1
|
Cheng WY, Lee XZ, Lai MSL, Ho YS, Chang RCC. PKR modulates sterile systemic inflammation-triggered neuroinflammation and brain glucose metabolism disturbances. Front Immunol 2025; 16:1469737. [PMID: 40070845 PMCID: PMC11893411 DOI: 10.3389/fimmu.2025.1469737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Sterile systemic inflammation may contribute to neuroinflammation and accelerate the progression of neurodegenerative diseases. The double-stranded RNA-dependent protein kinase (PKR) is a key signaling molecule that regulates immune responses by regulating macrophage activation, various inflammatory pathways, and inflammasome formation. This study aims to study the role of PKR in regulating sterile systemic inflammation-triggered neuroinflammation and cognitive dysfunctions. Here, the laparotomy mouse model was used to study neuroimmune responses triggered by sterile systemic inflammation. Our study revealed that genetic deletion of PKR in mice potently attenuated the laparotomy-induced peripheral and neural inflammation and cognitive deficits. Furthermore, intracerebroventricular injection of rAAV-DIO-PKR-K296R to inhibit PKR in cholinergic neurons of ChAT-IRES-Cre-eGFP mice rescued the laparotomy-induced changes in key metabolites of brain glucose metabolism, particularly the changes in phosphoenolpyruvate and succinate levels, and cognitive impairment in short-term and spatial working memory. Our results demonstrated the critical role of PKR in regulating neuroinflammation, brain glucose metabolism and cognitive dysfunctions in a peripheral inflammation model. PKR could be a novel pharmacological target for treating systemic inflammation-induced neuroinflammation and cognitive dysfunctions.
Collapse
Affiliation(s)
- Wai-Yin Cheng
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Xin-Zin Lee
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Michael Siu-Lun Lai
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Comparison of Clinical Outcomes Following One versus Two Stage Hybrid Repair of Thoraco-Abdominal Aortic Aneurysms: A Comprehensive Meta-Analysis. Eur J Vasc Endovasc Surg 2021; 61:396-406. [PMID: 33358102 DOI: 10.1016/j.ejvs.2020.11.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE For thoraco-abdominal aortic aneurysms (TAAA), it is unclear whether it is better to perform hybrid repair in one (single) or two stages (staged). This study aimed to compare the clinical outcomes of single vs. staged hybrid repair of TAAA. METHODS The Medline, Embase, and Cochrane Databases (1 January 1994 to 11 May 2020) were searched for studies on hybrid repair of TAAA. Cohort studies and case series reporting outcomes of single and staged hybrid repair of TAAA were eligible for inclusion. The Newcastle-Ottawa scale and an 18 item tool were used to assess the risk of bias. The primary outcome was 30 day mortality, and the secondary outcomes included post-operative complications, overall survival, and other mid term events. A random effects model was used to calculate pooled estimates. RESULTS A total of 37 studies was included in the meta-analysis. The quality assessment of the included studies suggested low or moderate risk of bias. The pooled estimates for aneurysm rupture and death during stage interval were 2% (95% CI 0%-4%, I2 = 0%) and 4% (95% CI 2%-7%, I2 = 0%), respectively. Single repair was associated with a significantly higher 30 day risk of death when compared with patients who completed staged procedures successfully (OR 2.64, 95% CI 1.36-5.12, I2 = 0%). Staged repair also had lower incidence of major adverse cardiac events (MACE) (single: 10%, 95% CI 5%-16%; staged: 2%, 95% CI 0%-5%) and intestinal complications (single: 15%, 95% CI 8%-25%; staged: 3%, 95% CI 1%-6%). For mid term outcomes, single and staged repair had comparable 12 month overall survival, aneurysm related mortality, rate of re-intervention, and graft patency. CONCLUSION Two stage hybrid repair may represent a better choice for patients with controlled risk of aneurysm rupture, because it can provide lower 30 day mortality risks, MACE, and intestinal complications, as well as comparable mid term outcomes. Randomised controlled trials are needed to ascertain the effect of repair staging in patients for elective TAAA.
Collapse
|
3
|
Tan S, Zhou F, Zhang Z, Wang J, Xu J, Zhuang Q, Meng Q, Xi Q, Jiang Y, Wu G. Beta-1 blocker reduces inflammation and preserves intestinal barrier function after open abdominal surgery. Surgery 2020; 169:885-893. [PMID: 33303271 DOI: 10.1016/j.surg.2020.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Open abdominal surgery is frequently related to excessive inflammation and a compromised intestinal barrier, leading to poor clinical outcomes. The administration of beta-1 blocker has been shown to effectively reduce inflammation and preserve intestinal barrier function in patients with sepsis, shock, or other critical illnesses. The underlying mechanism of these effects may be associated with the autonomic nervous system's activation via cholecystokinin receptors. This study aimed to investigate the effect of beta-1 blocker on systemic and local inflammatory responses and the intestinal barrier function in the context of open abdominal surgery. METHODS A rat model of open abdominal surgery was induced through peritoneal air exposure for 3 hours and treated via gavage with the beta-1 blocker, metoprolol, or saline. Cholecystokinin-receptor antagonists were administered before the metoprolol treatment. Peritoneal lavage fluid, serum, and tissues were collected 24 hours after surgery to determine systemic and local inflammation and intestinal integrity. RESULTS The intervention with metoprolol significantly reduced serum tumor necrosis factor-alpha and interleukin-6 (P < .05) and peritoneal interleukin-6 (P < .01) compared with those of animals treated with saline. The intestinal myeloperoxidase indicating the influx of neutrophils was also significantly prevented by the administration of metoprolol (P < .05). Above all, this intervention resulted in a significant decrease in serum D-lactate and intestinal fatty acid-binding protein, intestinal permeability, bacterial translocation, and Chiu's score for intestinal mucosa injury (P < .05). However, the anti-inflammatory and intestinal integrity protective effects of metoprolol were prevented by the blockage of cholecystokinin receptors (P < .05). CONCLUSION Our data indicate that beta-1 blocker reduces systemic and local inflammatory responses and preserves intestinal barrier function after open abdominal surgery through a mechanism that depends on cholecystokinin receptors. Clinically, these findings imply that perioperative intervention with a beta-1 blocker may be an effective new therapy to enhance recovery after open abdominal surgery.
Collapse
Affiliation(s)
- Shanjun Tan
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Feng Zhou
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Germany
| | - Zhige Zhang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Junjie Wang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Jiahao Xu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Qiulin Zhuang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Qingyang Meng
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Qiulei Xi
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Yi Jiang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China
| | - Guohao Wu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, China.
| |
Collapse
|
4
|
Zhan CY, Chen D, Luo JL, Shi YH, Zhang YP. Protective role of down-regulated microRNA-31 on intestinal barrier dysfunction through inhibition of NF-κB/HIF-1α pathway by binding to HMOX1 in rats with sepsis. Mol Med 2018; 24:55. [PMID: 30340459 PMCID: PMC6194748 DOI: 10.1186/s10020-018-0053-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background Intestinal barrier dysfunction is a significant clinical problem, commonly developing in a variety of acute or chronic pathological conditions. Herein, we evaluate the effect of microRNA-31 (miR-31) on intestinal barrier dysfunction through NF-κB/HIF-1α pathway by targeting HMOX1 in rats with sepsis. Methods Male Sprague-Dawley rats were collected and divided into the sham group, and the cecum ligation and perforation group which was subdivided after CACO-2 cell transfection of different mimic, inhibitor, or siRNA. Levels of serum D-lactic acid, diamine oxidase and fluorescence isothiocyanate dextran, FITC-DX concentration, and bacterial translocation were detected. Superoxidedismutase (SOD) activity and malondialdehyde (MDA) content were evaluated using the colorimetric method and an automatic microplate reader, respectively. Additionally, the levels of tumor necrosis factor, interleukin (IL)-6, and IL-10 were tested using enzyme-linked immunosorbent assay. The expression of miR-31, HMOX1, NF-κB, HIF-1α, IκB, ZO-1 and Occludin were assessed by reverse transcription quantitative polymerase chain reaction and Western blot analysis. Results Inhibition of miR-31 decreased intestinal mucosal permeability and intestinal barrier function. The increased levels of miR-31 could cause oxidative damage and affect the expression of inflammatory factors in intestinal tissue of rats. HMOX1 was confirmed as a target gene of miR-31. MiR-31 affected intestinal mucosal permeability and intestinal barrier function, as well as oxidative damage and inflammation level by regulating HMOX1. Down-regulation of miR-31 inhibited NF-κB/HIF-1α pathway related genes by regulating HMOX1 expression. Furthermore, inhibition of miR-31 increased survival rates of rats. Conclusion Overall, the current study found that inhibition of miR-31 protects against intestinal barrier dysfunction through suppression of the NF-κB/HIF-1α pathway by targeting HMOX1 in rats with sepsis.
Collapse
Affiliation(s)
- Cheng-Ye Zhan
- Intensive Care Unit, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Di Chen
- Intensive Care Unit, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China.
| | - Jin-Long Luo
- Intensive Care Unit, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Ying-Hua Shi
- Intensive Care Unit, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| | - You-Ping Zhang
- Intensive Care Unit, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Road, Qiaokou District, Wuhan, 430030, Hubei Province, People's Republic of China
| |
Collapse
|
5
|
Gerber L, Overgaard J. Cold tolerance is linked to osmoregulatory function of the hindgut in Locusta migratoria. J Exp Biol 2018; 221:jeb.173930. [DOI: 10.1242/jeb.173930] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/03/2018] [Indexed: 01/16/2023]
Abstract
There is growing evidence that maintenance of ion and water balance determine cold tolerance in many insects. The hindgut of terrestrial insects is critical for maintaining organismal homeostasis as it regulates solute- and water-balance of the hemolymph. Here we used ex vivo everted gut sacs of L. migratoria to examine the effects of temperature (0 - 30°C), thermal-acclimation, hypoxia, and ionic and osmotic forces on bulk water and ion (Na+, K+ and Cl−) movement across the rectal epithelium. These findings were related to simultaneous in vivo measurements of water and ion balance in locusts exposed to similar temperatures. As predicted, we observed a critical inhibition of net water and ion reabsorption at low temperature that is proportional to the in vivo loss of water and ion homeostasis. Further, cold-acclimated locust, known to defend ion and water balance at low temperature, were characterised by improved reabsorptive capacity at low temperature. These findings strongly support the hypothesis that transport mechanisms in the hindgut at low temperature are essential for cold tolerance. The loss of osmoregulatory capacity at low temperature was primarily caused by reduced active transport while rectal paracellular permeability to fluorescein isothiocyanate dextran was unchanged at 0 and 30°C. During cold exposure, water reabsorption was independent of major cation gradients across the epithelia while reduction in mucosal Cl− availability and increase in mucosal osmolality markedly depressed water reabsorption. These findings are discussed in perspective of existing knowledge and with suggestions for future physiological studies on cold acclimation and adaptation in insects.
Collapse
Affiliation(s)
- Lucie Gerber
- Zoophysiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
6
|
Wu J, Lyu B, Gan T, Wang L, Zhu M. Electroacupuncture improves acute bowel injury recovery in rat models. Exp Ther Med 2017; 14:4655-4662. [PMID: 29201164 PMCID: PMC5704319 DOI: 10.3892/etm.2017.5159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/24/2017] [Indexed: 01/24/2023] Open
Abstract
Electroacupuncture (EA) accelerates intestinal functional recovery in sepsis. The present study investigated ghrelin and ghrelin receptor (GSH-R) levels during EA in rats with acute bowel injury (ABI). Rats were grouped into four groups: Sham, ABI, ABI+EA and ABI+GHRA+EA (n=12 per group). ABI was induced by cecal ligation and puncture (CLP). EA on bilateral Zusanli acupoints was performed following CLP. GSH-R blocker (GHRA) was used following CLP but prior to EA for ABI+GHRA+EA rats. Rats were sacrificed 12 h following CLP. Serum ghrelin, tumor necrosis factor-α (TNF-α) and high mobility group box 1 (HMGB1) levels, as well as ghrelin and GSH-R protein expression, water content, pathological changes and myeloperoxidase (MPO) and diamine oxidase (DAO) activities in the bowel tissues, were measured. ABI rats, compared with the sham rats, had significantly lower levels of ghrelin and GSH-R in the serum and bowel tissue, and higher Chiu's score (all P<0.05). The ABI+EA rats, compared with the ABI rats, had significantly reduced serum TNF-α and HMGB1 levels, bowel water content, MPO activity and Chiu's score (all P<0.05), and significantly higher serum ghrelin (121.2±10.7 vs. 86.7±6.4 pg/ml), bowel ghrelin (0.12±0.02 vs. 0.08±0.01), GSH-R (0.05±0.04 vs. 0.03±0.01) and DAO activity (18.74±4.18 vs. 13.52±2.33 U/ml; all P<0.05), indicating an improvement of the intestinal mucosal barrier. GHRA reversed the protective effects of EA. Therefore, EA improved ABI recovery by promoting ghrelin secretion and upregulating GSH-R expression.
Collapse
Affiliation(s)
- Jiannong Wu
- Department of Critical Care, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Bin Lyu
- Division of Gastroenterology, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Tie'er Gan
- Department of Infectious Diseases, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Lingcong Wang
- Department of Critical Care, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| | - Meifei Zhu
- Department of Critical Care, The First Affiliated Hospital, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
7
|
Yu C, Tan S, Zhou C, Zhu C, Kang X, Liu S, Zhao S, Fan S, Yu Z, Peng A, Wang Z. Berberine Reduces Uremia-Associated Intestinal Mucosal Barrier Damage. Biol Pharm Bull 2016; 39:1787-1792. [PMID: 27506986 DOI: 10.1248/bpb.b16-00280] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Berberine is one of the main active constituents of Rhizoma coptidis, a traditional Chinese medicine, and has long been used for the treatment of gastrointestinal disorders. The present study was designed to investigate the effects of berberine on the intestinal mucosal barrier damage in a rat uremia model induced by the 5/6 kidney resection. Beginning at postoperative week 4, the uremia rats were treated with daily 150 mg/kg berberine by oral gavage for 6 weeks. To assess the intestinal mucosal barrier changes, blood samples were collected for measuring the serum D-lactate level, and terminal ileum tissue samples were used for analyses of intestinal permeability, myeloperoxidase activity, histopathology, malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity. Berberine treatment resulted in significant decreases in the serum D-lactate level, intestinal permeability, intestinal myeloperoxidase activity, and intestinal mucosal and submucosal edema and inflammation, and the Chiu's scores assessed for intestinal mucosal injury. The intestinal MDA level was reduced and the intestinal SOD activity was increased following berberine treatment. In conclusion, berberine reduces intestinal mucosal barrier damage induced by uremia, which is most likely due to its anti-oxidative activity. It may be developed as a potential treatment for preserving intestinal mucosal barrier function in patients with uremia.
Collapse
Affiliation(s)
- Chao Yu
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhou F, Zhang P, Chen X, Yan J, Yao J, Yu Z, Chen X. Ginsenoside Rb1 protects the intestinal mucosal barrier following peritoneal air exposure. Exp Ther Med 2016; 12:2563-2567. [PMID: 27703510 PMCID: PMC5038908 DOI: 10.3892/etm.2016.3639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/15/2016] [Indexed: 01/02/2023] Open
Abstract
Ginsenoside Rb1 (GRb1), which is one of the main ingredients derived from Panax ginseng, has been widely used to treat various gastrointestinal disorders. The present study aimed to determine whether GRb1 was able to prevent intestinal mucosal barrier damage in rats following peritoneal air exposure for 3 h. GRb1 (5, 10, and 20 mg/kg) was orally administrated via gavage four times prior to and following surgery. Blood and terminal ileum were sampled 24 h following surgery. Levels of serum D-lactate (D-LA) were detected using an enzyme-linked immunosorbent assay kit. Intestinal permeability was assessed by determining the intestinal clearance of fluorescein isothiocyanate-dextran (FD4). Activity of intestinal myeloperoxidase was measured to assess intestinal inflammation, and intestinal histopathology was assessed by light microscopy. The results showed that GRb1 reduced the level of serum D-LA, intestinal clearance of FD4, and the activity of intestinal myeloperoxidase. Intestinal edema and inflammation were also ameliorated by GRb1, and the Chiu's scores employed for assessing intestinal mucosal damage were also reduced in the GRb1-treated peritoneal air exposure group. In addition, GRb1 induced a significant difference at 10 and 20 mg/kg, indicating a dose-dependent effect. The results of the present study suggest that GRb1 may be able to protect the intestinal mucosal barrier against damage induced by peritoneal air exposure, which may be associated with its anti-inflammatory action.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Peichen Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaoxi Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jingyi Yan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jiangao Yao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhen Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China; Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Xiaolei Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
9
|
Chronic Kidney Disease Induced Intestinal Mucosal Barrier Damage Associated with Intestinal Oxidative Stress Injury. Gastroenterol Res Pract 2016; 2016:6720575. [PMID: 27493661 PMCID: PMC4963601 DOI: 10.1155/2016/6720575] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022] Open
Abstract
Background. To investigate whether intestinal mucosal barrier was damaged or not in chronic kidney disease progression and the status of oxidative stress. Methods. Rats were randomized into two groups: a control group and a uremia group. The uremia rat model was induced by 5/6 kidney resection. In postoperative weeks (POW) 4, 6, 8, and 10, eight rats were randomly selected from each group to prepare samples for assessing systemic inflammation, intestinal mucosal barrier changes, and the status of intestinal oxidative stress. Results. The uremia group presented an increase trend over time in the serum tumor necrosis factor-alpha, interleukin-6 (IL-6) and IL-10, serum D-lactate and diamine oxidase, and intestinal permeability, and these biomarkers were significantly higher than those in control group in POW 8 and/or 10. Chiu's scores in uremia group were also increased over time, especially in POW 8 and 10. Furthermore, the intestinal malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were significantly higher in uremia group when compared with those in control group in POW 8 and/or 10. Conclusions. The advanced chronic kidney disease could induce intestinal mucosal barrier damage and further lead to systemic inflammation. The underlying mechanism may be associated with the intestinal oxidative stress injury.
Collapse
|
10
|
Tan SJ, Yu C, Yu Z, Lin ZL, Wu GH, Yu WK, Li JS, Li N. High-fat enteral nutrition reduces intestinal mucosal barrier damage after peritoneal air exposure. J Surg Res 2015; 202:77-86. [PMID: 27083951 DOI: 10.1016/j.jss.2015.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/05/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Peritoneal air exposure is needed in open abdominal surgery, but long-time exposure could induce intestinal mucosal barrier dysfunction followed by many postoperative complications. High-fat enteral nutrition can ameliorate intestinal injury and improve intestinal function in many gastrointestinal diseases. In the present study, we investigated the effect of high-fat enteral nutrition on intestinal mucosal barrier after peritoneal air exposure and the underlying mechanism. METHODS Male adult rats were administrated saline, low-fat or high-fat enteral nutrition via gavage before and after peritoneal air exposure for 3 h. Rats undergoing anesthesia without laparotomy received saline as control. Twenty four hours after surgery, samples were collected to assess intestinal mucosal barrier changes in serum D-lactate levels, intestinal permeability, intestinal tight junction protein ZO-1 and occludin levels, and intestinal histopathology. The levels of malondialdehyde and the activity of superoxide dismutase in the ileum tissue were also measured to assess the status of intestinal oxidative stress. RESULTS High-fat enteral nutrition significantly decreased the serum D-lactate level and increased the intestinal tight junction protein ZO-1 level when compared to the group treated with low-fat enteral nutrition (P < 0.05). Meanwhile, histopathologic findings showed that the intestinal mucosal injury assessed by the Chiu's score and the intestinal epithelial tight junction were also improved much more in the high-fat enteral nutrition-treated group (P < 0.05). In addition, the intestinal malondialdehyde level was lower, and the intestinal superoxide dismutase activity was higher in the high-fat enteral nutrition-treated group than that in the low-fat enteral nutrition-treated group (P < 0.05). CONCLUSIONS These results suggest that high-fat enteral nutrition could reduce intestinal mucosal barrier damage after peritoneal air exposure, and the underlying mechanism may be associated with its antioxidative action. Perioperative administration of high-fat enteral nutrition may be a promising intervention to preserve intestinal mucosal barrier function in open abdominal surgery.
Collapse
Affiliation(s)
- Shan-Jun Tan
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chao Yu
- Department of Nephrology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Zhen Yu
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Zhi-Liang Lin
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guo-Hao Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Wen-Kui Yu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Jie-Shou Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ning Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
11
|
Tan S, Yu W, Lin Z, Chen Q, Shi J, Dong Y, Duan K, Bai X, Xu L, Yu Z, Li J, Li N. Berberine Ameliorates Intestinal Mucosal Barrier Damage Induced by Peritoneal Air Exposure. Biol Pharm Bull 2015; 38:122-6. [DOI: 10.1248/bpb.b14-00643] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shanjun Tan
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Wenkui Yu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Zhiliang Lin
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Qiyi Chen
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Jialiang Shi
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Yi Dong
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Kaipeng Duan
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Xiaowu Bai
- Research Institute of General Surgery, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University
| | - Lin Xu
- Research Institute of General Surgery, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University
| | - Zhen Yu
- Department of General Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University
| | - Jieshou Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University
| | - Ning Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University
| |
Collapse
|