1
|
Wolfson SM, Beigel K, Anderson SE, Deal B, Weiner M, Lee SH, Taylor D, Heo SC, Heuckeroth RO, Hashmi SK. Rapid cyclic stretching induces a synthetic, proinflammatory phenotype in cultured human intestinal smooth muscle, with the potential to alter signaling to adjacent bowel cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.617767. [PMID: 39464046 PMCID: PMC11507745 DOI: 10.1101/2024.10.12.617767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background and Aims Bowel smooth muscle experiences mechanical stress constantly during normal function, and pathologic mechanical stressors in disease states. We tested the hypothesis that pathologic mechanical stress could alter transcription to induce smooth muscle phenotypic class switching. Methods Primary human intestinal smooth muscle cells (HISMCs), seeded on electrospun aligned poly-ε-caprolactone nano-fibrous scaffolds, were subjected to pathologic, high frequency (1 Hz) uniaxial 3% cyclic stretch (loaded) or kept unloaded in culture for 6 hours. Total RNA sequencing, qRT-PCR, and quantitative immunohistochemistry defined loading-induced changes in gene expression. NicheNet predicted how differentially expressed genes might impact HISMCs and other bowel cells. Results Loading induced differential expression of 4537 genes in HISMCs. Loaded HISMCs had a less contractile phenotype, with increased expression of synthetic SMC genes, proinflammatory cytokines, and altered expression of axon guidance molecules, growth factors and morphogens. Many differentially expressed genes encode secreted ligands that could act cell-autonomously on smooth muscle and on other cells in the bowel wall. Discussion HISMCs demonstrate remarkably rapid phenotypic plasticity in response to mechanical stress that may convert contractile HISMCs into proliferative, fibroblast-like cells or proinflammatory cells. These mechanical stress-induced changes in HISMC gene expression may be relevant for human bowel disease.
Collapse
Affiliation(s)
- Sharon M. Wolfson
- The Children’s Hospital of Philadelphia Research Institute and the Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Katherine Beigel
- The Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sierra E. Anderson
- The Children’s Hospital of Philadelphia Research Institute and the Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Brooke Deal
- The Children’s Hospital of Philadelphia Research Institute and the Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Molly Weiner
- The Children’s Hospital of Philadelphia Research Institute and the Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | | | - Deanne Taylor
- The Children’s Hospital of Philadelphia Research Institute and the Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Chin Heo
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Bioengineering, The University of Pennsylvania School of Engineering and Applied Science, 220 S 33rd St, Philadelphia, PA 19104, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Robert O. Heuckeroth
- The Children’s Hospital of Philadelphia Research Institute and the Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sohaib K. Hashmi
- The Children’s Hospital of Philadelphia Research Institute and the Abramson Research Center, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Bioengineering, The University of Pennsylvania School of Engineering and Applied Science, 220 S 33rd St, Philadelphia, PA 19104, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hospital of the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Park JY, Jo CS, Ku C, Hwang JS. BMP-2 regulates the expression of myosin Va via smad in melan-a melanocyte. Arch Dermatol Res 2024; 316:225. [PMID: 38787453 DOI: 10.1007/s00403-024-02955-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Myosin Va (Myo Va) is one of three protein complexes involved in melanosome transport. In this study, we identified BMP-2 as an up-regulator of Myo Va expression using 2-methyl-naphtho[1,2,3-de]quinolin-8-one (MNQO). Our results showed that MNQO reduced the mRNA and protein expression of Myo Va and BMP-2 in melanocytes. Knockdown of BMP-2 by siRNA also affected Myo Va mRNA and protein expression, confirming that MNQO regulates Myo Va through BMP-2. Furthermore, phosphorylation of Smad1/5/8 by BMP2 treatment confirmed that the BMP-2/Smad signaling pathway regulates Myo Va expression in Melan-a melanocytes. Smad-binding elements were found in the Myo Va promoter and phosphorylated Smad1/5/8 bind directly to the Myo Va promoter to activate Myo Va transcription and BMP-2 enhances this binding. These findings provide insight into a new role for BMP-2 in Melan-a melanocytes and a mechanism of regulation of Myo Va expression that may be beneficial in the treatment of albinism or hyperpigmentation disorders.
Collapse
Affiliation(s)
- Ji Yun Park
- Department of Genetics & Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, Gyeonggi-do, South Korea
| | - Chan Song Jo
- Department of Genetics & Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, Gyeonggi-do, South Korea
| | - ChangHoe Ku
- Department of Genetics & Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, Gyeonggi-do, South Korea
| | - Jae Sung Hwang
- Department of Genetics & Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446-701, Gyeonggi-do, South Korea.
| |
Collapse
|
3
|
Ye D, Liu Y, Pan H, Feng Y, Lu X, Gan L, Wan J, Ye J. Insights into bone morphogenetic proteins in cardiovascular diseases. Front Pharmacol 2023; 14:1125642. [PMID: 36909186 PMCID: PMC9996008 DOI: 10.3389/fphar.2023.1125642] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are secretory proteins belonging to the transforming growth factor-β (TGF-β) superfamily. These proteins play important roles in embryogenesis, bone morphogenesis, blood vessel remodeling and the development of various organs. In recent years, as research has progressed, BMPs have been found to be closely related to cardiovascular diseases, especially atherosclerosis, vascular calcification, cardiac remodeling, pulmonary arterial hypertension (PAH) and hereditary hemorrhagic telangiectasia (HHT). In this review, we summarized the potential roles and related mechanisms of the BMP family in the cardiovascular system and focused on atherosclerosis and PAH.
Collapse
Affiliation(s)
- Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yinghui Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liren Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
4
|
Tang H, Zhang X, Xue G, Xu F, Wang Q, Yang P, Hong B, Xu Y, Huang Q, Liu J, Zuo Q. The biology of bone morphogenetic protein signaling pathway in cerebrovascular system. Chin Neurosurg J 2021; 7:36. [PMID: 34465399 PMCID: PMC8408949 DOI: 10.1186/s41016-021-00254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/08/2021] [Indexed: 11/30/2022] Open
Abstract
Bone morphogenetic protein belongs to transcription growth factor superfamily β; bone morphogenetic protein signal pathway regulates cell proliferation, differentiation, and apoptosis among different tissues. Cerebrovascular system supplies sufficient oxygen and blood into brain to maintain its normal function. The disorder of cerebrovascular system will result into serious cerebrovascular diseases, which is gradually becoming a major threat to human health in modern society. In recent decades, many studies have revealed the underlying biology and mechanism of bone morphogenetic protein signal pathway played in cerebrovascular system. This review will discuss the relationship between the two aspects, aiming to provide new perspective for non-invasive treatment and basic research of cerebrovascular diseases.
Collapse
Affiliation(s)
- Haishuang Tang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.,Naval Medical Center of PLA, Naval Military Medical University, Shanghai, 200050, People's Republic of China
| | - Xiaoxi Zhang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Gaici Xue
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Fengfeng Xu
- Naval Medical Center of PLA, Naval Military Medical University, Shanghai, 200050, People's Republic of China
| | - Qingsong Wang
- Department of Cardiology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Pengfei Yang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Bo Hong
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Yi Xu
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Qinghai Huang
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| | - Qiao Zuo
- Department of Neurosurgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
5
|
Lee SH, Hwang JW, Han Y, Lee KY. Synergistic stimulating effect of 2-hydroxymelatonin and BMP-4 on osteogenic differentiation in vitro. Biochem Biophys Res Commun 2020; 527:941-946. [PMID: 32439177 DOI: 10.1016/j.bbrc.2020.04.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
2-Hydroxymelatonin is a metabolite produced when melatonin 2-hydroxylase catalyzes melatonin. Recent studies have reported the important roles of melatonin in bone metabolism. However, the roles of 2-hydroxymelatonin in bone metabolism remains poorly understood. The purpose of this study is to present evidence of the effect of 2-hydroxymelatonin on osteogenic differentiation in C2C12 cells. In this study, we demonstrated the synergistic stimulating effect of 2-hydroxymelatonin and bone morphogenetic protein (BMP)-4 on osteogenic differentiation in vitro, using alkaline phosphatase (ALP) staining, Alizarin red S (ARS) staining, qPCR, and luciferase reporter assay. The combination of 2-hydroxymelatonin and BMP-4 revealed a synergistic effect on osteogenic differentiation in vitro. This finding provides evidence that optimal concentrations of both 2-hydroxymelatonin and BMP-4 are beneficial for anabolic effects on bone in vitro.
Collapse
Affiliation(s)
- Sung Ho Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jin Wook Hwang
- INSERM UMR-S 935, Université Paris Sud, 94800 Villejuif, France and ESTeam Paris Sud, Université Paris Sud, 94800, Villejuif, France
| | - Younho Han
- Department of Oral Pharmacology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea.
| | - Kwang Youl Lee
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| |
Collapse
|
6
|
Andrés-Delgado L, Ernst A, Galardi-Castilla M, Bazaga D, Peralta M, Münch J, González-Rosa JM, Marques I, Tessadori F, de la Pompa JL, Vermot J, Mercader N. Actin dynamics and the Bmp pathway drive apical extrusion of proepicardial cells. Development 2019; 146:dev.174961. [PMID: 31175121 PMCID: PMC6633599 DOI: 10.1242/dev.174961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/24/2019] [Indexed: 12/30/2022]
Abstract
The epicardium, the outer mesothelial layer enclosing the myocardium, plays key roles in heart development and regeneration. During embryogenesis, the epicardium arises from the proepicardium (PE), a cell cluster that appears in the dorsal pericardium (DP) close to the venous pole of the heart. Little is known about how the PE emerges from the pericardial mesothelium. Using a zebrafish model and a combination of genetic tools, pharmacological agents and quantitative in vivo imaging, we reveal that a coordinated collective movement of DP cells drives PE formation. We found that Bmp signaling and the actomyosin cytoskeleton promote constriction of the DP, which enables PE cells to extrude apically. We provide evidence that cell extrusion, which has been described in the elimination of unfit cells from epithelia and the emergence of hematopoietic stem cells, is also a mechanism for PE cells to exit an organized mesothelium and fulfil their developmental fate to form a new tissue layer, the epicardium. Summary: Proepicardial cells emerge from the pericardial mesothelium through apical extrusion, a process that depends on BMP signaling and actomyosin rearrangements.
Collapse
Affiliation(s)
- Laura Andrés-Delgado
- Development of the Epicardium and its Role During Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.,Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Alexander Ernst
- Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland
| | - María Galardi-Castilla
- Development of the Epicardium and its Role During Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - David Bazaga
- Development of the Epicardium and its Role During Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Marina Peralta
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67411 Illkirch, France
| | - Juliane Münch
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.,Ciber CV, 28029 Madrid, Spain
| | - Juan M González-Rosa
- Development of the Epicardium and its Role During Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Inês Marques
- Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland
| | - Federico Tessadori
- Hubrecht Institute-KNAW and UMC Utrecht, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain.,Ciber CV, 28029 Madrid, Spain
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.,Université de Strasbourg, 67411 Illkirch, France
| | - Nadia Mercader
- Development of the Epicardium and its Role During Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain .,Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland
| |
Collapse
|
7
|
Medial artery calcification increases neointimal hyperplasia after balloon injury. Sci Rep 2019; 9:8193. [PMID: 31160618 PMCID: PMC6547750 DOI: 10.1038/s41598-019-44668-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/17/2019] [Indexed: 11/08/2022] Open
Abstract
Arterial calcification predicts accelerated restenosis after angioplasty and stenting. We studied the effects of calcification on neointimal hyperplasia after balloon injury in the rat carotid. Arterial calcification was induced by subcutaneous injection of vitamin D3 or by adventitial application of calcium chloride. After balloon catheter injury, neointimal hyperplasia was significantly increased in rats with medial calcification compared with controls. Neointimal cell proliferation in calcified arteries as assessed by proliferating cell nuclear antigen (PCNA) staining was also higher. In calcified arteries, bone morphogenetic protein 2 (BMP-2)levels were increased at the time of injury suggesting a possible explanation for the altered responses. In vascular smooth muscle cells (SMCs) grown under calcifying conditions , stimulation with BMP-2 significantly increased cell proliferation, however, this did not occur in those grown under non-calcifying conditions. These data suggest that neointimal hyperplasia is accelerated in calcified arteries and that this may be due in part to increased BMP-2 expression in medial SMCs. Treatments aimed at inhibiting restenosis in calcified arteries may differ from those that work in uncalcified vessels.
Collapse
|
8
|
Yang M, Fan Z, Wang F, Tian ZH, Ma B, Dong B, Li Z, Zhang M, Zhao W. BMP-2 enhances the migration and proliferation of hypoxia-induced VSMCs via actin cytoskeleton, CD44 and matrix metalloproteinase linkage. Exp Cell Res 2018; 368:248-257. [DOI: 10.1016/j.yexcr.2018.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 12/24/2022]
|
9
|
Chang CN, Kioussi C. Location, Location, Location: Signals in Muscle Specification. J Dev Biol 2018; 6:E11. [PMID: 29783715 PMCID: PMC6027348 DOI: 10.3390/jdb6020011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Muscles control body movement and locomotion, posture and body position and soft tissue support. Mesoderm derived cells gives rise to 700 unique muscles in humans as a result of well-orchestrated signaling and transcriptional networks in specific time and space. Although the anatomical structure of skeletal muscles is similar, their functions and locations are specialized. This is the result of specific signaling as the embryo grows and cells migrate to form different structures and organs. As cells progress to their next state, they suppress current sequence specific transcription factors (SSTF) and construct new networks to establish new myogenic features. In this review, we provide an overview of signaling pathways and gene regulatory networks during formation of the craniofacial, cardiac, vascular, trunk, and limb skeletal muscles.
Collapse
Affiliation(s)
- Chih-Ning Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
- Molecular Cell Biology Graduate Program, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
10
|
Zhu T, He Y, Yang J, Fu W, Xu X, Si Y. MYBPH inhibits vascular smooth muscle cell migration and attenuates neointimal hyperplasia in a rat carotid balloon-injury model. Exp Cell Res 2017; 359:154-162. [PMID: 28800959 DOI: 10.1016/j.yexcr.2017.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/20/2017] [Accepted: 07/30/2017] [Indexed: 12/12/2022]
Abstract
Vascular smooth muscle cell (VSMC) migration is implicated in restenosis. Myosin binding protein H (MYBPH) is capable of reducing cell motility and metastasis. In this study, we sought to determine whether MYBPH is involved in VSMC migration and neointima formation in response to vascular injury. To determine the expression of MYBPH in injured artery, we used a standard rat carotid artery balloon-injury model. In vivo studies have demonstrated that MYBPH is upregulated after vascular injury. VSMCs treated with platelet-derived growth factor (PDGF)-BB displayed increased MYBPH mRNA and protein levels. PDGF-induced VSMC migration was inhibited by adenovirus-mediated expression of MYBPH whereas it was enhanced by small interfering RNA knockdown of MYBPH. The activation of ROCK1 was repressed by MYBPH. Luminal delivery of MYBPH adenovirus to carotid arteries decreased neointimal hyperplasia in vivo. MYBPH may, therefore, serve as a novel therapeutic target for postangioplasty restenosis.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Vascular Surgery, Fudan University Zhongshan Hospital, 200032, China
| | - Yi He
- Department of Cardiovascular Surgery, Shanghai Jiao Tong University, 200092, China
| | - Jue Yang
- Department of Vascular Surgery, Fudan University Zhongshan Hospital, 200032, China
| | - Weiguo Fu
- Department of Vascular Surgery, Fudan University Zhongshan Hospital, 200032, China
| | - Xin Xu
- Department of Vascular Surgery, Fudan University Zhongshan Hospital, 200032, China.
| | - Yi Si
- Department of Vascular Surgery, Fudan University Zhongshan Hospital, 200032, China.
| |
Collapse
|
11
|
Xu H, Wu F, Zhang H, Yang C, Li K, Wang H, Yang H, Liu Y, Ding B, Tan Y, Yuan M, Li Y, Dai Z. Actin cytoskeleton mediates BMP2-Smad signaling via calponin 1 in preosteoblast under simulated microgravity. Biochimie 2017; 138:184-193. [PMID: 28457943 DOI: 10.1016/j.biochi.2017.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Microgravity influences the activity of osteoblast, induces actin microfilament disruption and leads to bone loss during spaceflight. Mechanical stress such as gravity, regulates cell function, response and differentiation through dynamic cytoskeleton changes, but the mechanotransduction mechanism remains to be fully elucidated. Previous, we demonstrated actin microfilament mediated osteoblast Cbfa1 responsiveness to BMP2 under simulated microgravity (SMG). Here, we explored a potential molecular and its detailed mechanism of actin cytoskeleton functioning on BMP2-Smad signaling in MC3T3-E1 under SMG. Results showed that the actin microfilament-disrupting agent, cytochalasin B (CB), reduced BMP2-induced activation, translocation of Smad1/5/8 and Runx2 expression. SMG also inhibited BMP2-Smad signaling, which was rescued by actin cytoskeleton stabilizing agent, Jasplakinolide (JAS). Furthermore, we found that siRNA mediated knockdown of calponin 1 (CNN1), an actin binding protein, markedly promoted BMP2-Smad signaling and abolished both inhibition of CB, SMG on BMP2-Smad signaling and the rescue action of JAS. Overexpression of CNN1 inhibited the p-Smad induced by BMP2. Bidirectional Co-IP experiments demonstrated CNN1 could interacted with Smad or p-Smad protein. Furthermore, CB or SMG decreased the phosphorylated CNN1 and increased its interaction with Smad or p-Smad. Combined with the phosphorylation of CNN1 inhibites its actin binding activity, these results indicate that actin cytoskeleton depolymerization inhibites BMP2 signaling via blocking of Smad by dephosphorylated CNN1 in osteoblast cells. Thus, we provide new important insights into the mechanism of mechanotransduction under SMG condition, which probably contribute to bone formation decrease induced by SMG.
Collapse
Affiliation(s)
- Hongjie Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Kai Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Honghui Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yue Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Bai Ding
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ming Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| |
Collapse
|
12
|
Zheng WP, Yang M, Su LX, Ning Y, Wen WW, Xin MK, Zhao X, Zhang M. Association between plasma BMP-2 and in-stent restenosis in patients with coronary artery disease. Clin Chim Acta 2017; 471:150-153. [PMID: 28558956 DOI: 10.1016/j.cca.2017.05.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study aimed to assess the association between plasma bone morphogenetic protein-2 (BMP-2) level and in-stent restenosis in patients with coronary artery disease. METHODS A total of 96 patients who underwent percutaneous coronary intervention (PCI) and were followed up after PCI were enrolled in this study. 47 patients diagnosed with in-stent restenosis (ISR) were recruited to ISR group and 49 patients without ISR were recruited to Control group according to the results of coronary angiography (CAG). Baseline characteristic data were collected, and plasma BMP-2 level was evaluated. The results were analyzed using logistic regression. RESULTS There were 47 patients in the ISR group and 49 patients in the Control group. Plasma levels of BMP-2 were higher in the ISR group than in the non-ISR group [20.96 (18.44, 27.05) pg/ml vs. 29.53 (25.03, 34.07) pg/ml, P<0.01]. Furthermore, the ISR group had significantly longer stent lengths and lower stent diameters than the Control group (P<0.01 and P<0.01, respectively). In multivariate analysis, BMP-2 level, diabetes, stent length and stent diameter were independently associated with ISR [odds ratio (OR)=1.11, 95% confidence interval (CI)=1.03-1.18, P<0.01; OR=4.75, 95% CI=(1.44-15.61), P=0.01; OR=1.06, 95% CI=(1.02-1.11), P<0.01; and OR=0.15, 95% CI=(0.02-0.95), P=0.04, respectively]. CONCLUSIONS Increased BMP-2 levels were independently associated with ISR in patients with coronary artery disease. Plasma BMP-2 may be useful in predicting ISR.
Collapse
Affiliation(s)
- Wei-Ping Zheng
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Min Yang
- Department of Gerontology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Li-Xiao Su
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, China; Department of Biostatistics, Rutgers School of Public Health, The State University of New Jersey, Piscataway, NJ, USA
| | - Yu Ning
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, China
| | - Wan-Wan Wen
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, China
| | - Man-Kun Xin
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, China
| | - Xin Zhao
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, China
| | - Ming Zhang
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, China.
| |
Collapse
|
13
|
Angiotensin-(1-7) abrogates angiotensin II-induced proliferation, migration and inflammation in VSMCs through inactivation of ROS-mediated PI3K/Akt and MAPK/ERK signaling pathways. Sci Rep 2016; 6:34621. [PMID: 27687768 PMCID: PMC5043354 DOI: 10.1038/srep34621] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
The proliferation, migration and inflammation of vascular smooth muscle cells (VSMCs) contribute to the pathogenesis and progression of several cardiovascular diseases such as atherosclerosis and hypertension. Angiotensin (Ang)-(1–7) and Ang II are identified to be involved in regulating cardiovascular activity. The present study is designed to determine the interaction between Ang-(1–7) and Ang II on VSMCs proliferation, migration and inflammation as well as their underlying mechanisms. We found that Ang-(1–7) significantly suppressed the positive effects of Ang II on VSMCs proliferation, migration and inflammation, as well as on induction of the phosphorylation of Akt and ERK1/2 and increase of superoxide anion level and NAD(P)H oxidase activity in VSMCs, whereas Ang-(1–7) alone had no significant effects. This inhibitory effects of Ang-(1–7) were abolished by Mas receptor antagonist A-779. In addition, Ang II type 1 (AT1) receptor antagonist losartan, but not A-779, abolished Ang II induced VSMCs proliferation, migration and inflammation responses. Furthermore, superoxide anion scavenger N-acetyl-L-cysteine (NAC) or NAD(P)H oxidase inhibitor apocynin inhibited Ang II-induced activation of Akt and ERK1/2 signaling. These results indicate that Ang-(1–7) antagonizes the Ang II-induced VSMC proliferation, migration and inflammation through activation of Mas receptor and then suppression of ROS-dependent PI3K/Akt and MAPK/ERK signaling pathways.
Collapse
|
14
|
Sun HJ, Zhao MX, Ren XS, Liu TY, Chen Q, Li YH, Kang YM, Wang JJ, Zhu GQ. Salusin-β Promotes Vascular Smooth Muscle Cell Migration and Intimal Hyperplasia After Vascular Injury via ROS/NFκB/MMP-9 Pathway. Antioxid Redox Signal 2016; 24:1045-57. [PMID: 26952533 DOI: 10.1089/ars.2015.6475] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Media-to-intima migration of vascular smooth muscle cells (VSMCs) is critical to intimal thickening in atherosclerosis and restenosis after coronary angioplasty. The aim of this study is to determine the effects of salusin-β on VSMC migration and intimal hyperplasia after vascular injury and the underlying mechanism. RESULTS In vitro, salusin-β promoted VSMC migration, which was attenuated by matrix metalloproteinase (MMP)-9 inhibition. Inhibition or knockdown of p65-nuclear factor kappa beta (NFκB) in VSMCs suppressed salusin-β-induced MMP-9 expression and VSMC migration. Salusin-β increased NADPH oxidase 2 (NOX2) expression and reactive oxygen species (ROS) production, which were prevented by NOX2-small interfering RNA (siRNA) transfection. Salusin-β-induced p65-NFκB translocation, MMP-9 expression, and VSMC migration were inhibited by ROS scavenger, NADPH oxidase inhibitor, or NOX2-siRNA. In vivo, carotid artery ligation-induced vascular injury resulted in intimal hyperplasia in injured artery in rats. Salusin-β was upregulated in the injured carotid arteries of rats, which was attributed to reduced miR-133a-3p expression. Knockdown of salusin-β with siRNA attenuated the vascular injury-induced intimal thickening, p65-NFκB nuclear translocation, and NOX2 and MMP-9 expressions in rats. INNOVATION Salusin-β is a critical modulator in VSMC migration and neointima formation in response to vascular injury. CONCLUSIONS Salusin-β promotes VSMC migration and vascular injury-induced intimal hyperplasia via MMP-9 accumulation due to NOX2 activation, followed by ROS production, IκBα phosphorylation and degradation, and p65-NFκB translocation. We propose that salusin-β may be important in the VSMC migration and neointima of some vascular diseases. Antioxid. Redox Signal. 24, 1045-1057.
Collapse
Affiliation(s)
- Hai-Jian Sun
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| | - Ming-Xia Zhao
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| | - Xing-Sheng Ren
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| | - Tong-Yan Liu
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| | - Qi Chen
- 2 Department of Pathophysiology, Nanjing Medical University , Nanjing, China
| | - Yue-Hua Li
- 2 Department of Pathophysiology, Nanjing Medical University , Nanjing, China
| | - Yu-Ming Kang
- 3 Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine , Xi'an, China
| | - Jue-Jin Wang
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| | - Guo-Qing Zhu
- 1 Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University , Nanjing, China
| |
Collapse
|
15
|
Zhang M, Sara JD, Wang FL, Liu LP, Su LX, Zhe J, Wu X, Liu JH. Increased plasma BMP-2 levels are associated with atherosclerosis burden and coronary calcification in type 2 diabetic patients. Cardiovasc Diabetol 2015; 14:64. [PMID: 26003174 PMCID: PMC4450848 DOI: 10.1186/s12933-015-0214-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/08/2015] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Although Bone morphogenetic protein-2 (BMP-2) is a known mediator of bone regeneration and vascular calcification, to date no study has investigated the relationship between BMP-2 and type 2 diabetes mellitus (T2DM) and its possible role in coronary artery disease (CAD). The purpose of this study is to evaluate the relationship of BMP-2 with atherosclerosis and calcification in patients with T2DM. METHODS 124 subjects were enrolled in this study: 29 patients with T2DM and CAD; 26 patients with T2DM and without CAD; 36 patients with CAD and without T2DMand 34 without T2DM or CAD (control group). Severity of coronary lesions was assessed using coronary angiography and intravascular ultrasound (IVUS). Plasma BMP-2 levels were quantified using a commercially available ELISA kit. RESULTS Compared to the control group, the mean plasma BMP-2 level was significantly higher in T2DM patients with or without CAD (20.1 ± 1.7 or 19.3 ± 1.5 pg/ml, vs 17.2 ± 3.3 pg/ml, P < 0.001). In a multivariable linear regression analysis, both T2DM and CAD were significantly and positively associated with BMP-2 (Estimate, 0.249; standard error (SE), 0.063; p <0.0001; Estimate, 0.400; SE, 0.06; p < 0.0001). Plasma BMP-2 was also strongly correlated with glycosylated hemoglobin A1c (HbA1c) (Spearman ρ = -0.31; p = 0.0005). SYNTAX score was also significantly associated with BMP-2 (Spearman ρ = 0.46; p = 0.0002). Using the results from IVUS, plasma BMP-2 levels were shown to positively correlate with plaque burden (Spearman ρ = 0.38, P = 0.002) and plaque calcification (Spearman ρ =0.44, P = 0.0003) and to negatively correlate with lumen volume (Spearman ρ =0.31, P = 0.01). CONCLUSIONS Our study demonstrates that patients with T2DM had higher circulating levels of BMP-2 than normal controls. Plasma BMP-2 levels correlated positively with plaque burden and calcification in patients with T2DM.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
- Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.
| | - Jaskanwal Deep Sara
- Division of Cardiovascular Diseases, Mayo College of Medicine, Rochester, MN, USA.
| | - Fei-long Wang
- Division of Cardiovascular Diseases, Mayo College of Medicine, Rochester, MN, USA.
| | - Li-Ping Liu
- Department of Nephrology, First Hospital of Tsinghua University, Beijing, China.
| | - Li-Xiao Su
- Department of Biostatistics, Rutgers School of Public Health, The State University of New Jersey, Piscataway, NJ, USA.
| | - Jing Zhe
- Department of Biostatistics, University at Buffalo, the State University of New York, Buffalo, NY, 14214, USA.
| | - Xi Wu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
- Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.
| | - Jing-hua Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, PR China.
| |
Collapse
|