1
|
da Silva Gebara R, da Silva MS, Calixto SD, Simão TLBV, Zeraik AE, Lassounskaia E, Muzitano MF, Petretski JH, Gomes VM, de Oliveira Carvalho A. Antifungal, Antimycobacterial, Protease and α‒Amylase Inhibitory Activities of a Novel Serine Bifunctional Protease Inhibitor from Adenanthera pavonina L. Seeds. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10194-z. [PMID: 38117407 DOI: 10.1007/s12602-023-10194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Antifungal resistance poses a significant challenge to disease management, necessitating the development of novel drugs. Antimicrobial peptides offer potential solutions. This study focused on extraction and characterization of peptides from Adenanthera pavonina seeds with activity against Candida species, Mycobacterium tuberculosis, proteases, and α-amylases. Peptides were extracted in phosphate buffer and heated at 90°C for 10 min to create a peptide rich heated fraction (PRHF). After confirming antimicrobial activity and the presence of peptides, the PRHF underwent ion exchange chromatography, yielding retained and non-retained fractions. These fractions were evaluated for antimicrobial activity and cytotoxicity against murine macrophages. The least toxic and most active fraction underwent reversed-phase chromatography, resulting in ten fractions. These fractions were tested for peptides and antimicrobial activity. The most active fraction was rechromatographed on a reversed-phase column, resulting in two fractions that were assessed for antimicrobial activity. The most active fraction revealed a single band of approximately 6 kDa and was tested for inhibitory effects on proteases and α-amylases. Thermal stability experiments were conducted on the 6 kDa peptide at different temperatures followed by reassessment of antifungal activity and circular dichroism. The 6 kDa peptide inhibited yeasts, M. tuberculosis, human salivary and Tenebrio molitor larvae intestine α-amylases, and proteolytic activity from fungal extracts, and thus named ApPI. Remarkably, ApPI retained antifungal activity and conformation after heating and is primarily composed of α-helices. ApPI is a thermally stable serine protease/α-amylase inhibitor from A. pavonina seeds, offering promise as a foundational molecule for innovative therapeutic agents against fungal infections and tuberculosis.
Collapse
Affiliation(s)
- Rodrigo da Silva Gebara
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Marciele Souza da Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Sanderson Dias Calixto
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Thatiana Lopes Biá Ventura Simão
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Ana Eliza Zeraik
- Laboratório de Química e Função de Proteinas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Elena Lassounskaia
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Michelle Frazão Muzitano
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Macaé, 27933-378, RJ, Brazil
| | - Jorge Hudson Petretski
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 28013-602, RJ, Brazil.
| |
Collapse
|
2
|
Guo Y, Ma A, Wang X, Yang C, Chen X, Li G, Qiu F. Research progress on the antiviral activities of natural products and their derivatives: Structure–activity relationships. Front Chem 2022; 10:1005360. [PMID: 36311429 PMCID: PMC9596788 DOI: 10.3389/fchem.2022.1005360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Viruses spread rapidly and are well-adapted to changing environmental events. They can infect the human body readily and trigger fatal diseases. A limited number of drugs are available for specific viral diseases, which can lead to non-efficacy against viral variants and drug resistance, so drugs with broad-spectrum antiviral activity are lacking. In recent years, a steady stream of new viral diseases has emerged, which has prompted development of new antiviral drugs. Natural products could be employed to develop new antiviral drugs because of their innovative structures and broad antiviral activities. This review summarizes the progress of natural products in antiviral research and their bright performance in drug resistance issues over the past 2 decades. Moreover, it fully discusses the effect of different structural types of natural products on antiviral activity in terms of structure–activity relationships. This review could provide a foundation for the development of antiviral drugs.
Collapse
Affiliation(s)
- Yajing Guo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anna Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xi Chen
- School of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xi Chen, ; Gen Li,
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xi Chen, ; Gen Li,
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjfin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Ray B, Ali I, Jana S, Mukherjee S, Pal S, Ray S, Schütz M, Marschall M. Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses. Viruses 2021; 14:35. [PMID: 35062238 PMCID: PMC8781365 DOI: 10.3390/v14010035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Only a mere fraction of the huge variety of human pathogenic viruses can be targeted by the currently available spectrum of antiviral drugs. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has highlighted the urgent need for molecules that can be deployed quickly to treat novel, developing or re-emerging viral infections. Sulfated polysaccharides are found on the surfaces of both the susceptible host cells and the majority of human viruses, and thus can play an important role during viral infection. Such polysaccharides widely occurring in natural sources, specifically those converted into sulfated varieties, have already proved to possess a high level and sometimes also broad-spectrum antiviral activity. This antiviral potency can be determined through multifold molecular pathways, which in many cases have low profiles of cytotoxicity. Consequently, several new polysaccharide-derived drugs are currently being investigated in clinical settings. We reviewed the present status of research on sulfated polysaccharide-based antiviral agents, their structural characteristics, structure-activity relationships, and the potential of clinical application. Furthermore, the molecular mechanisms of sulfated polysaccharides involved in viral infection or in antiviral activity, respectively, are discussed, together with a focus on the emerging methodology contributing to polysaccharide-based drug development.
Collapse
Affiliation(s)
- Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Imran Ali
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Saikat Pal
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
4
|
Lu W, Yang Z, Chen J, Wang D, Zhang Y. Recent advances in antiviral activities and potential mechanisms of sulfated polysaccharides. Carbohydr Polym 2021; 272:118526. [PMID: 34420760 DOI: 10.1016/j.carbpol.2021.118526] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/24/2022]
Abstract
Natural polysaccharides derived from plants, fungi and animals are well known as ideal functional products with multiple biological activities and few side effects. Among them, natural occurring sulfated polysaccharides and those from synthetic origin are increasingly causing more attention worldwide, as they have been proved to possess broad-spectrum antiviral activities. The focus of this review is on analyzing the current state of knowledge about the origin of sulfated polysaccharides, more importantly, the potential connection between the structure and their antiviral mechanisms. Sulfated polysaccharide may interfere with a few steps in the virus life cycle (i.e. adsorption, invasion, transcription and replication) and/or improve the host antiviral immune response. Moreover, their antiviral activity was affected by degree of substitution, substitution position, molecular weight, and spatial conformation. This review may provide approach for the development of novel and potent therapeutic agents.
Collapse
Affiliation(s)
- Wenjing Lu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China.
| | - Zhifeng Yang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Juan Chen
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Di Wang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Yu Zhang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| |
Collapse
|
5
|
Lopes BRP, Ribeiro AG, Silva TF, Barbosa LV, Jesus TI, Matsuda BK, Costa MF, Toledo KA. Diagnosis and treatment of HEp-2 cells contaminated with mycoplasma. BRAZ J BIOL 2021; 81:37-43. [PMID: 32321065 DOI: 10.1590/1519-6984.215721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 08/20/2019] [Indexed: 11/22/2022] Open
Abstract
Contamination of primary and cell cultures by mycoplasmas is one of the main economic and biological pitfalls in basic research, diagnosis and manufacture of biotechnological products. It is a common issue which may be difficult to conduct surveillance on. Mycoplasma presence may affect several physiological parameters of the cell, besides being considered an important source of inaccurate and/or non-reproducible scientific results. Each cell type presents characteristical symptoms, mainly morphological, that indicate a contamination by mycoplasma. HEp-2 cells originate from carcinoma of the larynx and are, therefore, part of the respiratory tract, which is one of mycoplasma habitats. Despite the importance these cells in several biological research (evaluation of cell proliferation and migration, apoptosis, antiviral and antitumor compounds), the alterations induced by mycoplasma contamination in HEp-2 cells have not yet been described. Here, we describe the progressive morphological alterations in culture of HEp-2 cells infected with mycoplasma, as well as the-diagnosis of the infection and its treatment. Mycoplasma contamination described within this work led to cytoplasm elongation, cell-to-cell spacing, thin plasma membrane projections, cytoplasmic vacuoles, fusion with neighboring cells, and, finally, cell death. Contamination was detected by fluorescence imaging (DAPI) and PCR reactions. The cultures were treated with BM-Cyclin antibiotic to eliminate contamination. The data presented here will be of relevance to researchers whose investigations involve cell culture, especially respiratory and HEp-2 cells.
Collapse
Affiliation(s)
- B R P Lopes
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil.,Instituto de Biociências, Letras e Ciências Exatas - IBILCE, Universidade Estadual Paulista - UNESP, R. Cristovão Colombo, 2265, Jardim Nazareth, CEP 15054-000, São José do Rio Preto, SP, Brasil
| | - A G Ribeiro
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil.,Instituto de Biociências, Letras e Ciências Exatas - IBILCE, Universidade Estadual Paulista - UNESP, R. Cristovão Colombo, 2265, Jardim Nazareth, CEP 15054-000, São José do Rio Preto, SP, Brasil
| | - T F Silva
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil
| | - L V Barbosa
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil
| | - T I Jesus
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil
| | - B K Matsuda
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil
| | - M F Costa
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil
| | - K A Toledo
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil.,Instituto de Biociências, Letras e Ciências Exatas - IBILCE, Universidade Estadual Paulista - UNESP, R. Cristovão Colombo, 2265, Jardim Nazareth, CEP 15054-000, São José do Rio Preto, SP, Brasil
| |
Collapse
|
6
|
Abstract
Galactomannans are versatile macromolecules with broad industrial potential. The influence of changes in the chemical structures and respective bioactivities of these polysaccharides have been extensively studied. The derivatives obtained by sulfation, complexation, and phosphorylation are the most studied biological properties in galactomannans. The derivatives obtained have shown several pharmacological activities such as antiviral, antimicrobial, anticoagulant, fibrinolytic, chemopreventive, anticancer, antioxidant, chondroprotective, analgesic, immunomodulatory, and antileishmanial. Considering the relevance of these studies, we aim to provide an overview of studies that apply galactomannan modification or derivatization strategies to improve their properties for applications in the biomedical area. We identified the success of most modified galactomannans for pharmacological purposes. However, some studies found loss of bioactivity of the original polysaccharide after chemical changes to its original structures.
Collapse
|
7
|
He X, Fang J, Guo Q, Wang M, Li Y, Meng Y, Huang L. Advances in antiviral polysaccharides derived from edible and medicinal plants and mushrooms. Carbohydr Polym 2020; 229:115548. [DOI: 10.1016/j.carbpol.2019.115548] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/06/2019] [Accepted: 10/27/2019] [Indexed: 12/21/2022]
|
8
|
Rechenchoski DZ, Agostinho KF, Faccin-Galhardi LC, Lonni AASG, Cunha AP, Ricardo NMPS, Nozawa C, Linhares REC. Antiherpetic Effect of Topical Formulations Containing Sulfated Polysaccharide from Adenanthera pavonina. Indian J Microbiol 2019; 59:417-421. [PMID: 31762503 PMCID: PMC6842377 DOI: 10.1007/s12088-019-00815-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Adenanthera pavonina is a native tree of Africa and Asia, introduced in Brazil for reforestation and wood industry. Several pharmacological activities have described scientifically, including antiviral activity. This study evaluated the antiviral effect of sulfated polysaccharide of Adenanthera pavonina (SPAp) against acyclovir (ACV)-resistant (AR-29) and sensitive (KOS) herpes simplex virus strains. The 50% cytotoxic concentration (CC50) was determined by MTT method and the 50% inhibitory concentration (IC50) was evaluated by plaque reduction assay. The in vivo SPAp antiviral activity was performed in Balb/c mice infected by skin scarification and treated with topical 0.5% (w/w) SPAp formulations. SPAp showed a CC50 of 47.81 μg/mL and the IC50 were 0.49 μg/mL (SI = 97.5) and 0.54 μg/mL (SI = 88.5) for the strains KOS and AR-29, respectively. Our results demonstrated that mice treated with SPAp presented a delay in the development and progression of skin lesions compared with the control group.
Collapse
Affiliation(s)
- Daniele Zendrini Rechenchoski
- Departamento de Microbiologia/CCB, Universidade Estadual de Londrina, Londrina, PR CEP 86057-970 Brazil
- Departamento de Ciências Farmacêuticas, Universidade Estadual de Londrina, Londrina, PR CEP 86057-970 Brazil
| | | | | | | | - Arcelina Pacheco Cunha
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, CE 60020-181 Brazil
| | | | - Carlos Nozawa
- Departamento de Microbiologia/CCB, Universidade Estadual de Londrina, Londrina, PR CEP 86057-970 Brazil
| | | |
Collapse
|
9
|
Rechenchoski DZ, Samensari NL, Faccin-Galhardi LC, de Almeida RR, Cunha AP, Ricardo NMPS, Nozawa C, Linhares REC. The Combination of Dimorphandra gardneriana Galactomannan and Mangiferin Inhibits Herpes Simplex and Poliovirus. Curr Pharm Biotechnol 2019; 20:215-221. [PMID: 30848197 DOI: 10.2174/1389201020666190307130431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Herpes simplex virus (HSV) and poliovirus (PV) are both agents of major concern in the public health system. It has been shown that Dimorphandra gardneriana galactomannans can be used as solubilizer vehicles in the manufacturing of medicine. Mangiferin is the major constituent of Mangifera indica and presents multiple medicinal and biological activities. OBJECTIVE This study assayed the effect of D. gardneriana galactomannan combined with mangiferin (DgGmM) against HSV-1 and PV-1. METHODS The DgGmM cytotoxicity was evaluated by the colorimetric MTT method and the antiviral activity by plaque reduction assay, immunofluorescence and polymerase chain reaction (PCR), in HEp-2 cells. RESULTS The DgGmM showed a 50% cytotoxic concentration (CC50) > 2000 µg/mL. The 50% inhibitory concentrations (IC50) for HSV-1 and PV-1 were, respectively, 287.5 µg/mL and 206.2 µg/mL, with selectivity indexes (SI) > 6.95 for the former and > 9.69 for the latter. The DgGmM time-ofaddition protocol for HSV-1 showed a maximum inhibition at 500 µg/mL, when added concomitantly to infection and at the time 1 h post-infection (pi). While for PV-1, for the same protocol, the greatest inhibition, was also observed concomitantly to infection at 500 μg/mL and at the times 4 h and 8 h pi. The inhibition was also demonstrated by the decrease of fluorescent cells and/or the inhibition of specific viral genome. CONCLUSION These results suggested that the DgGmM inhibited HSV-1 and PV-1 replication, with low cytotoxicity and high selectivity and, therefore, represents a potential candidate for further studies on the control of herpes and polio infections.
Collapse
Affiliation(s)
- Daniele Z Rechenchoski
- Departamento de Microbiologia, Universidade Estadual de Londrina, CEP 86051-990, Londrina, Parana, Brazil
| | - Nayara L Samensari
- Departamento de Microbiologia, Universidade Estadual de Londrina, CEP 86051-990, Londrina, Parana, Brazil
| | - Ligia C Faccin-Galhardi
- Departamento de Microbiologia, Universidade Estadual de Londrina, CEP 86051-990, Londrina, Parana, Brazil
| | - Raimundo R de Almeida
- Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, CEP 60020-181, Fortaleza, Ceara, Brazil
| | - Arcelina P Cunha
- Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, CEP 60020-181, Fortaleza, Ceara, Brazil
| | - Nágila M P S Ricardo
- Departamento de Quimica Organica e Inorganica, Universidade Federal do Ceara, CEP 60020-181, Fortaleza, Ceara, Brazil
| | - Carlos Nozawa
- Departamento de Microbiologia, Universidade Estadual de Londrina, CEP 86051-990, Londrina, Parana, Brazil
| | - Rosa E C Linhares
- Departamento de Microbiologia, Universidade Estadual de Londrina, CEP 86051-990, Londrina, Parana, Brazil
| |
Collapse
|
10
|
Sulfated modification of arabinogalactans from Larix principis-rupprechtii and their antitumor activities. Carbohydr Polym 2019; 215:207-212. [DOI: 10.1016/j.carbpol.2019.03.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/25/2019] [Accepted: 03/19/2019] [Indexed: 01/04/2023]
|
11
|
Afolabi IS, Nwachukwu IC, Ezeoke CS, Woke RC, Adegbite OA, Olawole TD, Martins OC. Production of a New Plant-Based Milk from Adenanthera pavonina Seed and Evaluation of Its Nutritional and Health Benefits. Front Nutr 2018; 5:9. [PMID: 29556498 PMCID: PMC5845130 DOI: 10.3389/fnut.2018.00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
A new plant milk was discovered from the seed of Adenanthera pavonina. The physicochemical and nutritional properties of the new pro-milk extract were assessed, and their biochemical effects were compared with those of soy bean extracts. Eleven groups of three albino rats each were used to assess the health benefits of the pro-milk. Groups were separately administered 3.1, 6.1, and 9.2 µl/g animal wt. pro-milk extract from A. pavonina seed, 6.1 µl/g animal wt. milk extract from soybean, and 6.1 µl/g animal wt. normal saline for 7 or 14 days. The “baseline” group consisted of those sacrificed on day 0. Among the physical properties considered, the pro-milk from A. pavonina had significantly higher (P < 0.05) hue color value and significantly lower (P < 0.05) L* than that from soy bean did. The pro-milk from A. pavonina had a significantly higher (P < 0.05) level of protein (36.14 ± 0.12%), Ca (440.99 ± 0.93 mg/l), Mg (96.69 ± 0.03 mg/l), K (190.41 ± 0.11 mg/l), Na (64.24 ± 0.24 mg/l), and Cu (0.55 ± 0.24 mg/l), and a significantly lower (P < 0.05) level of Mn (0.04 ± 0.01 mg/l) and vitamins A (undetectable), C (1.87 ± 0.01 mg/100 g), and E (0.12 ± 0.01 mg/100 g) compared to those of soy milk. The daily consumption of the pro-milk extract from A. pavonina for 14 days significantly reduced (P < 0.05) Ca2+-adenosine triphosphate synthase (Ca2+-ATPase) at low dose (3.1 µl/g animal wt.), but significantly increased (P < 0.05) Mg2+-ATPase at high dose (9.2 µl/g animal wt.). Daily administration of the A. pavonina extract for 14 days caused a significant reduction (P < 0.05) in acetylcholinesterase activity in the liver, intestine, heart, and kidney, suggesting that the pro-milk may facilitate ions transportation across the membrane. The pro-milk offers promising beneficial effects for patients with neurological diseases, as well as supporting general health owing to the high protein and mineral content. Vitamins fortification is recommended during production.
Collapse
Affiliation(s)
- Israel Sunmola Afolabi
- Biochemistry Department, College of Science and Technology, Covenant University, Ota, Nigeria
| | | | | | - Ruth Chineme Woke
- Biochemistry Department, College of Science and Technology, Covenant University, Ota, Nigeria
| | | | - Tolulope Dorcas Olawole
- Biochemistry Department, College of Science and Technology, Covenant University, Ota, Nigeria
| | - Olubukola C Martins
- Lagos State University Teaching Hospital (LASUTH) Complex, Lagos State Drug Quality Control Laboratory, Ikeja, Nigeria
| |
Collapse
|
12
|
Wang J, Bao A, Wang Q, Guo H, Zhang Y, Liang J, Kong W, Yao J, Zhang J. Sulfation can enhance antitumor activities of Artemisia sphaerocephala polysaccharide in vitro and vivo. Int J Biol Macromol 2018; 107:502-511. [DOI: 10.1016/j.ijbiomac.2017.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 11/30/2022]
|
13
|
Song L, Chen X, Liu X, Zhang F, Hu L, Yue Y, Li K, Li P. Characterization and Comparison of the Structural Features, Immune-Modulatory and Anti-Avian Influenza Virus Activities Conferred by Three Algal Sulfated Polysaccharides. Mar Drugs 2015; 14:4. [PMID: 26729137 PMCID: PMC4728501 DOI: 10.3390/md14010004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 01/06/2023] Open
Abstract
Three marine macroalgae, i.e., Grateloupia filicina, Ulva pertusa and Sargassum qingdaoense, were selected as the deputies of Rhodophyta, Chlorophyta and Ochrophyta for comparative analysis of the molecular structures and biological activities of sulfated polysaccharides (SP). The ratio of water-soluble polysaccharides, the monosaccharide composition and the sulfated contents of three extracted SPs were determined, and their structures were characterized by Fourier transformation infrared spectroscopy. In addition, biological activity analysis showed that all three SPs had immune-modulatory activity both in vitro and in vivo, and SPs from S. qingdaoense had the best effect. Further bioassays showed that three SPs could not only enhance the immunity level stimulated by inactivated avian influenza virus (AIV) in vivo but also significantly inhibited the activity of activated AIV (H9N2 subtype) in vitro. G. filicina SP exhibited the strongest anti-AIV activity. These results revealed the variations in structural features and bioactivities among three SPs and indicated the potential adjuvants for immune-enhancement and anti-AIV.
Collapse
Affiliation(s)
- Lin Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaolin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| | - Xiaodong Liu
- College of Animal Science and Technology, Qingdao Agriculture University, No.700 Changcheng Road, Qingdao 266109, China.
| | - Fubo Zhang
- College of Animal Science and Technology, Qingdao Agriculture University, No.700 Changcheng Road, Qingdao 266109, China.
| | - Linfeng Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| | - Yang Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No.7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|