1
|
Ma F, Tsou PS, Gharaee-Kermani M, Plazyo O, Xing X, Kirma J, Wasikowski R, Hile GA, Harms PW, Jiang Y, Xing E, Nakamura M, Ochocki D, Brodie WD, Pillai S, Maverakis E, Pellegrini M, Modlin RL, Varga J, Tsoi LC, Lafyatis R, Kahlenberg JM, Billi AC, Khanna D, Gudjonsson JE. Systems-based identification of the Hippo pathway for promoting fibrotic mesenchymal differentiation in systemic sclerosis. Nat Commun 2024; 15:210. [PMID: 38172207 PMCID: PMC10764940 DOI: 10.1038/s41467-023-44645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
Systemic sclerosis (SSc) is a devastating autoimmune disease characterized by excessive production and accumulation of extracellular matrix, leading to fibrosis of skin and other internal organs. However, the main cellular participants in SSc skin fibrosis remain incompletely understood. Here using differentiation trajectories at a single cell level, we demonstrate a dual source of extracellular matrix deposition in SSc skin from both myofibroblasts and endothelial-to-mesenchymal-transitioning cells (EndoMT). We further define a central role of Hippo pathway effectors in differentiation and homeostasis of myofibroblast and EndoMT, respectively, and show that myofibroblasts and EndoMTs function as central communication hubs that drive key pro-fibrotic signaling pathways in SSc. Together, our data help characterize myofibroblast differentiation and EndoMT phenotypes in SSc skin, and hint that modulation of the Hippo pathway may contribute in reversing the pro-fibrotic phenotypes in myofibroblasts and EndoMTs.
Collapse
Affiliation(s)
- Feiyang Ma
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pei-Suen Tsou
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Olesya Plazyo
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xianying Xing
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Kirma
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rachael Wasikowski
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Grace A Hile
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Enze Xing
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mio Nakamura
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Danielle Ochocki
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - William D Brodie
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shiv Pillai
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Matteo Pellegrini
- Dept of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert L Modlin
- Dept of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - John Varga
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Robert Lafyatis
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Dinesh Khanna
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA.
| | | |
Collapse
|
2
|
Patnaik E, Lyons M, Tran K, Pattanaik D. Endothelial Dysfunction in Systemic Sclerosis. Int J Mol Sci 2023; 24:14385. [PMID: 37762689 PMCID: PMC10531630 DOI: 10.3390/ijms241814385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Systemic sclerosis, commonly known as scleroderma, is an autoimmune disorder characterized by vascular abnormalities, autoimmunity, and multiorgan fibrosis. The exact etiology is not known but believed to be triggered by environmental agents in a genetically susceptible host. Vascular symptoms such as the Raynaud phenomenon often precede other fibrotic manifestations such as skin thickening indicating that vascular dysfunction is the primary event. Endothelial damage and activation occur early, possibly triggered by various infectious agents and autoantibodies. Endothelial dysfunction, along with defects in endothelial progenitor cells, leads to defective angiogenesis and vasculogenesis. Endothelial to mesenchymal cell transformation is another seminal event during pathogenesis that progresses to tissue fibrosis. The goal of the review is to discuss the molecular aspect of the endothelial dysfunction that leads to the development of systemic sclerosis.
Collapse
Affiliation(s)
- Eshaan Patnaik
- Department of Biology, Memphis University School, Memphis, TN 38119, USA;
| | - Matthew Lyons
- Division of Rheumatology, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA; (M.L.); (K.T.)
| | - Kimberly Tran
- Division of Rheumatology, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA; (M.L.); (K.T.)
| | - Debendra Pattanaik
- Division of Rheumatology, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA; (M.L.); (K.T.)
| |
Collapse
|
3
|
Lazzaroni MG, Piantoni S, Angeli F, Bertocchi S, Franceschini F, Airò P. A Narrative Review of Pathogenetic and Histopathologic Aspects, Epidemiology, Classification Systems, and Disease Outcome Measures in Systemic Sclerosis. Clin Rev Allergy Immunol 2023; 64:358-377. [PMID: 35254622 PMCID: PMC10167186 DOI: 10.1007/s12016-022-08929-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 11/03/2022]
Abstract
Systemic sclerosis (SSc) is a rare systemic autoimmune disease, characterized by the presence of three main actors: vasculopathy, immune activation, and fibrosis. This pathologic process is then translated in a clinical picture with great variability among different patients in terms of type of organ involvement, disease severity and prognosis. This heterogeneity is a main feature of SSc, which, in addition to the presence of early phases of the disease characterized by mild symptoms, can explain the high difficulty in establishing classification criteria, and in defining patients' subsets and disease outcomes. The definition of disease outcomes is particularly relevant in the setting of clinical trials, where the aim is to provide reliable endpoints, able to measure the magnitude of the efficacy of a certain drug or intervention. For this reason, in the last years, increasing efforts have been done to design measures of disease activity, damage, severity, and response to treatment, often in the context of composite indexes. When considering disease outcomes, the experience of the patient represents a relevant and complementary aspect. The tools able to capture this experience, the patient-reported outcomes, have been increasingly used in the last years in clinical practice and in clinical trials, both as primary and secondary endpoints. This comprehensive narrative review on SSc will therefore cover pathogenetic and histopathologic aspects, epidemiology, classification systems, and disease outcome measures, in order to focus on issues that are relevant for clinical research and design of clinical trials.
Collapse
Affiliation(s)
- Maria-Grazia Lazzaroni
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, ASST Spedali Civili of Brescia, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Silvia Piantoni
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, ASST Spedali Civili of Brescia, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Fabrizio Angeli
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, ASST Spedali Civili of Brescia, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Stefania Bertocchi
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, ASST Spedali Civili of Brescia, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Franco Franceschini
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, ASST Spedali Civili of Brescia, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| | - Paolo Airò
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, ASST Spedali Civili of Brescia, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| |
Collapse
|
4
|
Sisto M, Lisi S. Immune and Non-Immune Inflammatory Cells Involved in Autoimmune Fibrosis: New Discoveries. J Clin Med 2023; 12:jcm12113801. [PMID: 37297996 DOI: 10.3390/jcm12113801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Fibrosis is an important health problem and its pathogenetic activation is still largely unknown. It can develop either spontaneously or, more frequently, as a consequence of various underlying diseases, such as chronic inflammatory autoimmune diseases. Fibrotic tissue is always characterized by mononuclear immune cells infiltration. The cytokine profile of these cells shows clear proinflammatory and profibrotic characteristics. Furthermore, the production of inflammatory mediators by non-immune cells, in response to several stimuli, can be involved in the fibrotic process. It is now established that defects in the abilities of non-immune cells to mediate immune regulation may be involved in the pathogenicity of a series of inflammatory diseases. The convergence of several, not yet well identified, factors results in the aberrant activation of non-immune cells, such as epithelial cells, endothelial cells, and fibroblasts, that, by producing pro-inflammatory molecules, exacerbate the inflammatory condition leading to the excessive and chaotic secretion of extracellular matrix proteins. However, the precise cellular mechanisms involved in this process have not yet been fully elucidated. In this review, we explore the latest discoveries on the mechanisms that initiate and perpetuate the vicious circle of abnormal communications between immune and non-immune cells, responsible for fibrotic evolution of inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
5
|
Hu M, Yao Z, Xu L, Peng M, Deng G, Liu L, Jiang X, Cai X. M2 macrophage polarization in systemic sclerosis fibrosis: pathogenic mechanisms and therapeutic effects. Heliyon 2023; 9:e16206. [PMID: 37234611 PMCID: PMC10208842 DOI: 10.1016/j.heliyon.2023.e16206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma), is an autoimmune rheumatic disease characterized by fibrosis of the skin and internal organs, and vasculopathy. Preventing fibrosis by targeting aberrant immune cells that drive extracellular matrix (ECM) over-deposition is a promising therapeutic strategy for SSc. Previous research suggests that M2 macrophages play an essential part in the fibrotic process of SSc. Targeted modulation of molecules that influence M2 macrophage polarization, or M2 macrophages, may hinder the progression of fibrosis. Here, in an effort to offer fresh perspectives on the management of scleroderma and fibrotic diseases, we review the molecular mechanisms underlying the regulation of M2 macrophage polarization in SSc-related organ fibrosis, potential inhibitors targeting M2 macrophages, and the mechanisms by which M2 macrophages participate in fibrosis.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhongliu Yao
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Li Xu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Muzi Peng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guiming Deng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liang Liu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xueyu Jiang
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Yueyang Hospital of Chinese Medicine, Hunan University of Chinese Medicine, Yueyang, Hunan 414000, China
| | - Xiong Cai
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
6
|
Wang E, Wang H, Chakrabarti S. Endothelial-to-mesenchymal transition: An underappreciated mediator of diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1050540. [PMID: 36777351 PMCID: PMC9911675 DOI: 10.3389/fendo.2023.1050540] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Diabetes and its complications represent a great burden on the global healthcare system. Diabetic complications are fundamentally diseases of the vasculature, with endothelial cells being the centerpiece of early hyperglycemia-induced changes. Endothelial-to-mesenchymal transition is a tightly regulated process that results in endothelial cells losing endothelial characteristics and developing mesenchymal traits. Although endothelial-to-mesenchymal transition has been found to occur within most of the major complications of diabetes, it has not been a major focus of study or a common target in the treatment or prevention of diabetic complications. In this review we summarize the importance of endothelial-to-mesenchymal transition in each major diabetic complication, examine specific mechanisms at play, and highlight potential mechanisms to prevent endothelial-to-mesenchymal transition in each of the major chronic complications of diabetes.
Collapse
|
7
|
Rajput PK, Sharma JR, Yadav UCS. Cellular and molecular insights into the roles of visfatin in breast cancer cells plasticity programs. Life Sci 2022; 304:120706. [PMID: 35691376 DOI: 10.1016/j.lfs.2022.120706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022]
Abstract
Obesity has reached a pandemic proportion and is responsible for the augmentation of multimorbidity including certain cancers. With the rise in obesity amongst the female population globally, a concomitant increase in breast cancer (BC) incidence and related mortality has been observed. In the present review, we have elucidated the cellular and molecular insight into the visfatin-mediated cellular plasticity programs such as Epithelial to mesenchymal transition (EMT) and Endothelial to mesenchymal transition (EndoMT), and stemness-associated changes in BC cells. EMT and EndoMT are responsible for inducing metastasis in cancer cells and conferring chemotherapy resistance, immune escape, and infinite growth potential. Visfatin, an obesity-associated adipokine implicated in metabolic syndrome, has emerged as a central player in BC pathogenesis. Several studies have indicated the presence of visfatin in the tumor microenvironment (TME) where it augments EMT and EndoMT of BC cells. Further, Visfatin also modulates the TME by acting on the tumor stroma cells such as adipocytes, infiltrated immune cells, and adipose-associated stem cells that secrete factors such as cytokines, and extracellular vesicles responsible for augmenting cellular plasticity program. Visfatin induced altered metabolism of the cancer cells and molecular determinants such as non-coding RNAs involved in EMT and EndoMT have been discussed. We have also highlighted specific therapeutic targets that can be exploited for the development of effective BC treatment. Taken together, these advanced understandings of cellular and molecular insight into the visfatin-mediated cellular plasticity programs may stimulate the development of better approaches for the prevention and therapy of BC, especially in obese patients.
Collapse
Affiliation(s)
- Pradeep Kumar Rajput
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Jiten R Sharma
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Umesh C S Yadav
- Special Center for Molecular medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
8
|
Jones OY, McCurdy D. Cell Based Treatment of Autoimmune Diseases in Children. Front Pediatr 2022; 10:855260. [PMID: 35615628 PMCID: PMC9124972 DOI: 10.3389/fped.2022.855260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
Mesenchymal stem cells have recently been recoined as medicinal signaling cells (MSC) for their ability to promote tissue homeostasis through immune modulation, angiogenesis and tropism. During the last 20 years, there has been a plethora of publications using MSC in adults and to lesser extent neonates on a variety of illnesses. In parts of the world, autologous and allogeneic MSCs have been purified and used to treat a range of autoimmune conditions, including graft versus host disease, Crohn's disease, multiple sclerosis, refractory systemic lupus erythematosus and systemic sclerosis. Generally, these reports are not part of stringent clinical trials but are of note for good outcomes with minimal side effects. This review is to summarize the current state of the art in MSC therapy, with a brief discussion of cell preparation and safety, insights into mechanisms of action, and a review of published reports of MSC treatment of autoimmune diseases, toward the potential application of MSC in treatment of children with severe autoimmune diseases using multicenter clinical trials and treatment algorithms.
Collapse
Affiliation(s)
- Olcay Y. Jones
- Division of Pediatric Rheumatology, Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Deborah McCurdy
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
9
|
Yang L, Liu Y, Bi C, Zhang B. Effects of Nostoc sphaeroids Kütz polysaccharide on renal fibrosis in high-fat mice. Food Sci Nutr 2022; 10:1357-1367. [PMID: 35592290 PMCID: PMC9094462 DOI: 10.1002/fsn3.2703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022] Open
Abstract
In this study, we investigated the effects of Nostoc sphaeroids Kütz polysaccharide (NSKP) on renal fibrosis in high‐fat mice. ApoE−/− male mice were randomly divided into four groups: control (Cont) group, high‐fat diet (HFD) group, HFD+0.4 g/kg BW NSKP, and HFD+0.8 g/kg BW NSKP (NSKP groups). The Cont was fed a standard diet. The HFD group was fed HFD. Every day, NSKP groups were fed HFD, as well as given 0.4 g/kg BW or 0.8 g/kg BW NSKP. After 22 weeks, the serum biochemical indices (TC, TG, LDL‐C, HDL‐C, GLU, BUN, and SCR) were measured. For the kidney, the histopathological sections were observed and analyzed, and inflammatory factors and markers of renal fibrosis were measured. For the NSKP groups, the serum TC, TG, LDL‐C, BUN, and SCR were decreased, HDL‐C significantly increased compared with the HFD group. The protein expressions of TNF‐α, IL‐1β, and TGF‐β1 were significantly downregulated. The α‐SMA in renal cortex was decreased, and the mRNA expression of Col‐I and Col‐IV in renal collagen fibers was downregulated. To sum up, NSKP reduced the blood lipid of HFD mice, downregulated the inflammation of kidney, inhibited the expression of collagen fiber, and improved the renal fibrosis caused by long‐term lipid metabolism disorder.
Collapse
Affiliation(s)
- Litao Yang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods Beijing Union University College of Biochemical Engineering Beijing China
| | - Yinlu Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods Beijing Union University College of Biochemical Engineering Beijing China
| | - Cuicui Bi
- Beijing Key Laboratory of Bioactive Substances and Functional Foods Beijing Union University College of Biochemical Engineering Beijing China
| | - Bo Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods Beijing Union University College of Biochemical Engineering Beijing China
| |
Collapse
|
10
|
Dai B, Ding L, Zhao L, Zhu H, Luo H. Contributions of Immune Cells and Stromal Cells to the Pathogenesis of Systemic Sclerosis: Recent Insights. Front Pharmacol 2022; 13:826839. [PMID: 35185577 PMCID: PMC8852243 DOI: 10.3389/fphar.2022.826839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Systemic sclerosis (SSc) is a multisystem rheumatic disease characterized by vascular dysfunction, autoimmune abnormalities, and progressive organ fibrosis. A series of studies in SSc patients and fibrotic models suggest that immune cells, fibroblasts, and endothelial cells participate in inflammation and aberrant tissue repair. Furthermore, the growing number of studies on single-cell RNA sequencing (scRNA-seq) technology in SSc elaborate on the transcriptomics and heterogeneities of these cell subsets significantly. In this review, we summarize the current knowledge regarding immune cells and stromal cells in SSc patients and discuss their potential roles in SSc pathogenesis, focusing on recent advances in the new subtypes by scRNA-seq.
Collapse
Affiliation(s)
- Bingying Dai
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Liqing Ding
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Zhao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- *Correspondence: Honglin Zhu, ; Hui Luo,
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- *Correspondence: Honglin Zhu, ; Hui Luo,
| |
Collapse
|
11
|
Benfaremo D, Svegliati S, Paolini C, Agarbati S, Moroncini G. Systemic Sclerosis: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2022; 10:biomedicines10010163. [PMID: 35052842 PMCID: PMC8773282 DOI: 10.3390/biomedicines10010163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/30/2022] Open
Abstract
Systemic sclerosis (SSc) is a systemic, immune-mediated chronic disorder characterized by small vessel alterations and progressive fibrosis of the skin and internal organs. The combination of a predisposing genetic background and triggering factors that causes a persistent activation of immune system at microvascular and tissue level is thought to be the pathogenetic driver of SSc. Endothelial alterations with subsequent myofibroblast activation, excessive extracellular matrix (ECM) deposition, and unrestrained tissue fibrosis are the pathogenetic steps responsible for the clinical manifestations of this disease, which can be highly heterogeneous according to the different entity of each pathogenic step in individual subjects. Although substantial progress has been made in the management of SSc in recent years, disease-modifying therapies are still lacking. Several molecular pathways involved in SSc pathogenesis are currently under evaluation as possible therapeutic targets in clinical trials. These include drugs targeting fibrotic and metabolic pathways (e.g., TGF-β, autotaxin/LPA, melanocortin, and mTOR), as well as molecules and cells involved in the persistent activation of the immune system (e.g., IL4/IL13, IL23, JAK/STAT, B cells, and plasma cells). In this review, we provide an overview of the most promising therapeutic targets that could improve the future clinical management of SSc.
Collapse
Affiliation(s)
- Devis Benfaremo
- Clinica Medica, Department of Internal Medicine, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy;
| | - Silvia Svegliati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Chiara Paolini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
| | - Gianluca Moroncini
- Clinica Medica, Department of Internal Medicine, Ospedali Riuniti “Umberto I-G.M. Lancisi-G. Salesi”, 60126 Ancona, Italy;
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (S.S.); (C.P.); (S.A.)
- Correspondence:
| |
Collapse
|
12
|
The Immunogenetics of Systemic Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:259-298. [DOI: 10.1007/978-3-030-92616-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Küçük MF, Yaprak L, Erol MK, Ayan A, Kök M. Evaluations of the radial peripapillary, macular and choriocapillaris microvasculature using optical coherence tomography angiography in patients with systemic sclerosis. J Fr Ophtalmol 2021; 45:81-92. [PMID: 34895760 DOI: 10.1016/j.jfo.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE To analyze the macular microvascular (MMV) architecture, radial peripapillary capillary (RPC) network and choriocapillaris using optical coherence tomography angiography (OCT-A) in patients with systemic sclerosis (SSc) without systemic comorbidities. METHODS The vessel densities (VDs) of the MMV, foveal avascular zone (FAZ) parameters, choriocapillaris flow areas (CCFAs), RPC VDs, and optic nerve head (ONH) parameters were measured by OCT-A. Retinal thickness and subfoveal choroidal thickness (SFCT) were measured by spectral-domain optical coherence tomography (SD-OCT). The SD-OCT and OCT-A measurements of 53 eyes of 30 SSc patients were compared with 61 eyes of 33 healthy controls. RESULTS In the MMV analysis, a decrease in the VDs of the superficial capillary plexus and an increase in the FAZ area, FAZ perimeter and non-flow area were detected in the SSc group compared to the controls (P=0.007, P=0.001, P=0.029, P=0.018, and P=0.039, respectively). While there was a decrease in SFCT, no change was found in CCFA (P=0.001 and P=0.902, respectively). The RPC analysis revealed a decrease in the VDs of all vessels for the entire area and the intradisc area, as well as the VDs of the small vessels for the intradisc area (P=0.021, P=0.001, and P=0.003, respectively). In the ONH analysis, there was an increase in the C/D area ratios and cup volumes, and a decrease in the rim areas and nasal quadrant retinal nerve fiber layer thickness (P=0.004, P=0.004, P=0.013, and P=0.032, respectively). CONCLUSION Decreases in RPC and MMV VDs and changes in ONH parameters were found in OCT-A measurements in patients with SSc.
Collapse
Affiliation(s)
- M F Küçük
- Department of Ophthalmology, Faculty of Medicine, Alanya-Alaaddin-Keykubat University, Antalya, Turkey; Department of Ophthalmology, Health Sciences University, Antalya Training and Research Hospital, Antalya, Turkey.
| | - L Yaprak
- Department of Ophthalmology, Health Sciences University, Antalya Training and Research Hospital, Antalya, Turkey
| | - M K Erol
- Department of Ophthalmology, Health Sciences University, Antalya Training and Research Hospital, Antalya, Turkey
| | - A Ayan
- Department of Rheumatology, Health Sciences University, Antalya Training and Research Hospital, Antalya, Turkey
| | - M Kök
- Department of Internal Medicine, Health Sciences University, Antalya Training and Research Hospital, Antalya, Turkey
| |
Collapse
|
14
|
Seguro Paula F, Delgado Alves J. The role of the Notch pathway in the pathogenesis of systemic sclerosis: clinical implications. Expert Rev Clin Immunol 2021; 17:1257-1267. [PMID: 34719325 DOI: 10.1080/1744666x.2021.2000391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a chronic debilitating disease characterized by vascular insufficiency, widespread fibrosis and immune activation. Current understanding of its pathophysiology remains incomplete, which translates into inefficient therapies. Notch signaling is a central player in the development of physiological and pathological fibrosis not only in general but also in the context of SSc and is most likely involved in the vascular dysfunction that characterizes the disease. AREAS COVERED This review explores the role of the Notch pathway in the pathophysiology of SSc and the potential implications for the diagnosis, evaluation, and management of this yet incurable disease. EXPERT OPINION Although major issues still exist about the comprehension of SSc and the design of effective treatments, the knowledge of the role of the Notch pathway in fibrogenesis and vascular biology has shed light and enthusiasm over the field. Drugs that target components of Notch signaling are currently in development including already some in clinical trials. As such, Notch may become a very important topic in the near future (considering both the pathophysiology and treatment perspectives), not only in the context of SSc but also in the vascular-dependent fibrotic processes present in a multitude of diseases.
Collapse
Affiliation(s)
- Filipe Seguro Paula
- Immune Response and Vascular Disease, Chronic Diseases Research Center (CEDOC), Nova Medical School, Lisbon, Portugal.,Systemic Immune-mediated Diseases Unit, Fernando Fonseca Hospital, Amadora, Portugal
| | - José Delgado Alves
- Immune Response and Vascular Disease, Chronic Diseases Research Center (CEDOC), Nova Medical School, Lisbon, Portugal.,Systemic Immune-mediated Diseases Unit, Fernando Fonseca Hospital, Amadora, Portugal
| |
Collapse
|
15
|
Jokar MH, Jafaripour S, Abdollahi N, Nazemipour M, Moradzadeh M, Mansournia MA. Serum lysyl oxidase concentration increases in long-standing systemic sclerosis: Can lysyl oxidase change over time? Arch Rheumatol 2021; 37:261-270. [PMID: 36017203 PMCID: PMC9377183 DOI: 10.46497/archrheumatol.2022.8977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022] Open
Abstract
Objectives
This study aims to investigate the association of serum lysyl oxidase (LOX) levels with systemic sclerosis (SSc), to examine the relationship between LOX and disease onset, and to evaluate the probable effects of hyperlipidemia on the circulating levels of LOX among patients with SSc. Patients and methods
Between May 2017 and November 2018, a total of 39 patients with SSc (2 males, 37 females; mean age: 46.6±12.3 years; range, 18 to 65 years) and 35 healthy controls (4 males, 31 females; mean age: 43.1±14.1 years; range, 18 to 65 years) were included. Serum LOX concentration was measured using the enzyme-linked immunoassay in triplicate. Results
We found higher levels of serum LOX in patients with SSc compared to healthy controls. There was a significant relationship between serum LOX levels and disease onset. Patients with long-standing disease demonstrated increased levels of LOX in the blood compared to the recent-onset group. Hyperlipidemia did not have a significant effect on circulating levels of LOX. There was a significant negative correlation between LOX levels and modified Rodnan Skin Score in the subgroup of patients with skin involvement only and in patients without gastrointestinal involvement. Conclusion
Our study findings show an increased level of LOX protein level in the blood of patients diagnosed with SSc. Hyperlipidemia seems not to affect the concentrations of LOX in the peripheral blood of patients with SSc.
Collapse
Affiliation(s)
- Mohammad Hassan Jokar
- Golestan Rheumatology Research Center, Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Simin Jafaripour
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Abdollahi
- Golestan Rheumatology Research Center, Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Nazemipour
- Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Maliheh Moradzadeh
- Golestan Rheumatology Research Center, Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Global gene expression analysis of systemic sclerosis myofibroblasts demonstrates a marked increase in the expression of multiple NBPF genes. Sci Rep 2021; 11:20435. [PMID: 34650102 PMCID: PMC8516909 DOI: 10.1038/s41598-021-99292-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
Myofibroblasts are the key effector cells responsible for the exaggerated tissue fibrosis in Systemic Sclerosis (SSc). Despite their importance to SSc pathogenesis, the specific transcriptome of SSc myofibroblasts has not been described. The purpose of this study was to identify transcriptome differences between SSc myofibroblasts and non-myofibroblastic cells. Alpha smooth muscle actin (α-SMA) expressing myofibroblasts and α-SMA negative cells were isolated employing laser capture microdissection from dermal cell cultures from four patients with diffuse SSc of recent onset. Total mRNA was extracted from both cell populations, amplified and analyzed employing microarrays. Results for specific genes were validated by Western blots and by immunohistochemistry. Transcriptome analysis revealed 97 differentially expressed transcripts in SSc myofibroblasts compared with non-myofibroblasts. Annotation clustering of the SSc myofibroblast-specific transcripts failed to show a TGF-β signature. The most represented transcripts corresponded to several different genes from the Neuroblastoma Breakpoint Family (NBPF) of genes. NBPF genes are highly expanded in humans but are not present in murine or rat genomes. In vitro studies employing cultured SSc dermal fibroblasts and immunohistochemistry of affected SSc skin confirmed increased NBPF expression in SSc. These results indicate that SSc myofibroblasts represent a unique cell lineage expressing a specific transcriptome that includes very high levels of transcripts corresponding to numerous NBPF genes. Elevated expression of NBPF genes in SSc myofibroblasts suggests that NBPF gene products may play a role in SSc pathogenesis and may represent a novel therapeutic target.
Collapse
|
17
|
Giordo R, Thuan DTB, Posadino AM, Cossu A, Zinellu A, Erre GL, Pintus G. Iloprost Attenuates Oxidative Stress-Dependent Activation of Collagen Synthesis Induced by Sera from Scleroderma Patients in Human Pulmonary Microvascular Endothelial Cells. Molecules 2021; 26:4729. [PMID: 34443317 PMCID: PMC8399120 DOI: 10.3390/molecules26164729] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Endothelial cell injury is an early event in systemic sclerosis (SSc) pathogenesis and several studies indicate oxidative stress as the trigger of SSc-associated vasculopathy. Here, we show that circulating factors present in sera of SSc patients increased reactive oxygen species (ROS) production and collagen synthesis in human pulmonary microvascular endothelial cells (HPMECs). In addition, the possibility that iloprost, a drug commonly used in SSc therapy, might modulate the above-mentioned biological phenomena has been also investigated. In this regard, as compared to sera of SSc patients, sera of iloprost-treated SSc patients failed to increased ROS levels and collagen synthesis in HPMEC, suggesting a potential antioxidant mechanism of this drug.
Collapse
Affiliation(s)
- Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates;
| | - Duong Thi Bich Thuan
- Faculty of Biochemistry, College of Health Sciences, VinUniversity, Vinhomes Ocean Park, Gia Lam District, Hanoi 132002, Vietnam;
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
| | - Annalisa Cossu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
| | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, 07100 Sassari, Italy
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.P.); (A.C.); (A.Z.)
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah 27272, United Arab Emirates
| |
Collapse
|
18
|
Di Benedetto P, Ruscitti P, Berardicurti O, Vomero M, Navarini L, Dolo V, Cipriani P, Giacomelli R. Endothelial-to-mesenchymal transition in systemic sclerosis. Clin Exp Immunol 2021; 205:12-27. [PMID: 33772754 DOI: 10.1111/cei.13599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by significant vascular alterations and multi-organ fibrosis. Microvascular alterations are the first event of SSc and injured endothelial cells (ECs) may transdifferentiate towards myofibroblasts, the cells responsible for fibrosis and collagen deposition. This process is identified as endothelial-to-mesenchymal transition (EndMT), and understanding of its development is pivotal to identify early pathogenetic events and new therapeutic targets for SSc. In this review, we have highlighted the molecular mechanisms of EndMT and summarize the evidence of the role played by EndMT during the development of progressive fibrosis in SSc, also exploring the possible therapeutic role of its inhibition.
Collapse
Affiliation(s)
- P Di Benedetto
- Clinical Pathology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Ruscitti
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - O Berardicurti
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - M Vomero
- Unit of Rheumatology and Clinical Immunology, University of Rome 'Campus Biomedico', Rome, Italy
| | - L Navarini
- Unit of Rheumatology and Clinical Immunology, University of Rome 'Campus Biomedico', Rome, Italy
| | - V Dolo
- Clinical Pathology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - P Cipriani
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - R Giacomelli
- Unit of Rheumatology and Clinical Immunology, University of Rome 'Campus Biomedico', Rome, Italy
| |
Collapse
|
19
|
Bi Z, Wang Y, Zhang W. A comprehensive review of tanshinone IIA and its derivatives in fibrosis treatment. Biomed Pharmacother 2021; 137:111404. [PMID: 33761617 DOI: 10.1016/j.biopha.2021.111404] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Tanshinone IIA (Tan IIA) is the most abundant lipid-soluble component in Salvia miltiorrhiza. Both Tan IIA and its derivatives including Sodium tanshinone IIA sulfonate (STS) have been widely used in clinic due to their proved anti-inflammation, anti-oxidation, and anti-fibrosis functions. Recently, combinations containing Tan IIA and active components have attracted intensive interest in fibrosis. Multiple studies have been conducted to attempt to decipher the mechanisms of this traditional Chinese medicine and found that Tan IIA can attenuate fibrosis through different pathways such as Smad2/3, NF-κB, Nrf2, E2F and snail/twist axis. However, some of the studies were contradictory and confusing. Therefore, it was important to develop an easy-to-access reference for clinic use. In this study, we reviewed the pharmacological mechanisms, pharmacokinetics, and toxicology of Tan IIA and its derivatives in the treatment of fibrosis and introduced the cutting-edge new formulation of Tan IIA compound.
Collapse
Affiliation(s)
- Zhangyang Bi
- Traditional Chinese Medicine College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yayun Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Pneumology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
20
|
Romano E, Rosa I, Fioretto BS, Cerinic MM, Manetti M. The Role of Pro-fibrotic Myofibroblasts in Systemic Sclerosis: from Origin to Therapeutic Targeting. Curr Mol Med 2021; 22:209-239. [PMID: 33823766 DOI: 10.2174/0929867328666210325102749] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disorder characterized by multisystem clinical manifestations resulting from immune dysregulation/autoimmunity, vasculopathy and, most notably, progressive fibrosis of the skin and internal organs. In recent years, it has emerged that the main drivers of SSc-related tissue fibrosis are myofibroblasts, a type of mesenchymal cells with both the extracellular matrix-synthesizing features of fibroblasts and the cytoskeletal characteristics of contractile smooth muscle cells. The accumulation and persistent activation of pro-fibrotic myofibroblasts during SSc development and progression result into elevated mechanical stress and reduced matrix plasticity within the affected tissues and may be ascribed to a reduced susceptibility of these cells to pro-apoptotic stimuli, as well as their increased formation from tissue-resident fibroblasts or transition from different cell types. Given the crucial role of myofibroblasts in SSc pathogenesis, finding the way to inhibit myofibroblast differentiation and accumulation by targeting their formation, function and survival may represent an effective approach to hamper the fibrotic process or even halt or reverse established fibrosis. In this review, we discuss the role of myofibroblasts in SSc-related fibrosis, with a special focus on their cellular origin and the signaling pathways implicated in their formation and persistent activation. Furthermore, we provide an overview of potential therapeutic strategies targeting myofibroblasts that may be able to counteract fibrosis in this pathological condition.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Marco Matucci Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence. Italy
| |
Collapse
|
21
|
Andreucci E, Margheri F, Peppicelli S, Bianchini F, Ruzzolini J, Laurenzana A, Fibbi G, Bruni C, Bellando-Randone S, Guiducci S, Romano E, Manetti M, Matucci-Cerinic M, Calorini L. Glycolysis-derived acidic microenvironment as a driver of endothelial dysfunction in systemic sclerosis. Rheumatology (Oxford) 2021; 60:4508-4519. [PMID: 33471123 DOI: 10.1093/rheumatology/keab022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Systemic sclerosis (SSc) is an autoimmune disease characterized by peripheral vasculopathy and skin and internal organ fibrosis. Accumulating evidence underlines a close association between a metabolic reprogramming of activated fibroblasts and fibrosis. This prompted us to determine the metabolism of SSc dermal fibroblasts and the effect on the vasculopathy characterizing the disease. METHODS Seahorse XF96 Extracellular Flux Analyzer was exploited to evaluate SSc fibroblast metabolism. In vitro invasion and capillary morphogenesis assays were used to determine the angiogenic ability of endothelial cells (EC). Immunofluorescence, flow cytometer and real time PCR techniques provided evidence of the molecular mechanism behind the impaired vascularization that characterizes SSc patients. RESULTS SSc fibroblasts, compared with control, showed a boosted glycolytic metabolism with increased lactic acid release and subsequent extracellular acidification, that in turn was found to impair EC invasion and organization in capillary-like networks without altering cell viability. A molecular link between extracellular acidosis and endothelial dysfunction was identified as acidic EC up-regulated MMP-12 which cleaves and inactivates uPAR, impairing angiogenesis in SSc. Moreover, the acidic environment was found to induce the loss of endothelial markers and the acquisition of mesenchymal-like features in EC, thus promoting the endothelial-to-mesenchymal transition (EndoMT) process that contributes to both capillary rarefaction and tissue fibrosis in SSc. CONCLUSION This study disclosed a liaison among the metabolic reprogramming of SSc dermal fibroblasts, extracellular acidosis and endothelial dysfunction that may contribute to the impairment and loss of peripheral capillary networks in SSc disease.
Collapse
Affiliation(s)
- Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, Florence, Italy.,Center of Excellence for Research, Transfer and High Education DenoTHE University of Florence, Florence, Italy
| |
Collapse
|
22
|
Xu X, Ramanujam M, Visvanathan S, Assassi S, Liu Z, Li L. Transcriptional insights into pathogenesis of cutaneous systemic sclerosis using pathway driven meta-analysis assisted by machine learning methods. PLoS One 2020; 15:e0242863. [PMID: 33253326 PMCID: PMC7703909 DOI: 10.1371/journal.pone.0242863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
Pathophysiology of systemic sclerosis (SSc, Scleroderma), an autoimmune rheumatic disease, comprises of mechanisms that drive vasculopathy, inflammation and fibrosis. Understanding of the disease and associated clinical heterogeneity has advanced considerably in the past decade, highlighting the necessity of more specific targeted therapy. While many of the recent trials in SSc failed to meet the primary end points that predominantly relied on changes in modified Rodnan skin scores (MRSS), sub-group analysis, especially those focused on the basal skin transcriptomic data have provided insights into patient subsets that respond to therapies. These findings suggest that deeper understanding of the molecular changes in pathways is very important to define disease drivers in various patient subgroups. In view of these challenges, we performed meta-analysis on 9 public available SSc microarray studies using a novel pathway pivoted approach combining consensus clustering and machine learning assisted feature selection. Selected pathway modules were further explored through cluster specific topological network analysis in search of novel therapeutic concepts. In addition, we went beyond previously described SSc class divisions of 3 clusters (e.g. inflammation, fibro-proliferative, normal-like) and expanded into a much finer stratification in order to profile SSc patients more accurately. Our analysis unveiled an important 80 pathway signatures that differentiated SSc patients into 8 unique subtypes. The 5 pathway modules derived from such signature successfully defined the 8 SSc subsets and were validated by in-silico cellular deconvolution analysis. Myeloid cells and fibroblasts involvement in different clusters were confirmed and linked to corresponding pathway activities. Collectively, our findings revealed more complex disease subtypes in SSc; Key gene mediators such as IL6, FGFR1, TLR7, PLCG2, IRK2 identified by network analysis underscored the scientific rationale for exploring additional targets in treatment of SSc.
Collapse
Affiliation(s)
- Xiao Xu
- Computational Biology, Boehringer-Ingelheim Pharmaceuticals Inc, Ridgefield, CT, United States of America
| | - Meera Ramanujam
- Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Inc, Ridgefield, CT, United States of America
| | - Sudha Visvanathan
- Translational Medicine and Clinical Pharmacology, Boehringer-Ingelheim Pharmaceuticals Inc, Ridgefield, CT, United States of America
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Zheng Liu
- Computational Biology, Boehringer-Ingelheim Pharmaceuticals Inc, Ridgefield, CT, United States of America
| | - Li Li
- Computational Biology, Boehringer-Ingelheim Pharmaceuticals Inc, Ridgefield, CT, United States of America
- * E-mail:
| |
Collapse
|
23
|
Piera-Velazquez S, Wermuth PJ, Gomez-Reino JJ, Varga J, Jimenez SA. Chemical exposure-induced systemic fibrosing disorders: Novel insights into systemic sclerosis etiology and pathogenesis. Semin Arthritis Rheum 2020; 50:1226-1237. [PMID: 33059296 DOI: 10.1016/j.semarthrit.2020.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/19/2020] [Accepted: 09/09/2020] [Indexed: 01/19/2023]
Abstract
Numerous drugs and chemical substances are capable of inducing exaggerated tissue fibrotic responses. The vast majority of these agents cause localized fibrotic tissue reactions or fibrosis confined to specific organs. Although much less frequent, chemically-induced systemic fibrotic disorders have been described, sometimes occurring as temporally confined outbreaks. These include the Toxic Oil Syndrome (TOS), the Eosinophilia-Myalgia Syndrome (EMS), and Nephrogenic Systemic Fibrosis (NSF). Although each of these disorders displays some unique characteristics, they all share crucial features with Systemic Sclerosis (SSc), the prototypic idiopathic systemic fibrotic disease, including vasculopathy, chronic inflammatory cell infiltration of affected tissues, and cutaneous and visceral tissue fibrosis. The study of the mechanisms and molecular alterations involved in the development of the chemically-induced systemic fibrotic disorders has provided valuable clues that may allow elucidation of SSc etiology and pathogenesis. Here, we review relevant aspects of the TOS, EMS, and NSF epidemic outbreaks of chemically-induced systemic fibrosing disorders that provide strong support to the hypothesis that SSc is caused by a toxic or biological agent that following its internalization by endothelial cells induces in genetically predisposed individuals a series of molecular alterations that result in the development of SSc clinical and pathological alterations.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Peter J Wermuth
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Juan J Gomez-Reino
- Fundacion IDIS, Instituto de Investigacion Sanitaria, Hospital Clinico Universitario, Santiago de Compostela, Spain
| | - John Varga
- Rheumatology Division, North Western Scleroderma Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
24
|
The Pathogenesis of Systemic Sclerosis: An Understanding Based on a Common Pathologic Cascade across Multiple Organs and Additional Organ-Specific Pathologies. J Clin Med 2020; 9:jcm9092687. [PMID: 32825112 PMCID: PMC7565034 DOI: 10.3390/jcm9092687] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023] Open
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune and vascular disease resulting in fibrosis of various organs with unknown etiology. Accumulating evidence suggests that a common pathologic cascade across multiple organs and additional organ-specific pathologies underpin SSc development. The common pathologic cascade starts with vascular injury due to autoimmune attacks and unknown environmental factors. After that, dysregulated angiogenesis and defective vasculogenesis promote vascular structural abnormalities, such as capillary loss and arteriolar stenosis, while aberrantly activated endothelial cells facilitate the infiltration of circulating immune cells into perivascular areas of various organs. Arteriolar stenosis directly causes pulmonary arterial hypertension, scleroderma renal crisis and digital ulcers. Chronic inflammation persistently activates interstitial fibroblasts, leading to the irreversible fibrosis of multiple organs. The common pathologic cascade interacts with a variety of modifying factors in each organ, such as keratinocytes and adipocytes in the skin, esophageal stratified squamous epithelia and myenteric nerve system in gastrointestinal tract, vasospasm of arterioles in the heart and kidney, and microaspiration of gastric content in the lung. To better understand SSc pathogenesis and develop new disease-modifying therapies, it is quite important to understand the complex pathogenesis of SSc from the two distinct perspectives, namely the common pathologic cascade and additional organ-specific pathologies.
Collapse
|
25
|
Giovannetti A, Straface E, Rosato E, Casciaro M, Pioggia G, Gangemi S. Role of Alarmins in the Pathogenesis of Systemic Sclerosis. Int J Mol Sci 2020; 21:ijms21144985. [PMID: 32679721 PMCID: PMC7404317 DOI: 10.3390/ijms21144985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare chronic autoimmune disease associated with significant morbidity and mortality. Two main subsets of SSc are recognized: (i) diffuse cutaneous SSc with rapidly progressive fibrosis of the skin, lungs, and other internal organs; and (ii) limited cutaneous SSc, which is dominated by vascular manifestations, with skin and organ fibrosis generally limited and slowly progressing. In spite of intense investigation, both etiology and pathogenesis of SSc are still unknown. Genetic and environmental factors, as well as abnormalities of immune functions, are strongly suggested for etiology, while microvascular abnormalities, immune system activation, and oxidative stress are suggested for the pathogenesis. Recently, it has been found that a multitude of mediators and cytokines are implicated in the fibrotic processes observed in SSc. Among these, a central role could be exerted by “alarmins”, endogenous and constitutively expressed proteins/peptides that function as an intercellular signal defense. This review describes, in a detailed manner, the role of alarmins in the pathogenesis of scleroderma.
Collapse
Affiliation(s)
- Antonello Giovannetti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: ; Tel.: +39-3476138512
| | - Elisabetta Straface
- Center for Gender-Specific Medicine, Biomarkers Unit, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Edoardo Rosato
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.C.); (S.G.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
26
|
Zhang S, Lv J, Ren X, Hao X, Zhou P, Wang Y. The efficacy and safety of fecal microbiota transplantation in the treatment of systemic sclerosis: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e21267. [PMID: 32664182 PMCID: PMC7360200 DOI: 10.1097/md.0000000000021267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is 1 of the most complex systemic autoimmune diseases.Accumulating evidence suggests that gut microbiota affect the development and function of the immune system and may play a role in the pathogenesis of autoimmune diseases. This new paradigm raises the possibility that many diseases result, at least partially, from microbiota-related dysfunction. This understanding invites the investigation of fecal microbiota transplantation (FMT) in the treatment of SSc. However, no study has specifically and systematically investigated the efficacy and safety of FMT in the treatment of SSc. Thus, this study will systematically and comprehensively appraise the efficacy and safety of FMT in the treatment of SSc. METHODS We will search the following sources without restrictions for date, language, or publication status: PubMed, Web of Science,Cochrane Central Register of Controlled Trials (CENTRAL) Cochrane Library, EMBASE and China National Knowledge Infrastructure. We will apply a combination of Medical Subject Heading (MeSH) and free-text terms incorporating database-specific controlled vocabularies and text words to implement search strategies. We will also search the ongoing trials registered in the World Health Organization's International Clinical Trials Registry Platform. Besides, the previous relevant reviews conducted on FMT for SSc and reference lists of included studies will also be searched. RESULTS This study will provide a reliable basis for the treatment of SSc with FMT. CONCLUSIONS The findings will be an available reference to evaluate the efficacy and safety of FMT in the treatment of SSc. REGISTRATION NUMBER INPLASY202060019.
Collapse
Affiliation(s)
| | - Jingjing Lv
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang City, Hebei
| | | | - Xinyu Hao
- Hebei University of Chinese Medicine
| | | | - Yangang Wang
- Hebei Province Hospital of Chinese Medicine, Shijiazhuang City, Hebei
| |
Collapse
|
27
|
Gagliano C, Visalli E, Toro MD, Amato R, Panta G, Scollo D, Scandura G, Ficili S, Amato G, Benenati A, Foti R, Malaguarnera G, Gagliano G, Falsaperla R, Avitabile T, Foti R. Dry Eye in Systemic Sclerosis Patients: Novel Methods to Monitor Disease Activity. Diagnostics (Basel) 2020; 10:diagnostics10060404. [PMID: 32545815 PMCID: PMC7344660 DOI: 10.3390/diagnostics10060404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Background: In systemic sclerosis (SSc) patients, dry eye syndrome (DES) is the most frequent ocular feature. The aim of this study was to investigate ocular DES-related SSc patients and to establish any correlation with the severity of the disease. Methods: Retrospectively, data from 60 patients with SSc underwent ophthalmic examination, where non-invasive film tear break-up time (NIF-TBUT), tear film lipid layer thickness (LLT), anesthetic-free Schirmer test I, tear osmolarity measurement (TearLab System), and modified Rodnan skin score (mRSS) data were collected. The visual analog scale (VAS) and Symptom Assessment in Dry Eye (SANDE) methods were utilized. The results were correlated with mRSS and the duration of SSc. Results: Severe DES occurred in 84% of cases, and was more severe in women. The eyelids were involved in 86.6%, secondary to meibomian gland disease (MGD). A direct correlation was found between the tear osmolarity (mean 328.51 ± 23.8 SD) and skin score (mRSS) (r = 0.79; p < 0.01). Significantly reduced NIF-TBUT, LLT, and Schirmer test I values were observed in the case of severe skin involvement. Conclusions: SSc patients show lipid tear dysfunction related to the severity and duration of the disease due to inflammation and the subsequent atrophy of the meibomian glands.
Collapse
Affiliation(s)
- Caterina Gagliano
- Ophthalmology Clinic, San Marco Hospital, Catania University, 95 123 Catania, Italy; (R.A.); (G.P.); (D.S.); (G.S.); (S.F.); (T.A.)
- Neurovisual Science Technology (NEST) srl, 95123 Catania, Italy;
- Correspondence: (C.G.); (M.D.T.); Tel.: +39-09-53-78-12-91 (C.G.)
| | - Elisa Visalli
- Rheumatology Unit, San Marco Hospital, Policlinico University of Catania, 95123 Catania, Italy; (E.V.); (G.A.); (A.B.); (R.F.)
| | - Mario Damiano Toro
- Department of General Ophthalmology, Medical University of Lublin, 20079 Lublin, Poland
- Faculty of Medical Sciences, Collegium Medicum Cardinal Stefan Wyszyñski University, 01815 Warsaw, Poland
- Correspondence: (C.G.); (M.D.T.); Tel.: +39-09-53-78-12-91 (C.G.)
| | - Roberta Amato
- Ophthalmology Clinic, San Marco Hospital, Catania University, 95 123 Catania, Italy; (R.A.); (G.P.); (D.S.); (G.S.); (S.F.); (T.A.)
- Neurovisual Science Technology (NEST) srl, 95123 Catania, Italy;
| | - Giovanni Panta
- Ophthalmology Clinic, San Marco Hospital, Catania University, 95 123 Catania, Italy; (R.A.); (G.P.); (D.S.); (G.S.); (S.F.); (T.A.)
| | - Davide Scollo
- Ophthalmology Clinic, San Marco Hospital, Catania University, 95 123 Catania, Italy; (R.A.); (G.P.); (D.S.); (G.S.); (S.F.); (T.A.)
| | - Giovanni Scandura
- Ophthalmology Clinic, San Marco Hospital, Catania University, 95 123 Catania, Italy; (R.A.); (G.P.); (D.S.); (G.S.); (S.F.); (T.A.)
| | - Salvatore Ficili
- Ophthalmology Clinic, San Marco Hospital, Catania University, 95 123 Catania, Italy; (R.A.); (G.P.); (D.S.); (G.S.); (S.F.); (T.A.)
| | - Giorgio Amato
- Rheumatology Unit, San Marco Hospital, Policlinico University of Catania, 95123 Catania, Italy; (E.V.); (G.A.); (A.B.); (R.F.)
| | - Alessia Benenati
- Rheumatology Unit, San Marco Hospital, Policlinico University of Catania, 95123 Catania, Italy; (E.V.); (G.A.); (A.B.); (R.F.)
| | - Roberta Foti
- Faculty of Medicine, University of Catania, 95123 Catania, Italy;
| | - Giulia Malaguarnera
- Department of Biomedical and Biotechnological Science, University of Catania, 95123 Catania, Italy;
| | - Giuseppe Gagliano
- Neurovisual Science Technology (NEST) srl, 95123 Catania, Italy;
- Faculty of Medicine, University of Catania, 95123 Catania, Italy;
| | | | - Teresio Avitabile
- Ophthalmology Clinic, San Marco Hospital, Catania University, 95 123 Catania, Italy; (R.A.); (G.P.); (D.S.); (G.S.); (S.F.); (T.A.)
| | - Rosario Foti
- Rheumatology Unit, San Marco Hospital, Policlinico University of Catania, 95123 Catania, Italy; (E.V.); (G.A.); (A.B.); (R.F.)
| |
Collapse
|
28
|
Increased serum calpain activity is associated with HMGB1 levels in systemic sclerosis. Arthritis Res Ther 2020; 22:110. [PMID: 32393322 PMCID: PMC7216546 DOI: 10.1186/s13075-020-02195-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background Systemic sclerosis (SSc) or scleroderma is an intractable autoimmune disorder that affects multiple organs. The objectives were to investigate clinical correlations of serum calpain activity and high mobility group box 1 (HMGB1) levels with immunological and clinical traits. Methods A total of 31 patients with SSc, 20 age- and gender-matched healthy control subjects (HC), and 10 patients with other connective tissue diseases (CTD) were recruited in the study. We measured serum calpain activity and HMGB1 levels and analyzed the datasets (GSE40839, GSE48149, GSE76808, GSE81292, GSE33463, and GSE58095) from Gene Expression Omnibus (GEO) database to explore the potential mechanism by which calpain exerts its function through bioinformatics methods. Results Serum calpain activity was significantly increased in patients with SSc compared with those in HC and in patients with CTD and was correlated with serum HMGB1 levels, modified Rodnan skin score, erythrocyte sedimentation rate, mean platelet volume, and plateletcrit. Notably, serum calpain activity and HMGB1 levels in SSc patients with interstitial lung disease (ILD) were significantly higher than those in SSc patients without ILD. Serum calpain activity and HMGB1 levels could be the independent risk factors for SSc-ILD and novel biomarkers in patients with SSc. Conclusion This is the first study that reports increased serum calpain activity and the correlation between calpain and HMGB1 in patients with SSc or SSc-ILD. The serum calpain activity and HMGB1 levels may serve as measures of ILD in patients with SSc. Also, calpain and HMGB1 could be potential therapeutic targets for patients with SSc or SSc-ILD in the future.
Collapse
|
29
|
Genetic Interactions Affect Lung Function in Patients with Systemic Sclerosis. G3-GENES GENOMES GENETICS 2020; 10:151-163. [PMID: 31694854 PMCID: PMC6945038 DOI: 10.1534/g3.119.400775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Scleroderma, or systemic sclerosis (SSc), is an autoimmune disease characterized by progressive fibrosis of the skin and internal organs. The most common cause of death in people with SSc is lung disease, but the pathogenesis of lung disease in SSc is insufficiently understood to devise specific treatment strategies. Developing targeted treatments requires not only the identification of molecular processes involved in SSc-associated lung disease, but also understanding of how these processes interact to drive pathology. One potentially powerful approach is to identify alleles that interact genetically to influence lung outcomes in patients with SSc. Analysis of interactions, rather than individual allele effects, has the potential to delineate molecular interactions that are important in SSc-related lung pathology. However, detecting genetic interactions, or epistasis, in human cohorts is challenging. Large numbers of variants with low minor allele frequencies, paired with heterogeneous disease presentation, reduce power to detect epistasis. Here we present an analysis that increases power to detect epistasis in human genome-wide association studies (GWAS). We tested for genetic interactions influencing lung function and autoantibody status in a cohort of 416 SSc patients. Using Matrix Epistasis to filter SNPs followed by the Combined Analysis of Pleiotropy and Epistasis (CAPE), we identified a network of interacting alleles influencing lung function in patients with SSc. In particular, we identified a three-gene network comprising WNT5A, RBMS3, and MSI2, which in combination influenced multiple pulmonary pathology measures. The associations of these genes with lung outcomes in SSc are novel and high-confidence. Furthermore, gene coexpression analysis suggested that the interactions we identified are tissue-specific, thus differentiating SSc-related pathogenic processes in lung from those in skin.
Collapse
|
30
|
Yu B, Wu Y, Li Z. KLF4/Ch25h axis activated by metformin suppresses EndoMT in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2019; 522:838-844. [PMID: 31801667 DOI: 10.1016/j.bbrc.2019.11.181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 01/29/2023]
Abstract
Metformin, an anti-hyperglycemia drug, protected endothelial cells (ECs) from dysfunction while high glucose (HG) caused endothelial dysfunction. Previously, we found that metformin suppressed endothelial-to-mesenchymal transition (EndoMT), a cellular process that promoted endothelial dysfunction. However, the involved mechanism is still unclear. In this study, we found that metformin increased the expression of krüppel-like factor 4 (KLF4) and cholesterol-25-hydroxylase (Ch25h) while HG decreased the expression of KLF4 and Ch25h. In addition, HG promoted EndoMT indicting by the decrease of endothelial maker genes and increase of mesenchymal maker genes. Furthermore, RNA sequence (RNA-seq) data showed that KLF4 suppressed EndoMT. Moreover, we proved that metformin increased Ch25h expression through not only KLF4 but also epigenetic modification including DNA methylation and active histone modification. Lastly, we proved that Ch25h/25 hydroxycholesterol (25 HC)/Liver X receptor α (LXRα) suppressed EndoMT. Altogether, our study demonstrated that KLF4/Ch25h/axis activated by metformin suppressed EndoMT. Therefore, KLF4/Ch25h/axis may be a new potential therapeutic target for endothelial dysfunction diseases.
Collapse
Affiliation(s)
- Beixin Yu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Yingying Wu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zhao Li
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
31
|
Jiang Y, Hu F, Li Q, Shen C, Yang J, Li M. Tanshinone IIA ameliorates the bleomycin-induced endothelial-to-mesenchymal transition via the Akt/mTOR/p70S6K pathway in a murine model of systemic sclerosis. Int Immunopharmacol 2019; 77:105968. [PMID: 31704290 DOI: 10.1016/j.intimp.2019.105968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 01/07/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune inflammatory and vascular disorder leading to progressive tissue fibrosis. Tanshinone IIA (Tan IIA) is a phytochemical extracted from the Chinese herb Salvia miltiorrhiza that exhibits diverse activities. In this study, we attempted to evaluate the potential impact of Tan IIA on the skin fibrosis-related endothelial-to-mesenchymal transition (EndoMT) and investigate the underlying molecular mechanisms. EndoMT-related indexes including morphological characteristics, functional changes, histological parameters, expression levels of extracellular matrix associated genes, and changes in the expression of related biomarkers in dermal fibrosis were assessed. Tan IIA had a strong anti-fibrotic effect through amelioration of skin thickness and collagen deposition. Moreover, Tan IIA partially reversed bleomycin-induced EndoMT both in vivo and in vitro. Additionally, Tan IIA mitigated the diminution of tube formation in endothelial cells induced by bleomycin. Furthermore, mechanistically, the activation of the Akt/mTOR/p70S6K pathway was found to be involved in bleomycin-treated SSc mouse model, which was alleviated by Tan IIA. In summary, these data suggest that Tan IIA alleviates SSc-related dermal fibrosis and EndoMT and that the Akt/mTOR/p70S6K signaling pathway is involved in this regulation, thus supporting the potential of Tan IIA as a disease-modifying candidate agent for treating the vascular damage of SSc.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Feifei Hu
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Qiao Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Shen
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ming Li
- Department of Dermatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
32
|
Haynes BA, Yang LF, Huyck RW, Lehrer EJ, Turner JM, Barabutis N, Correll VL, Mathiesen A, McPheat W, Semmes OJ, Dobrian AD. Endothelial-to-Mesenchymal Transition in Human Adipose Tissue Vasculature Alters the Particulate Secretome and Induces Endothelial Dysfunction. Arterioscler Thromb Vasc Biol 2019; 39:2168-2191. [PMID: 31434495 DOI: 10.1161/atvbaha.119.312826] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Endothelial cells (EC) in obese adipose tissue (AT) are exposed to a chronic proinflammatory environment that may induce a mesenchymal-like phenotype and altered function. The objective of this study was to establish whether endothelial-to-mesenchymal transition (EndoMT) is present in human AT in obesity and to investigate the effect of such transition on endothelial function and the endothelial particulate secretome represented by extracellular vesicles (EV). Approach and Results: We identified EndoMT in obese human AT depots by immunohistochemical co-localization of CD31 or vWF and α-SMA (alpha-smooth muscle actin). We showed that AT EC exposed in vitro to TGF-β (tumor growth factor-β), TNF-α (tumor necrosis factor-α), and IFN-γ (interferon-γ) undergo EndoMT with progressive loss of endothelial markers. The phenotypic change results in failure to maintain a tight barrier in culture, increased migration, and reduced angiogenesis. EndoMT also reduced mitochondrial oxidative phosphorylation and glycolytic capacity of EC. EVs produced by EC that underwent EndoMT dramatically reduced angiogenic capacity of the recipient naïve ECs without affecting their migration or proliferation. Proteomic analysis of EV produced by EC in the proinflammatory conditions showed presence of several pro-inflammatory and immune proteins along with an enrichment in angiogenic receptors. CONCLUSIONS We demonstrated the presence of EndoMT in human AT in obesity. EndoMT in vitro resulted in production of EV that transferred some of the functional and metabolic features to recipient naïve EC. This result suggests that functional and molecular features of EC that underwent EndoMT in vivo can be disseminated in a paracrine or endocrine fashion and may induce endothelial dysfunction in distant vascular beds.
Collapse
Affiliation(s)
- Bronson A Haynes
- the Department of Physiological Sciences (B.A.H., R.W.H., E.J.L., J.M.T., A.M., W.M., A.D.D.), Eastern Virginia Medical School, Norfolk
| | - Li Fang Yang
- Department of Microbiology and Cell and Molecular Biology and Leroy T. Canoles Cancer Center (L.F.Y., V.L.C., O.J.S.), Eastern Virginia Medical School, Norfolk
| | - Ryan W Huyck
- the Department of Physiological Sciences (B.A.H., R.W.H., E.J.L., J.M.T., A.M., W.M., A.D.D.), Eastern Virginia Medical School, Norfolk
| | - Eric J Lehrer
- the Department of Physiological Sciences (B.A.H., R.W.H., E.J.L., J.M.T., A.M., W.M., A.D.D.), Eastern Virginia Medical School, Norfolk
| | - Joshua M Turner
- the Department of Physiological Sciences (B.A.H., R.W.H., E.J.L., J.M.T., A.M., W.M., A.D.D.), Eastern Virginia Medical School, Norfolk
| | - Nektarios Barabutis
- Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe (N.B.)
| | - Vanessa L Correll
- Department of Microbiology and Cell and Molecular Biology and Leroy T. Canoles Cancer Center (L.F.Y., V.L.C., O.J.S.), Eastern Virginia Medical School, Norfolk
| | - Allison Mathiesen
- the Department of Physiological Sciences (B.A.H., R.W.H., E.J.L., J.M.T., A.M., W.M., A.D.D.), Eastern Virginia Medical School, Norfolk
| | - William McPheat
- the Department of Physiological Sciences (B.A.H., R.W.H., E.J.L., J.M.T., A.M., W.M., A.D.D.), Eastern Virginia Medical School, Norfolk
| | - O John Semmes
- Department of Microbiology and Cell and Molecular Biology and Leroy T. Canoles Cancer Center (L.F.Y., V.L.C., O.J.S.), Eastern Virginia Medical School, Norfolk
| | - Anca D Dobrian
- the Department of Physiological Sciences (B.A.H., R.W.H., E.J.L., J.M.T., A.M., W.M., A.D.D.), Eastern Virginia Medical School, Norfolk
| |
Collapse
|
33
|
Mendoza FA, Lee-Ching C, Jimenez SA. Recurrence of progressive skin involvement following discontinuation or dose reduction of Mycophenolate Mofetil treatment in patients with diffuse Systemic Sclerosis. Semin Arthritis Rheum 2019; 50:135-139. [PMID: 31311679 DOI: 10.1016/j.semarthrit.2019.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/01/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Rapidly progressive diffuse cutaneous Systemic Sclerosis (rp-dcSSc) is associated with severe internal organ involvement and high mortality. Mycophenolate Mofetil (MMF) has been shown to halt the progression of rp-dcSSc cutaneous and pulmonary involvement in observational and randomized controlled trials, respectively. However, optimal MMF therapy duration has not been established. Here, we describe the clinical evolution of rp-dcSSc patients successfully treated with MMF following MMF therapy discontinuation or dose reduction. METHODS Twenty-five patients with recent-onset (< 24 mo) rp-dcSSc received MMF as the only SSc disease-modifying therapy. Following MMF discontinuation or dose reduction to or below 1000 mg/day after an average of two years, the Modified Rodnan skin score (mRSS) and Pulmonary function tests (PFT) were serially evaluated for additional 5 years. MMF therapy was re-instituted if the mRSS increased by greater than 20% or if restrictive lung disease developed. RESULTS From nineteen patients serially evaluated following MMF discontinuation or dose reduction, five patients (26.3%) developed recurrence of rapid skin involvement with an average of 35.9% increase in mRSS from 7.8 to 10.6 points requiring MMF re-institution. Two of these patients also presented worsening respiratory symptoms and reduction of lung volumes in PFTs. Following MMF resumption, mRSS returned to baseline or stabilized and PFTs improved or stabilized. All these patients were maintained on high dose long term MMF treatment. CONCLUSION Recurrence of severe skin involvement occurred in 26.3% of patients with rp-dcSSc following MMF discontinuation or dose reduction, requiring prompt MMF therapy resumption. These findings confirm the therapeutic benefit of MMF in rp-dcSSc and suggest that MMF treatment should be maintained for longer than 2 years.
Collapse
Affiliation(s)
- Fabian A Mendoza
- Division of Rheumatology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University. Philadelphia, PA 19107, USA.
| | - Cathy Lee-Ching
- Division of Rheumatology, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University. Philadelphia, PA 19107, USA
| |
Collapse
|
34
|
García-Martín A, Garrido-Rodríguez M, Navarrete C, Caprioglio D, Palomares B, DeMesa J, Rollland A, Appendino G, Muñoz E. Cannabinoid derivatives acting as dual PPARγ/CB2 agonists as therapeutic agents for systemic sclerosis. Biochem Pharmacol 2019; 163:321-334. [PMID: 30825431 DOI: 10.1016/j.bcp.2019.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/26/2019] [Indexed: 12/20/2022]
Abstract
The endocannabinoid system (ECS) may play a role in the pathophysiology of systemic sclerosis (SSc). Cannabinoids acting as dual PPARγ/CB2 agonists, such as VCE-004.8 and Ajulemic acid (AjA), have been shown to alleviate skin fibrosis and inflammation in SSc models. Since both compounds are being tested in humans, we compared their activities in the bleomycin (BLM) SSc model. Specifically, the pharmacotranscriptomic signature of the compounds was determined by RNA-Seq changes in the skin of BLM mice treated orally with AjA or EHP-101, a lipidic formulation of VCE-004.8. While both compounds down-regulated the expression of genes involved in the inflammatory and fibrotic components of the disease and the pharmacotranscriptomic signatures were similar for both compounds in some pathways, we found key differences between the compounds in vasculogenesis. Additionally, we found 28 specific genes with translation potential by comparing with a list of human scleroderma genes. Immunohistochemical analysis revealed that both compounds prevented fibrosis, collagen accumulation and Tenascin C (TNC) expression. The endothelial CD31+/CD34+ cells and telocytes were reduced in BLM mice and restored only by EHP-101 treatment. Finally, differences were found in plasmatic biomarker analysis; EHP-101, but not AjA, enhanced the expression of some factors related to angiogenesis and vasculogenesis. Altogether the results indicate that dual PPARγ/CB2 agonists qualify as a novel therapeutic approach for the treatment of SSc and other fibrotic diseases. EHP-101 demonstrated unique mechanisms of action related to the pathophysiology of SSc that could be beneficial in the treatment of this complex disease without current therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Diego Caprioglio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - Belén Palomares
- Maimonides Biomedical Research Institute of Córdoba, Spain; Departament of Cellular Biology, Physiology and Immunology, University of Córdoba, Spain; Universitary Hospital Reina Sofía, Córdoba, Spain
| | - Jim DeMesa
- Emerald Health Pharmaceuticals, San Diego, CA, USA
| | | | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Córdoba, Spain; Departament of Cellular Biology, Physiology and Immunology, University of Córdoba, Spain; Universitary Hospital Reina Sofía, Córdoba, Spain.
| |
Collapse
|
35
|
Kanno Y. The Role of Fibrinolytic Regulators in Vascular Dysfunction of Systemic Sclerosis. Int J Mol Sci 2019; 20:ijms20030619. [PMID: 30709025 PMCID: PMC6387418 DOI: 10.3390/ijms20030619] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 02/08/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease of autoimmune origin characterized by vascular dysfunction and extensive fibrosis of the skin and visceral organs. Vascular dysfunction is caused by endothelial cell (EC) apoptosis, defective angiogenesis, defective vasculogenesis, endothelial-to-mesenchymal transition (EndoMT), and coagulation abnormalities, and exacerbates the disease. Fibrinolytic regulators, such as plasminogen (Plg), plasmin, α2-antiplasmin (α2AP), tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plasminogen activator inhibitor 1 (PAI-1), and angiostatin, are considered to play an important role in the maintenance of endothelial homeostasis, and are associated with the endothelial dysfunction of SSc. This review considers the roles of fibrinolytic factors in vascular dysfunction of SSc.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto 610-0395, Japan.
| |
Collapse
|
36
|
Kongkaew S, Rungrotmongkol T, Punwong C, Noguchi H, Takeuchi F, Kungwan N, Wolschann P, Hannongbua S. Interactions of HLA-DR and Topoisomerase I Epitope Modulated Genetic Risk for Systemic Sclerosis. Sci Rep 2019; 9:745. [PMID: 30679605 PMCID: PMC6345791 DOI: 10.1038/s41598-018-37038-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
The association of systemic sclerosis with anti-Topoisomerase 1 antibody (ATASSc) with specific alleles of human leukocyte antigen (HLA)-DR has been observed among various ethnics. The anti-Topoisomerase 1 antibody is a common autoantibody in SSc with diffuse cutaneous scleroderma, which is one of the clinical subtypes of SSc. On the other hand, an immunodominant peptide of topoisomerase 1 (Top1) self-protein (residues 349-368) was reported to have strong association with ATASSc. In this study, molecular dynamics simulation was performed on the complexes of Top1 peptide with various HLA-DR subtypes divided into ATASSc-associated alleles (HLA-DRB1*08:02, HLA-DRB1*11:01 and HLA-DRB1*11:04), suspected allele (HLA-DRB5*01:02), and non-associated allele (HLA-DRB1*01:01). The unique interaction for each system was compared to the others in terms of dynamical behaviors, binding free energies and solvation effects. Our results showed that three HLA-DR/Top1 complexes of ATASSc association mostly exhibited high protein stability and increased binding efficiency without solvent interruption, in contrast to non-association. The suspected case (HLA-DRB5*01:02) binds Top1 as strongly as the ATASSc association case, which implied a highly possible risk for ATASSc development. This finding might support ATASSc development mechanism leading to a guideline for the treatment and avoidance of pathogens like Top1 self-peptide risk for ATASSc.
Collapse
Affiliation(s)
- Sirilak Kongkaew
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,The Center of Excellence in Computational Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chutintorn Punwong
- Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Hiroshi Noguchi
- School of Pharmacy, Nihon Pharmaceutical University, Saitama, 361-0806, Japan.,School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Fujio Takeuchi
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.,Faculty of Health and Nutrition, Tokyo Seiei University, Tokyo, 124-8530, Japan
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Peter Wolschann
- The Center of Excellence in Computational Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Pharmaceutical Chemistry, University of Vienna, Vienna, 1090, Austria.,Institute of Theoretical Chemistry, University of Vienna, Vienna, 1090, Austria
| | - Supot Hannongbua
- The Center of Excellence in Computational Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
37
|
Systemic Sclerosis Pathogenesis and Emerging Therapies, beyond the Fibroblast. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4569826. [PMID: 30809542 PMCID: PMC6364098 DOI: 10.1155/2019/4569826] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022]
Abstract
Systemic sclerosis (SSc) is a complex rheumatologic autoimmune disease in which inflammation, fibrosis, and vasculopathy share several pathogenic pathways that lead to skin and internal organ damage. Recent findings regarding the participation and interaction of the innate and acquired immune system have led to a better understanding of the pathogenesis of the disease and to the identification of new therapeutic targets, many of which have been tested in preclinical and clinical trials with varying results. In this manuscript, we review the state of the art of the pathogenesis of this disease and discuss the main therapeutic targets related to each pathogenic mechanism that have been discovered so far.
Collapse
|
38
|
Di Benedetto P, Liakouli V, Ruscitti P, Berardicurti O, Carubbi F, Panzera N, Di Bartolomeo S, Guggino G, Ciccia F, Triolo G, Cipriani P, Giacomelli R. Blocking CD248 molecules in perivascular stromal cells of patients with systemic sclerosis strongly inhibits their differentiation toward myofibroblasts and proliferation: a new potential target for antifibrotic therapy. Arthritis Res Ther 2018; 20:223. [PMID: 30285896 PMCID: PMC6235209 DOI: 10.1186/s13075-018-1719-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Fibrosis may be considered the hallmark of systemic sclerosis (SSc), the end stage triggered by different pathological events. Transforming growth factor-β (TGF-β) and platelet-derived growth factor BB (PDGF-BB) are profibrotic molecules modulating myofibroblast differentiation and proliferation, respectively. There is evidence linking CD248 with these two molecules, both highly expressed in patients with SSc, and suggesting that CD248 may be a therapeutic target for several diseases. The aim of this work was to evaluate the expression of CD248 in SSc skin and its ability to modulate SSc fibrotic process. METHODS After ethical approval was obtained, skin biopsies were collected from 20 patients with SSc and 10 healthy control subjects (HC). CD248 expression was investigated in the skin, as well as in bone marrow mesenchymal stem cells (MSCs) treated with TGF-β or PDGF-BB, by immunofluorescence, qRT-PCR, and Western blotting. Finally, in SSc-MSCs, the CD248 gene was silenced by siRNA. RESULTS Increased expression of CD248 was found in endothelial cells and perivascular stromal cells of SSc skin. In SSc-MSCs, the levels of CD248 and α-smooth muscle actin expression were significantly higher than in HC-MSCs. In both SSc- and HC-MSCs, PDGF-BB induced increased expression of Ki-67 when compared with untreated cells but was unable to modulate CD248 levels. After CD248 silencing, both TGF-β and PDGF-BB signaling were inhibited in SSc-MSCs. CONCLUSIONS CD248 overexpression may play an important role in the fibrotic process by modulating the molecular target, leading to perivascular cells differentiation toward myofibroblasts and interfering with its expression, and thus might open a new therapeutic strategy to inhibit myofibroblast generation during SSc.
Collapse
Affiliation(s)
- Paola Di Benedetto
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, Delta 6 Building, Via dell'Ospedale, 67100, L'Aquila, Italy.
| | - Vasiliki Liakouli
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, Delta 6 Building, Via dell'Ospedale, 67100, L'Aquila, Italy
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, Delta 6 Building, Via dell'Ospedale, 67100, L'Aquila, Italy
| | - Onorina Berardicurti
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, Delta 6 Building, Via dell'Ospedale, 67100, L'Aquila, Italy
| | - Francesco Carubbi
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, Delta 6 Building, Via dell'Ospedale, 67100, L'Aquila, Italy
| | - Noemi Panzera
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, Delta 6 Building, Via dell'Ospedale, 67100, L'Aquila, Italy
| | - Salvatore Di Bartolomeo
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, Delta 6 Building, Via dell'Ospedale, 67100, L'Aquila, Italy
| | - Giuliana Guggino
- Department of Internal Medicine, Division of Rheumatology, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Francesco Ciccia
- Department of Internal Medicine, Division of Rheumatology, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giovanni Triolo
- Department of Internal Medicine, Division of Rheumatology, University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, Delta 6 Building, Via dell'Ospedale, 67100, L'Aquila, Italy
| | - Roberto Giacomelli
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, Delta 6 Building, Via dell'Ospedale, 67100, L'Aquila, Italy
| |
Collapse
|
39
|
Thuan DTB, Zayed H, Eid AH, Abou-Saleh H, Nasrallah GK, Mangoni AA, Pintus G. A Potential Link Between Oxidative Stress and Endothelial-to-Mesenchymal Transition in Systemic Sclerosis. Front Immunol 2018; 9:1985. [PMID: 30283435 PMCID: PMC6156139 DOI: 10.3389/fimmu.2018.01985] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Systemic sclerosis (SSc), an autoimmune disease that is associated with a number of genetic and environmental risk factors, is characterized by progressive fibrosis and microvasculature damage in the skin, lungs, heart, digestive system, kidneys, muscles, joints, and nervous system. These abnormalities are associated with altered secretion of growth factor and profibrotic cytokines, such as transforming growth factor-beta (TGF-β), interleukin-4 (IL-4), platelet-derived growth factor (PDGF), and connective-tissue growth factor (CTGF). Among the cellular responses to this proinflammatory environment, the endothelial cells phenotypic conversion into activated myofibroblasts, a process known as endothelial to mesenchymal transition (EndMT), has been postulated. Reactive oxygen species (ROS) might play a key role in SSs-associated fibrosis and vascular damage by mediating and/or activating TGF-β-induced EndMT, a phenomenon that has been observed in other disease models. In this review, we identified and critically appraised published studies investigating associations ROS and EndMT and the presence of EndMT in SSc, highlighting a potential link between oxidative stress and EndMT in this condition.
Collapse
Affiliation(s)
- Duong Thi Bich Thuan
- Department of Biochemistry, Hue University of Medicine and Pharmacy, University of Hue, Hue, Vietnam
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University, Adelaide, SA, Australia
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
40
|
Smallwood MJ, Nissim A, Knight AR, Whiteman M, Haigh R, Winyard PG. Oxidative stress in autoimmune rheumatic diseases. Free Radic Biol Med 2018; 125:3-14. [PMID: 29859343 DOI: 10.1016/j.freeradbiomed.2018.05.086] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
The management of patients with autoimmune rheumatic diseases such as rheumatoid arthritis (RA) remains a significant challenge. Often the rheumatologist is restricted to treating and relieving the symptoms and consequences and not the underlying cause of the disease. Oxidative stress occurs in many autoimmune diseases, along with the excess production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The sources of such reactive species include NADPH oxidases (NOXs), the mitochondrial electron transport chain, nitric oxide synthases, nitrite reductases, and the hydrogen sulfide producing enzymes cystathionine-β synthase and cystathionine-γ lyase. Superoxide undergoes a dismutation reaction to generate hydrogen peroxide which, in the presence of transition metal ions (e.g. ferrous ions), forms the hydroxyl radical. The enzyme myeloperoxidase, present in inflammatory cells, produces hypochlorous acid, and in healthy individuals ROS and RNS production by phagocytic cells is important in microbial killing. Both low molecular weight antioxidant molecules and antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, and peroxiredoxin remove ROS. However, when ROS production exceeds the antioxidant protection, oxidative stress occurs. Oxidative post-translational modifications of proteins then occur. Sometimes protein modifications may give rise to neoepitopes that are recognized by the immune system as 'non-self' and result in the formation of autoantibodies. The detection of autoantibodies against specific antigens, might improve both early diagnosis and monitoring of disease activity. Promising diagnostic autoantibodies include anti-carbamylated proteins and anti-oxidized type II collagen antibodies. Some of the most promising future strategies for redox-based therapeutic compounds are the activation of endogenous cellular antioxidant systems (e.g. Nrf2-dependent pathways), inhibition of disease-relevant sources of ROS/RNS (e.g. isoform-specific NOX inhibitors), or perhaps specifically scavenging disease-related ROS/RNS via site-specific antioxidants.
Collapse
Affiliation(s)
- Miranda J Smallwood
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK
| | - Ahuva Nissim
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Annie R Knight
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK
| | - Matthew Whiteman
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK
| | - Richard Haigh
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK; Department of Rheumatology, Princess Elizabeth Orthopaedic Centre, Royal Devon and Exeter NHS Foundation Trust (Wonford), Exeter EX2 5DW, UK
| | - Paul G Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK.
| |
Collapse
|
41
|
Abdulle AE, Diercks GFH, Feelisch M, Mulder DJ, van Goor H. The Role of Oxidative Stress in the Development of Systemic Sclerosis Related Vasculopathy. Front Physiol 2018; 9:1177. [PMID: 30197602 PMCID: PMC6117399 DOI: 10.3389/fphys.2018.01177] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease characterized by autoimmunity, vasculopathy, and progressive fibrosis typically affecting multiple organs including the skin. SSc often is a lethal disorder, because effective disease-modifying treatment still remains unavailable. Vasculopathy with endothelial dysfunction, perivascular infiltration of mononuclear cells, vascular wall remodeling and rarefaction of capillaries is the hallmark of the disease. Most patients present with vasospastic attacks of the digital arteries referred to as 'Raynaud's phenomenon,' which is often an indication of an underlying widespread vasculopathy. Although autoimmune responses and inflammation are both found to play an important role in the pathogenesis of this vasculopathy, no definite initiating factors have been identified. Recently, several studies have underlined the potential role of oxidative stress in the pathogenesis of SSc vasculopathy thereby proposing a new aspect in the pathogenesis of this disease. For instance, circulating levels of reactive oxygen species (ROS) related markers have been found to correlate with SSc vasculopathy, the formation of fibrosis and the production of autoantibodies. Excess ROS formation is well-known to lead to endothelial cell (EC) injury and vascular complications. Collectively, these findings suggest a potential role of ROS in the initiation and progression of SSc vasculopathy. In this review, we present the background of oxidative stress related processes (e.g., EC injury, autoimmunity, inflammation, and vascular wall remodeling) that may contribute to SSc vasculopathy. Finally, we describe the use of oxidative stress related read-outs as clinical biomarkers of disease activity and evaluate potential anti-oxidative strategies in SSc.
Collapse
Affiliation(s)
- Amaal E. Abdulle
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Gilles F. H. Diercks
- Section Pathology, Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Douwe J. Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Harry van Goor
- Section Pathology, Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
42
|
Del Papa N, Pignataro F. The Role of Endothelial Progenitors in the Repair of Vascular Damage in Systemic Sclerosis. Front Immunol 2018; 9:1383. [PMID: 29967618 PMCID: PMC6015881 DOI: 10.3389/fimmu.2018.01383] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/04/2018] [Indexed: 01/17/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by a complex pathological process where the main scenario is represented by progressive loss of microvascular bed, with the consequent progressive fibrotic changes in involved organ and tissues. Although most aspects of vascular injury in scleroderma are poorly understood, recent data suggest that the scleroderma impairment of neovascularization could be related to both angiogenesis and vasculogenesis failure. Particularly, compensatory angiogenesis does not occur normally in spite of an important increase in many angiogenic factors either in SSc skin or serum. Besides insufficient angiogenesis, the contribution of defective vasculogenesis to SSc vasculopathy has been extensively studied. Over the last decades, our understanding of the processes responsible for the formation of new vessels after tissue ischemia has increased. In the past, adult neovascularization was thought to depend mainly on angiogenesis (a process by which new vessels are formed by the proliferation and migration of mature endothelial cells). More recently, increased evidence suggests that stem cells mobilize from the bone marrow into the peripheral blood (PB), differentiate in circulating endothelial progenitors (EPCs), and home to site of ischemia to contribute to de novo vessel formation. Significant advances have been made in understanding the biology of EPCs, and molecular mechanisms regulating EPC function. Autologous EPCs now are becoming a novel treatment option for therapeutic vascularization and vascular repair, mainly in ischemic diseases. However, different diseases, such as cardiovascular diseases, diabetes, and peripheral artery ischemia are related to EPC dysfunction. Several studies have shown that EPCs can be detected in the PB of patients with SSc and are impaired in their function. Based on an online literature search (PubMed, EMBASE, and Web of Science, last updated December 2017) using keywords related to “endothelial progenitor cells” and “Systemic Sclerosis,” “scleroderma vasculopathy,” “angiogenesis,” “vasculogenesis,” this review gives an overview on the large body of data of current research in this issue, including controversies over the identity and functions of EPCs, their meaning as biomarker of SSc microangiopathy and their clinical potency.
Collapse
|
43
|
McFarlane IM, Bhamra MS, Kreps A, Iqbal S, Al-Ani F, Saladini-Aponte C, Grant C, Singh S, Awwal K, Koci K, Saperstein Y, Arroyo-Mercado FM, Laskar DB, Atluri P. Gastrointestinal Manifestations of Systemic Sclerosis. ACTA ACUST UNITED AC 2018; 8. [PMID: 30057856 PMCID: PMC6059963 DOI: 10.4172/2161-1149.1000235] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Systemic sclerosis (SSc) is a rare autoimmune disease characterized by fibroproliferative alterations of the microvasculature leading to fibrosis and loss of function of the skin and internal organs. Gastrointestinal manifestations of SSc are the most commonly encountered complications of the disease affecting nearly 90% of the SSc population. Among these complications, the esophagus and the anorectum are the most commonly affected. However, this devastating disorder does not spare any part of the gastrointestinal tract (GIT), and includes the oral cavity, esophagus, stomach, small and large bowels as well as the liver and pancreas. In this review, we present the current understanding of the pathophysiologic mechanisms of SSc including vasculopathy, endothelial to mesenchymal transformation as well as the autoimmune pathogenetic pathways. We also discuss the clinical presentation and diagnosis of each part of the GIT affected by SSc. Finally, we highlight the latest developments in the management of this disease, addressing the severe malnutrition that affects this vulnerable patient population and ways to assess and improve the nutritional status of the patients.
Collapse
Affiliation(s)
- Isabel M McFarlane
- Division of Rheumatology and Gastroenterology, Department of Medicine and Pathology, Hospitals Kings County Hospital Brooklyn, State University of New York, USA
| | - Manjeet S Bhamra
- Division of Rheumatology and Gastroenterology, Department of Medicine and Pathology, Hospitals Kings County Hospital Brooklyn, State University of New York, USA
| | - Alexandra Kreps
- Division of Rheumatology and Gastroenterology, Department of Medicine and Pathology, Hospitals Kings County Hospital Brooklyn, State University of New York, USA
| | - Sadat Iqbal
- Division of Rheumatology and Gastroenterology, Department of Medicine and Pathology, Hospitals Kings County Hospital Brooklyn, State University of New York, USA
| | - Firas Al-Ani
- Division of Rheumatology and Gastroenterology, Department of Medicine and Pathology, Hospitals Kings County Hospital Brooklyn, State University of New York, USA
| | - Carla Saladini-Aponte
- Division of Rheumatology and Gastroenterology, Department of Medicine and Pathology, Hospitals Kings County Hospital Brooklyn, State University of New York, USA
| | - Christon Grant
- Division of Rheumatology and Gastroenterology, Department of Medicine and Pathology, Hospitals Kings County Hospital Brooklyn, State University of New York, USA
| | - Soberjot Singh
- Division of Rheumatology and Gastroenterology, Department of Medicine and Pathology, Hospitals Kings County Hospital Brooklyn, State University of New York, USA
| | - Khalid Awwal
- Division of Rheumatology and Gastroenterology, Department of Medicine and Pathology, Hospitals Kings County Hospital Brooklyn, State University of New York, USA
| | - Kristaq Koci
- Division of Rheumatology and Gastroenterology, Department of Medicine and Pathology, Hospitals Kings County Hospital Brooklyn, State University of New York, USA
| | - Yair Saperstein
- Division of Rheumatology and Gastroenterology, Department of Medicine and Pathology, Hospitals Kings County Hospital Brooklyn, State University of New York, USA
| | - Fray M Arroyo-Mercado
- Division of Rheumatology and Gastroenterology, Department of Medicine and Pathology, Hospitals Kings County Hospital Brooklyn, State University of New York, USA
| | - Derek B Laskar
- Division of Rheumatology and Gastroenterology, Department of Medicine and Pathology, Hospitals Kings County Hospital Brooklyn, State University of New York, USA
| | - Purna Atluri
- Division of Rheumatology and Gastroenterology, Department of Medicine and Pathology, Hospitals Kings County Hospital Brooklyn, State University of New York, USA
| |
Collapse
|
44
|
Right Ventricle Remodeling and Function in Scleroderma Patients. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4528148. [PMID: 29750156 PMCID: PMC5884238 DOI: 10.1155/2018/4528148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/12/2018] [Indexed: 01/06/2023]
Abstract
Scleroderma, known also as systemic sclerosis (SSc), is a severe disease associated with high mortality rates, and right ventricular (RV) remodeling and dysfunction, along with pulmonary artery hypertension (PAH), are among the most important internal organ manifestations of this disease. PAH has a higher prevalence in patients with SSc compared to the general population and represents a significant predictor of mortality in SSc. In patients with SSc, the morphological remodeling and alteration of RV function begin even before the setting of PAH and lead to development of a specific adaptive pattern of the RV which is different from the one recorded in patients with IAPH. These alterations cause worse outcomes and increased mortality rates in SSc patients. Early detection of RV dysfunction and remodeling is possible using modern imaging tools currently available and can indicate the initiation of specific therapeutic measures before installation of PAH. The aim of this review is to summarize the current knowledge related to mechanisms involved in the remodeling and functional alteration of the RV in SSc patients.
Collapse
|
45
|
Asano Y. What can we learn from Fli1-deficient mice, new animal models of systemic sclerosis? JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2018; 3:6-13. [PMID: 35382130 DOI: 10.1177/2397198318758221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2018] [Indexed: 01/06/2023]
Abstract
Systemic sclerosis is a complex multifactorial disease characterized by autoimmunity, vasculopathy, and selective organ fibrosis. A series of genetic and epidemiological studies have demonstrated that environmental influences play a central role in the onset of systemic sclerosis, while genetic factors determine the susceptibility to and the severity of this disease. Therefore, the identification of predisposing factors related to environmental influences would provide us with an informative clue to better understand the pathological process of this disease. Based on this concept, the deficiency of transcription factor Friend leukemia virus integration 1, which is epigenetically suppressed in systemic sclerosis, seems to be a potential candidate acting as the predisposing factor of this disease. Indeed, Fli1-mutated mice serve as a set of useful disease models to disclose the complex pathology of systemic sclerosis. This article overviews the recent advancement in systemic sclerosis animal models associated with Friend leukemia virus integration 1 deficiency.
Collapse
Affiliation(s)
- Yoshihide Asano
- Department of Dermatology, Graduate School of Medicine, The University of Tokyo, Tokyo - Japan
| |
Collapse
|
46
|
Wu PC, Hsu WL, Chen CL, Lam CF, Huang YB, Huang CC, Lin MH, Lin MW. Morphine Induces Fibroblast Activation through Up-regulation of Connexin 43 Expression: Implication of Fibrosis in Wound Healing. Int J Med Sci 2018; 15:875-882. [PMID: 30008599 PMCID: PMC6036091 DOI: 10.7150/ijms.23074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/02/2018] [Indexed: 12/15/2022] Open
Abstract
Morphine is the most effective drugs for attenuating various types of severe pain, but morphine abuse carries a high risk of systemic fibrosis. Our previous have indicated that systemic administration of morphine hinders angiogenesis and delays wound healing. Here we have explained the pathological mechanism underlying the effect of morphine on wound healing. To determine how morphine affects wound healing, we first created a wound in mice treated them with a combination of a low doses (5 mg/kg/day) and high doses (20 or 30 mg/kg/day) of morphine. An In vivo study revealed that high-dose morphine-induced abnormal myofibroblasts persist after the end of wound healing because of connexin 43 (Cx43) upregulation. High-dose morphine-induced Cx43 increased the expression levels of focal adhesion molecules, namely fibronectin and alpha-smooth muscle actin (α-SMA) through the activation of transforming growth factor (TGF)-β1 signaling. In addition, we found that Cx43 contributed to TGF-βRII/ Smad2/3 signaling for regulating the differentiation of fibroblasts into myofibroblasts during high-dose morphine exposure. In conclusion, the abnormal regulation of Cx43 by morphine may induce systemic fibrosis because of abnormal myofibroblast function.
Collapse
Affiliation(s)
- Ping-Ching Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Institute of Oral Medicine and Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University Tainan, Taiwan.,Medical Device Innovation Center, Taiwan Innovation Center of Medical Devices and Technology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Li Hsu
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Lin Chen
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan.,Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Fuh Lam
- Department of Anesthesiology, E-Da Hospital/E-Da Cancer Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Yaw-Bin Huang
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chi Huang
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Wei Lin
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, Kaohsiung, Taiwan
| |
Collapse
|
47
|
Asano Y. Recent advances in the treatment of skin involvement in systemic sclerosis. Inflamm Regen 2017; 37:12. [PMID: 29259711 PMCID: PMC5725888 DOI: 10.1186/s41232-017-0047-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 02/04/2023] Open
Abstract
Skin fibrosis is a devastating clinical condition commonly seen in skin-restricted and systemic disorders. The goal of skin fibrosis treatment is the restoration of abnormally activated dermal fibroblasts producing the excessive amount of extracellular matrix, which is generally a final consequence of the complex disease process including the activation of vascular and immune systems. Among various skin fibrotic conditions, the molecular mechanisms underlying dermal fibroblast activation have been mostly well studied in systemic sclerosis (SSc). SSc is a multisystem autoimmune and vascular disease resulting in extensive fibrosis of the skin and various internal organs. Since SSc pathogenesis is believed to include all the critical components regulating tissue fibrosis, the studies on anti-fibrotic drugs against SSc provide us much useful information regarding the strategy for the treatment of various skin fibrotic conditions. In the recent decade, as is the case with other autoimmune and inflammatory diseases, the molecular targeting therapy with monoclonal antibody has been clinically well examined in SSc. Promising clinical outcomes are so far reported in tocilizumab (an anti-IL-6 receptor antibody), rituximab (an anti-CD20 antibody), and fresolimumab (an anti-TGF-β antibody). The analysis of gene expression profiles in skin lesions of SSc patients treated with tocilizumab or fresolimumab revealed a critical role of monocyte-macrophage lineage cells in the development of skin fibrosis and the involvement of IL-6 and TGF-β in the activation of those cells. Considering that B cells modulate the differentiation and activation of macrophages, favorable clinical outcomes of rituximab treatment imply the central role of B cell/monocyte-macrophage lineage cell axis in the pathogenesis of SSc. This scenario may be applicable at least partly to other skin fibrotic conditions. In this review article, the currently available data on these drugs are summarized and the future directions are discussed.
Collapse
Affiliation(s)
- Yoshihide Asano
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
48
|
Affiliation(s)
- Yoshihide Asano
- Department of Dermatology; University of Tokyo Graduate School of Medicine; Tokyo Japan
| |
Collapse
|
49
|
TGF-β-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases. Int J Mol Sci 2017; 18:ijms18102157. [PMID: 29039786 PMCID: PMC5666838 DOI: 10.3390/ijms18102157] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
Fibrotic diseases are characterized by net accumulation of extracellular matrix proteins in affected organs leading to their dysfunction and ultimate failure. Myofibroblasts have been identified as the cells responsible for the progression of the fibrotic process, and they originate from several sources, including quiescent tissue fibroblasts, circulating CD34⁺ fibrocytes and the phenotypic conversion of various cell types into activated myofibroblasts. Several studies have demonstrated that endothelial cells can transdifferentiate into mesenchymal cells through a process termed endothelial- mesenchymal transition (EndMT) and that this can give rise to activated myofibroblasts involved in the development of fibrotic diseases. Transforming growth factor β (TGF-β) has a central role in fibrogenesis by modulating the fibroblast phenotype and function, inducing myofibroblast transdifferentiation and promoting matrix accumulation. In addition, TGF-β by inducing EndMT may further contribute to the development of fibrosis. Despite extensive investigation of the pathogenesis of fibrotic diseases, no effective treatment strategies are available. Delineation of the mechanisms responsible for initiation and progression of fibrotic diseases is crucial for the development of therapeutic strategies for the treatment of the disease. In this review, we summarize the role of the TGF-β signaling pathway and EndMT in the development of fibrotic diseases and discuss their therapeutic potential.
Collapse
|
50
|
Schmidt KG, Herrero San Juan M, Trautmann S, Berninger L, Schwiebs A, Ottenlinger FM, Thomas D, Zaucke F, Pfeilschifter JM, Radeke HH. Sphingosine-1-Phosphate Receptor 5 Modulates Early-Stage Processes during Fibrogenesis in a Mouse Model of Systemic Sclerosis: A Pilot Study. Front Immunol 2017; 8:1242. [PMID: 29033951 PMCID: PMC5626866 DOI: 10.3389/fimmu.2017.01242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare multi-organ autoimmune disease characterized by progressive skin fibrosis. Inflammation, type 2 immunity, and fibrogenic processes are involved in disease development and may be affected by sphingolipids. However, details about early-stage pathophysiological mechanisms and implicated mediators remain elusive. The sphingolipid sphingosine-1-phosphate (S1P) is elevated in the sera of SSc patients, and its receptor S1P5 is expressed in skin tissue. Nevertheless, almost nothing is known about the dermatological contribution of S1P5 to inflammatory and pro-fibrotic processes leading to the pathological changes seen in SSc. In this study, we observed a novel effect of S1P5 on the inflammatory processes during low-dose bleomycin (BLM)-induced fibrogenesis in murine skin. By comparing 2-week-treated skin areas of wild-type (WT) and S1P5-deficient mice, we found that S1P5 is important for the transcriptional upregulation of the Th2 characteristic transcription factor GATA-3 under treatment-induced inflammatory conditions, while T-bet (Th1) and FoxP3 (Treg) mRNA expression was regulated independently of S1P5. Additionally, treatment caused a regulation of S1P receptor 1 and S1P receptor 3 mRNA as well as a regulation of long-chain ceramide profiles, which both differ significantly between the genotypes. Despite S1P5-dependent differences regarding inflammatory processes, similar macroscopic evidence of fibrosis was detected in the skin histology of WT and S1P5-deficient mice after 4 weeks of subcutaneous BLM treatment. However, at the earlier 2-week point in time, the mRNA data of pro-collagen type 1 and SMAD7 indicate a pro-fibrotic S1P5 contribution in the applied SSc mouse model. In conclusion, we propose that S1P5 plays a role as a novel modulator during the early phase of BLM-caused fibrogenesis in murine skin. An immediate relationship between dermal S1P5 expression and fibrotic processes leading to skin alterations, such as formative for SSc pathogenesis, is indicated but should be studied more profound in further investigations. Therefore, this study is an initial step in understanding the role of S1P5-mediated effects during early stages of fibrogenesis, which may encourage the ongoing search for new therapeutic options for SSc patients.
Collapse
Affiliation(s)
- Katrin G Schmidt
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| | - Martina Herrero San Juan
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| | - Sandra Trautmann
- pharmazentrum frankfurt/ZAFES, Institute for Clinical Pharmacology, Hospital of the Goethe University, Frankfurt, Germany
| | - Lucija Berninger
- Dr Rolf M Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital, Friedrichsheim gGmbH, Frankfurt, Germany
| | - Anja Schwiebs
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| | - Florian M Ottenlinger
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| | - Dominique Thomas
- pharmazentrum frankfurt/ZAFES, Institute for Clinical Pharmacology, Hospital of the Goethe University, Frankfurt, Germany
| | - Frank Zaucke
- Dr Rolf M Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital, Friedrichsheim gGmbH, Frankfurt, Germany
| | - Josef M Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| | - Heinfried H Radeke
- pharmazentrum frankfurt/ZAFES, Institute of Pharmacology and Toxicology, Hospital of the Goethe University, Frankfurt, Germany
| |
Collapse
|