1
|
Grist JT, Bøgh N, Hansen ES, Schneider AM, Healicon R, Ball V, Miller JJJJ, Smart S, Couch Y, Buchan AM, Tyler DJ, Laustsen C. Developing a metabolic clearance rate framework as a translational analysis approach for hyperpolarized 13C magnetic resonance imaging. Sci Rep 2023; 13:1613. [PMID: 36709217 PMCID: PMC9884306 DOI: 10.1038/s41598-023-28643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
Hyperpolarized carbon-13 magnetic resonance imaging is a promising technique for in vivo metabolic interrogation of alterations between health and disease. This study introduces a formalism for quantifying the metabolic information in hyperpolarized imaging. This study investigated a novel perfusion formalism and metabolic clearance rate (MCR) model in pre-clinical stroke and in the healthy human brain. Simulations showed that the proposed model was robust to perturbations in T1, transmit B1, and kPL. A significant difference in ipsilateral vs contralateral pyruvate derived cerebral blood flow (CBF) was detected in rats (140 ± 2 vs 89 ± 6 mL/100 g/min, p < 0.01, respectively) and pigs (139 ± 12 vs 95 ± 5 mL/100 g/min, p = 0.04, respectively), along with an increase in fractional metabolism (26 ± 5 vs 4 ± 2%, p < 0.01, respectively) in the rodent brain. In addition, a significant increase in ipsilateral vs contralateral MCR (0.034 ± 0.007 vs 0.017 ± 0.02/s, p = 0.03, respectively) and a decrease in mean transit time (31 ± 8 vs 60 ± 2 s, p = 0.04, respectively) was observed in the porcine brain. In conclusion, MCR mapping is a simple and robust approach to the post-processing of hyperpolarized magnetic resonance imaging.
Collapse
Affiliation(s)
- James T Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
- Department of Radiology, Oxford University Hospitals Trust, Oxford, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Nikolaj Bøgh
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Esben Søvsø Hansen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Anna M Schneider
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Richard Healicon
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Vicky Ball
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Jack J J J Miller
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Sean Smart
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yvonne Couch
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Damian J Tyler
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, Oxford, UK
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark.
- Aarhus University Hospital, MR Center, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| |
Collapse
|
2
|
Yadav M, Joshi C, Paritosh K, Thakur J, Pareek N, Masakapalli SK, Vivekanand V. Reprint of:Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2022; 71:62-76. [DOI: 10.1016/j.ymben.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022]
|
3
|
Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2021; 69:323-337. [PMID: 34864213 DOI: 10.1016/j.ymben.2021.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
Anaerobic digestion is a promising method for energy recovery through conversion of organic waste to biogas and other industrial valuables. However, to tap the full potential of anaerobic digestion, deciphering the microbial metabolic pathway activities and their underlying bioenergetics is required. In addition, the behavior of organisms in consortia along with the analytical abilities to kinetically measure their metabolic interactions will allow rational optimization of the process. This review aims to explore the metabolic bottlenecks of the microbial communities adopting latest advances of profiling and 13C tracer-based analysis using state of the art analytical platforms (GC, GC-MS, LC-MS, NMR). The review summarizes the phases of anaerobic digestion, the role of microbial communities, key process parameters of significance, syntrophic microbial interactions and the bottlenecks that are critical for optimal bioenergetics and enhanced production of valuables. Considerations into the designing of efficient synthetic microbial communities as well as the latest advances in capturing their metabolic cross talk will be highlighted. The review further explores how the presence of additives and inhibiting factors affect the metabolic pathways. The critical insight into the reaction mechanism covered in this review may be helpful to optimize and upgrade the anaerobic digestion system.
Collapse
|
4
|
Vaeggemose M, F. Schulte R, Laustsen C. Comprehensive Literature Review of Hyperpolarized Carbon-13 MRI: The Road to Clinical Application. Metabolites 2021; 11:metabo11040219. [PMID: 33916803 PMCID: PMC8067176 DOI: 10.3390/metabo11040219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023] Open
Abstract
This review provides a comprehensive assessment of the development of hyperpolarized (HP) carbon-13 metabolic MRI from the early days to the present with a focus on clinical applications. The status and upcoming challenges of translating HP carbon-13 into clinical application are reviewed, along with the complexity, technical advancements, and future directions. The road to clinical application is discussed regarding clinical needs and technological advancements, highlighting the most recent successes of metabolic imaging with hyperpolarized carbon-13 MRI. Given the current state of hyperpolarized carbon-13 MRI, the conclusion of this review is that the workflow for hyperpolarized carbon-13 MRI is the limiting factor.
Collapse
Affiliation(s)
- Michael Vaeggemose
- GE Healthcare, 2605 Brondby, Denmark;
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| |
Collapse
|
5
|
van Heijster FH, Heskamp S, Breukels V, Veltien A, Franssen GM, Jansen K(C, Boerman OC, Schalken JA, Scheenen TW, Heerschap A. Pyruvate-lactate exchange and glucose uptake in human prostate cancer cell models. A study in xenografts and suspensions by hyperpolarized [1- 13 C]pyruvate MRS and [ 18 F]FDG-PET. NMR IN BIOMEDICINE 2020; 33:e4362. [PMID: 32662543 PMCID: PMC7507209 DOI: 10.1002/nbm.4362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 05/04/2023]
Abstract
Reprogramming of energy metabolism in the development of prostate cancer can be exploited for a better diagnosis and treatment of the disease. The goal of this study was to determine whether differences in glucose and pyruvate metabolism of human prostate cancer cells with dissimilar aggressivenesses can be detected using hyperpolarized [1-13 C]pyruvate MRS and [18 F]FDG-PET imaging, and to evaluate whether these measures correlate. For this purpose, we compared murine xenografts of human prostate cancer LNCaP cells with those of more aggressive PC3 cells. [1-13 C]pyruvate was hyperpolarized by dissolution dynamic nuclear polarization (dDNP) and [1-13 C]pyruvate to lactate conversion was followed by 13 C MRS. Subsequently [18 F]FDG uptake was investigated by static and dynamic PET measurements. Standard uptake values (SUVs) for [18 F]FDG were significantly higher for xenografts of PC3 compared with those of LNCaP. However, we did not observe a difference in the average apparent rate constant kpl of 13 C label exchange from pyruvate to lactate between the tumor variants. A significant negative correlation was found between SUVs from [18 F]FDG PET measurements and kpl values for the xenografts of both tumor types. The kpl rate constant may be influenced by various factors, and studies with a range of prostate cancer cells in suspension suggest that LDH inhibition by pyruvate may be one of these. Our results indicate that glucose and pyruvate metabolism in the prostate cancer cell models differs from that in other tumor models and that [18 F]FDG-PET can serve as a valuable complementary tool in dDNP studies of aggressive prostate cancer with [1-13 C]pyruvate.
Collapse
Affiliation(s)
- Frits H.A. van Heijster
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Sandra Heskamp
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Vincent Breukels
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Andor Veltien
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Gerben M. Franssen
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Otto C. Boerman
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Jack A. Schalken
- Department of UrologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Tom W.J. Scheenen
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
6
|
Loza LA, Kadlecek SJ, Pourfathi M, Hamedani H, Duncan IF, Ruppert K, Rizi RR. Quantification of Ventilation and Gas Uptake in Free-Breathing Mice With Hyperpolarized 129Xe MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2081-2091. [PMID: 30990426 PMCID: PMC7268199 DOI: 10.1109/tmi.2019.2911293] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hyperpolarized 129Xe magnetic resonance imaging is a powerful modality capable of assessing lung structure and function. While it has shown promise as a clinical tool for the longitudinal assessment of lung function, its utility as an investigative tool for animal models of pulmonary diseases is limited by the necessity of invasive intubation and mechanical ventilation procedures. In this paper, we overcame this limitation by developing a gas delivery system and implementing a set of imaging schemes to acquire high-resolution gas- and dissolved-phase images in free-breathing mice. Gradient echo pulse sequences were used to acquire both high- and low-resolution gas-phase images, and regional fractional ventilation was quantified by comparing signal buildup among low-resolution gas-phase images acquired at two flip-angles. Dissolved-phase images were acquired using both ultra-short echo time and chemical shift imaging sequences with discrete sets of flip-angle/repetition time combinations to visualize gas uptake and distribution throughout the body. Spectral features distinct to various anatomical regions were identified in images acquired using the latter sequence and were used for the quantification of gas arrival times for respective compartments.
Collapse
|
7
|
Grist JT, McLean MA, Riemer F, Schulte RF, Deen SS, Zaccagna F, Woitek R, Daniels CJ, Kaggie JD, Matys T, Patterson I, Slough R, Gill AB, Chhabra A, Eichenberger R, Laurent MC, Comment A, Gillard JH, Coles AJ, Tyler DJ, Wilkinson I, Basu B, Lomas DJ, Graves MJ, Brindle KM, Gallagher FA. Quantifying normal human brain metabolism using hyperpolarized [1- 13C]pyruvate and magnetic resonance imaging. Neuroimage 2019; 189:171-179. [PMID: 30639333 PMCID: PMC6435102 DOI: 10.1016/j.neuroimage.2019.01.027] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 01/14/2023] Open
Abstract
Hyperpolarized 13C Magnetic Resonance Imaging (13C-MRI) provides a highly sensitive tool to probe tissue metabolism in vivo and has recently been translated into clinical studies. We report the cerebral metabolism of intravenously injected hyperpolarized [1-13C]pyruvate in the brain of healthy human volunteers for the first time. Dynamic acquisition of 13C images demonstrated 13C-labeling of both lactate and bicarbonate, catalyzed by cytosolic lactate dehydrogenase and mitochondrial pyruvate dehydrogenase respectively. This demonstrates that both enzymes can be probed in vivo in the presence of an intact blood-brain barrier: the measured apparent exchange rate constant (kPL) for exchange of the hyperpolarized 13C label between [1-13C]pyruvate and the endogenous lactate pool was 0.012 ± 0.006 s-1 and the apparent rate constant (kPB) for the irreversible flux of [1-13C]pyruvate to [13C]bicarbonate was 0.002 ± 0.002 s-1. Imaging also revealed that [1-13C]pyruvate, [1-13C]lactate and [13C]bicarbonate were significantly higher in gray matter compared to white matter. Imaging normal brain metabolism with hyperpolarized [1-13C]pyruvate and subsequent quantification, have important implications for interpreting pathological cerebral metabolism in future studies.
Collapse
Affiliation(s)
- James T Grist
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Mary A McLean
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Surrin S Deen
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Joshua D Kaggie
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Ilse Patterson
- Radiology, Cambridge University Hospitals, Cambridge, UK
| | - Rhys Slough
- Radiology, Cambridge University Hospitals, Cambridge, UK
| | - Andrew B Gill
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Anita Chhabra
- Pharmacy, Cambridge University Hospitals, Cambridge, UK
| | | | | | - Arnaud Comment
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; GE Healthcare, Chalfont St Giles, UK
| | | | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Ian Wilkinson
- Department of Medicine, University of Cambridge and Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Bristi Basu
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - David J Lomas
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
8
|
Fuetterer M, Busch J, Traechtler J, Wespi P, Peereboom SM, Sauer M, Lipiski M, Fleischmann T, Cesarovic N, Stoeck CT, Kozerke S. Quantitative myocardial first-pass cardiovascular magnetic resonance perfusion imaging using hyperpolarized [1- 13C] pyruvate. J Cardiovasc Magn Reson 2018; 20:73. [PMID: 30415642 PMCID: PMC6231262 DOI: 10.1186/s12968-018-0495-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The feasibility of absolute myocardial blood flow quantification and suitability of hyperpolarized [1-13C] pyruvate as contrast agent for first-pass cardiovascular magnetic resonance (CMR) perfusion measurements are investigated with simulations and demonstrated in vivo in a swine model. METHODS A versatile simulation framework for hyperpolarized CMR subject to physical, physiological and technical constraints was developed and applied to investigate experimental conditions for accurate perfusion CMR with hyperpolarized [1-13C] pyruvate. Absolute and semi-quantitative perfusion indices were analyzed with respect to experimental parameter variations and different signal-to-noise ratio (SNR) levels. Absolute myocardial blood flow quantification was implemented with an iterative deconvolution approach based on Fermi functions. To demonstrate in vivo feasibility, velocity-selective excitation with an echo-planar imaging readout was used to acquire dynamic myocardial stress perfusion images in four healthy swine. Arterial input functions were extracted from an additional image slice with conventional excitation that was acquired within the same heartbeat. RESULTS Simulations suggest that obtainable SNR and B0 inhomogeneity in vivo are sufficient for the determination of absolute and semi-quantitative perfusion with ≤25% error. It is shown that for expected metabolic conversion rates, metabolic conversion of pyruvate can be neglected over the short duration of acquisition in first-pass perfusion CMR. In vivo measurements suggest that absolute myocardial blood flow quantification using hyperpolarized [1-13C] pyruvate is feasible with an intra-myocardial variability comparable to semi-quantitative perfusion indices. CONCLUSION The feasibility of quantitative hyperpolarized first-pass perfusion CMR using [1-13C] pyruvate has been investigated in simulations and demonstrated in swine. Using an approved and metabolically active compound is envisioned to increase the value of hyperpolarized perfusion CMR in patients.
Collapse
Affiliation(s)
- Maximilian Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Julia Busch
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Julia Traechtler
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Patrick Wespi
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Sophie M. Peereboom
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Mareike Sauer
- Division of Surgical Research, University Hospital Zurich, Sternwartstrasse, 14 8091 Zurich, Switzerland
| | - Miriam Lipiski
- Division of Surgical Research, University Hospital Zurich, Sternwartstrasse, 14 8091 Zurich, Switzerland
| | - Thea Fleischmann
- Division of Surgical Research, University Hospital Zurich, Sternwartstrasse, 14 8091 Zurich, Switzerland
| | - Nikola Cesarovic
- Division of Surgical Research, University Hospital Zurich, Sternwartstrasse, 14 8091 Zurich, Switzerland
| | - Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse, 35 8092 Zurich, Switzerland
| |
Collapse
|
9
|
Ruppert K, Amzajerdian F, Hamedani H, Xin Y, Loza L, Achekzai T, Duncan IF, Profka H, Siddiqui S, Pourfathi M, Sertic F, Cereda MF, Kadlecek S, Rizi RR. Assessment of flip angle-TR equivalence for standardized dissolved-phase imaging of the lung with hyperpolarized 129Xe MRI. Magn Reson Med 2018; 81:1784-1794. [PMID: 30346083 DOI: 10.1002/mrm.27538] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the feasibility of describing the impact of any flip angle-TR combination on the resulting distribution of the hyperpolarized xenon-129 (HXe) dissolved-phase magnetization in the chest using a single virtual parameter, TR90°,equiv . METHODS HXe MRI scans with simultaneous gas- (GP) and dissolved-phase (DP) excitation were performed using 2D projection scans in mechanically ventilated rabbits. Measurements with DP flip angles ranging from 6-90° and TRs ranging from 8.3-500 ms were conducted. DP maps based on acquisitions of similar radio frequency pulse-induced relaxation rates were compared. RESULTS The observed distribution of the DP magnetization was strongly affected by acquisition flip angle and TR. However, for flip angles up to 60°, measurements with the same radio frequency pulse-induced relaxation rates, resulted in very similar DP images despite the presence of significant macroscopic gas transport processes. For flip angles approaching 90°, the downstream signal component decreased noticeably relative to acquisitions with lower flip angles. Nevertheless, the total DP signal continued to follow an empirically verified conversion equation over the entire investigated parameter range, which yields the equivalent TR of a hypothetical 90° measurement for any experimental flip angle-TR combination. CONCLUSION We have introduced a method for converting the flip angle and TR of a given HXe DP measurement to a standardized metric based on the virtual quantity, TR90°,equiv , using their equivalent RF relaxation rates. This conversion permits the comparison of measurements obtained with different pulse sequence types or by different research groups using various acquisition parameters.
Collapse
Affiliation(s)
- Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Faraz Amzajerdian
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luis Loza
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tahmina Achekzai
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ian F Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Federico Sertic
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maurizio F Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Zhang G, Hilty C. Applications of dissolution dynamic nuclear polarization in chemistry and biochemistry. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:566-582. [PMID: 29602263 DOI: 10.1002/mrc.4735] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 05/15/2023]
Abstract
Sensitivity of detection is one of the most limiting aspects when applying NMR spectroscopy to current problems in the molecular sciences. A number of hyperpolarization methods exist for increasing the population difference between nuclear spin Zeeman states and enhance the signal-to-noise ratio by orders of magnitude. Among these methods, dissolution dynamic nuclear polarization (D-DNP) is unique in its capability of providing high spin polarization for many types of molecules in the liquid state. Originally proposed for biomedical applications including in vivo imaging, applications in high resolution NMR spectroscopy are now emerging. These applications are the focus of the present review. Using D-DNP, a small sample aliquot is first hyperpolarized as a frozen solid at low temperature, followed by dissolution into the liquid state. D-DNP extends the capabilities of liquid state NMR spectroscopy towards shorter timescales and enables the study of nonequilibrium processes, such as the kinetics and mechanisms of reactions. It allows the determination of intermolecular interactions, in particular based on spin relaxation parameters. At the same time, a challenge in the application of this hyperpolarization method is that spin polarization is nonrenewable. Substantial effort has been devoted to develop methods for enabling rapid correlation spectroscopy, the measurement of time-dependent signals, and the extension of the observable time window. With these methods, D-DNP has the potential to open new application areas in the chemical and biochemical sciences.
Collapse
Affiliation(s)
- Guannan Zhang
- Chemistry Department, Texas A&M University, College Station, TX, 77843, USA
| | - Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
11
|
Kubala E, Muñoz-Álvarez KA, Topping G, Hundshammer C, Feuerecker B, Gómez PA, Pariani G, Schilling F, Glaser SJ, Schulte RF, Menzel MI, Schwaiger M. Hyperpolarized 13C Metabolic Magnetic Resonance Spectroscopy and Imaging. J Vis Exp 2016:54751. [PMID: 28060330 PMCID: PMC5226623 DOI: 10.3791/54751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
In the past decades, new methods for tumor staging, restaging, treatment response monitoring, and recurrence detection of a variety of cancers have emerged in conjunction with the state-of-the-art positron emission tomography with 18F-fluorodeoxyglucose ([18F]-FDG PET). 13C magnetic resonance spectroscopic imaging (13CMRSI) is a minimally invasive imaging method that enables the monitoring of metabolism in vivo and in real time. As with any other method based on 13C nuclear magnetic resonance (NMR), it faces the challenge of low thermal polarization and a subsequent low signal-to-noise ratio due to the relatively low gyromagnetic ratio of 13C and its low natural abundance in biological samples. By overcoming these limitations, dynamic nuclear polarization (DNP) with subsequent sample dissolution has recently enabled commonly used NMR and magnetic resonance imaging (MRI) systems to measure, study, and image key metabolic pathways in various biological systems. A particularly interesting and promising molecule used in 13CMRSI is [1-13C]pyruvate, which, in the last ten years, has been widely used for in vitro, preclinical, and, more recently, clinical studies to investigate the cellular energy metabolism in cancer and other diseases. In this article, we outline the technique of dissolution DNP using a 3.35 T preclinical DNP hyperpolarizer and demonstrate its usage in in vitro studies. A similar protocol for hyperpolarization may be applied for the most part in in vivo studies as well. To do so, we used lactate dehydrogenase (LDH) and catalyzed the metabolic reaction of [1-13C]pyruvate to [1-13C]lactate in a prostate carcinoma cell line, PC3, in vitro using 13CMRSI.
Collapse
Affiliation(s)
- Eugen Kubala
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München; Department of Chemistry, Technische Universität München; GE Global Research;
| | - Kim A Muñoz-Álvarez
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München
| | - Geoffrey Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München; Department of Chemistry, Technische Universität München
| | - Benedikt Feuerecker
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München
| | - Pedro A Gómez
- GE Global Research; Zentralinstitut für Medizintechnik der Technischen Universität München (IMETUM), Technische Universität München
| | - Giorgio Pariani
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München; Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München; IDG Institute of Developmental Genetics, Helmholtz Zentrum München
| | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München
| | | | | | | | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München
| |
Collapse
|
12
|
Daniels CJ, McLean MA, Schulte RF, Robb FJ, Gill AB, McGlashan N, Graves MJ, Schwaiger M, Lomas DJ, Brindle KM, Gallagher FA. A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate. NMR IN BIOMEDICINE 2016; 29:387-99. [PMID: 27414749 PMCID: PMC4833181 DOI: 10.1002/nbm.3468] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 05/07/2023]
Abstract
Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data.
Collapse
Affiliation(s)
- Charlie J Daniels
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Mary A McLean
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | | | | | - Andrew B Gill
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Nicholas McGlashan
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Markus Schwaiger
- Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - David J Lomas
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| |
Collapse
|