1
|
Richardson DL, Hill M, Tallis J, Ferreira LG, Clarke ND. The acute effects of coffee ingestion on postural control and physical function in older adults: A randomised crossover trial. Exp Gerontol 2024; 197:112592. [PMID: 39321752 DOI: 10.1016/j.exger.2024.112592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Caffeine consumption can elicit improvements in aspects of physical function in older adults but also, negatively modify standing balance, potentially increasing fall risk. However, balance alterations and changes in physical function induced by commonly consumed caffeine vehicles such as coffee have not been investigated. Therefore, this study investigated coffee ingestion providing 3 mg·kg BW-1 caffeine on balance performance and physical function, in a group of older adults. In a randomised, crossover design, 22 older adults (Male n = 10, Age: 68 ± 6 years) completed bipedal standing balance and physical function assessments (Senior Fitness Test) under one of the following conditions: caffeinated coffee (COF), decaffeinated coffee (DEC), placebo (PLA) or a control (CON) (no fluid ingestion). Centre of pressure (COP) root mean square and power frequency were calculated to characterise postural performance and strategy, respectively. The complexity (i.e., regularity) of the COP signal was also determined by calculating sample entropy. Caffeinated coffee had limited effects on COP outcomes. Frequency of the COP in the anteroposterior direction was greater following COF compared to DEC (P = 0.047;g = 0.29) but there were no statistical differences between COF and PLA or CON (P > 0.05). Furthermore, there were no significant performance differences between any conditions in all tests of physical function (P > 0.05). This suggests that coffee has limited effects on balance performance or physical function but may influence both balance complexity and the strategy utilised to maintain upright stance. Overall, a strong cup of coffee does not significantly influence balance and measures of functional performance in healthy older adults.
Collapse
Affiliation(s)
- Darren L Richardson
- Centre for Applied Biological & Exercise Sciences, School of Life Sciences, Coventry University, Coventry, UK.
| | - Matt Hill
- Centre for Applied Biological & Exercise Sciences, School of Life Sciences, Coventry University, Coventry, UK
| | - Jason Tallis
- Centre for Applied Biological & Exercise Sciences, School of Life Sciences, Coventry University, Coventry, UK
| | - Lucas Guimaraes Ferreira
- Centre for Applied Biological & Exercise Sciences, School of Life Sciences, Coventry University, Coventry, UK
| | - Neil D Clarke
- College of Life Sciences, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UK
| |
Collapse
|
2
|
Woodfin S, Hall S, Ramerth A, Chapple B, Fausnacht D, Moore W, Alkhalidy H, Liu D. Potential Application of Plant-Derived Compounds in Multiple Sclerosis Management. Nutrients 2024; 16:2996. [PMID: 39275311 PMCID: PMC11397714 DOI: 10.3390/nu16172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation, demyelination, and neurodegeneration, resulting in significant disability and reduced quality of life. Current therapeutic strategies primarily target immune dysregulation, but limitations in efficacy and tolerability highlight the need for alternative treatments. Plant-derived compounds, including alkaloids, phenylpropanoids, and terpenoids, have demonstrated anti-inflammatory effects in both preclinical and clinical studies. By modulating immune responses and promoting neuroregeneration, these compounds offer potential as novel adjunctive therapies for MS. This review provides insights into the molecular and cellular basis of MS pathogenesis, emphasizing the role of inflammation in disease progression. It critically evaluates emerging evidence supporting the use of plant-derived compounds to attenuate inflammation and MS symptomology. In addition, we provide a comprehensive source of information detailing the known mechanisms of action and assessing the clinical potential of plant-derived compounds in the context of MS pathogenesis, with a focus on their anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Seth Woodfin
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Sierra Hall
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Alexis Ramerth
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Brooke Chapple
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA 24088, USA
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Ramerth A, Chapple B, Winter J, Moore W. The Other Side of the Perfect Cup: Coffee-Derived Non-Polyphenols and Their Roles in Mitigating Factors Affecting the Pathogenesis of Type 2 Diabetes. Int J Mol Sci 2024; 25:8966. [PMID: 39201652 PMCID: PMC11354961 DOI: 10.3390/ijms25168966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
The global prevalence of type 2 diabetes (T2D) is 10.5% among adults in the age range of 20-79 years. The primary marker of T2D is persistent fasting hyperglycemia, resulting from insulin resistance and β-cell dysfunction. Multiple factors can promote the development of T2D, including obesity, inflammation, and oxidative stress. In contrast, dietary choices have been shown to prevent the onset of T2D. Oatmeal, lean proteins, fruits, and non-starchy vegetables have all been reported to decrease the likelihood of T2D onset. One of the most widely consumed beverages in the world, coffee, has also demonstrated an impressive ability to reduce T2D risk. Coffee contains a diverse array of bioactive molecules. The antidiabetic effects of coffee-derived polyphenols have been thoroughly described and recently reviewed; however, several non-polyphenolic molecules are less prominent but still elicit potent physiological actions. This review summarizes the effects of select coffee-derived non-polyphenols on various aspects of T2D pathogenesis.
Collapse
Affiliation(s)
| | | | | | - William Moore
- School of Health Sciences, Department of Biology and Chemistry, Liberty University, Lynchburg, VA 24515, USA; (A.R.); (B.C.); (J.W.)
| |
Collapse
|
4
|
Grigorescu RR, Husar-Sburlan IA, Gheorghe C. Pancreatic Cancer: A Review of Risk Factors. Life (Basel) 2024; 14:980. [PMID: 39202722 PMCID: PMC11355429 DOI: 10.3390/life14080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Pancreatic adenocarcinoma is one of the most lethal types of gastrointestinal cancer despite the latest medical advances. Its incidence has continuously increased in recent years in developed countries. The location of the pancreas can result in the initial symptoms of neoplasia being overlooked, which can lead to a delayed diagnosis and a subsequent reduction in the spectrum of available therapeutic options. The role of modifiable risk factors in pancreatic cancer has been extensively studied in recent years, with smoking and alcohol consumption identified as key contributors. However, the few screening programs that have been developed focus exclusively on genetic factors, without considering the potential impact of modifiable factors on disease occurrence. Thus, fully understanding and detecting the risk factors for pancreatic cancer represents an important step in the prevention and early diagnosis of this type of neoplasia. This review reports the available evidence on different risk factors and identifies the areas that could benefit the most from additional studies.
Collapse
Affiliation(s)
- Raluca Roxana Grigorescu
- Gastroenterology Department, “Sfanta Maria” Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | | | - Cristian Gheorghe
- Center for Digestive Disease and Liver Transplantation, Fundeni Clinical Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
5
|
Jabbari M, Salari-Moghaddam A, Bagheri A, Larijani B, Esmaillzadeh A. A systematic review and dose-response meta-analysis of prospective cohort studies on coffee consumption and risk of lung cancer. Sci Rep 2024; 14:14991. [PMID: 38951141 PMCID: PMC11217372 DOI: 10.1038/s41598-024-62619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/20/2024] [Indexed: 07/03/2024] Open
Abstract
Studies on the association between coffee consumption and risk of lung cancer have been conflicting. The aim of this study was to systematically review the current evidence on the association between coffee consumption and risk of lung cancer and to quantify this association by performing a meta-analysis. A comprehensive systematic search was performed on online databases up to July 2023 investigating the association between coffee consumption and risk of lung cancer. All prospective cohort studies reporting odds ratios (ORs), rate or risk ratios (RRs), or hazard ratios (HRs) and 95% confidence intervals (CIs) in this context were included. The overall effect size was calculated using the random-effects model and statistical between-studies heterogeneity was examined using Cochrane's Q test and I2. A total of 14 prospective cohort studies were included in this systematic review and meta-analysis. We found a significant positive association between coffee consumption and risk of lung cancer (RR: 1.28; 95% CI: 1.12, 1.47). This association remained significant when we included a pooled analysis paper and excluded 5 cohort studies (RR: 1.37; 95% CI: 1.12, 1.66). We observed no proof of significant publication bias using Egger's test (P = 0.58). Moreover, dose-response analysis showed that each one cup/day increase in coffee consumption was related with a 6% higher lung cancer risk (RR: 1.06; 95% CI: 1.03, 1.09). In conclusion, we found a significant positive association between coffee consumption and risk of lung cancer.
Collapse
Affiliation(s)
- Maedeh Jabbari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran
| | - Asma Salari-Moghaddam
- Department of Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Amir Bagheri
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Esmaillzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P.O. Box 14155-6117, Tehran, Iran.
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Bratthäll T, Figueira J, Nording ML. Influence of divalent cations on the extraction of organic acids in coffee determined by GC-MS and NMR. Heliyon 2024; 10:e26625. [PMID: 38434259 PMCID: PMC10907646 DOI: 10.1016/j.heliyon.2024.e26625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
The perceived flavor of coffee varies depending on the composition of the brewing water, and the influencing mechanisms are poorly understood. To investigate the effect of dissolved divalent cations on the extraction of organic acids in coffee, magnesium and calcium chloride salts were added pre- and post-brew. Citric, malic, lactic and quinic acid were analyzed using gas chromatography - mass spectrometry and nuclear magnetic resonance techniques. At concentrations typically found in drinking water, the salts resulted in limited variation of the acid content, while ten-fold higher salt concentrations produced more pronounced variations. Comparisons between pre- and post-brew additions showed similar acid content in most cases, suggesting that extraction of acids proceeds independent of the water composition. Interactions taking place post-brew may, however, influence the perceived flavor. A scientific basis for water quality recommendations in the coffee industry is long overdue and this work provides experimental and analytical contributions to continued research.
Collapse
Affiliation(s)
- Tove Bratthäll
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - João Figueira
- Department of Chemistry, SciLife Lab, Umeå University, 901 87, Umeå, Sweden
| | | |
Collapse
|
7
|
Chua KY, Li H, Lim WS, Koh WP. Consumption of Coffee, Tea, and Caffeine at Midlife, and the Risk of Physical Frailty in Late Life. J Am Med Dir Assoc 2023; 24:1655-1662.e3. [PMID: 37488031 DOI: 10.1016/j.jamda.2023.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES Our study evaluated the prospective association between the consumption of caffeine-containing beverages at midlife and the risk of physical frailty at late life within a population-based cohort of Chinese adults living in Singapore over a follow-up period of 20 years. DESIGN Prospective cohort study. SETTING AND PARTICIPANTS We used data from 12,583 participants from the baseline and third follow-up interviews of the Singapore Chinese Health Study (SCHS). Participants had a mean age of 53 years at baseline (1993-1998), and a mean age of 73 years during the third follow-up (2014-2017). METHODS At baseline, habitual consumption of caffeine-containing beverages was evaluated using a validated semi-quantitative food-frequency questionnaire. During the third follow-up, physical frailty was assessed using the modified Cardiovascular Health Study phenotype. RESULTS Compared with non-daily drinkers, those who drank 4 or more cups of coffee daily had reduced odds of physical frailty [odds ratio (OR), 0.54; 95% CI, 0.38-0.76]. Similarly, compared with those who hardly drank tea, participants who drank tea everyday also had reduced odds (OR, 0.82; 95% CI, 0.71-0.95). Total daily caffeine intake at midlife was associated with reduced likelihood of frailty at late life in a dose-response relationship (Ptrend < .001). Relative to their counterparts in the lowest quartile of daily caffeine intake (0-67.6 mg/d), participants in the highest quartile (223.0-910.4 mg/d) had an OR of 0.77 (95% CI, 0.66-0.91). Higher caffeine consumption was associated with lower likelihood of being in the slowest quintile for timed up-and-go (TUG) and weakest quintile for handgrip strength. CONCLUSIONS AND IMPLICATIONS In this cohort of Chinese adults, higher consumption of caffeine at midlife, via coffee and tea, was associated with a reduced likelihood of physical frailty in late life.
Collapse
Affiliation(s)
- Kevin Y Chua
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore
| | - Huiqi Li
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wee-Shiong Lim
- Department of Geriatric Medicine, Institute of Geriatrics and Active Aging, Tan Tock Seng Hospital, Singapore
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A∗STAR), Singapore.
| |
Collapse
|
8
|
Rawangkan A, Yosboonruang A, Kiddee A, Siriphap A, Pook-In G, Praphasawat R, Saokaew S, Duangjai A. Restoring Ampicillin Sensitivity in Multidrug-Resistant Escherichia coli Following Treatment in Combination with Coffee Pulp Extracts. J Microbiol Biotechnol 2023; 33:1179-1188. [PMID: 37317587 PMCID: PMC10580893 DOI: 10.4014/jmb.2304.04051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
Escherichia coli, particularly multidrug-resistant (MDR) strains, is a serious cause of healthcare-associated infections. Development of novel antimicrobial agents or restoration of drug efficiency is required to treat MDR bacteria, and the use of natural products to solve this problem is promising. We investigated the antimicrobial activity of dried green coffee (DGC) beans, coffee pulp (CP), and arabica leaf (AL) crude extracts against 28 isolated MDR E. coli strains and restoration of ampicillin (AMP) efficiency with a combination test. DGC, CP, and AL extracts were effective against all 28 strains, with a minimum inhibitory concentration (MIC) of 12.5-50 mg/ml and minimum bactericidal concentration of 25-100 mg/ml. The CP-AMP combination was more effective than CP or AMP alone, with a fractional inhibitory concentration index value of 0.01. In the combination, the MIC of CP was 0.2 mg/ml (compared to 25 mg/ml of CP alone) and that of AMP was 0.1 mg/ml (compared to 50 mg/ml of AMP alone), or a 125-fold and 500-fold reduction, respectively, against 13-drug resistant MDR E. coli strains. Time-kill kinetics showed that the bactericidal effect of the CP-AMP combination occurred within 3 h through disruption of membrane permeability and biofilm eradication, as verified by scanning electron microscopy. This is the first report indicating that CP-AMP combination therapy could be employed to treat MDR E. coli by repurposing AMP.
Collapse
Affiliation(s)
- Anchalee Rawangkan
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Atchariya Yosboonruang
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Anong Kiddee
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Achiraya Siriphap
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Grissana Pook-In
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Ratsada Praphasawat
- Department of Pathology, School of Medicine, University of Phayao, Phayao 56000, Thailand
| | - Surasak Saokaew
- Division of Social and Administrative Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Centre of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence on Clinical Outcomes Research and Integration (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Acharaporn Duangjai
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
9
|
Dludla PV, Cirilli I, Marcheggiani F, Silvestri S, Orlando P, Muvhulawa N, Moetlediwa MT, Nkambule BB, Mazibuko-Mbeje SE, Hlengwa N, Hanser S, Ndwandwe D, Marnewick JL, Basson AK, Tiano L. Potential Benefits of Coffee Consumption on Improving Biomarkers of Oxidative Stress and Inflammation in Healthy Individuals and Those at Increased Risk of Cardiovascular Disease. Molecules 2023; 28:6440. [PMID: 37764216 PMCID: PMC10536804 DOI: 10.3390/molecules28186440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) are considered the predominant cause of death globally. An abnormal increase in biomarkers of oxidative stress and inflammation are consistently linked with the development and even progression of metabolic diseases, including enhanced CVD risk. Coffee is considered one of the most consumed beverages in the world, while reviewed evidence regarding its capacity to modulate biomarkers of oxidative stress and inflammation remains limited. The current study made use of prominent electronic databases, including PubMed, Google Scholar, and Scopus to retrieve information from randomized controlled trials reporting on any association between coffee consumption and modulation of biomarkers of oxidative stress and inflammation in healthy individuals or those at increased risk of developing CVD. In fact, summarized evidence indicates that coffee consumption, mainly due to its abundant antioxidant properties, can reduce biomarkers of oxidative stress and inflammation, which can be essential in alleviating the CVD risk in healthy individuals. However, more evidence suggests that regular/prolonged use or long term (>4 weeks) consumption of coffee appeared to be more beneficial in comparison with short-term intake (<4 weeks). These positive effects are also observed in individuals already presenting with increased CVD risk, although such evidence is very limited. The current analysis of data highlights the importance of understanding how coffee consumption can be beneficial in strengthening intracellular antioxidants to alleviate pathological features of oxidative stress and inflammation to reduce CVD risk within the general population. Also covered within the review is essential information on the metabolism and bioavailability profile of coffee, especially caffeine as one of its major bioactive compounds.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Cochrane South Africa, South African Medical Research Council, Cape Town 7505, South Africa; (N.M.); (D.N.)
- Department of Biochemistry and Microbiology, University of Zululand, Richards Bay 3886, South Africa; (N.H.); (A.K.B.)
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Ndivhuwo Muvhulawa
- Cochrane South Africa, South African Medical Research Council, Cape Town 7505, South Africa; (N.M.); (D.N.)
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Marakiya T. Moetlediwa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Nokulunga Hlengwa
- Department of Biochemistry and Microbiology, University of Zululand, Richards Bay 3886, South Africa; (N.H.); (A.K.B.)
| | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Polokwane 0727, South Africa;
| | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Cape Town 7505, South Africa; (N.M.); (D.N.)
| | - Jeanine L. Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, University of Zululand, Richards Bay 3886, South Africa; (N.H.); (A.K.B.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| |
Collapse
|
10
|
Yaghoobian R, Sharifi M, Rezaee M, Vahidi H, Salehi N, Hosseini K. Caffeine Drug Interactions and its Clinical Implication After Acute Coronary Syndrome: A Literature Review. Crit Pathw Cardiol 2023; 22:95-99. [PMID: 37216418 DOI: 10.1097/hpc.0000000000000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The hemodynamic and cardiovascular impacts of coffee and caffeine have long been controversial. However, due to the worldwide popularity of coffee and caffeinated beverages, it is essential to understand how they affect the cardiovascular system, specifically in patients with a history of acute coronary syndrome. This literature review was conducted to explore the cardiovascular effects of coffee and caffeine and their interactions with common drugs after acute coronary syndrome and percutaneous coronary intervention. The evidence suggests that moderate coffee and caffeine consumption is not associated with cardiovascular disease in healthy individuals and patients with a history of acute coronary syndrome. The interactions of coffee or caffeine with common medications after acute coronary syndrome or percutaneous coronary intervention are less studied. However, based on the current human studies in this field, the only interaction is with the protective effect of statins on cardiac ischemia.
Collapse
Affiliation(s)
- Ramin Yaghoobian
- From the Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifi
- From the Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- From the Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Vahidi
- Cardiology Department of Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Salehi
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kaveh Hosseini
- From the Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Peerapen P, Chanthick C, Thongboonkerd V. Quantitative proteomics reveals common and unique molecular mechanisms underlying beneficial effects of caffeine and trigonelline on human hepatocytes. Biomed Pharmacother 2023; 158:114124. [PMID: 36521247 DOI: 10.1016/j.biopha.2022.114124] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Caffeine and trigonelline are the major bioactive compounds in coffee. Caffeine alone or combined with other coffee compounds shows hepatoprotective effects. However, molecular mechanisms underlying such hepatoprotective effects remain unclear. We therefore addressed molecular effects of caffeine and trigonelline on human hepatocytes using quantitative proteomics followed by bioinformatic analyses to obtain topological and functional significance. HepG2 cells were treated with 100 μM caffeine or trigonelline for 24-h and evaluated by quantitative proteomics using nanoLC-ESI-LTQ-Orbitrap MS/MS. A total of 26 and 25 significantly altered proteins were identified in caffeine-treated and trigonelline-treated cells, respectively, compared with control cells. Topological analyses revealed that ribosomal and translation regulatory proteins predominantly served as the hub proteins associated with protein clusters. Functional analyses also revealed that these two bioactive compounds shared some molecular mechanisms via induction of translational processes. There were also other unique molecular functions and biological processes triggered or suppressed by either caffeine or trigonelline. These data highlight common and unique molecular mechanisms underlying the hepatoprotective effects of caffeine and trigonelline that may be useful for future clinical applications.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanettee Chanthick
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
12
|
Magno MS, Utheim TP, Morthen MK, Snieder H, Jansonius NM, Hammond CJ, Vehof J. The Relationship Between Caffeine Intake and Dry Eye Disease. Cornea 2023; 42:186-193. [PMID: 35081066 PMCID: PMC9797200 DOI: 10.1097/ico.0000000000002979] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE The aim of this study was to determine the association between caffeine intake and dry eye disease (DED) in the large, population-based LifeLines cohort in the Netherlands. METHODS DED was cross-sectionally assessed in 85,302 participants (59% female participants) using the Women's Health Study dry eye questionnaire. Dietary caffeine was calculated from the intake of coffee, tea, cola, and energy drinks. Logistic regression was used to investigate the relationship between DED and caffeine, correcting for demographic variables, smoking status, alcohol intake, and 48 comorbidities of DED. RESULTS The mean (SD; range) age of participants was 50.7 years (12.4; 18-96), and 50,339 (59%) were female. The mean (SD) caffeine intake was 285 (182) mg/d. After correcting for demographics, body mass index, smoking status, and alcohol intake, higher caffeine intake was associated with a decreased risk of Women's Health Study-defined DED [odds ratio (OR) 0.971 per 100 mg/d, 95% CI, 0.956-0.986, P < 0.0005]. When additionally adjusting for medical comorbidities, no significant effect was observed (OR 0.985, 95% CI, 0.969-1.001, P = 0.06). Caffeine's effect on DED was similar in male and female participants and independent of sleep quality and stress at work. Decaffeinated coffee intake was significantly associated with an increased risk of DED, when adjusted for caffeinated coffee, demographics, alcohol intake, smoking status, and comorbidities (OR 1.046 per cup/d, 95% CI, 1.010-1.084, P = 0.01). None of the beverages were significantly associated with the risk of DED, when correcting for intake of the other caffeinated beverages, demographics, smoking status, alcohol intake, and all comorbidities. CONCLUSIONS Dietary caffeine intake does not seem to be a risk factor for DED in the general population.
Collapse
Affiliation(s)
- Morten Schjerven Magno
- Departments of Medical Biochemistry; and
- Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tor P. Utheim
- Departments of Medical Biochemistry; and
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway;
| | - Mathias Kaurstad Morthen
- Departments of Medical Biochemistry; and
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands;
| | - Nomdo M. Jansonius
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christopher J. Hammond
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, London, United Kingdom;
- Department of Ophthalmology, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Jelle Vehof
- Dutch Dry Eye Clinic, Velp, the Netherlands;
- Department of Ophthalmology, Vestfold Hospital Trust, Tønsberg, Norway; and
- Departments of Ophthalmology and Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
13
|
Villota H, Santa-González GA, Uribe D, Henao IC, Arroyave-Ospina JC, Barrera-Causil CJ, Pedroza-Díaz J. Modulatory Effect of Chlorogenic Acid and Coffee Extracts on Wnt/β-Catenin Pathway in Colorectal Cancer Cells. Nutrients 2022; 14:nu14224880. [PMID: 36432565 PMCID: PMC9693551 DOI: 10.3390/nu14224880] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The Wnt/β-Catenin pathway alterations present in colorectal cancer (CRC) are of special interest in the development of new therapeutic strategies to impact carcinogenesis and the progression of CRC. In this context, different polyphenols present in natural products have been reported to have modulatory effects against the Wnt pathway in CRC. In this study, we evaluate the effect of two polyphenol-rich coffee extracts and chlorogenic acid (CGA) against SW480 and HT-29 CRC cells. This involved the use of MTT and SRB techniques for cell viability; wound healing and invasion assay for the evaluation of the migration and invasion process; T cell factor (TCF) reporter plasmid for the evaluation of transciption factor (TCF) transcriptional activity; polymerase chain reaction (PCR) of target genes and confocal fluorescence microscopy for β-Catenin and E-Cadherin protein fluorescence levels; and subcellular localization. Our results showed a potential modulatory effect of the Wnt pathway on CRC cells, and we observed a reduction in the transcriptional activity of β-catenin. All the results were prominent in SW480 cells, where the Wnt pathway deregulation has more relevance and implies a constitutive activation of the signaling pathway. These results establish a starting point for the discovery of a mechanism of action associated with these effects and corroborate the anticancer potential of polyphenols present in coffee, which could be explored as chemopreventive molecules or as adjunctive therapy in CRC.
Collapse
Affiliation(s)
- Hernán Villota
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050012, Colombia
| | - Gloria A. Santa-González
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050012, Colombia
| | - Diego Uribe
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050012, Colombia
| | - Isabel Cristina Henao
- Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Medellín 050010, Colombia
| | - Johanna C. Arroyave-Ospina
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Carlos J. Barrera-Causil
- Grupo de Investigación Davinci, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Johanna Pedroza-Díaz
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050012, Colombia
- Correspondence: ; Tel.: +57-604-440-5291
| |
Collapse
|
14
|
Kakiyama G, Minowa K, Rodriguez-Agudo D, Martin R, Takei H, Mitamura K, Ikegawa S, Suzuki M, Nittono H, Fuchs M, Heuman DM, Zhou H, Pandak WM. Coffee modulates insulin-hepatocyte nuclear factor-4α-Cyp7b1 pathway and reduces oxysterol-driven liver toxicity in a nonalcoholic fatty liver disease mouse model. Am J Physiol Gastrointest Liver Physiol 2022; 323:G488-G500. [PMID: 36193897 PMCID: PMC9639758 DOI: 10.1152/ajpgi.00179.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 10/03/2022] [Indexed: 01/31/2023]
Abstract
Oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the "acidic pathway" of cholesterol metabolism. Previously, we demonstrated that an inability to upregulate CYP7B1 in the setting of insulin resistance leads to the accumulation of cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) that initiate and promote hepatocyte injury; followed by an inflammatory response. The current study demonstrates that dietary coffee improves insulin resistance and restores Cyp7b1 levels in a well-characterized Western diet (WD)-induced nonalcoholic fatty liver disease (NAFLD) mouse model. Ingestion of a WD containing caffeinated (regular) coffee or decaffeinated coffee markedly reduced the serum ALT level and improved insulin resistance. Cyp7b1 mRNA and protein levels were preserved at normal levels in mice fed the coffee containing WD. Additionally, coffee led to upregulated steroid sulfotransferase 2b1 (Sult2b1) mRNA expression. In accordance with the response in these oxysterol metabolic genes, hepatocellular 26HC levels were maintained at physiologically low levels. Moreover, the current study provided evidence that hepatic Cyp7b1 and Sult2b1 responses to insulin signaling can be mediated through a transcriptional factor, hepatocyte nuclear factor (HNF)-4α. We conclude coffee achieves its beneficial effects through the modulation of insulin resistance. Both decaffeinated and caffeinated coffee had beneficial effects, demonstrating caffeine is not fundamental to this effect. The effects of coffee feeding on the insulin-HNF4α-Cyp7b1 signaling pathway, whose dysregulation initiates and contributes to the onset and progression of NASH as triggered by insulin resistance, offer mechanistic insight into approaches for the treatment of NAFLD.NEW & NOTEWORTHY This study demonstrated dietary coffee prevented the accumulation of hepatic oxysterols by maintaining Cyp7b1/Sult2b1 expression in a diet-induced NAFLD mice model. Lowering liver oxysterols markedly reduced inflammation in the coffee-ingested mice. Caffeine is not fundamental to this effect. In addition, this study showed Cyp7b1/Sult2b1 responses to insulin signaling can be mediated through a transcriptional factor, HNF4α. The insulin-HNF4α-Cyp7b1/Sult2b1 signaling pathway, which directly correlates to the onset of NASH triggered by insulin resistance, offers insight into approaches for NAFLD treatment.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
- Central Virginia Veterans Affairs Healthcare System, Richmond, Virginia
| | - Kei Minowa
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
- Central Virginia Veterans Affairs Healthcare System, Richmond, Virginia
| | - Rebecca Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | | | | | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
- Central Virginia Veterans Affairs Healthcare System, Richmond, Virginia
| | - Douglas M Heuman
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Huiping Zhou
- Central Virginia Veterans Affairs Healthcare System, Richmond, Virginia
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
- Central Virginia Veterans Affairs Healthcare System, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
15
|
Mazeaud S, Castellana F, Coelho-Junior HJ, Panza F, Rondanelli M, Fassio F, De Pergola G, Zupo R, Sardone R. Coffee Drinking and Adverse Physical Outcomes in the Aging Adult Population: A Systematic Review. Metabolites 2022; 12:metabo12070654. [PMID: 35888778 PMCID: PMC9318773 DOI: 10.3390/metabo12070654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Declining physical functioning covers a prominent span of later life and, as a modifiable driver to be leveraged, lifestyle plays a critical role. This research aimed to undertake a systematic review investigating the association between levels of coffee consumption and declining conditions of physical functioning during aging, such as sarcopenia, frailty, weakness, falls, and disability, while trying to explain the underlying mechanisms, both from a metabolic and social angle. The literature was reviewed from inception to May 2022 using different electronic databases, not excluding the grey literature. Two independent researchers assessed the eligibility of 28 retrieved articles based on inclusion criteria; only 10 met the eligibility requirements. Different levels of coffee consumption were considered as exposure(s) and comparator(s) according to PECO concepts, while middle age was an inclusion criterion (40+ years). No limitations were set on the tool(s) assessing physical functioning, type of dietary assessment(s), study setting, general health status, country, and observational study design (cohort, cross-sectional). The cross-sectional design outnumbered the longitudinal (90%, n = 9/10). The overall quality rating was judged poor (70%) to good (30%). It was found that higher exposure to coffee drinking is strongly associated with better physical functioning outcomes, and the findings showed consistency in the direction of association across selected reports. Countering physical decline is a considerable challenge in easing the burden of population aging. For preventive models that aim to allow a better lifestyle, it has to be kept in mind that increased coffee consumption does not lead to poor physical functioning.
Collapse
Affiliation(s)
- Simon Mazeaud
- UFR of Biology, Campus Universitaire des Cézeaux, University of Clermont Auvergne (UCA), 63000 Clermont-Ferrand, France;
| | - Fabio Castellana
- Unit of Data Sciences and Technology Innovation for Population Health, Department of Basic Medicine, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (F.C.); (R.S.)
| | - Hélio José Coelho-Junior
- Applied Kinesiology Laboratory-LCA, School of Physical Education, University of Campinas, Campinas 13083-970, Brazil;
- Department of Geriatrics, Neurosciences, and Orthopedics, Teaching Hospital “Agostino Gemelli”, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, 70013 Bari, Italy;
| | - Mariangela Rondanelli
- Unit of Human and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Federico Fassio
- Unit of Biostatistics and Clinical Epidemiology, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni De Pergola
- Unit of Geriatrics and Internal Medicine, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy;
| | - Roberta Zupo
- Unit of Data Sciences and Technology Innovation for Population Health, Department of Basic Medicine, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (F.C.); (R.S.)
- Correspondence:
| | - Rodolfo Sardone
- Unit of Data Sciences and Technology Innovation for Population Health, Department of Basic Medicine, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, 70013 Castellana Grotte, Italy; (F.C.); (R.S.)
| |
Collapse
|
16
|
Rawangkan A, Siriphap A, Yosboonruang A, Kiddee A, Pook-In G, Saokaew S, Sutheinkul O, Duangjai A. Potential Antimicrobial Properties of Coffee Beans and Coffee By-Products Against Drug-Resistant Vibrio cholerae. Front Nutr 2022; 9:865684. [PMID: 35548583 PMCID: PMC9083461 DOI: 10.3389/fnut.2022.865684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio cholerae is the causative organism of the cholera epidemic, and it remains a serious global health problem, particularly the multidrug-resistant strain, despite the development of several generic drugs and vaccines over time. Natural products have long been exploited for the treatment of various diseases, and this study aimed to evaluate the in vitro antibacterial activity of coffee beans and coffee by-products against V. cholerae antimicrobial resistant strains. A total of 9 aqueous extracts were investigated, including light coffee (LC), medium coffee (MC), dark coffee (DC), dried green coffee (DGC), dried red coffee (DRC), fresh red coffee (FRC), Arabica leaf (AL), Robusta leaf (RL), and coffee pulp (CP). The influential coffee phytochemicals, i.e., chlorogenic acid (CGA), caffeic acid (CA), and caffeine, were determined using HPLC. The antibacterial properties were tested by agar well-diffusion techniques, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were further determined against 20 V. cholerae isolates. The results revealed that all tested strains were sensitive to coffee extracts, with MIC and MBC values in the range of 3.125-25.0 mg/mL and 12.5-50.0 mg/mL, respectively. With a MIC of 6.25 mg/mL, DGC, DRC, and CP appeared to be the most effective compounds against 65, 60, and 55% of clinical strains, respectively. The checkerboard assay revealed that the combination of coffee extract and tetracycline was greater than either treatment alone, with the fractional inhibitory concentration index (FICI) ranging from 0.005 to 0.258. It is important to note that CP had the lowest FICI (0.005) when combined with tetracycline at 60 ng/mL, which is the most effective dose against V. cholerae six-drug resistance strains (azithromycin, colistin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim), with a MIC of 47.5 μg/mL (MIC alone = 12.5 mg/mL). Time killing kinetics analysis suggested that CA might be the most effective treatment for drug-resistant V. cholerae as it reduced bacterial growth by 3 log10 CFU/mL at a concentration of 8 mg/mL within 1 h, via disrupting membrane permeability, as confirmed by scanning electron microscopy (SEM). This is the first report showing that coffee beans and coffee by-product extracts are an alternative for multidrug-resistant V. cholerae treatment.
Collapse
Affiliation(s)
- Anchalee Rawangkan
- School of Medical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | | | | | - Anong Kiddee
- School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Grissana Pook-In
- School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Surasak Saokaew
- Division of Social and Administrative Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | | | - Acharaporn Duangjai
- School of Medical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
17
|
OUP accepted manuscript. Carcinogenesis 2022; 43:203-216. [DOI: 10.1093/carcin/bgac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 11/13/2022] Open
|
18
|
Rethinam S, Kavukcu SB, Türkmen H, Zengin ACA, Yaşa İ. Traditional Turkish Coffee with Medicinal Effect. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i4.2378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Traditional Turkish coffee (TTC) is highly associated with caffeine and is known as a mind and heart stimulant as it helps keep tiredness at bay. Daily consumption of TTC naturally benefits human health such as anti-cancer, anti-diabetic, improved energy, anti-depression, reduced risk of heart disease, etc. The TTC was derived from particular types of Arabic coffee beans (ACB), and the preparation method of TTC is unique from other types of coffee. The main objective of the study was to investigate the therapeutic and biological effects of TTC. The ACB powder was characterized physicochemically using UV-Vis spectroscopy, Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). In vitro analysis using HaCaT (Human keratinocyte cell line) proved the biocompatibility of ACB powder. Case studies which were focusing on healthy individuals as the research populace were conducted using TTC. Consumption of TTC was found beneficially compared to other types of coffee. The TTC was obtained from ACB, which was characterized by spectroscopic techniques and displayed biocompatibility due to the results on HaCaT cell lines. The TTC has beneficial therapeutic effects on individuals. According to statistical analysis, the disease-affected ratio of diabetes, heart disease, and depression was significantly decreased.
Collapse
|
19
|
Zidan NS, Omran AME, Rezk SM, Atteia HH, Sakran MI. Anti-Alzheimer's disease potential of Arabian coffee versus Date palm seed extract in male rats. J Food Biochem 2021; 46:e14017. [PMID: 34816451 DOI: 10.1111/jfbc.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Coffee is among the most commonly consumed beverage all over the world. Studies have increasingly suggested caffeine and coffee as effective therapeutic interventions against Alzheimer's disease (AD). We have therefore utilized the aluminum chloride rat model for AD to compare the influence of moderately caffeinated (Arabian) and decaffeinated (Date palm seed) coffee on cognitive impairment and pathological events in AD. AD rats given Arabian or Date palm seed coffee were protected against memory impairment and had lower serum levels of the abnormal protein (amyloid-beta; Aβ1-42), the central pathogenic contributor to AD, and transforming growth factor-beta (TGF-β). Interestingly, Date palm seed (decaffeinated) coffee seems to provide more pronounced protection against AD than Arabian (moderately caffeinated) coffee as evidenced by the greater decrease in serum Aβ levels. These results suggest a surprising therapeutic potential of moderate caffeine intake in Arabian coffee to ameliorate AD through decreasing serum Aβ levels. However, Date palm seed (decaffeinated) coffee, rich in flavonoids, appears to provide a better AD-modifying ability through a direct reduction of Aβ production. PRACTICAL APPLICATIONS: Consumption of moderately caffeinated Arabian coffee attenuated AD-induced cognitive impairment via its anti-amyloidogenic potential, decreasing Aβ levels. Moreover, intake of decaffeinated Date seed extract, rich in flavonoids, exerted a superior anti-AD potential through a direct reduction of Aβ production. Both of them were also safe and maintained hepatic and renal functions in a rat model of AlCl3 -induced AD. Further clinical studies are warranted to confirm current results and to recommend the regular drinking of Arabian coffee or Date seed extract as a protective approach to delay AD progression in vulnerable individuals or in early disease stages.
Collapse
Affiliation(s)
- Nahla S Zidan
- Department of Nutrition and Food Science, University of Tabuk, Tabuk, Saudi Arabia.,Department of Home Economics, Faculty of Specific Education, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Awatif M E Omran
- Department of Biochemistry, College of Science, Tabuk University, Tabuk, Saudi Arabia.,Department of Biotechnology, Faculty of Science and Technology, Omdurman Islamic University, Omdurman, Sudan
| | - Samar M Rezk
- Clinical Nutrition Department, Mahalla Hepatology Teaching Hospital, Gharbyia, El-Mahalla El-Kubra, Egypt
| | - Hebatallah H Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed I Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.,Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
20
|
A Decade of Research on Coffee as an Anticarcinogenic Beverage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4420479. [PMID: 34567408 PMCID: PMC8460369 DOI: 10.1155/2021/4420479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 01/08/2023]
Abstract
Coffee consumption has been investigated as a protective factor against cancer. Coffee is a complex beverage that contains more than 1000 described phytochemicals, which are responsible for its pleasant taste, aroma, and health-promoting properties. Many of these compounds have a potential therapeutic effect due to their antioxidant, anti-inflammatory, antifibrotic, and anticancer properties. The roasting process affects the phytochemical content, and undesirable compounds may be formed. In recent years, there have been contradictory publications regarding the effect of coffee drinking and cancer. Therefore, this study is aimed at evaluating the association of coffee consumption with the development of cancer. In PubMed, until July 2021, the terms “Coffee and cancer” resulted in about 2150 publications, and almost 50% of them have been published in the last 10 years. In general, studies published in recent years have shown negative associations between coffee consumption and the risk or development of different types of cancer, including breast, prostate, oral, oral and pharyngeal, melanoma, skin and skin nonmelanoma, kidney, gastric, colorectal, endometrial, liver, leukemic and hepatocellular carcinoma, brain, and thyroid cancer, among others. In contrast, only a few publications demonstrated a double association between coffee consumption and bladder, pancreatic, and lung cancer. In this review, we summarize the in vitro and in vivo studies that accumulate epidemiological evidence showing a consistent inverse association between coffee consumption and cancer.
Collapse
|
21
|
Duangjai A, Saokaew S, Goh BH, Phisalprapa P. Shifting of Physicochemical and Biological Characteristics of Coffee Roasting Under Ultrasound-Assisted Extraction. Front Nutr 2021; 8:724591. [PMID: 34490333 PMCID: PMC8417692 DOI: 10.3389/fnut.2021.724591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/26/2021] [Indexed: 12/04/2022] Open
Abstract
Ultrasound-assisted extraction (UAE) is an effective tool for the extraction of natural antioxidants. Thus, differentially roasted Arabica-coffee beans known as light (LC), medium (MC), and dark coffee (DC) were prepared and extracted under the influence of UAE. Following that, they were examined specifically on theirs physicochemical and biological characteristics: nutritional values, pH, °Brix, antioxidant activities, polyphenol content, caffeine, and chlorogenic-acid levels. Various parameters, such as extraction temperatures (20, 40, and 80°C) and extraction time periods (5, 10, and 20 min), were examined. DC extract was less acidic than those on MC and LC extracts. LC showed higher moisture content than the MC and DC (1.56, 1.3, and 0.92%, respectively). MC displayed the highest polyphenol content and potent antioxidant activity. Caffeine and chlorogenic acid contents trend to decrease during roasting. The maximum caffeine level was found in MC at 80°C for 5 min (27.65 mg/g extract). The highest chlorogenic acid content was in LC at 80°C for 10 min (16.67 mg/g extract). The caffeine and chlorogenic acid contents were related to the polyphenol content and depended on the roasting and extraction conditions. These results suggest that the UAE at various temperature and extraction time period may alter the physicochemical and biological characteristics of different coffee roasts.
Collapse
Affiliation(s)
- Acharaporn Duangjai
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Surasak Saokaew
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand.,School of Pharmaceutical Sciences, Center of Health Outcomes Research and Therapeutic Safety (Cohorts), University of Phayao, Phayao, Thailand.,Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.,Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand.,Division of Pharmacy Practice, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Pochamana Phisalprapa
- Division of Ambulatory Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
22
|
Hung Y, Lee F, Lin C. Classification of coffee bean categories based upon analysis of fatty acid ingredients. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ying‐Che Hung
- Mechatronic Engineering Institute Huafan University New Taipei Taiwan
| | - Fu‐Shin Lee
- Mechatronic Engineering Institute Huafan University New Taipei Taiwan
| | - Chen‐I Lin
- College of Mechanical and Electrical Engineering Wuyi University Wuyishan China
| |
Collapse
|
23
|
Ontawong A, Duangjai A, Srimaroeng C. Coffea arabica bean extract inhibits glucose transport and disaccharidase activity in Caco-2 cells. Biomed Rep 2021; 15:73. [PMID: 34405045 PMCID: PMC8329997 DOI: 10.3892/br.2021.1449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/14/2021] [Indexed: 11/06/2022] Open
Abstract
The major constituents of Coffea arabica (coffee), including caffeine, chlorogenic acid and caffeic acid, exhibit antihyperglycemic properties in in vitro and in vivo models. However, whether Coffea arabica bean extract (CBE) regulates glucose uptake activity and the underlying mechanisms involved remain unclear. The aim of the present study was to examine the effects of CBE on glucose absorption and identify the mechanisms involved using an in vitro model. The uptake of a fluorescent glucose analog into Caco-2 colorectal adenocarcinoma cells was determined. The expression levels of sodium glucose co-transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) were evaluated. In addition, glycoside hydrolase enzyme activity was investigated. It was observed that CBE inhibited disaccharidase enzyme activity. Furthermore, CBE exerted an inhibitory effect on intestinal glucose absorption by downregulating SGLT1- and GLUT2-mediated 5' AMP-activated protein kinase phosphorylation and suppressing hepatocyte nuclear factor 1α expression. These data suggest that CBE may attenuate glucose absorption and may have potentially beneficial antihyperglycemic effects in the body; however, the mechanisms underlying the effects of CBE must be elucidated through further investigation.
Collapse
Affiliation(s)
- Atcharaporn Ontawong
- Division of Physiology, School of Medical Sciences, University of Phayao, Muang Phayao, Phayao 56000, Thailand
| | - Acharaporn Duangjai
- Division of Physiology, School of Medical Sciences, University of Phayao, Muang Phayao, Phayao 56000, Thailand
| | - Chutima Srimaroeng
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Nong Khai 52000, Thailand
| |
Collapse
|
24
|
Abstract
Bored coffee beans (BCBs) are the residues left from the pest Hypothenemus hampei that attacks coffee crops, resulting in enormous economic losses. The bioconversion of monosaccharides from BCBs into hyaluronic acid (HA) is appealing both for using the residues and given the high commercial value of HA. This study dealt with the production of HA using Streptococcus zooepidemicus by employing either acid (AcH) or enzymatic (EnH) hydrolyzates from BCBs. The highest release of monosaccharides (evaluated using surface response methodology) was obtained with EnH (36.4 g/L); however, S. zooepidemicus produced more HA (1.5 g/L) using AcH compared to EnH. Hydrolyzates from acetone-extracted BCBs yielded 2.7 g/L of HA, which is similar to the amount obtained using a synthetic medium (2.8 g/L). This report demonstrates the potential of hydrolyzates from bored coffee beans to produce HA by S. zooepidemicus.
Collapse
|
25
|
Brzezicha J, Błażejewicz D, Brzezińska J, Grembecka M. Green coffee VS dietary supplements: A comparative analysis of bioactive compounds and antioxidant activity. Food Chem Toxicol 2021; 155:112377. [PMID: 34197879 DOI: 10.1016/j.fct.2021.112377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/07/2021] [Accepted: 06/26/2021] [Indexed: 11/30/2022]
Abstract
The aim of this work was to assess and compare both the antioxidant potential and content of the selected biologically active substances in green coffee samples and dietary supplements based on green coffee extracts. The newly developed method using HPLC coupled with Corona detector (HPLC-CAD) allowed the analysis of chlorogenic acid, caffeine, caffeic acid, coumaric acid, and ferulic acid in a single run. The method was validated and characterized by a wide concentration range (5-75 μg/mL), sensitivity, accuracy (92.7-112%), repeatability (RSD <5.32%), and precision (1.80-4.04%). The assessment of antioxidant potential was done by the spectrophotometric Folin-Ciocalteu method. Green coffee samples and extract characterized by comparable or, in the case of some samples, even higher antioxidant properties than dietary supplements. There was found a great variety of CGA levels in dietary supplements (0.33-329 mg/g) compared to the green coffee samples (32.7 mg/g - 47.6 mg/g). The highest caffeine content (156 mg/tablet) was determined in one dietary supplement, while green coffee samples contained its lower levels (20.9 mg/g). The quality of some supplements is not satisfactory as their composition does not comply with the manufacturer's declaration. There were found discrepancies between the value determined and declared by the producer (<243%).
Collapse
Affiliation(s)
- Justyna Brzezicha
- Department of Bromatology, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416, Gdansk, Poland.
| | - Daria Błażejewicz
- Department of Bromatology, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416, Gdansk, Poland.
| | - Joanna Brzezińska
- Department of Bromatology, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416, Gdansk, Poland.
| | - Małgorzata Grembecka
- Department of Bromatology, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416, Gdansk, Poland.
| |
Collapse
|
26
|
de Almeida SA, Ferracane JL, da Silva EM, Mushashe AM, Merritt J, Rocha AA, Noronha-Filho JD, de Almeida RV, Poskus LT. Antimicrobial potential of resin matrices loaded with coffee compounds. J Biomed Mater Res B Appl Biomater 2021; 109:428-435. [PMID: 32964641 PMCID: PMC8244821 DOI: 10.1002/jbm.b.34711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/05/2022]
Abstract
This study evaluated the biological behavior of the coffee compounds Trigonelline (T), chlorogenic acid (C), and nicotinic acid (N), correlating with their release from a resin matrix. Minimum inhibitory concentration (MIC) was evaluated against Streptococcus mutans UA159, and cytotoxicity was assessed by methyl tetrazolium salt on OD-21 cells. Resin matrices (bisphenol A-glycidyl-dimethacrylate/triethylene glycol-dimethacrylate 70/30 wt%, camphorquinone/ethyl 4-dimethyl aminobenzoate 0.5/1 wt%) were doped with coffee compounds in different concentrations (10/20/30/40/50 wt%), performing 15 groups (T10-T50, C10-C50, N10-N50), and a control group with no coffee compound. Degree of conversion (DC%) was analyzed by Fourier transform infrared spectroscopy. Antimicrobial properties were evaluated by bioluminescence (Luciferase assay). The release from loaded matrices was analyzed over time (24 hr, 6, 14, 21 and 28 days), using high-performance liquid chromatography (HPLC). Data were submitted to ANOVA/Tukey's test (α = 0.05). MIC for T and C was 6 mg/ml, and 4 mg/ml for N. None of them were cytotoxic. Only T50 and C50 showed lower DC% than control (α < 0.05). Some groups (T30/T40/T50/C40/C50/N50) were strongly antimicrobial, reducing bacterial activity approximately five times compared to control (α < 0.05). For T30, T40, T50, C40, and C50, the HPLC showed a release above or closer to MIC values mainly in 24 hr, but for N50, up to 28 days. In conclusion, the coffee compounds presented antimicrobial activity, depending on their concentration when added in resin matrices, being found a correlation with their release.
Collapse
Affiliation(s)
- Sarah A de Almeida
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Jack L Ferracane
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health and Science University, Portland, Oregon, USA
| | - Eduardo M da Silva
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Amanda M Mushashe
- School of Health Sciences, Universidade Positivo, Curitiba, Puerto Rico, Brazil
| | - Justin Merritt
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health and Science University, Portland, Oregon, USA
| | - Anderson A Rocha
- Department of Chemistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Jaime D Noronha-Filho
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Rayane V de Almeida
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Laiza T Poskus
- Labiom-R (Analytical Laboratory of Restorative Biomaterials), Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Abdelwareth A, Zayed A, Farag MA. Chemometrics-based aroma profiling for revealing origin, roasting indices, and brewing method in coffee seeds and its commercial blends in the Middle East. Food Chem 2021; 349:129162. [PMID: 33550017 DOI: 10.1016/j.foodchem.2021.129162] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
Coffee is among the most consumed beverages worldwide. The present study reports on the aroma composition associated with coffee seeds brewing. Aroma of authentic coffee specimens of Coffea arabica and C. robusta alongside with typical products consumed in the Middle East were analyzed using HS-SPME coupled with GC-MS. In addition, multivariate data analysis (MVA) was employed. Results revealed for 102 volatiles with a distinct aroma profile between the different brewing methods. Infusion demonstrated higher esters level, while decoction and maceration were more abundant in sesquiterpenes and terpene alcohols, respectively. Besides, heat-induced products, i.e., 4-vinyl guaiacol was identified as potential roasting index in instant coffee and roasted C. robusta brews. Blending with cardamom further masked the smoky odor of such compounds by its fragrant terpinyl acetate. This study provides the first report on the chemical sensory attributes of Middle Eastern coffee blends and further reveal for the impact of brewing, roasting on its aroma composition.
Collapse
Affiliation(s)
- Amr Abdelwareth
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street, 31527 Tanta, Egypt; Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663 Kaiserslautern, Germany
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., P.B. 11562 Cairo, Egypt.
| |
Collapse
|
28
|
Sciarrillo CM, Keirns BH, Elliott DC, Emerson SR. The effect of black coffee on fasting metabolic markers and an abbreviated fat tolerance test. Clin Nutr ESPEN 2021; 41:439-442. [PMID: 33487304 DOI: 10.1016/j.clnesp.2020.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS Coffee is typically prohibited prior to metabolic assessment in clinical and research settings. However, whether coffee meaningfully alters fasted metabolic testing or the results of a fat tolerance test is unclear. We investigated whether allowing black coffee intake within a fast prior to blood work affected fasting triglycerides (TG) and glucose, as well as the postprandial lipemic and glycemic response following an abbreviated fat tolerance test (AFTT). METHODS Participants completed two randomized AFTTs separated by at least 1 week. For each AFTT, participants arrived into the laboratory following a 10 h overnight fast and consumed either 8 oz of water or black coffee. Thirty minutes later, a baseline blood draw was collected. Immediately following, participants consumed a standardized high-fat shake (70% fat; 9 kcal/kg body mass), vacated the laboratory, and returned 4 h later for a follow-up blood draw. RESULTS Ten healthy individuals (5M, 5F; age: 22.9 ± 3.8 years; BMI: 24.3 ± 2.6 kg/m2) completed the study. There was no difference between trials with regard to baseline TG (MD = 1.7 mg/dL; p = 0.74), 4 h TG (MD = 2.7 mg/dL; p = 0.75), Δ TG (MD = 4.4 mg/dL; p = 0.52), or % change TG (MD = 7.7%; p = 0.99). Similarly, following coffee consumption, baseline glucose was unchanged relative to water (MD = 0.4 mg/dL; p = 0.84) and there were no differences in postprandial glucose measures, including 4 h (MD = 0.9 mg/dL; p = 0.58), Δ (MD = 1.3 mg/dL; p = 0.31), and % change in glucose (MD = 1.6%; p = 0.29). CONCLUSION In our small study sample, coffee intake prior to an AFTT did not affect baseline or postprandial TG and glucose. Therefore, coffee intake prior to an AFTT may not affect its validity.
Collapse
Affiliation(s)
- Christina M Sciarrillo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Bryant H Keirns
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Destinee C Elliott
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Sam R Emerson
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
29
|
Burton IW, Martinez Farina CF, Ragupathy S, Arunachalam T, Newmaster S, Berrué F. Quantitative NMR Methodology for the Authentication of Roasted Coffee and Prediction of Blends. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14643-14651. [PMID: 33252222 DOI: 10.1021/acs.jafc.0c06239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In response to the need from the food industry for new analytical solutions, a fit-for-purpose quantitative 1H NMR methodology was developed to authenticate pure coffee (100% arabica or robusta) as well as predict the percentage of robusta in blends through the study of 292 roasted coffee samples in triplicate. Methanol was chosen as the extraction solvent, which led to the quantitation of 12 coffee constituents: caffeine, trigonelline, 3- and 5-caffeoylquinic acid, lipids, cafestol, nicotinic acid, N-methylpyridinium, formic acid, acetic acid, kahweol, and 16-O-methylcafestol. To overcome the chemical complexity of the methanolic extract, quantitative analysis was performed using a combination of traditional integration and spectral deconvolution methods. As a result, the proposed methodology provides a systematic methodology and a linear regression model to support the classification of known and unknown roasted coffees and their blends.
Collapse
Affiliation(s)
- Ian W Burton
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Camilo F Martinez Farina
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Subramanyam Ragupathy
- NHP Research Alliance, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 4T2, Canada
| | | | - Steve Newmaster
- NHP Research Alliance, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 4T2, Canada
| | - Fabrice Berrué
- Aquatic and Crop Resources Development Research Center, National Research Council of Canada, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada
| |
Collapse
|
30
|
Salting-out Assisted Liquid–Liquid Extraction for Analysis of Caffeine and Nicotinic Acid in Coffee by HPLC–UV/Vis Detector. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00148-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Ikram M, Park TJ, Ali T, Kim MO. Antioxidant and Neuroprotective Effects of Caffeine against Alzheimer's and Parkinson's Disease: Insight into the Role of Nrf-2 and A2AR Signaling. Antioxidants (Basel) 2020; 9:antiox9090902. [PMID: 32971922 PMCID: PMC7554764 DOI: 10.3390/antiox9090902] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
This paper reviews the results of studies conducted on the role of caffeine in the management of different neurological disorders, such as Parkinson's disease (PD) and Alzheimer's disease (AD). To highlight the potential role of caffeine in managing different neurodegenerative diseases, we identified studies by searching PubMed, Web of Science, and Google Scholar by scrutinizing the lists of pertinent publications. According to the collected overall findings, caffeine may reduce the elevated oxidative stress; inhibit the activation of adenosine A2A, thereby regulating the accumulation of Aβ; reduce the hyperphosphorylation of tau; and reduce the accumulation of misfolded proteins, such as α-synuclein, in Alzheimer's and Parkinson's diseases. The studies have suggested that caffeine has promising protective effects against different neurodegenerative diseases and that these effects may be used to tackle the neurological diseases and/or their consequences. Here, we review the ongoing research on the role of caffeine in the management of different neurodegenerative disorders, focusing on AD and PD. The current findings suggest that caffeine produces potent antioxidant, inflammatory, and anti-apoptotic effects against different models of neurodegenerative disease, including AD, PD, and other neurodegenerative disorders. Caffeine has shown strong antagonistic effects against the adenosine A2A receptor, which is a microglial receptor, and strong agonistic effects against nuclear-related factor-2 (Nrf-2), thereby regulating the cellular homeostasis at the brain by reducing oxidative stress, neuroinflammation, regulating the accumulation of α-synuclein in PD and tau hyperphosphorylation, amyloidogenesis, and synaptic deficits in AD, which are the cardinal features of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
| | - Tae Ju Park
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow 0747 657 5394, UK;
| | - Tahir Ali
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 plus), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea; (M.I.); (T.A.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
32
|
Sun N, Song T, Ma Z, Dong L, Zhan L, Xing Y, Liu J, Song J, Wang S, Cai H. Overexpression of MsSiR enhances alkali tolerance in alfalfa (Medicago sativa L.) by increasing the glutathione content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:538-546. [PMID: 32912487 DOI: 10.1016/j.plaphy.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The sulfite reductase gene in Medicago sativa L. (MsSiR) encodes sulfite reductase (SiR) and catalyses the conversion of sulfite to sulfate in the sulfite assimilation pathway. In this study, we investigated the role of MsSiR in alfalfa by generating transgenic alfalfa that ectopically expressed MsSiR under the control of the CaMV35S promoter. The differences in alkali tolerance between the MsSiR-overexpressing and wild-type (WT) plants were analyzed, and the MsSiR-overexpressing plants exhibited an improved phenotype under alkali stress. Compared to WT plants, these plants demonstrated improved antioxidant activity as well as decreased H2O2 and O2- contents and increased glutathione reduced (GSH), Cysteine (Cys) and glutathione oxidized (GSSG) contents. MsSiR-overexpressing plants also exhibited high levels of adenosyl phosphosulfate reductases (APR), sulfite oxidase (SO) and MsSiR expression under alkali stress. It was speculated that MsSiR is involved in sulfur metabolism pathways, including the stabilization of sulfate and sulfite levels and the synthesis of GSH. These two processes achieve alkali tolerance by positively regulating the detoxification and antioxidant activities of alfalfa.
Collapse
Affiliation(s)
- Na Sun
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Tingting Song
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Zhiyun Ma
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Li Dong
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Lifeng Zhan
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Yimei Xing
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jingmei Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaxin Song
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Shuo Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Hua Cai
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
33
|
Bo S, Fadda M, Fedele D, Pellegrini M, Ghigo E, Pellegrini N. A Critical Review on the Role of Food and Nutrition in the Energy Balance. Nutrients 2020; 12:E1161. [PMID: 32331288 PMCID: PMC7231187 DOI: 10.3390/nu12041161] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
The mass media has increasingly frequently suggested to the general population that specific foods or nutritional schemes are able to affect both human metabolism and energy expenditure, thus facilitating weight loss. This critical review is aimed at assessing available evidence on the roles of nutrients, food and dietary regimens in energy intake and energy expenditure. We queried the National Library of Medicine, the Cochrane Library, Excerpta Medica dataBASEand the Cumulative Index to Nursing and Allied Health Literature database, and a search strategy was performed by using database-specific subject headings and keywords. We found that available scientific evidence on these topics is scarce, and that the limited number of available studies often have poor methodological quality. Only a few foods show beneficial effects on metabolism and energy expenditure, as the human energy balance is complex and multifactorial. Finally, microbiota may interfere with the intake, use and expenditure of energy in the human body. Conclusive evidence is still lacking, and, at present, it is not possible to identify a food or a diet with a significant impact on human energy expenditure.
Collapse
Affiliation(s)
- Simona Bo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.P.); (E.G.)
| | - Maurizio Fadda
- Dietetic and Clinical Nutrition Unit, S. Giovanni Battista Hospital, Città della Salute e della Scienza, 10126 Turin, Italy; (M.F.); (D.F.)
| | - Debora Fedele
- Dietetic and Clinical Nutrition Unit, S. Giovanni Battista Hospital, Città della Salute e della Scienza, 10126 Turin, Italy; (M.F.); (D.F.)
| | - Marianna Pellegrini
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.P.); (E.G.)
| | - Ezio Ghigo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (M.P.); (E.G.)
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy;
| |
Collapse
|
34
|
Mejía-Carmona K, Lanças FM. Modified graphene-silica as a sorbent for in-tube solid-phase microextraction coupled to liquid chromatography-tandem mass spectrometry. Determination of xanthines in coffee beverages. J Chromatogr A 2020; 1621:461089. [PMID: 32362360 DOI: 10.1016/j.chroma.2020.461089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/10/2020] [Accepted: 03/29/2020] [Indexed: 02/03/2023]
Abstract
Given the increasing need for analyzing natural or contaminating compounds in complex food matrices in a simple and automated way, coupling miniaturized sample preparation techniques with chromatographic systems have become a growing field of research. In this regard, given the low extraction efficiency of conventional sorbent phases, the development of materials with enhanced extraction capabilities is of particular interest. Here we present several synthesized graphene-based materials supported on aminopropyl silica as sorbents for the extraction of xanthines. The synthesized materials were characterized by infrared spectroscopy and scanning electron microscopy. Aminopropyl silica coated with graphene oxide and functionalized with octadecylsilane/end-capped (SiGOC18ecap) showed the best performance for xanthines extraction. Hence, this material was employed as an in-tube solid phase microextraction (in-tube SPME) device coupled online with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and applied for the analysis of xanthines in roasted coffee samples. Extraction parameters and detection conditions were optimized. The method showed low limits of quantification (0.3-1.0 µg L-1), precision as relative standard deviation (RSD) values lower than 10%, recoveries between 73 and 109%, and pre-concentration factors from 5.6 to 7.2. Caffeine was determined in all ground roasted and instant coffee samples, in a wide range (0.9 to 36.8 mg g-1), and small amounts of theobromine and theophylline were also detected in some samples. This work demonstrated that functionalized graphene-based materials represent a promising new sorbent class for in-tube SPME, showing improved extraction capacity. The method was efficient, simple, and fast for the analysis of xanthines, demonstrating an excellent potential to be applied in other matrices.
Collapse
Affiliation(s)
- Karen Mejía-Carmona
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos SP, Brazil
| | - Fernando M Lanças
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos SP, Brazil.
| |
Collapse
|
35
|
Lachenmeier DW, Teipel J, Scharinger A, Kuballa T, Walch SG, Grosch F, Bunzel M, Okaru AO, Schwarz S. Fully Automated Identification of Coffee Species and Simultaneous Quantification of Furfuryl Alcohol Using NMR Spectroscopy. J AOAC Int 2020; 103:306-314. [PMID: 33241277 DOI: 10.1093/jaocint/qsz020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/14/2022]
Abstract
BACKGROUND Coffee is a popular beverage with two species, Coffea canephora and C. arabica, being commercially exploited. The quality and commercial value of coffee is dependent on species and processing. C. arabica typically obtains a higher price on the market compared to C. canephora. Coffee beans undergo roasting during processing, resulting in the formation of flavor compounds including furfuryl alcohol which has been classified by the International Agency for Research on Cancer as possibly carcinogenic to humans (Group 2B). OBJECTIVE The aim of this study was to identify coffee species and other properties using nuclear magnetic resonance (NMR) spectroscopy, specifically to conduct quantification of the roasting process contaminant furfuryl alcohol. METHOD The quantification of furfuryl alcohol was performed from the NMR spectra using the pulse length-based concentration (PULCON) methodology. Prior to NMR analysis, samples were extracted using deuterated chloroform. RESULTS Roasting experiments identified the maximum roasting temperature to be the most significant factor in the formation of furfuryl alcohol. Among the coffee species, C. canephora was found to contain a relatively lower amount of furfuryl alcohol compared to C. arabica. The roasting of wet processed coffee resulted in higher contents of furfuryl alcohol. Geographical origin and variety within species had no influence on the furfuryl alcohol content. CONCLUSION Validation results show that NMR spectroscopy is fit-for-purpose to obtain targeted information of coffee samples. HIGHLIGHTS The PULCON NMR methodology allows a simple, rapid and accurate determination of constituents of coffee.
Collapse
Affiliation(s)
- Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Jan Teipel
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Andreas Scharinger
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Thomas Kuballa
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Stephan G Walch
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Franziska Grosch
- Karlsruhe Institute of Technology (KIT), Institute of Applied Bioscience, Department of Food Chemistry and Phytochemistry, Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Mirko Bunzel
- Karlsruhe Institute of Technology (KIT), Institute of Applied Bioscience, Department of Food Chemistry and Phytochemistry, Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Alex O Okaru
- University of Nairobi, Department of Pharmaceutical Chemistry, P.O. Box 19676-00202 Nairobi, Kenya
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Straße 20, 68163 Mannheim, Germany
| |
Collapse
|
36
|
Fatolahi H, Farahmand A, Rezakhani S. The Effect of Caffeine on Health and Exercise Performance with a Cold Brew Coffee Approach: A Scoping Review. NUTRITION AND FOOD SCIENCES RESEARCH 2020. [DOI: 10.29252/nfsr.7.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
37
|
Okaru AO, Scharinger A, Rajcic de Rezende T, Teipel J, Kuballa T, Walch SG, Lachenmeier DW. Validation of a Quantitative Proton Nuclear Magnetic Resonance Spectroscopic Screening Method for Coffee Quality and Authenticity (NMR Coffee Screener). Foods 2020; 9:E47. [PMID: 31947906 PMCID: PMC7023380 DOI: 10.3390/foods9010047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 11/16/2022] Open
Abstract
Monitoring coffee quality as a means of detecting and preventing economically motivated fraud is an important aspect of international commerce today. Therefore, there is a compelling need for rapid high throughput validated analytical techniques such as quantitative proton nuclear magnetic resonance (NMR) spectroscopy for screening and authenticity testing. For this reason, we sought to validate an 1H NMR spectroscopic method for the routine screening of coffee for quality and authenticity. A factorial experimental design was used to investigate the influence of the NMR device, extraction time, and nature of coffee on the content of caffeine, 16-O-methylcafestol (OMC), kahweol, furfuryl alcohol, and 5-hydroxymethylfurfural (HMF) in coffee. The method was successfully validated for specificity, selectivity, sensitivity, and linearity of detector response. The proposed method produced satisfactory precision for all analytes in roasted coffee, except for kahweol in canephora (robusta) coffee. The proposed validated method may be used for routine screening of roasted coffee for quality and authenticity control (i.e., arabica/robusta discrimination), as its applicability was demonstrated during the recent OPSON VIII Europol-Interpol operation on coffee fraud control.
Collapse
Affiliation(s)
- Alex O. Okaru
- Department of Pharmaceutical Chemistry, University of Nairobi, P.O. Box 19676-00202 Nairobi, Kenya;
| | - Andreas Scharinger
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (A.S.); (T.R.d.R.); (J.T.); (T.K.); (S.G.W.)
| | - Tabata Rajcic de Rezende
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (A.S.); (T.R.d.R.); (J.T.); (T.K.); (S.G.W.)
| | - Jan Teipel
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (A.S.); (T.R.d.R.); (J.T.); (T.K.); (S.G.W.)
| | - Thomas Kuballa
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (A.S.); (T.R.d.R.); (J.T.); (T.K.); (S.G.W.)
| | - Stephan G. Walch
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (A.S.); (T.R.d.R.); (J.T.); (T.K.); (S.G.W.)
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Straße 3, 76187 Karlsruhe, Germany; (A.S.); (T.R.d.R.); (J.T.); (T.K.); (S.G.W.)
| |
Collapse
|
38
|
Hosseinabadi S, Rafraf M, Asghari S, Asghari-Jafarabadi M, Vojouhi S. Effect of green coffee extract supplementation on serum adiponectin concentration and lipid profile in patients with non-alcoholic fatty liver disease: A randomized, controlled trial. Complement Ther Med 2019; 49:102290. [PMID: 32147076 DOI: 10.1016/j.ctim.2019.102290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES The current study evaluated the effects of green coffee extract (GCE) on serum lipid profile and adiponectin levels in patients with nonalcoholic fatty liver disease (NAFLD). DESIGN This randomized, double-blind, placebo-controlled clinical trial was conducted on NAFLD patients aged 20-60 years and body mass index (BMI) of 25-35 kg/m2. SETTING Patients were recruited from the Bahman poly-clinic (Neyshabur, Iran) between January and June 2016. INTERVENTIONS The study subjects were randomly assigned to receive a daily dose of 400 mg GCE (n = 24) or placebo (n = 24) for eight weeks. MAIN OUTCOME MEASURES Serum liver enzyme levels, lipid profile, adiponectin concentrations, and hepatic steatosis grade were measured for all patients at baseline and the end of the trial. RESULTS GCE supplementation significantly reduced BMI [mean difference (MD): -0.57 and 95 % confidence interval (CI): -0.84 to -0.29, P < 0.001] and increased serum high-density lipoprotein cholesterol (MD: 7.06, 95 % CI: 0.25-13.87, P < 0.05) compared to the control group. Serum total cholesterol decreased significantly within the GCE group (MD: -13.33, 95 % CI: -26.04 to -0.61, P < 0.05). Triglyceride levels reduced significantly in GCE group compared to the placebo group (MD: -37.91; 95 % CI: -72.03 to -3.80; P = 0.03). However, this reduction was not significant when was further adjusted for mean changes in BMI and daily energy intake (MD: -23.43; 95 % CI: -70.92 to 24.06; P = 0.32). Hepatic steatosis grade, liver enzymes, and adiponectin levels did not show significant differences between the two groups after the intervention. CONCLUSIONS GCE supplementation improved serum lipid profile and BMI in individuals with NAFLD. GCE may be useful in controlling NAFLD risk factors.
Collapse
Affiliation(s)
- Samaneh Hosseinabadi
- Students' Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rafraf
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Somayyeh Asghari
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asghari-Jafarabadi
- Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran; Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shohreh Vojouhi
- Internists, 22 Bahman Hospital, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
39
|
Gupta S, Dasmahapatra AK. Caffeine destabilizes preformed Aβ protofilaments: insights from all atom molecular dynamics simulations. Phys Chem Chem Phys 2019; 21:22067-22080. [PMID: 31565708 DOI: 10.1039/c9cp04162a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aggregation and deposition of neurotoxic Aβ fibrils are key in the etiology of Alzheimer's disease (AD). It has been clinically recognized as a major form of dementia across the globe. Finding and testing various natural compounds to target Aβ fibrils to disrupt their stable structures seems to be a promising and attractive therapeutic strategy. The destabilization effects of caffeine on Aβ fibrils are investigated via in silico studies, where a series of molecular dynamics (MD) simulations, each of 100 ns, was conducted. The simulation outcomes obtained henceforth clearly indicated the drift of the terminal chains from the protofibrils, leading to disorganization of the characteristically organized cross-β structures of Aβ fibrils. The structural instability of Aβ17-42 protofibrils is explained through enhanced fluctuations in the RMSD, radius of gyration and RMSF values in the presence of caffeine. The key interactions providing stability, comprising D23-K28 salt bridges, intra- and inter-chain hydrogen bonding and hydrophobic interactions involving interchain A21-V36 and F19-G38 and intrachain L34-V36, were found to be disrupted due to increases in the distances between the participating components. The loss of β-sheet structure with the introduction of turns and α-helices in terminal chains may further inhibit the formation of higher order aggregates, which is necessary to stop the progression of the disease. The atomistic details obtained via MD studies relating to the mechanism behind the underlying destabilization of Aβ17-42 protofibrils by caffeine encourage further investigations exploring the potency of natural compounds to treat AD via disrupting preformed neurotoxic Aβ protofibrils.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Chemical Engineering and Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | | |
Collapse
|
40
|
Kim JW, Byun MS, Yi D, Lee JH, Jeon SY, Jung G, Lee HN, Sohn BK, Lee JY, Kim YK, Shin SA, Sohn CH, Lee DY. Coffee intake and decreased amyloid pathology in human brain. Transl Psychiatry 2019; 9:270. [PMID: 31641100 PMCID: PMC6805864 DOI: 10.1038/s41398-019-0604-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/22/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
Several epidemiological and preclinical studies supported the protective effect of coffee on Alzheimer's disease (AD). However, it is still unknown whether coffee is specifically related with reduced brain AD pathologies in human. Hence, this study aims to investigate relationships between coffee intake and in vivo AD pathologies, including cerebral beta-amyloid (Aβ) deposition, the neurodegeneration of AD-signature regions, and cerebral white matter hyperintensities (WMH). A total of 411 non-demented older adults were included. Participants underwent comprehensive clinical assessment and multimodal neuroimaging including [11C] Pittsburgh compound B-positron emission tomography (PET), [18F] fluorodeoxyglucose PET, and magnetic resonance imaging scans. Lifetime and current coffee intake were categorized as follows: no coffee or <2 cups/day (reference category) and ≥2 cups/day (higher coffee intake). Lifetime coffee intake of ≥2 cups/day was significantly associated with a lower Aβ positivity compared to coffee intake of <2 cups/day, even after controlling for potential confounders. In contrast, neither lifetime nor current coffee intake was not related to hypometabolism, atrophy of AD-signature region, and WMH volume. The findings suggest that higher lifetime coffee intake may contribute to lowering the risk of AD or related cognitive decline by reducing pathological cerebral amyloid deposition.
Collapse
Affiliation(s)
- Jee Wook Kim
- 0000 0004 1790 2596grid.488450.5Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, 7 Keunjaebong-Gil, Hwaseong, Gyeonggi 18450 Republic of Korea ,0000 0004 0470 5964grid.256753.0Department of Psychiatry, Hallym University College of Medicine, Chuncheon, Gangwon 24252 Republic of Korea
| | - Min Soo Byun
- 0000 0004 0470 5905grid.31501.36Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, 03080 Republic of Korea
| | - Dahyun Yi
- 0000 0004 0470 5905grid.31501.36Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, 03080 Republic of Korea
| | - Jun Ho Lee
- 0000 0001 0302 820Xgrid.412484.fDepartment of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - So Yeon Jeon
- 0000 0001 0302 820Xgrid.412484.fDepartment of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Gijung Jung
- 0000 0001 0302 820Xgrid.412484.fDepartment of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Han Na Lee
- 0000 0001 0302 820Xgrid.412484.fDepartment of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080 Republic of Korea
| | - Bo Kyung Sohn
- 0000 0004 0470 5112grid.411612.1Department of Psychiatry, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, 01757 Republic of Korea
| | - Jun-Young Lee
- grid.412479.dDepartment of Neuropsychiatry, SMG-SNU Boramae Medical Center, Seoul, 07061 Republic of Korea ,0000 0004 0470 5905grid.31501.36Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Yu Kyeong Kim
- grid.412479.dDepartment of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, 07061 Republic of Korea
| | - Seong A Shin
- grid.412479.dDepartment of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, 07061 Republic of Korea
| | - Chul-Ho Sohn
- 0000 0004 0470 5905grid.31501.36Department of Radiology, Seoul National University College of Medicine, Seoul, 03080 Republic of Korea
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, 03080, Republic of Korea. .,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, 03080, Republic of Korea. .,Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | | |
Collapse
|
41
|
Kyung S, Lim JW, Kim H. α-Lipoic Acid Inhibits IL-8 Expression by Activating Nrf2 Signaling in Helicobacter pylori-infected Gastric Epithelial Cells. Nutrients 2019; 11:nu11102524. [PMID: 31635029 PMCID: PMC6835494 DOI: 10.3390/nu11102524] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) causes gastritis and gastric cancers. Oxidative stress is involved in the pathological mechanism of H. pylori-induced gastritis and gastric cancer induction. Therefore, reducing oxidative stress may be beneficial for preventing the development of H. pylori-associated gastric diseases. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a crucial regulator for the expression of antioxidant enzyme heme oxygenase-1 (HO-1), which protects cells from oxidative injury. α-Lipoic acid (α-LA), a naturally occurring dithiol, shows antioxidant and anti-inflammatory effects in various cells. In the present study, we examined the mechanism by which α-LA activates the Nrf2/HO-1 pathway, suppresses the production of pro-inflammatory cytokine interleukine-8 (IL-8), and reduces reactive oxygen species (ROS) in H. pylori-infected AGS cells. α-LA increased the level of phosphorylated and nuclear-translocated Nrf2 by decreasing the amount of Nrf2 sequestered in the cytoplasm by complex formation with Kelch-like ECH1-associated protein 1 (KEAP 1). By using exogenous inhibitors targeting Nrf2 and HO-1, we showed that up-regulation of activated Nrf2 and of HO-1 results in the α-LA-induced suppression of interleukin 8 (IL-8) and ROS. Consumption of α-LA-rich foods may prevent the development of H. pylori-associated gastric diseases by decreasing ROS-mediated IL-8 expression in gastric epithelial cells.
Collapse
Affiliation(s)
- Seoyeon Kyung
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
42
|
Functional Foods and Bioactive Compounds: A Review of Its Possible Role on Weight Management and Obesity's Metabolic Consequences. MEDICINES 2019; 6:medicines6030094. [PMID: 31505825 PMCID: PMC6789755 DOI: 10.3390/medicines6030094] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
Background: Weight management and obesity prevention is a basic aim of health organizations in order to decrease the prevalence of various metabolic disorders. The aim of the present review article was the evaluation of the possible role of functional foods and their bioactive compounds as alternative way to promote weight management and prevent obesity and its metabolic consequences. Methods: Approximately 100 articles were selected from Scopus, PubMed, Google Scholar, and Science Direct, by using relative key words, and based mainly on recent animal, clinical or epidemiological studies. Results: The literature review highlighted the possible effect of specific functional foods such as coffee, green tea, berries, nuts, olive oil, pomegranate, avocado, and ginger. Specific bioactive compounds of those foods—such as caffeine, catechins, gallic acid, anthocyanins, ascorbic acid, polyphenols, oleuropein, capsaicin, and quercetin—may contribute to weight management, obesity prevention, and obesity’s metabolic consequences. The possible mechanisms include effect on satiety, lipid absorption, fatty acids beta oxidation, stimulation of thermogenesis, etc. Conclusions: Functional foods, as part of a balanced diet, could be useful in the direction of weight management and decrease of obesity’s’ metabolic consequences. However, the scientific evidence is unclear and in most cases controversial and more clinical and epidemiological studies are needed in order to further investigate the mechanisms of their possible effect.
Collapse
|
43
|
J. Ganado RJ, Yu DEC, Franco FC. Microwave-Assisted Conversion of Simple Sugars and Waste Coffee Grounds into 5-Hydroxymethylfurfural in a Highly Aqueous DMSO Solvent System Catalyzed by a Combination of Al(NO 3) 3 and H 2SO 4. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rey Joseph J. Ganado
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | | | - Francisco C. Franco
- Chemistry Department, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| |
Collapse
|
44
|
Vinson JA, Chen X, Garver DD. Determination of Total Chlorogenic Acids in Commercial Green Coffee Extracts. J Med Food 2019; 22:314-320. [PMID: 30888913 PMCID: PMC6445179 DOI: 10.1089/jmf.2018.0039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Obesity and type II diabetes are serious health problems and are among the leading causes of death. There are a few prescription weight loss drugs, but they have a high cost and their adverse effects have limited their widespread use. For the consumer, the use of dietary supplements represents a natural and presumably safer means of losing weight. A high-pressure liquid chromatography (HPLC) method was developed to provide a simple, inexpensive method for analysis of 54 commercially available extracts of green coffee beans. Both chlorogenic acids (CGAs), which are the purported bioactives, and caffeine were measured using 5-chloroquinic acid as the standard and published extinction coefficients for the other monomeric and dimeric CGAs present. The average labeled dose of CGA was 233 mg, whereas the average calculated by HPLC analysis was only 157 mg. Thus, the consumer is likely to obtain product containing a little more than half of the reported label amount of CGA. Caffeine levels ranged from 0% to 17%. The marketing literature touts 50% CGA content as being the gold standard of green coffee bean extract products. Based on this value, only 28% of the commercial products we studied met this goal.
Collapse
Affiliation(s)
- Joe A Vinson
- 1 Department of Chemistry, Loyola Science Center, University of Scranton, Scranton, Pennsylvania
| | - Xi Chen
- 1 Department of Chemistry, Loyola Science Center, University of Scranton, Scranton, Pennsylvania
| | - Deanne Dulik Garver
- 2 Department of Science, Mathematics and Computer Science, Marywood University, Scranton, Pennsylvania
| |
Collapse
|
45
|
Laila O, Murtaza I, Abdin MZ, Ahmad S, Khan MS. Development and validation of a high-performance thin-layer chromatography based method for the quantification of trigonelline in fenugreek ( Trigonella foenum-graecum) seeds. JPC-J PLANAR CHROMAT 2019. [DOI: 10.1556/1006.2019.32.2.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Omi Laila
- Biochemistry and Molecular Biotechnology Laboratory, Division of Basic Sciences and Humanities, SKUAST-K-190025, India
| | - Imtiyaz Murtaza
- Biochemistry and Molecular Biotechnology Laboratory, Division of Basic Sciences and Humanities, SKUAST-K-190025, India
| | - Malik Zainul Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Masood Shah Khan
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
46
|
Tzoulaki I. Moderate coffee intake and cardiovascular health; no grounds for concern. Nutr Metab Cardiovasc Dis 2018; 28:808-809. [PMID: 29954640 DOI: 10.1016/j.numecd.2018.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/18/2018] [Indexed: 12/01/2022]
Affiliation(s)
- I Tzoulaki
- Department Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK; Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece.
| |
Collapse
|
47
|
Jaguś D, Lis K, Niemczyk L, Basak GW. Kidney dysfunction after hematopoietic cell transplantation-Etiology, management, and perspectives. Hematol Oncol Stem Cell Ther 2018; 11:195-205. [PMID: 30076790 DOI: 10.1016/j.hemonc.2018.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/26/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022] Open
Abstract
Kidney dysfunction is a common complication of hematopoietic cell transplantation (HCT) with proven negative impact on early and long-term mortality. Causes of this complication are diverse, usually overlapping, and poorly understood. Therefore, management implicates multidirectional investigations and simultaneous treatment of suspected causes. The etiology is frequently unconfirmed due to a lack of specific markers and prevalence of contraindications to renal biopsy among HCT recipients. Herein, we provide a summary of etiology and propose an algorithm for evaluation of kidney injury after HCT. We also map out the most urgent areas for research that aim to identify patients at risk of severe renal injury and develop nephroprotective strategies.
Collapse
Affiliation(s)
- Dorota Jaguś
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Karol Lis
- Department of Hematology, Oncology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Longin Niemczyk
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz W Basak
- Department of Hematology, Oncology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
48
|
Effects of Coffee Components on Muscle Glycogen Recovery: A Systematic Review. Int J Sport Nutr Exerc Metab 2018; 28:284-293. [PMID: 29345166 DOI: 10.1123/ijsnem.2017-0342] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coffee is one of the most consumed beverages in the world, and it can improve insulin sensitivity, stimulating glucose uptake in skeletal muscle when adequate carbohydrate intake is observed. The aim of this review is to analyze the effects of coffee and coffee components on muscle glycogen metabolism. A literature search was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis, and seven studies were included, that explored the effects of coffee components on various substances and signaling proteins. In one of the studies with humans, caffeine was shown to increase glucose levels, Ca2+/calmodulin-dependent protein kinase phosphorylation, glycogen resynthesis rates, and glycogen accumulation after exercise. After intravenous injection of caffeine in rats, caffeine increased adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, and glucose transport. In in vitro studies, caffeine raised AMPK and ACC phosphorylation, increasing glucose transport activity and reducing energy status in rat muscle cells. Cafestol and caffeic acid increased insulin secretion in rat beta cells and glucose uptake into human muscle cells. Caffeic acid also increased AMPK and ACC phosphorylation, reducing the energy status and increasing glucose uptake in rat muscle cells. Chlorogenic acid did not show any positive or negative effect. The findings from this review must be taken with caution due to the limited number of studies on the subject. In conclusion, various coffee components had a neutral or positive role in the metabolism of glucose and muscle glycogen, whereas no detrimental effect was described. Coffee beverages should be tested as an option for athletes' glycogen recovery.
Collapse
|
49
|
Yisak H, Redi-Abshiro M, Chandravanshi BS. New fluorescence spectroscopic method for the simultaneous determination of alkaloids in aqueous extract of green coffee beans. Chem Cent J 2018; 12:59. [PMID: 29748893 PMCID: PMC5945572 DOI: 10.1186/s13065-018-0431-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is no fluorescence spectroscopic method for the determination of trigonelline and theobromine in green coffee beans. Therefore, the objective of this study was to develop a new fluorescence spectroscopic method to determine the alkaloids simultaneously in the aqueous extract of green coffee beans. RESULTS The calibration curves were linear in the range 2-6, 1-6, 1-5 mg/L for caffeine, theobromine and trigonelline, respectively, with R2 ≥ 0.9987. The limit of detection and limit of quantification were 2, 6 and 7 µg/L and 40, 20 and 20 µg/L for caffeine, theobromine and trigonelline, respectively. Caffeine and trigonelline exhibited well separated fluorescence excitation spectra and therefore the two alkaloids were selectively quantified in the aqueous extract of green coffee. While theobromine showed overlapping fluorescence excitation spectra with caffeine and hence theobromine could not be determined in the aqueous extract of green coffee beans. The amount of caffeine and trigonelline in the three samples of green coffee beans were found to be 0.95-1.10 and 1.00-1.10% (w/w), respectively. The relative standard deviations (RSD ≤ 4%) of the method for the three compounds of interest were of very good. The accuracy of the developed analytical method was evaluated by spiking standard caffeine and trigonelline to green coffee beans and the average recoveries were 99 ± 2% for both the alkaloids. CONCLUSIONS A fast, sensitive and reliable fluorescence method for the simultaneous determination of caffeine and trigonelline in the aqueous extract of green coffee beans was developed and validated. The developed method reflected an effective performance to the direct determination of the two alkaloids in the aqueous extract of green coffee beans.
Collapse
Affiliation(s)
- Hagos Yisak
- Department of Chemistry, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Mesfin Redi-Abshiro
- Department of Chemistry, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Bhagwan Singh Chandravanshi
- Department of Chemistry, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| |
Collapse
|
50
|
Abstract
Epidemiological studies have found coffee consumption is associated with a lower risk for type 2 diabetes mellitus, but the underlying mechanisms remain unclear. Thus, the aim of this randomised, cross-over single-blind study was to investigate the effects of regular coffee, regular coffee with sugar and decaffeinated coffee consumption on glucose metabolism and incretin hormones. Seventeen healthy men participated in five trials each, during which they consumed coffee (decaffeinated, regular (containing caffeine) or regular with sugar) or water (with or without sugar). After 1 h of each intervention, they received an oral glucose tolerance test with one intravenous dose of [1-13C]glucose. The Oral Dose Intravenous Label Experiment was applied and glucose and insulin levels were interpreted using a stable isotope two-compartment minimal model. A mixed-model procedure (PROC MIXED), with subject as random effect and time as repeated measure, was used to compare the effects of the beverages on glucose metabolism and incretin parameters (glucose-dependent insulinotropic peptide (GIP)) and glucagon-like peptide-1 (GLP-1)). Insulin sensitivity was higher with decaffeinated coffee than with water (P<0·05). Regular coffee with sugar did not significantly affect glucose, insulin, C-peptide and incretin hormones, compared with water with sugar. Glucose, insulin, C-peptide, GLP-1 and GIP levels were not statistically different after regular and decaffeinated coffee compared with water. Our findings demonstrated that the consumption of decaffeinated coffee improves insulin sensitivity without changing incretin hormones levels. There was no short-term adverse effect on glucose homoeostasis, after an oral glucose challenge, attributable to the consumption of regular coffee with sugar.
Collapse
|