Gogna
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Kartik Sharma
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkla, Thailand
| | - Rasane Prasad
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Vishesh Bhadariya
- Department of Chemical and Petroleum Engineering, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Prashant Kumar
- Department of Chemical and Petroleum Engineering, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sapna Jarial
- Department of Agricultural Economics & Extension, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
23
|
Pan-utai W, Iamtham S, Roytrakul S, Settachaimongkon S, Wattanasiritham LS, Boonbumrung S, Mookdasanit J, Sithtisarn S. Arthrospira platensis Mutagenesis for Protein and C-Phycocyanin Improvement and Proteomics Approaches. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060911. [PMID: 35743942 PMCID: PMC9227609 DOI: 10.3390/life12060911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023]
Abstract
Arthrospira (Spirulina) platensis is known for its use as a food supplement, with reported therapeutic properties including antiviral, anti-inflammatory and antioxidant activity. Arthrospira is also an excellent source of proteins and C-phycocyanin. The latter is a light-harvesting pigment-protein complex in cyanobacteria, located on the outer surface of the thylakoid membrane and comprising 40 to 60% of the total soluble protein in cells. Random mutagenesis is a useful tool as a non-genetically modified mutation method that has been widely used to generate mutants of different microorganisms. Exposure of microalgae or cyanobacteria to chemical stimuli affects their growth and many biological processes. Chemicals influence several proteins, including those involved in carbohydrate and energy metabolisms, photosynthesis and stress-related proteins (oxidative stress-reactive oxygen species (ROS) scavenging enzymes). Signal transduction pathways and ion transportation mechanisms are also impacted by chemical treatment, with changes causing the production of numerous biomolecules and stimulation of defence responses. This study compared the protein contents of A. platensis control and after mutagenesis using diethyl sulphate (DES) under various treatment concentrations for effective mutation of A. platensis. Results identified 1152 peptides using proteomics approaches. The proteins were classified into 23 functional categories. Random mutagenesis of A. platensis by DES was found to be highly effective for C-phycocyanin and protein production.
Collapse
Affiliation(s)
- Wanida Pan-utai
- Department of Applied Microbiology, Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
- Correspondence:
| | - Siriluck Iamtham
- Department of Science, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand;
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd., Pathum Thani 12120, Thailand;
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand;
| | - Ladda Sangduean Wattanasiritham
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (L.S.W.); (S.B.)
| | - Sumitra Boonbumrung
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900, Thailand; (L.S.W.); (S.B.)
| | - Juta Mookdasanit
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
| | - Sayamon Sithtisarn
- Department of Applied Microbiology, Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900, Thailand;
| |
Collapse
|
24
|
Improving the Thermal and Oxidative Stability of Food-Grade Phycocyanin from Arthrospira platensis by Addition of Saccharides and Sugar Alcohols. Foods 2022; 11:foods11121752. [PMID: 35741948 PMCID: PMC9222680 DOI: 10.3390/foods11121752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
The water-soluble pigment protein phycocyanin (C-PC) from cyanobacteria Arthrospira sp. is an excellent natural food colorant and nutritional supplement with a brilliant blue color. However, C-PC is highly unstable, especially at high temperatures and when exposed to oxidative stress. The lack of simple and economical methods for improving the stability of C-PC greatly limits the application of this functional protein in the food industry. This study investigated the effect of adding saccharides (glucose, mannose, galactose, and maltose) and sugar alcohols (mannitol and maltitol) on the stability of food-grade C-PC extracted from Arthrospira platensis; the relevant reaction kinetics were also analyzed. The results revealed that glucose, mannose, mannitol, galactose, and maltose could effectively improve the thermal stability of C-PC. This improvement was positively correlated with the concentration of the additives and decreased sharply when the temperature exceeded 60 °C. Furthermore, the results also revealed the instability of C-PC when subjected to oxidative stress and the effectiveness of glucose, mannose, mannitol, and maltose in preventing the oxidative degradation of C-PC. In general, this study demonstrates that glucose, mannose, mannitol, and maltose are promising compounds for promoting the thermal and oxidative stability of C-PC, providing an economical and effective method for C-PC preservation.
Collapse
|
25
|
Girmatsion M, Dong H, Abraha B, Mahmud A, Kasimala M, Gebremedhin H, Adhanom A, Lu G, Fangwei Y, Guo Y. A natural fluorescent protein for ciprofloxacin sensing and mechanism study using molecular docking and circular dichroism. Anal Chim Acta 2022; 1221:340082. [DOI: 10.1016/j.aca.2022.340082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/14/2022] [Accepted: 06/10/2022] [Indexed: 12/01/2022]
|
26
|
Dong H, Girmatsion M, Wang R, Lu G, Xie Y, Guo Y, Qian H, Yao W. Construction of fluorescent logic gates for the detection of mercury(II) and ciprofloxacin based on phycocyanin. Methods Appl Fluoresc 2022; 10. [PMID: 35584692 DOI: 10.1088/2050-6120/ac7123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022]
Abstract
Chemical pollutants such as heavy metals and antibiotics in the environment pose a huge threat to humans and animals. Our studies have demonstrated that the fluorescence of phycocyanin showed quenching responses towards both mercury (Hg2+) and ciprofloxacin (CIP), which acted in accordance with the "OR" molecular logic gate. In order to discriminate Hg2+ and CIP in application scenarios, cysteine (Cys) was utilized to design another "INHIBIT" logic gate, in which Hg2+ and Cys were the two inputs. Thus, an intelligent biosensor with dual-target identification capacity was successfully developed by using a fluorescent natural protein in an ingenious logic gate system.
Collapse
Affiliation(s)
- Han Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| | - Mogos Girmatsion
- Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| | - Ruoyu Wang
- Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| | - Gang Lu
- Safety & Quality Management Department, Inner Mongolia Mengniu Dairy (group) CO., LTD., Inner Mongolia Mengniu Dairy (group) CO., LTD., Hohhot, Inner Mongolia, 011500, CHINA
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University School of Food Science and Technology, Wuxi, Wuxi, Jiangsu, 214122, CHINA
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, CHINA
| |
Collapse
|
27
|
Dranseikienė D, Balčiūnaitė-Murzienė G, Karosienė J, Morudov D, Juodžiukynienė N, Hudz N, Gerbutavičienė RJ, Savickienė N. Cyano-Phycocyanin: Mechanisms of Action on Human Skin and Future Perspectives in Medicine. PLANTS (BASEL, SWITZERLAND) 2022; 11:1249. [PMID: 35567250 PMCID: PMC9101960 DOI: 10.3390/plants11091249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/03/2022]
Abstract
Cyano-phycocyanin is one of the active pigments of the blue-green algae and is usually isolated from the filamentous cyanobacteria Arthrospira platensis Gomont (Spirulina). Due to its multiple physiological functions and non-toxicity, cyano-phycocyanin may be a potential substance for the topical treatment of various skin diseases. Considering that the conventional medicine faces drug resistance, insufficient efficacy and side effects, the plant origin compounds can act as an alternative option. Thus, the aim of this paper was to review the wound healing, antimicrobial, antioxidative, anti-inflammatory, antimelanogenic and anticancer properties and mechanisms of cyano-phycocyanin topical activities on human skin. Moreover, possible applications and biotechnological requirements for pharmaceutical forms of cyano-phycocyanin for the treatment of various skin diseases are discussed in this review.
Collapse
Affiliation(s)
- Daiva Dranseikienė
- Department of Pharmacognosy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| | - Gabrielė Balčiūnaitė-Murzienė
- Faculty of Pharmacy, Institute of Pharmaceutical Technologies, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| | - Jūratė Karosienė
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania; (J.K.); (D.M.)
| | - Dmitrij Morudov
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania; (J.K.); (D.M.)
| | - Nomeda Juodžiukynienė
- Department of Veterinary Pathobiology, Faculty of Veterinary, Academy of Veterinary, Lithuanian University of Health Sciences, Tilzes St. 18, 47181 Kaunas, Lithuania;
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Pekarska St, 69, 79000 Lviv, Ukraine;
- Department of Pharmacy and Ecological Chemistry, University of Opole, Kopernika pl. 11a, 45-040 Opole, Poland
| | - Rima Jūratė Gerbutavičienė
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| | - Nijolė Savickienė
- Department of Pharmacognosy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| |
Collapse
|
28
|
Zhuang D, Tang DYY, Chew KW, Ling TC. Phycocyanin: A Natural Antioxidant to Combat Free Radicals. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666211221160338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Various research showed that antioxidants can effectively overcome the damage caused
by free radicals to human health. Therefore, antioxidants are identified as one of the main directions
in the development of health care and cosmetics products due to high demand in the market.
This review mainly focuses on the phycocyanin, a type of natural antioxidant mainly found in
cyanobacteria. This mini review summarizes the phycocyanin sources and numerous extraction
methods of phycocyanin along with the analytical methods and determine its ability to suppress
free radicals. Phycocyanin has been proven to play an important role in scavenging free radicals
and enhancing the body’s antioxidant capacity. However, there is a lack of long-term randomized
clinical trial results that can be used as evidence in showing the benefits of phycocyanin. The existing
phycocyanin extraction methods using solvents, ultrasonic-assisted, freeze-thaw, etc. can extract
high-quality phycocyanin efficiently and quickly. Scientists are also trying to incorporate
advanced technologies, such as "Industry 4.0" to optimize and enhance the industrial production of
phycocyanin. Lastly, this review also describes the difficulties faced during the phycocyanin production
or extraction process and financial obstacles in order to achieve the popularization of phycocyanin.
Collapse
Affiliation(s)
- Dingling Zhuang
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering. Faculty of Science and Engineering. University of Nottingham
Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering,
Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor Darul Ehsan, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
29
|
Zhang L, Kong D, Huang J, Wang Q, Shao L. The Therapeutic Effect and the Possible Mechanism of C-Phycocyanin in Lipopolysaccharide and Seawater-Induced Acute Lung Injury. Drug Des Devel Ther 2022; 16:1025-1040. [PMID: 35418745 PMCID: PMC8995161 DOI: 10.2147/dddt.s347772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
Background Seawater drowning-induced acute lung injury (ALI) is a severe clinical condition characterized by increased alveolar-capillary permeability, excessive inflammatory response, and refractory hypoxemia. C-phycocyanin (C-PC), a biliprotein found in blue-green algae such as spirulina platensis, is widely used in the food and dietary nutritional supplement fields due to its beneficial pharmacological effects. Previous studies have revealed that C-PC has anti-inflammatory, antioxidant, and anti-apoptotic activities. Purpose Therefore, this study investigated the protective effect and underlying mechanisms of C-PC on lipopolysaccharide (LPS) and seawater (SW) induced ALI (SW and LPS-induced ALI). Methods An SW and LPS mouse model of ALI mice was established through intratracheal administration of 5mg/kg LPS and 25% SW. Different doses of C-PC (100, 200 and 400 mg/kg) were administered by intraperitoneal injection for seven days. In addition, gap junction communication in RAW264.7 and MLE-12 cells was determined following stimulation with 25% SW and 10 μg/ml LPS after treatment with C-PC (120 μg/ml). Moreover, the arterial partial pressure of oxygen, lung wet/dry weight ratios, total protein content and MPO levels in the bronchoalveolar lavage fluid (BALF), and the histopathologic and ultrastructure staining of the lung tissues were determined. The oxidative stress index, levels of the pro-inflammatory mediators, epithelial cell viability and apoptosis, and the regulatory effect of C-PC on the NF-κB/NLRP3 axis were investigated. Results The results showed that C-PC significantly alleviated pathological damages, suppressed oxidative stress, inflammation and apoptosis, and enhanced the viability of epithelial cells in the lung tissues. Furthermore, C-PC was shown to inhibit activation of the NF-κB/NLRP3 pathway and the formation of the NLRP3 inflammasome complex. Conclusions In conclusion, C-PC shows promising therapeutic value in SW and LPS-induced ALI/ARDS, providing new insight into ALI/ARDS treatment.
Collapse
Affiliation(s)
- Leifang Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Deyi Kong
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Junxia Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Qiongfen Wang
- Zhoushan Institute of Calibration and Testing for Quality and Technical Supervision, Zhoushan, 316012, Zhejiang, People's Republic of China
| | - Lilin Shao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| |
Collapse
|
30
|
Izadi M, Latifi E. Comparison of the antibacterial properties of phycocyanin and its SNPs and their effects on rat blood cells and liver enzymes. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Phycocyanin is an important protein in cyanobacteria that has many medical and therapeutic properties. The aim of the present study was to compare the antibacterial properties of phycocyanin and its SNPs and to evaluate their effects on rat blood cells and liver enzymes.
Results
The UV absorption in phycocyanin was 620 nm but in phycocyanin nanoparticles was 420 nm. For fluorometry, the maximum emission peak of phycocyanin was 660 nm and that of phycocyanin-AgNO3 nanoparticles was 580 nm. PC-AgNp showed greater antibacterial effects than phycocyanin. In animal studies, it was found that the platelet count in both groups was higher than the control group. Red blood cells and white blood cells had changes. AST and ALT levels increased in both phycocyanin and nanoparticle groups and ALK levels decreased in both groups compared to the control group.
Conclusions
Examination of antibacterial activity showed that PC-AgNp showed more antibacterial effects than PC. Also, in the study of the effect of PC and NP-PC, accumulation of PC and C-Np in mice also altered blood cells and liver enzymes in rats.
Collapse
|
31
|
Phycocyanin Ameliorates Colitis-Associated Colorectal Cancer by Regulating the Gut Microbiota and the IL-17 Signaling Pathway. Mar Drugs 2022; 20:md20040260. [PMID: 35447933 PMCID: PMC9030732 DOI: 10.3390/md20040260] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Phycocyanin (PC) is a pigment-protein complex. It has been reported that PC exerts anti-colorectal cancer activities, although the underlying mechanism has not been fully elucidated. In the present study, azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mice were orally administrated with PC, followed by microbiota and transcriptomic analyses to investigate the effects of PC on colitis-associated cancer (CAC). Our results indicated that PC ameliorated AOM/DSS induced inflammation. PC treatment significantly reduced the number of colorectal tumors and inhibited proliferation of epithelial cell in CAC mice. Moreover, PC reduced the relative abundance of Firmicutes, Deferribacteres, Proteobacteria and Epsilonbacteraeota at phylum level. Transcriptomic analysis showed that the expression of genes involved in the intestinal barrier were altered upon PC administration, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the IL-17 signaling pathway was affected by PC treatment. The study demonstrated the protective therapeutic action of PC on CAC.
Collapse
|
32
|
Freeze–thaw-, enzyme-, ultrasound- and pulsed electric field-assisted extractions of C-phycocyanin from Spirulina platensis dry biomass. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Verni M, Dingeo C, Rizzello CG, Pontonio E. Lactic Acid Bacteria Fermentation and Endopeptidase Treatment Improve the Functional and Nutritional Features of Arthrospira platensis. Front Microbiol 2021; 12:744437. [PMID: 34956114 PMCID: PMC8692253 DOI: 10.3389/fmicb.2021.744437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed at investigating the effect of fermentation and enzymatic treatment on the degree of proteolysis of wet (WB), dried at low temperature (DB), and freeze-dried Spirulina (LB) proteins that affect the nutritional (e.g., amino acid content and profiles, and protein digestibility) and functional (e.g., antioxidant and antimicrobial activities) properties. The desiccation treatments influenced the unprocessed Spirulina characteristics because, compared with that in WB, peptides and free amino acids content was 73% lower in DB and 34% higher in LB. An integrated approach, including chromatographic and electrophoresis analyses, was used to evaluate the effect of the different bioprocessing options on protein profiles, release of peptides and amino acids, and the overall protein digestibility. Compared with the application of fermentation with the selected Lactiplantibacillus plantarum T0A10, the treatment with the endopeptidase Alcalase®, alone or combined, determined the most intense proteolysis. Moreover, the treatment with Alcalase® of LB allowed the release of potentially bioactive compounds that are able to inhibit Penicillium roqueforti growth, whereas the combination of fermentation with L. plantarum T0A10 and Alcalase® treatment increased Spirulina antioxidant properties, as determined by the scavenging activity toward ABTS radical (up to 60%) and antimicrobial activity against food pathogen Escherichia coli.
Collapse
Affiliation(s)
- Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Cinzia Dingeo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
34
|
Lin JY, Ng IS. Production, isolation and characterization of C-phycocyanin from a new halo-tolerant Cyanobacterium aponinum using seawater. BIORESOURCE TECHNOLOGY 2021; 342:125946. [PMID: 34562714 DOI: 10.1016/j.biortech.2021.125946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
A halo-tolerant Cyanobacterium aponinum PCC 10605 was applied for the first time to produce high-level C-phycocyanin (C-PC). Combined with chemical extraction with sodium phosphate buffer and physical treatment using high pressure homogenization, a higher titer of C-PC was achieved. The culture conditions were optimized by mixing nitrate and ammonia ions, 2% carbon dioxide, and conditional light intensity. Thus, strain PCC10605 produced the highest titer C-PC of 0.652 g/g-DCW in the N1A2 medium with 10% light intensity and 16:8 light-period on day 7. PCC10605 accumulated 0.51 g-CPC/g-DCW at 20 g/L NaCl, while it grew normally in seawater with 30 g/L salinity, thus confirmed that PCC10605 was halo-tolerant strain. Besides, PCC10605 survived in 0.12 g/L phosphate medium that has never been reported. Finally, the purified C-PC exhibited DPPH, superoxide scavenging activity and antibacterial activity, which displayed 87.6%, and 18.7% removal of free radical, and 1.98 cm of inhibition zone for Escherichia coli.
Collapse
Affiliation(s)
- Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
35
|
Raghu SV, Kudva AK, Rao S, Prasad K, Mudgal J, Baliga MS. Dietary agents in mitigating chemotherapy-related cognitive impairment (chemobrain or chemofog): first review addressing the benefits, gaps, challenges and ways forward. Food Funct 2021; 12:11132-11153. [PMID: 34704580 DOI: 10.1039/d1fo02391h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemobrain or chemofog is one of the important but less investigated side effects, where the cancer survivors treated with chemotherapy develop long-term cognitive impairments, affecting their quality of life. The biological mechanisms triggering the development of chemobrain are largely unknown. However, a literature study suggests the generation of free radicals, oxidative stress, inflammatory cytokines, epigenetic chromatin remodeling, decreased neurogenesis, secretion of brain-derived neurotropic factor (BDNF), dendritic branching, and neurotransmitter release to be the cumulative contributions to the ailment. Unfortunately, there is no means to prevent/mitigate the development and intensity of chemobrain. Given the lack of effective prevention strategies or treatments, preclinical studies have been underway to ascertain the usefulness of natural products in mitigating chemobrain in the recent past. Natural products used in diets have been shown to provide beneficial effects by inhibition of free radicals, oxidative stress, inflammatory processes, and/or concomitant upregulation of various cell survival proteins. For the first time, this review focuses on the published effects of astaxanthin, omega-3 fatty acids, ginsenoside, cotinine, resveratrol, polydatin, catechin, rutin, naringin, curcumin, dehydrozingerone, berberine, C-phycocyanin, the higher fungi Cordyceps militaris, thyme (Thymus vulgaris) and polyherbal formulation Mulmina™ in mitigating cognitive impairments in preclinical models of study, and also addresses their potential neuro-therapeutic mechanisms and applications in preventing/ameliorating chemobrain.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, Karnataka 574199, India
| | - Suresh Rao
- Radiation Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Krishna Prasad
- Medical Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | | |
Collapse
|
36
|
Tan HT, Yusoff FM, Khaw YS, Ahmad SA, Shaharuddin NA. Uncovering Research Trends of Phycobiliproteins Using Bibliometric Approach. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112358. [PMID: 34834721 PMCID: PMC8622606 DOI: 10.3390/plants10112358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Phycobiliproteins are gaining popularity as long-term, high-value natural products which can be alternatives to synthetic products. This study analyzed research trends of phycobiliproteins from 1909 to 2020 using a bibliometric approach based on the Scopus database. The current findings showed that phycobiliprotein is a burgeoning field in terms of publications outputs with "biochemistry, genetics, and molecular biology" as the most related and focused subject. The Journal of Applied Phycology was the most productive journal in publishing articles on phycobiliproteins. Although the United States of America (U.S.A.) contributed the most publications on phycobiliproteins, the Chinese Academy of Sciences (China) is the institution with the largest number of publications. The most productive author on phycobiliproteins was Glazer, Alexander N. (U.S.A.). The U.S.A. and Germany were at the forefront of international collaboration in this field. According to the keyword analysis, the most explored theme was the optimization of microalgae culture parameters and phycobiliproteins extraction methods. The bioactivity properties and extraction of phycobiliproteins were identified as future research priorities. Synechococcus and Arthrospira were the most cited genera. This study serves as an initial step in fortifying the phycobiliproteins market, which is expected to exponentially expand in the future. Moreover, further research and global collaboration are necessary to commercialize phycobiliproteins and increase the consumer acceptability of the pigments and their products.
Collapse
Affiliation(s)
- Hui Teng Tan
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.T.T.); (Y.S.K.)
| | - Fatimah Md. Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yam Sim Khaw
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.T.T.); (Y.S.K.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.A.A.); (N.A.S.)
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.A.A.); (N.A.S.)
| |
Collapse
|
37
|
Ulagesan S, Nam TJ, Choi YH. Extraction and Purification of R-Phycoerythrin Alpha Subunit from the Marine Red Algae Pyropia Yezoensis and Its Biological Activities. Molecules 2021; 26:molecules26216479. [PMID: 34770894 PMCID: PMC8587297 DOI: 10.3390/molecules26216479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 02/03/2023] Open
Abstract
Phycoerythrin is a major light-harvesting pigment of red algae and cyanobacteria that is widely used as a fluorescent probe or as a colorant in the food and cosmetic industries. In this study, phycoerythrin was extracted from the red algae Pyropia yezoensis and purified by ammonium sulfate precipitation and various chromatography methods. The purified phycoerythrin was analyzed by UV-visible and fluorescence spectroscopy. The isolated pigment had the typical spectrum of R-phycoerythrin, with a trimmer state with absorbance maxima at 497, 536, and 565 nm. It was further purified and identified by LC-MS/MS and Mascot search. It showed a 100% sequence similarity with the R-phycoerythrin alpha subunit of Pyropia yezoensis. The molecular mass was 17.97 kDa. The antioxidant activity of the purified R-phycoerythrin alpha subunit was analyzed. It showed significant antioxidant activity in ABTS and FRAP assays and had significant cytotoxicity against HepG2 cells.
Collapse
Affiliation(s)
- Selvakumari Ulagesan
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Nam-gu, Busan 48513, Korea;
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan 46041, Korea;
| | - Youn-Hee Choi
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Nam-gu, Busan 48513, Korea;
- Institute of Fisheries Sciences, Pukyong National University, Gijang-gun, Busan 46041, Korea;
- Correspondence:
| |
Collapse
|
38
|
Wu J, Gu X, Yang D, Xu S, Wang S, Chen X, Wang Z. Bioactive substances and potentiality of marine microalgae. Food Sci Nutr 2021; 9:5279-5292. [PMID: 34532034 PMCID: PMC8441504 DOI: 10.1002/fsn3.2471] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/30/2021] [Accepted: 06/12/2021] [Indexed: 02/05/2023] Open
Abstract
Microalgae is one of the most important components in the aquatic ecosystem, and they are increasingly used in food and medicine production for human consumption due to their rapid growth cycle and survival ability in the harsh environment. Now, the exploration of microalgae has been gradually deepening, mainly focused on the field of nutrition, medicine, and cosmetics. A great deal of studies has shown that microalgae have a variety of functions in regulating the body health and preventing disease, such as nitrogen fixation, antitumor, antivirus, antioxidation, anti-inflammatory, and antithrombotic. Furthermore, microalgae can synthesize various high-valued bioactive substances, such as proteins, lipids, polysaccharides, and pigments. In this paper, we have briefly reviewed the research progress of main bioactive components in microalgae, proteins, lipids, polysaccharides, pigments, and other nutrients included, as well as their present application situation. This paper can provide the guidance for research and development of industrial production of microalgae.
Collapse
Affiliation(s)
- Jinhong Wu
- South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation & UtilizationMinistry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Fishery Ecology and EnvironmentGuangzhouChina
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xinzhe Gu
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Danlu Yang
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shannan Xu
- South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation & UtilizationMinistry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Fishery Ecology and EnvironmentGuangzhouChina
- Scientific Observation and Research Field Station of Pearl River Estuary EcosystemGuangzhouChina
- Southern Marine Science and Engineering
Guangdong LaboratoryGuangzhouChina
| | - Shaoyun Wang
- College of Biological Science and TechnologyFuzhou UniversityFuzhouChina
| | - Xu Chen
- College of Biological Science and TechnologyFuzhou UniversityFuzhouChina
| | - Zhengwu Wang
- Department of Food Science and EngineeringSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
39
|
Insulin Receptor Substrate 1 Is Involved in the Phycocyanin-Mediated Antineoplastic Function of Non-Small Cell Lung Cancer Cells. Molecules 2021; 26:molecules26164711. [PMID: 34443299 PMCID: PMC8401963 DOI: 10.3390/molecules26164711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Phycocyanin, derived from marine algae, is known to have noteworthy antineoplastic properties. However, the underlying mechanism involved in phycocyanin-mediated anti-growth function on non-small cell lung cancer (NSCLC) cells is still ambiguous. Here, we investigated the mechanism of action of phycocyanin on H1299, A549, and LTEP-a2 cells. According to the results obtained, insulin receptor substrate 1 (IRS-1) expression was reduced by phycocyanin. Cell phenotype tests showed that siRNA knockdown of IRS-1 expression significantly inhibited the growth, migration, colony formation, but promoted the apoptosis of NSCLC cells. Meanwhile, phycocyanin and IRS-1 siRNA treatment both reduced the PI3K-AKT activities in NSCLC cells. Moreover, overexpression of IRS-1 accelerated the proliferation, colony formation, and migration rate of H1299, A549, and LTEP-a2 cells, which was contradicting to the knockdown results. Overall, this study uncovered a regulatory mechanism by which phycocyanin inhibited the growth of NSCLC cells via IRS-1/AKT pathway, laying the foundation for the potential target treatment of NSCLC.
Collapse
|
40
|
Production and Purification of Novel Hypocholesterolemic Peptides from Lactic Fermented Spirulina platensis through High Hydrostatic Pressure-Assisted Protease Hydrolysis. Catalysts 2021. [DOI: 10.3390/catal11080873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This research focuses on the proteolytic capacity of Spirulina platensis and their hypocholesterolemic activity via the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) inhibitory activity. To select suitable proteases for releasing peptides with high HMGR-inhibiting activity from S. platensis, eight commonly used commercial proteases were used in protease hydrolysis under high hydrostatic pressure (HHP, 100 MPa or 0.1 MPa) at 50 °C for 24 h. The Peptidase R group had the highest inhibitory capacity (67%). First, S. platensis was fermented with seven mixed lactic acid bacteria for 5 h at 42 °C. This was followed by the addition of Peptidase R under high hydrostatic pressure (100 MPa at 50 °C) for 0–6 h of enzymatic hydrolysis (HHP-FH-PR6) to determine the hydrolytic capacity of S. platensis protein. As the hydrolysis time extended to 6 h, the peptide content increased from 96.8 mg/mL to 339.8 mg/mL, and the free amino acid content increased from 24 mg/mL to 115.2 mg/mL, while inhibition of HMGR increased from 67.0% to 78.4%. In an experimental simulation of in vitro gastrointestinal digestion, the IC50 of HHP-FH-PR6G on HMGR was 3.5 μg peptide/mL. Peptides with inhibitory activity on HMGR were purified, and their sequences were identified as Arg-Cys-Asp and Ser-Asn-Val (IC50: 6.9 and 20.1 μM, respectively).
Collapse
|
41
|
İlter I, Koç M, Demirel Z, Conk Dalay M, Kaymak Ertekin F. Improving the stability of phycocyanin by spray dried microencapsulation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Işıl İlter
- Faculty of Engineering, Food Engineering Department Ege University İzmir Turkey
| | - Mehmet Koç
- Faculty of Engineering, Food Engineering Department Aydın Adnan Menderes University Aydın Turkey
| | - Zeliha Demirel
- Faculty of Engineering, Bio Engineering Department Ege University İzmir Turkey
| | - Meltem Conk Dalay
- Faculty of Engineering, Bio Engineering Department Ege University İzmir Turkey
| | | |
Collapse
|
42
|
Ruiz-Domínguez M, Fuentes J, Mendiola J, Cerezal-Mezquita P, Morales J, Vílchez C, Ibáñez E. Bioprospecting of cyanobacterium in Chilean coastal desert, Geitlerinema sp. molecular identification and pressurized liquid extraction of bioactive compounds. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Aoki J, Sasaki D, Asayama M. Development of a method for phycocyanin recovery from filamentous cyanobacteria and evaluation of its stability and antioxidant capacity. BMC Biotechnol 2021; 21:40. [PMID: 34134665 PMCID: PMC8210370 DOI: 10.1186/s12896-021-00692-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Most commercial phycocyanins are extracted from a filamentous cyanobacterium, Arthrospira (Spirulina) platensis. Owing to the expenses of culture and complexities of the physical and chemical methods of phycocyanin purification, a more effective and simple method is required. RESULTS We developed a new method for efficiently recovering the blue pigment protein, phycocyanin, from unique filamentous cyanobacteria, Pseudanabaena sp. ABRG5-3 and Limnothrix sp. SK1-2-1. The cells were cultivated in economy medium BG11 and lysed by adding water in a 1:16 ratio of wet cells to water. After extraction and purification, 28-30% dry cell weight of phycocyanin was obtained and its purity was confirmed. The stabilities of the phycocyanins at different pH in the presence of high temperature and light conditions and their antioxidant abilities were assessed. Results indicated that the phycocyanins were stable and possessed antioxidant properties. Interestingly, the Pseudanabaena phycocyanin was less likely to deteriorate under acidic conditions. CONCLUSIONS Overall, we developed a promising and novel method for producing high functional phycocyanin concentrations at a low cost. The possibilities of adapting this new phycocyanin biorefinery to unique bioreactor utilization have also been discussed.
Collapse
Affiliation(s)
- Jinichi Aoki
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0393, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho Fuchu-shi, Tokyo 183-8509, Japan
| | - Daisaku Sasaki
- BioX Chemical Industries Co. Ltd., 2-20-11 Inokuchidai, Nishi-ku, Hiroshima 733-0844, Japan
| | - Munehiko Asayama
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Ibaraki 300-0393, Japan.
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
44
|
Potential applications of algae in biochemical and bioenergy sector. 3 Biotech 2021; 11:296. [PMID: 34136333 DOI: 10.1007/s13205-021-02825-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023] Open
Abstract
Algae have gained substantial importance as the most promising potential green fuel source across the globe and is on growing demand due to their antioxidant, anticancer, antiviral, antihypertensive, cholesterol reducing and thickening properties. Therefore, it has vast range of application in medicines, pharmaceutical, cosmetics, paper and nutraceutical industries. In this work, the remarkable ability of algae to convert CO2 and other toxic compounds in atmosphere to potential biofuels, foods, feeds and high-value bioactive compounds is reviewed. Algae produce approximately 50% of the earth's oxygen using its photosynthetic activity, thus acting as a potent tool to mitigate the effects of air pollution. Further, the applicability of algae as a desirable energy source has also been discussed, as they have the potential to serve as an effective alternative to intermittent renewable energy; and also, to combustion-based fossil fuel energy, making them effective for advanced biofuel conversions. This work also evaluates the current applications of algae and the implications of it as a potential substrate for bioplastic, natural alternative to inks and for making paper besides high-value products. In addition, the scope for integrated biorefinery approach is also briefly explored in terms of economic aspects at the industrial scale, as such energy conversion mechanisms are directly linked with sustainability, thus providing a positive overall energy outlook.
Collapse
|
45
|
Gligorijević N, Minić S, Radibratović M, Papadimitriou V, Nedić O, Sotiroudis TG, Nikolić MR. Nutraceutical phycocyanobilin binding to catalase protects the pigment from oxidation without affecting catalytic activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119483. [PMID: 33515920 DOI: 10.1016/j.saa.2021.119483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/02/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Phycocyanobilin is a dark blue linear tetrapyrrole chromophore covalently attached to protein subunits of phycobiliproteins present in the light-harvesting complexes of the cyanobacteria Arthrospira platensis (Spirulina "superfood"). It shows exceptional health-promoting properties and emerging use in various fields of bioscience and industry. This study aims to examine the mutual impact of phycocyanobilin interactions with catalase, a life-essential antioxidant enzyme. Fluorescence quenching experiments demonstrated moderate binding (Ka of 3.9 × 104 M-1 at 25 °C; n = 0.89) (static type), while van't Hoff plot points to an enthalpically driven ligand binding (ΔG = -28.2 kJ mol-1; ΔH = -41.9 kJ mol-1). No significant changes in protein secondary structures (α-helix content ~22%) and thermal protein stability in terms of enzyme tetramer subunits (Tm ~ 64 °C) were detected upon ligand binding. Alterations in the tertiary catalase structure were found without adverse effects on enzyme activity (~2 × 106 IU/mL). The docking study results indicated that the ligand most likely binds to amino acid residues (Asn141, Arg 362, Tyr369 and Asn384) near the cavity between the enzyme homotetramer subunits not related to the active site. Finally, complex formation protects the pigment from free-radical induced oxidation (bleaching), suggesting possible prolongation of its half-life and bioactivity in vivo if bound to catalase.
Collapse
Affiliation(s)
- Nikola Gligorijević
- INEP Institute for Application of Nuclear Energy, University of Belgrade, Belgrade-Zemun, Serbia
| | - Simeon Minić
- Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Milica Radibratović
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | | - Olgica Nedić
- INEP Institute for Application of Nuclear Energy, University of Belgrade, Belgrade-Zemun, Serbia
| | - Theodore G Sotiroudis
- National Hellenic Research Foundation, Institute of Chemical Biology, Athens, Greece
| | - Milan R Nikolić
- Department of Biochemistry & Center of Excellence for Molecular Food Sciences, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia.
| |
Collapse
|
46
|
Orona-Navar A, Aguilar-Hernández I, Nigam KDP, Cerdán-Pasarán A, Ornelas-Soto N. Alternative sources of natural pigments for dye-sensitized solar cells: Algae, cyanobacteria, bacteria, archaea and fungi. J Biotechnol 2021; 332:29-53. [PMID: 33771626 DOI: 10.1016/j.jbiotec.2021.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Abstract
Dye-sensitized solar cells have been of great interest in photovoltaic technology due to their capacity to convert energy at a low cost. The use of natural pigments means replacing expensive chemical synthesis processes by easily extractable pigments that are non-toxic and environmentally friendly. Although most of the pigments used for this purpose are obtained from higher plants, there are potential alternative sources that have been underexploited and have shown encouraging results, since pigments can also be obtained from organisms like bacteria, cyanobacteria, microalgae, yeast, and molds, which have the potential of being cultivated in bioreactors or optimized by biotechnological processes. The aforementioned organisms are sources of diverse sensitizers like photosynthetic pigments, accessory pigments, and secondary metabolites such as chlorophylls, bacteriochlorophylls, carotenoids, and phycobiliproteins. Moreover, retinal proteins, photosystems, and reaction centers from these organisms can also act as sensitizers. In this review, the use of natural sensitizers extracted from algae, cyanobacteria, bacteria, archaea, and fungi is assessed. The reported photoconversion efficiencies vary from 0.001 % to 4.6 % for sensitizers extracted from algae and microalgae, 0.004 to 1.67 % for bacterial sensitizers, 0.07-0.23 % for cyanobacteria, 0.09 to 0.049 % for archaea and 0.26-2.3 % for pigments from fungi.
Collapse
Affiliation(s)
- A Orona-Navar
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, N.L., C.P. 64849, Mexico
| | - I Aguilar-Hernández
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, N.L., C.P. 64849, Mexico.
| | - K D P Nigam
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, N.L., C.P. 64849, Mexico; Department of Chemical Engineering at Indian Institute of Technology, Delhi, India
| | - Andrea Cerdán-Pasarán
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico
| | - N Ornelas-Soto
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, N.L., C.P. 64849, Mexico.
| |
Collapse
|
47
|
Niccolai A, Venturi M, Galli V, Pini N, Rodolfi L, Biondi N, Granchi L, Tredici MR. Vegetable oils protect phycocyanin from thermal degradation during cooking of spirulina-based “crostini”. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
A Novel Thermostable and Alkaline Protease Produced from Bacillus stearothermophilus Isolated from Olive Oil Mill Sols Suitable to Industrial Biotechnology. Molecules 2021; 26:molecules26041139. [PMID: 33672726 PMCID: PMC7924394 DOI: 10.3390/molecules26041139] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 01/05/2023] Open
Abstract
This study was conducted to identify a new alkaline and thermophilic protease (Ba.St.Pr) produced from Bacillus stearothermophilus isolated from olive oil mill sols and to evaluate its culture conditions, including temperature, pH, carbon and nitrogen sources, and incubation time. The optimum culture conditions for cell growth (10 g/L) and protease production (5050 U/mL) were as follows: temperature 55 °C, pH 10, inoculation density 8 × 108 CFU/mL, and incubation time 24 h. The use of 3% yeast extract as the nitrogen sources and galactose (7.5 g/L) as the carbon sources enhanced both cell growth and protease production. Using reversed-phase analytical HPLC on C-8 column, the new protease was purified with a molecular mass of approximately 28 kDa. The N-terminal sequence of Ba.St.Pr exhibited a high level of identity of approximately 95% with those of Bacillus strains. Characterization under extreme conditions revealed a novel thermostable and alkaline protease with a half-life time of 187 min when incubated with combined Ca2+/mannitol. Ba.St.Pr demonstrated a higher stability in the presence of surfactant, solvent, and Ca2+ ions. Consequently, all the evaluated activity parameters highlighted the promising properties of this bacterium for industrial and biotechnological applications.
Collapse
|
49
|
Hsieh SY, Lian YZ, Lin IH, Yang YC, Tinkov AA, Skalny AV, Chao JCJ. Combined Lycium babarum polysaccharides and C-phycocyanin increase gastric Bifidobacterium relative abundance and protect against gastric ulcer caused by aspirin in rats. Nutr Metab (Lond) 2021; 18:4. [PMID: 33407626 PMCID: PMC7789774 DOI: 10.1186/s12986-020-00538-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs such as aspirin are used for the treatment of cardiovascular disease. Chronic use of low-dose aspirin is associated with the occurrence of gastric ulcer. The aim of this study was to investigate the healing potential of Lycium barbarum polysaccharides (LBP) from Chinese Goji berry and C-phycocyanin (CPC) from Spirulina platensis on gastric ulcer in rats. METHODS Male Sprague-Dawley rats were divided into five groups: normal, aspirin (700 mg/kg bw), LBP (aspirin + 100 mg/kg bw/d LBP), CPC (aspirin + 50 mg/kg bw/d CPC), and MIX (aspirin + 50 mg/kg bw/d LBP + 25 mg/kg bw/d CPC) groups. Gastric ulcer was developed by daily oral feeding of aspirin for 8 weeks. Treatments were given orally a week before ulcer induction for 9 weeks. RESULTS The MIX group elevated gastric cyclooxygenase-1, prostaglandin E2, and total nitrite and nitrate levels by 139%, 86%, and 66%, respectively, compared with the aspirin group (p < 0.05). Moreover, the MIX group reduced lipid peroxides malondialdehyde levels by 78% (p < 0.05). The treatment of LBP and/or CPC increased gastric Bifidobacterium relative abundance by 2.5-4.0 times compared with the aspirin group (p < 0.05). CONCLUSIONS We conclude that combined LBP and CPC enhance gastroprotective factors, inhibit lipid peroxidation, and increase gastric Bifidobacterium relative abundance. Combined LBP and CPC have protective potential against gastric ulcer caused by aspirin in rats.
Collapse
Affiliation(s)
- Shu-Yu Hsieh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, 11031, Taiwan
| | - Yu Zhi Lian
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, 11031, Taiwan
| | - I-Hsuan Lin
- Research Center of Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Chen Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110, Taiwan
| | - Alexey A Tinkov
- Sechenov First Moscow State Medical University, Moscow, Russia
- K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Anatoly V Skalny
- Sechenov First Moscow State Medical University, Moscow, Russia
- K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Jane C-J Chao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, 11031, Taiwan.
- Master Program in Global Health and Development, Taipei Medical University, Taipei 110, Taiwan.
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
50
|
A hybrid biomaterial of biosilica and C-phycocyanin for enhanced photodynamic effect towards tumor cells. Biochem Biophys Res Commun 2020; 533:573-579. [PMID: 32981676 DOI: 10.1016/j.bbrc.2020.09.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022]
Abstract
Intricate mesoporous biosilica has many biomedical applications as a nanocarrier. However, its potential use in photodynamic therapy (PDT) has received little attention. This work reports the first fabrication of bio-engineered materials by covalently conjugating C-phycocyanin (C-PC), a natural photosensitizer, to biosilica for the PDT of tumor-associated macrophages. The resulting hybrid material showed outstanding photodynamic activity under 620 nm laser irradiation. Furthermore, it enhanced the relatively weak photodynamic effect of C-PC. This study also explored methods of biofunctionalizing biosilica for cancer phototherapy, a new pharmacological application of non-toxic C-PC.
Collapse
|