1
|
Tachibana S, Otaki Y, Watanabe T, Goto J, Ochi H, Tanaka T, Ono H, Yamaguchi R, Sato J, Takahashi H, Arimoto T, Goto K, Watanabe M. Diacylglycerol Kinase ζ Attenuates Doxorubicin-Induced Cardiotoxicity Through p53 Degradation. J Am Heart Assoc 2024:e035608. [PMID: 39719406 DOI: 10.1161/jaha.124.035608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Doxorubicin-induced cardiotoxicity is still an important medical problem associated with a high mortality rate in cancer survivors. p53 plays a key role in doxorubicin-induced cardiotoxicity. Diacylglycerol kinase ζ (Dgkζ), a 130-kDa enzyme abundant in cardiomyocytes, regulates the p53 protein expression level in neurons. To elucidate the mechanism of doxorubicin-induced cardiotoxicity, we focused on the functional role of Dgkζ and its interaction with heat shock protein 70 (Hsp70)-related ubiquitin E3 ligases such as E6-associated protein (E6ap) and C-terminus of Hsp70-interacting protein. METHODS AND RESULTS Protein interactions of Dgkζ with Hsp70 and E6ap were confirmed by immunoprecipitation, but not C-terminus of Hsp70-interacting protein. We administered doxorubicin in cardiac-specific overexpression of Dgkζ transgenic (Dgkζ-Tg) mice and wild-type littermates. Dgkζ-Tg mice showed lower p53 protein expression levels, preserved cardiac function, and improved survival rates compared with wild-type littermates after doxorubicin administration. RNA sequence analysis of myocardial tissues from Dgkζ-Tg after doxorubicin stimulation identified Hspa1b encoding Hsp70 as the differentially expressed gene. Dgkζ overexpression increased proteasomal p53 degradation and attenuated cardiomyocyte apoptosis after doxorubicin stimulation in cardiomyocytes, which was reversed by knockdown of E6ap. Dgkζ interacted with E6ap through ankyrin-like repeats. The overexpression of mutant Dgkζ, lacking ankyrin-like repeats, failed to inhibit p53 protein expression after doxorubicin stimulation. In Dgkζ-overexpressing cardiomyocytes, expression levels of p53 and caspase-3 were increased by knockdown of the C-terminus of Hsp70-interacting protein. CONCLUSIONS We demonstrated for the first time that Dgkζ augments p53 ubiquitin-proteasome degradation and ameliorates doxorubicin-induced cardiotoxicity by interacting with Hsp70 and E3 ligases such as E6ap and C-terminus of Hsp70-interacting protein.
Collapse
Affiliation(s)
- Shingo Tachibana
- Department of Cardiology, Pulmonology, and Nephrology Yamagata University School of Medicine Yamagata Japan
| | - Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology Yamagata University School of Medicine Yamagata Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology Yamagata University School of Medicine Yamagata Japan
| | - Jun Goto
- Department of Cardiology, Pulmonology, and Nephrology Yamagata University School of Medicine Yamagata Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine Yamagata University Yamagata Japan
| | - Toshiaki Tanaka
- Department of Anatomy and Cell Biology, School of Medicine Yamagata University Yamagata Japan
| | - Hiroe Ono
- Department of Cardiology, Pulmonology, and Nephrology Yamagata University School of Medicine Yamagata Japan
| | - Ryuhei Yamaguchi
- Department of Cardiology, Pulmonology, and Nephrology Yamagata University School of Medicine Yamagata Japan
| | - Junya Sato
- Department of Cardiology, Pulmonology, and Nephrology Yamagata University School of Medicine Yamagata Japan
| | - Hiroki Takahashi
- Department of Cardiology, Pulmonology, and Nephrology Yamagata University School of Medicine Yamagata Japan
| | - Takanori Arimoto
- Department of Cardiology, Pulmonology, and Nephrology Yamagata University School of Medicine Yamagata Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, School of Medicine Yamagata University Yamagata Japan
| | - Masafumi Watanabe
- Department of Cardiology, Pulmonology, and Nephrology Yamagata University School of Medicine Yamagata Japan
| |
Collapse
|
2
|
Zochowski Y, Kumar KR, Katz M, Darveniza P, Tchan M, Smyth R, Tomlinson S, Wu KHC, Tisch S. Case Series of Cerebellar Ataxia with Tremor Due to Heterozygous STUB1 Variants (SCA48) without TBP Expansions: Further Evidence for SCA48 as a Monogenic Disease. CEREBELLUM (LONDON, ENGLAND) 2024; 24:13. [PMID: 39680235 DOI: 10.1007/s12311-024-01762-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/17/2024]
Abstract
Clinically-relevant variants in the STUB1 gene have been associated with an autosomal dominant spinocerebellar ataxia 48 (SCA48), a recently described inherited neurodegenerative condition that is characterised by cognitive and psychiatric changes. To describe the clinical phenotype and genetic findings of three new Australian probands with STUB1 to expand the current understanding of the spectrum of clinical presentation and natural history of SCA48. Clinical and genetic review of patients diagnosed with SCA48 ataxia drawn from our centres. The third case was derived from a collaborating centre (Royal Brisbane Hospital). We identified three unrelated SCA48 patients with heterozygous pathogenic STUB1 variants. All presented with slowly progressive cerebellar ataxia with tremor and additional findings of dysarthria, parkinsonism, hypertonia, cognitive and psychiatric symptoms. Age of onset varied from 34 to 65 years of age. Brain MRI showed significant diffuse cerebellar atrophy, affecting the vermis and cerebellar hemispheres. We identified two novel pathogenic variants of STUB1 gene, and one previously reported pathogenic variant. Genetic testing for intermediate expansions of TBP (SCA17) identified TBP repeats within the normal range of 25-40 in all 3 probands. Our case series expands the clinical spectrum of SCA48. We highlight the importance of tremor as part of the clinical phenotype including upper limb rest tremor and Parkinsonian signs. Our cases lacked pathological TBP expansions and provide additional evidence that STUB1 (SCA48) can manifest as a monogenic disease.
Collapse
Affiliation(s)
- Yan Zochowski
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia
| | - Kishore R Kumar
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Medicine & Health, St Vincents Healthcare Clinical Campus, UNSW Sydney, Sydney, NSW, Australia
- St Vincent´s Clinical Genomics, St Vincents Hospital, Sydney, NSW, Australia
- Molecular Medicine in Neurology, Concord Repatriation General Hospital and the University of Sydney, Sydney, NSW, Australia
- Translational Neurogenomics Group, Genomic and Inherited Disease Program, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Matthew Katz
- Department of Neurology, Royal Brisbane Hospital, Brisbane, QLD, Australia
| | - Paul Darveniza
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Medicine & Health, St Vincents Healthcare Clinical Campus, UNSW Sydney, Sydney, NSW, Australia
- Department of Neurology, St Vincent's Health Network Sydney, 390 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Michel Tchan
- Department of Genetic Medicine, Westmead Hospital, Sydney, NSW, Australia
- Discipline of Genetic Medicine, University of Sydney, Sydney, NSW, Australia
| | - Renee Smyth
- St Vincent´s Clinical Genomics, St Vincents Hospital, Sydney, NSW, Australia
| | - Susan Tomlinson
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia
- St Vincent´s Clinical Genomics, St Vincents Hospital, Sydney, NSW, Australia
- Department of Neurology, St Vincent's Health Network Sydney, 390 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Kathy H C Wu
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Medicine & Health, St Vincents Healthcare Clinical Campus, UNSW Sydney, Sydney, NSW, Australia
- St Vincent´s Clinical Genomics, St Vincents Hospital, Sydney, NSW, Australia
- Discipline of Genetic Medicine, University of Sydney, Sydney, NSW, Australia
| | - Stephen Tisch
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia.
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Medicine & Health, St Vincents Healthcare Clinical Campus, UNSW Sydney, Sydney, NSW, Australia.
- St Vincent´s Clinical Genomics, St Vincents Hospital, Sydney, NSW, Australia.
- Department of Neurology, St Vincent's Health Network Sydney, 390 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| |
Collapse
|
3
|
Shankar S, Liu Y, Tulsian NK, Low BC, Lin Q, Sivaraman J. Insights into the regulation of CHIP E3 ligase-mediated ubiquitination of neuronal protein BNIP-H. PNAS NEXUS 2024; 3:pgae536. [PMID: 39703232 PMCID: PMC11658413 DOI: 10.1093/pnasnexus/pgae536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024]
Abstract
BCL2/adenovirus E1B 19-kDa protein-interacting protein 2 homolog (BNIP-H or Caytaxin), a pivotal adaptor protein that facilitates cerebellar cortex growth and synaptic transmission, is posttranslationally modified to regulate neuronal function. This study reports the ubiquitination of BNIP-H by Carboxyl terminus of Hsc70-Interacting Protein (CHIP), a U-box containing E3 ligase that is also regulated via autoubiquitination. Specifically, it was observed that CHIP autoubiquitinated itself primarily at Lys23 and Lys31 in vitro. Mutation of these residues shows the autoubiquitination of successive lysines of CHIP. In total, nine lysines on CHIP were identified as the autoubiquitination sites, the collective mutation of which almost completely terminated its autoubiquitination. Additionally, CHIP-mediated ubiquitination of BNIP-H is completely inhibited when BNIP-H bears arginine mutations at four key lysine residues. Next, using hydrogen deuterium exchange mass spectrometry, a model of a plausible mechanism was proposed. The model suggests transient N-terminal interactions between the CHIP and BNIP-H which allows for the swinging of U-box domain of CHIP to ubiquitinate BNIP-H. Following complex dissociation, BNIP-H population is regulated via the ubiquitin-proteasome pathway. Collectively, these results aid in our understanding of CHIP-mediated BNIP-H ubiquitination and provide further insight into the roles of these proteins in neuritogenesis and neurotransmission.
Collapse
Affiliation(s)
- Srihari Shankar
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Yaochen Liu
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Nikhil Kumar Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Boon C Low
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- NUS College, National University of Singapore, Singapore 138593
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
4
|
Dong M, Song Y, Wang W, Song X, Wu W, Wang L, Song L. E3 Ubiquitin Ligase CHIP Inhibits Haemocyte Proliferation and Differentiation via the Ubiquitination of Runx in the Pacific Oyster. Cells 2024; 13:1535. [PMID: 39329719 PMCID: PMC11430624 DOI: 10.3390/cells13181535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Mollusca first evolve primitive immune cells (namely, haemocytes), which assemble a notable complex innate immune system, which are continuously produced through proliferation and differentiation and infused in the haemolymph. As a typical E3 ligase, CHIP is critical for immune cell turnover and homeostasis in vertebrates. In this study, a CHIP homolog (CgCHIP) with a high expression in haemocytes was identified in oysters to investigate its role in the proliferation and differentiation of ancient innate immune cells. CgCHIP exhibited a widespread distribution across all haemocyte subpopulations, and the knockdown of CgCHIP altered the composition of haemocytes as examined by flow cytometry. Mechanistically screened with bioinformatics and immunoprecipitation, a key haematopoietic transcription factor CgRunx was identified as a substrate of CgCHIP. Moreover, amino acids in the interacted intervals of CgCHIP and CgRunx were determined by molecular docking. Experimental evidence from an in vitro culture model of an agranulocyte subpopulation and an in vivo oyster model revealed that the knockdown of CgCHIP and CgRunx had opposing effects on agranulocyte (precursor cells) differentiation and granulocyte (effector cells) proliferation. In summary, CgCHIP negatively regulated agranulocyte differentiation and granulocyte proliferation by mediating the ubiquitination and degradation of CgRunx in oysters. These results offer insight into the involvement of ubiquitylation in controlling haemocyte turnover in primitive invertebrates.
Collapse
Affiliation(s)
- Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Ying Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Wei Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
- Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
5
|
Huang L, Rojas-Pierce M. Rapid depletion of target proteins in plants by an inducible protein degradation system. THE PLANT CELL 2024; 36:3145-3161. [PMID: 38446628 PMCID: PMC11371150 DOI: 10.1093/plcell/koae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Inducible protein knockdowns are excellent tools to test the function of essential proteins in short time scales and to capture the role of proteins in dynamic events. Current approaches destroy or sequester proteins by exploiting plant biological mechanisms such as the activity of photoreceptors for optogenetics or auxin-mediated ubiquitination in auxin degrons. It follows that these are not applicable for plants as light and auxin are strong signals for plant cells. We describe here an inducible protein degradation system in plants named E3-DART for E3-targeted Degradation of Plant Proteins. The E3-DART system is based on the specific and well-characterized interaction between the Salmonella-secreted protein H1 (SspH1) and its human target protein kinase N1 (PKN1). This system harnesses the E3 catalytic activity of SspH1 and the SspH1-binding activity of the homology region 1b (HR1b) domain from PKN1. Using Nicotiana benthamiana and Arabidopsis (Arabidopsis thaliana), we show that a chimeric protein containing the leucine-rich repeat and novel E3 ligase domains of SspH1 efficiently targets protein fusions of varying sizes containing HR1b for degradation. Target protein degradation was induced by transcriptional control of the chimeric E3 ligase using a glucocorticoid transactivation system, and target protein depletion was detected as early as 3 h after induction. This system could be used to study the loss of any plant protein with high-temporal resolution and may become an important tool in plant cell biology.
Collapse
Affiliation(s)
- Linzhou Huang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
6
|
Zhao Y, Lin M, Zhai F, Chen J, Jin X. Exploring the Role of Ubiquitin-Proteasome System in the Pathogenesis of Parkinson's Disease. Pharmaceuticals (Basel) 2024; 17:782. [PMID: 38931449 PMCID: PMC11207014 DOI: 10.3390/ph17060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder among the elderly population. The pathogenesis of PD encompasses genetic alterations, environmental factors, and age-related neurodegenerative processes. Numerous studies have demonstrated that aberrant functioning of the ubiquitin-proteasome system (UPS) plays a crucial role in the initiation and progression of PD. Notably, E3 ubiquitin ligases serve as pivotal components determining substrate specificity within UPS and are intimately associated with the regulation of various proteins implicated in PD pathology. This review comprehensively summarizes the mechanisms by which E3 ubiquitin ligases and deubiquitinating enzymes modulate PD-associated proteins and signaling pathways, while exploring the intricate relationship between UPS dysfunctions and PD etiology. Furthermore, this article discusses recent research advancements regarding inhibitors targeting PD-related E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Department of Ultrasound Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Man Lin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Fengguang Zhai
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| |
Collapse
|
7
|
He J, Yi J, Ji L, Dai L, Chen Y, Xue W. ECHDC2 inhibits the proliferation of gastric cancer cells by binding with NEDD4 to degrade MCCC2 and reduce aerobic glycolysis. Mol Med 2024; 30:69. [PMID: 38783226 PMCID: PMC11118108 DOI: 10.1186/s10020-024-00832-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The Enoyl-CoA hydratase/isomerase family plays a crucial role in the metabolism of tumors, being crucial for maintaining the energy balance and biosynthetic needs of cancer cells. However, the enzymes within this family that are pivotal in gastric cancer (GC) remain unclear. METHODS We employed bioinformatics techniques to identify key Enoyl-CoA hydratase/isomerase in GC. The expression of ECHDC2 and its clinical significance were validated through tissue microarray analysis. The role of ECHDC2 in GC was further assessed using colony formation assays, CCK8 assay, EDU assay, Glucose and lactic acid assay, and subcutaneous tumor experiments in nude mice. The mechanism of action of ECHDC2 was validated through Western blotting, Co-immunoprecipitation, and immunofluorescence experiments. RESULTS Our analysis of multiple datasets indicates that low expression of ECHDC2 in GC is significantly associated with poor prognosis. Overexpression of ECHDC2 notably inhibits aerobic glycolysis and proliferation of GC cells both in vivo and in vitro. Further experiments revealed that overexpression of ECHDC2 suppresses the P38 MAPK pathway by inhibiting the protein level of MCCC2, thereby restraining glycolysis and proliferation in GC cells. Ultimately, it was discovered that ECHDC2 promotes the ubiquitination and subsequent degradation of MCCC2 protein by binding with NEDD4. CONCLUSIONS These findings underscore the pivotal role of the ECHDC2 in regulating aerobic glycolysis and proliferation in GC cells, suggesting ECHDC2 as a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Jiancheng He
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Jianfeng Yi
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Li Ji
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Lingchen Dai
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Yu Chen
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China.
| | - Wanjiang Xue
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, 226001, China.
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China.
| |
Collapse
|
8
|
Jin B, Li B, Qu J, Sun Y, Wang M, Yang C, Fan Y, Wang Y, Xu P, Sun H, Jiang B, Zhao B. Recruitment of ubiquitin E2 enzymes is determined jointly by the U-box domains and substrates of E3 ligases. FEBS Lett 2024; 598:702-715. [PMID: 38439679 DOI: 10.1002/1873-3468.14845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024]
Abstract
Ubiquitination is a cascade reaction involving E1, E2, and E3 enzymes. The orthogonal ubiquitin transfer (OUT) method has been previously established to identify potential substrates of E3 ligases. In this study, we verified the ubiquitination of five substrates mediated by the E3 ligases CHIP and E4B. To further explore the activity of U-box domains of E3 ligases, two mutants with the U-box domains interchanged between CHIP and E4B were generated. They exhibited a significantly reduced ubiquitination ability. Additionally, different E3s recruited similar E2 ubiquitin-conjugating enzymes when ubiquitinating the same substrates, highlighting that U-box domains determined the E2 recruitment, while the substrate determined the E2 selectivity. This study reveals the influence of substrates and U-box domains on E2 recruitment, providing a novel perspective on the function of U-box domains of E3 ligases.
Collapse
Affiliation(s)
- Bo Jin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, China
| | - Bei Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, China
| | - Junyao Qu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, China
| | - Yiheng Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, China
| | - Mengran Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, China
| | - Changjiang Yang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, China
| | - Yuchen Fan
- Nanjing Institute of Measurement and Testing Technology, China
| | - Yanan Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, China
| | - Peng Xu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, China
| | - Haiying Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, China
| | - Bo Jiang
- Department of Hand and Foot Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, China
| |
Collapse
|
9
|
Kang L, Zhang H, Wang Y, Chu M, He J, Xue M, Pan L, Zhang Y, Wang Z, Chen Z, Huang Y, Chen Z, Li E, Li J, Xu L, Zhang R, Wong J. Control of SOX2 protein stability and tumorigenic activity by E3 ligase CHIP in esophageal cancer cells. Oncogene 2023; 42:2315-2328. [PMID: 37353616 DOI: 10.1038/s41388-023-02745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
SOX2 is highly expressed and controls tumor initiation and cancer stem cell function in various squamous cell carcinomas including esophageal squamous cancer. However, the molecular mechanism leading to SOX2 overexpression in cancer is incompletely understood. Here, we identified CHIP, a chaperone-associated ubiquitin E3 ligase, as a novel negative regulator of SOX2 protein stability and tumorigenic activity in esophageal squamous carcinoma cells. We showed that CHIP interacted with SOX2 primarily via chaperone HSP70, together they catalyzed SOX2 ubiquitination and degradation via proteasome. In contrast, HSP90 promoted SOX2 stability and inhibition of HSP90 activity induced SOX2 ubiquitination and degradation. Notably, unlike the case in normal esophageal tissues where CHIP was detected in both the cytoplasm and nucleus, CHIP in clinical esophageal tumor specimens was predominantly localized in the cytoplasm. Consistent with this observation, we observed increased expression of exportin-1/CRM-1 in clinical esophageal tumor specimens. We further demonstrated that CHIP catalyzed SOX2 ubiquitination and degradation primarily in the nuclear compartment. Taken together, our study has identified CHIP as a key suppressor of SOX2 protein stability and tumorigenic activity and revealed CHIP nuclear exclusion as a potential mechanism for aberrant SOX2 overexpression in esophageal cancer. Our study also suggests HSP90 inhibitors as potential therapeutic agents for SOX2-positive cancers.
Collapse
Affiliation(s)
- Li Kang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huifang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yaling Wang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Manyu Chu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Jianzhong He
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Mengyang Xue
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, ECNU Joint Center of Translational Medicine, Fengxian Central Hospital affiliated to the Southern Medical University, Shanghai, China
| | - Liu Pan
- Department of Obstetrics and Gynecology, ECNU Joint Center of Translational Medicine, Fengxian Central Hospital affiliated to the Southern Medical University, Shanghai, China
- Department of Obstetrics and Gynecology, Jinzhou Medical University, Liaoning, China
| | - Yunfeng Zhang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhen Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhaosu Chen
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuanyong Huang
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zitai Chen
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Enmin Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiwen Li
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liyan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Basic Medical Science, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, ECNU Joint Center of Translational Medicine, Fengxian Central Hospital affiliated to the Southern Medical University, Shanghai, China.
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Fengxian District Central Hospital-ECNU Joint Center of Translational Medicine, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
10
|
Reinhardt L, Musacchio F, Bichmann M, Behrendt A, Ercan-Herbst E, Stein J, Becher I, Haberkant P, Mader J, Schöndorf DC, Schmitt M, Korffmann J, Reinhardt P, Pohl C, Savitski M, Klein C, Gasparini L, Fuhrmann M, Ehrnhoefer DE. Dual truncation of tau by caspase-2 accelerates its CHIP-mediated degradation. Neurobiol Dis 2023; 182:106126. [PMID: 37086756 DOI: 10.1016/j.nbd.2023.106126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/24/2023] Open
Abstract
Intraneuronal aggregates of the microtubule binding protein Tau are a hallmark of different neurodegenerative diseases including Alzheimer's disease (AD). In these aggregates, Tau is modified by posttranslational modifications such as phosphorylation as well as by proteolytic cleavage. Here we identify a novel Tau cleavage site at aspartate 65 (D65) that is specific for caspase-2. In addition, we show that the previously described cleavage site at D421 is also efficiently processed by caspase-2, and both sites are cleaved in human brain samples. Caspase-2-generated Tau fragments show increased aggregation potential in vitro, but do not accumulate in vivo after AAV-mediated overexpression in mouse hippocampus. Interestingly, we observe that steady-state protein levels of caspase-2 generated Tau fragments are low in our in vivo model despite strong RNA expression, suggesting efficient clearance. Consistent with this hypothesis, we find that caspase-2 cleavage significantly improves the recognition of Tau by the ubiquitin E3 ligase CHIP, leading to increased ubiquitination and faster degradation of Tau fragments. Taken together our data thus suggest that CHIP-induced ubiquitination is of particular importance for the clearance of caspase-2 generated Tau fragments in vitro and in vivo.
Collapse
Affiliation(s)
- Lydia Reinhardt
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany; AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Fabrizio Musacchio
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Maria Bichmann
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Annika Behrendt
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Ebru Ercan-Herbst
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Juliane Stein
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Isabelle Becher
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Per Haberkant
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Julia Mader
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - David C Schöndorf
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany; AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Melanie Schmitt
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Jürgen Korffmann
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Peter Reinhardt
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Christian Pohl
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Mikhail Savitski
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Corinna Klein
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Laura Gasparini
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Dagmar E Ehrnhoefer
- BioMed X Institute, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany; AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen am Rhein, Germany.
| |
Collapse
|
11
|
VEZF1, destabilized by STUB1, affects cellular growth and metastasis of hepatocellular carcinoma by transcriptionally regulating PAQR4. Cancer Gene Ther 2023; 30:256-266. [PMID: 36241701 DOI: 10.1038/s41417-022-00540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive solid malignancy, and recurrence and metastasis are major incentives contributing to its poor outcome. Vascular endothelial zinc finger 1 (VEZF1) has been recognized as an oncoprotein in certain types of cancer, but the expression pattern and regulatory mechanism in HCC remains unclear. This study focused on the functional effect and regulatory basis of VEZF1 in HCC. Microarray analysis identified the differentially expressed VEZF1 in HCC, and we validated its raised expression in HCC clinical samples. Artificial modulation of VEZF1 (knockdown and overexpression) was conducted to explore its role in HCC progression both in vitro and in vivo. It was shown that silencing of VEZF1 suppressed, whereas its overexpression promoted HCC cellular proliferation and metastasis abilities. Mechanistically, VEZF1 transcriptionally activated progestin and adipoQ receptor 4 (PAQR4) to accelerate HCC progression. Furthermore, VEZF1 is confirmed as a substrate of stress-inducible phosphoprotein 1 homology and U-box containing protein 1 (STUB1), and its stability is impacted by STUB1-mediated ubiquitination degradation. Conjointly, our work suggested that VEZF1, destabilized by STUB1, participates in HCC progression by regulating PAQR4. The STUB1/VEZF1/PAQR4 mechanism might provide novel insights on guiding early diagnosis and therapy in HCC patients.
Collapse
|
12
|
Kumar S, Basu M, Ghosh MK. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Genes Dis 2022; 9:1521-1555. [PMID: 36157498 PMCID: PMC9485218 DOI: 10.1016/j.gendis.2021.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The carboxy-terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase and co-chaperone belonging to Ubox family that plays a crucial role in the maintenance of cellular homeostasis by switching the equilibrium of the folding-refolding mechanism towards the proteasomal or lysosomal degradation pathway. It links molecular chaperones viz. HSC70, HSP70 and HSP90 with ubiquitin proteasome system (UPS), acting as a quality control system. CHIP contains charged domain in between N-terminal tetratricopeptide repeat (TPR) and C-terminal Ubox domain. TPR domain interacts with the aberrant client proteins via chaperones while Ubox domain facilitates the ubiquitin transfer to the client proteins for ubiquitination. Thus, CHIP is a classic molecule that executes ubiquitination for degradation of client proteins. Further, CHIP has been found to be indulged in cellular differentiation, proliferation, metastasis and tumorigenesis. Additionally, CHIP can play its dual role as a tumor suppressor as well as an oncogene in numerous malignancies, thus acting as a double agent. Here, in this review, we have reported almost all substrates of CHIP established till date and classified them according to the hallmarks of cancer. In addition, we discussed about its architectural alignment, tissue specific expression, sub-cellular localization, folding-refolding mechanisms of client proteins, E4 ligase activity, normal physiological roles, as well as involvement in various diseases and tumor biology. Further, we aim to discuss its importance in HSP90 inhibitors mediated cancer therapy. Thus, this report concludes that CHIP may be a promising and worthy drug target towards pharmaceutical industry for drug development.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal 743372, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
13
|
Wang W, Xiang T, Yang Y, Wang Z, Xie J. E3 ubiquitin ligases STUB1/CHIP contributes to the Th17/Treg imbalance via the ubiquitination of aryl hydrocarbon receptor in rheumatoid arthritis. Clin Exp Immunol 2022; 209:280-290. [PMID: 35943876 PMCID: PMC9521662 DOI: 10.1093/cei/uxac072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 01/25/2023] Open
Abstract
STIP1-homologous U-Box containing protein 1 (STUB1) is involved in the development of immune pathologies and the regulation of T cell. However, the potential role of STUB1 in the pathogenesis of rheumatoid arthritis (RA), especially in the regulation of T cells, remains elusive. Here we show that STUB1 promotes the imbalance of Th17/Treg cells through non-degradative ubiquitination of aryl hydrocarbon receptor (AHR). Using Western blot and flow cytometry analysis, we observe that the level of STUB1 was increased in RA patients compared with healthy controls. In particular, the expression of STUB1 protein was different in Th17 cells and Treg cells of RA patients. We also demonstrated that STUB1 facilitates Th17/Treg imbalance by up- or downregulating the expression of STUB1. In a subsequent series of in vitro experiments, we revealed that STUB1 promoted the imbalance of Th17 and Treg cells through non-degradative ubiquitination of AHR. Both knockdown of the AHR expression by siRNA and assays of CYP1A1 enzymatic activity by ethoxyresorufin-O-deethylase (EROD) supported this conclusion. Furthermore, we explored the ubiquitination sites of AHR responsible for STUB1-mediated ubiquitination and revealed that STUB1 promotes ubiquitination of AHR via K63 chains. Together, STUB1 may induce the imbalance of Th17/Treg cells via ubiquitination of AHR and serve as a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Wen Wang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Xiang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yachen Yang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zitao Wang
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianmin Xie
- Department of Rheumatology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
A dimer-monomer switch controls CHIP-dependent substrate ubiquitylation and processing. Mol Cell 2022; 82:3239-3254.e11. [PMID: 36027913 DOI: 10.1016/j.molcel.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 02/09/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
The high substrate selectivity of the ubiquitin/proteasome system is mediated by a large group of E3 ubiquitin ligases. The ubiquitin ligase CHIP regulates the degradation of chaperone-controlled and chaperone-independent proteins. To understand how CHIP mediates substrate selection and processing, we performed a structure-function analysis of CHIP and addressed its physiological role in Caenorhabditis elegans and human cells. The conserved function of CHIP in chaperone-assisted degradation requires dimer formation to mediate proteotoxic stress resistance and to prevent protein aggregation. The CHIP monomer, however, promotes the turnover of the membrane-bound insulin receptor and longevity. The dimer-monomer transition is regulated by CHIP autoubiquitylation and chaperone binding, which provides a feedback loop that controls CHIP activity in response to cellular stress. Because CHIP also binds other E3 ligases, such as Parkin, the molecular switch mechanism described here could be a general concept for the regulation of substrate selectivity and ubiquitylation by combining different E3s.
Collapse
|
15
|
Das A, Thapa P, Santiago U, Shanmugam N, Banasiak K, Dąbrowska K, Nolte H, Szulc NA, Gathungu RM, Cysewski D, Krüger M, Dadlez M, Nowotny M, Camacho CJ, Hoppe T, Pokrzywa W. A heterotypic assembly mechanism regulates CHIP E3 ligase activity. EMBO J 2022; 41:e109566. [PMID: 35762422 PMCID: PMC9340540 DOI: 10.15252/embj.2021109566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
CHIP (C-terminus of Hsc70-interacting protein) and its worm ortholog CHN-1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin-proteasome system (UPS). CHN-1 can cooperate with UFD-2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN-1-UFD-2 complex in Caenorhabditis elegans. Our data show that UFD-2 binding promotes the cooperation between CHN-1 and ubiquitin-conjugating E2 enzymes by stabilizing the CHN-1 U-box dimer. However, HSP70/HSP-1 chaperone outcompetes UFD-2 for CHN-1 binding, thereby promoting a shift to the autoinhibited CHN-1 state by acting on a conserved residue in its U-box domain. The interaction with UFD-2 enables CHN-1 to efficiently ubiquitylate and regulate S-adenosylhomocysteinase (AHCY-1), a key enzyme in the S-adenosylmethionine (SAM) regeneration cycle, which is essential for SAM-dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN-1 and UFD-2 in substrate ubiquitylation.
Collapse
Affiliation(s)
- Aniruddha Das
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Pankaj Thapa
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Ulises Santiago
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | - Nilesh Shanmugam
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Katarzyna Banasiak
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | - Hendrik Nolte
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Present address:
Max‐Planck‐Institute for Biology of AgeingCologneGermany
| | - Natalia A Szulc
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | | | - Marcus Krüger
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Center for Molecular Medicine (CMMC), Faculty of MedicineUniversity Hospital of CologneCologneGermany
| | - Michał Dadlez
- Institute of Biochemistry and BiophysicsPASWarsawPoland
| | - Marcin Nowotny
- Laboratory of Protein StructureInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Carlos J Camacho
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Center for Molecular Medicine (CMMC), Faculty of MedicineUniversity Hospital of CologneCologneGermany
| | - Wojciech Pokrzywa
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| |
Collapse
|
16
|
Mamun MMA, Khan MR, Zhu Y, Zhang Y, Zhou S, Xu R, Bukhari I, Thorne RF, Li J, Zhang XD, Liu G, Chen S, Wu M, Song X. Stub1 maintains proteostasis of master transcription factors in embryonic stem cells. Cell Rep 2022; 39:110919. [PMID: 35675767 DOI: 10.1016/j.celrep.2022.110919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/01/2022] [Accepted: 05/10/2022] [Indexed: 12/01/2022] Open
Abstract
The pluripotency and differentiation states of embryonic stem cells (ESCs) are regulated by a set of core transcription factors, primarily Sox2, Oct4, and Nanog. Although their transcriptional regulation has been studied extensively, the contribution of posttranslational modifications in Sox2, Oct4, and Nanog are poorly understood. Here, using a CRISPR-Cas9 knockout library screen in murine ESCs, we identify the E3 ubiquitin ligase Stub1 as a negative regulator of pluripotency. Manipulation of Stub1 expression in murine ESCs shows that ectopic Stub1 expression significantly reduces the protein half-life of Sox2, Oct4, and Nanog. Mechanistic investigations reveal Stub1 catalyzes the polyubiquitination and 26S proteasomal degradation of Sox2 and Nanog through K48-linked ubiquitin chains and Oct4 via K63 linkage. Stub1 deficiency positively enhances somatic cell reprogramming and delays differentiation, whereas its enforced expression triggers ESC differentiation. The discovery of Stub1 as an integral pluripotency regulator strengthens our understanding of ESC regulation beyond conventional transcriptional control mechanisms.
Collapse
Affiliation(s)
- Md Mahfuz Al Mamun
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China
| | - Muhammad Riaz Khan
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China; Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1E 4K8 Canada
| | - Yifu Zhu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China
| | - Yuwei Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China
| | - Shuai Zhou
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China
| | - Ran Xu
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ihtisham Bukhari
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China; Molecular Pathology Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China; School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2258, Australia
| | - Jinming Li
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China; Molecular Pathology Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Guangzhi Liu
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China.
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China; Molecular Pathology Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China; Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, Jiangsu 223300, China.
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Henan Key Laboratory of Stem Cell Differentiation and Modification, School of Clinical Medicine, Henan University, Zhengzhou 450003, China; Zhengzhou City Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou 450003, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Centre for Excellence in Molecular Cell Science, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230027, China; Molecular Pathology Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450053, China.
| | - Xiaoyuan Song
- MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
17
|
Park HB, Baek KH. E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188736. [DOI: 10.1016/j.bbcan.2022.188736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022]
|
18
|
Xu Q, Xiong J, Xu L, Wu Y, Li M, Li Q, Jiang T, Luo A, Zhang Y. CHIP Decline Is Associated With Isoflurane-Induced Neurodegeneration in Aged Mice. Front Neurosci 2022; 16:824871. [PMID: 35368262 PMCID: PMC8971621 DOI: 10.3389/fnins.2022.824871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Perioperative neurocognitive disorders (PND) commonly occur in elderly patients, and isoflurane could be a risk factor. During the pathogenesis of neurodegeneration, the ubiquitin–proteasome system (UPS) participates in the process of aging, which affects synaptic plasticity and synaptic function. However, whether UPS is involved in the etiology of PND is unclear. In this study, we examined the expression change of ubiquitin E3 ligase protein carboxyl-terminus of Hsc70-interacting protein (CHIP) and the function turbulence of UPS in isoflurane-exposed aged mouse to illustrate the role of UPS in PND. Neurodegenerative behavioral changes were shown in isoflurane-exposed aged mice and correlated with neuropathological changes manifested with reduced number of intersections and spine density in the cortex. Ubiquitin function was decreased while the apoptosis was activated, and CHIP protein expression decline altered synapsin expression and phosphorylation associated with the neurodegeneration in isoflurane-induced PND. Aging was the big important factor. And it remained consistent with the synapsin phosphorylation/dephosphorylation level changes in CHIP knock-down N2a cells. Per our observation, the decline in CHIP protein expression and synaptic degeneration might reveal the reason for synaptic degeneration in the underlying pathogenesis of PND caused by isoflurane.
Collapse
Affiliation(s)
- Qiaoqiao Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Qiaoqiao Xu,
| | - Juan Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Wu
- Department of Anesthesiology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinqin Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Yi Zhang,
| |
Collapse
|
19
|
An J, Ding Y, Yu C, Li J, You S, Liu Z, Song P, Zou MH. AMP-activated protein kinase alpha1 promotes tumor development via FOXP3 elevation in tumor-infiltrating Treg cells. iScience 2022; 25:103570. [PMID: 34988407 PMCID: PMC8704466 DOI: 10.1016/j.isci.2021.103570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Overwhelming evidence indicates that infiltration of tumors by Treg cells with elevated levels of FOXP3 suppresses the host antitumor immune response. However, the molecular mechanisms that maintain high expression of FOXP3 in tumor-infiltrating Treg cells remain elusive. Here, we report that AMP-activated protein kinase alpha1 (AMPKα1) enables high FOXP3 expression in tumor-infiltrating Treg cells. Mice with Treg-specific AMPKα1 deletion showed delayed tumor progression and enhanced antitumor T cell immunity. Further experiments showed that AMPKα1 maintains the functional integrity of Treg cells and prevents interferon-γ production in tumor-infiltrating Treg cells. Mechanistically, AMPKα1 maintains the protein stability of FOXP3 in Treg cells by downregulating the expression of E3 ligase CHIP (STUB1). Our results suggest that AMPKα1 activation promotes tumor growth by maintaining FOXP3 stability in tumor-infiltrating Treg cells and that selective inhibition of AMPK in Treg cells might be an effective anti-tumor therapy.
Collapse
Affiliation(s)
- Junqing An
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Changjiang Yu
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Jian Li
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Shaojin You
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Zhixue Liu
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| |
Collapse
|
20
|
Targeting Post-Translational Regulation of p53 in Colorectal Cancer by Exploiting Vulnerabilities in the p53-MDM2 Axis. Cancers (Basel) 2022; 14:cancers14010219. [PMID: 35008383 PMCID: PMC8750794 DOI: 10.3390/cancers14010219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
The role played by the key tumor suppressor gene p53 and the implications of p53 mutations for the development and progression of neoplasia continue to expand. This review focuses on colorectal cancer and the regulators of p53 expression and activity identified over the past decade. These newly recognized regulatory mechanisms include (1) direct regulation of mouse double minute 2 homolog (MDM2), an E3 ubiquitin-protein ligase; (2) modulation of the MDM2-p53 interaction; (3) MDM2-independent p53 degradation; and (4) inhibition of p53 nuclear translocation. We positioned these regulatory mechanisms in the context of p53 missense mutations, which not only evade canonical p53 degradation machinery but also exhibit gain-of-function phenotypes that enhance tumor survival and metastasis. Lastly, we discuss current and potential therapeutic strategies directed against p53 mutant-bearing tumors.
Collapse
|
21
|
Lin KH, Ali A, Kuo CH, Yang PC, Kumar VB, Padma VV, Lo JF, Huang CY, Kuo WW. Carboxyl terminus of HSP70-interacting protein attenuates advanced glycation end products-induced cardiac injuries by promoting NFκB proteasomal degradation. J Cell Physiol 2021; 237:1888-1901. [PMID: 34958118 DOI: 10.1002/jcp.30660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 11/06/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Advanced glycation end products (AGEs), which are highly reactive molecules resulting from persistent high-glucose levels, can lead to the generation of oxidative stress and cardiac complications. The carboxyl terminus of HSP70 interacting protein (CHIP) has been demonstrated to have a protective role in several diseases, including cardiac complications; however, the role in preventing AGE-induced cardiac damages remains poorly understood. Here, we found that elevated AGE levels impaired cardiac CHIP expression in streptozotocin-induced diabetes and high-fat diet-administered animals, representing AGE exposure models. We used the TUNEL assay, hematoxylin and eosin, Masson's trichrome staining, and western blotting to prove that cardiac injuries were induced in diabetic animals and AGE-treated cardiac cells. Interestingly, our results collectively indicated that CHIP overexpression significantly rescued the AGE-induced cardiac injuries and promoted cell survival. Moreover, CHIP knockdown-mediated stabilization of nuclear factor κB (NFκB) was attenuated by overexpressing CHIP in the cells. Furthermore, co-immunoprecipitation and immunoblot assay revealed that CHIP promotes the ubiquitination and proteasomal degradation of AGE-induced NFκB. Importantly, fluorescence microscopy, a luciferase reporter assay, electrophoretic mobility shift assay, and subcellular fractionation further demonstrated that CHIP overexpression inhibits AGE-induced NFκB nuclear translocation, reduced its binding ability with the promoter sequences of the receptor of AGE, consequently inhibiting the translocation of the receptor AGE to the cell membrane for its proper function. Overall, our current study findings suggest that CHIP can target NFκB for ubiquitin-mediated proteasomal degradation, and thereby potentially rescue AGE-induced cardiac damages.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- College of Medicine, China Medical University, Taichung, Taiwan.,Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ayaz Ali
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Pei-Chen Yang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | | | | | - Jeng-Fan Lo
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.,Genome Research Centre, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Centre of Excellence, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| |
Collapse
|
22
|
Spies LML, Verhoog NJD, Louw A. Acquired Glucocorticoid Resistance Due to Homologous Glucocorticoid Receptor Downregulation: A Modern Look at an Age-Old Problem. Cells 2021; 10:2529. [PMID: 34685511 PMCID: PMC8533966 DOI: 10.3390/cells10102529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
For over 70 years, the unique anti-inflammatory properties of glucocorticoids (GCs), which mediate their effects via the ligand-activated transcription factor, the glucocorticoid receptor alpha (GRα), have allowed for the use of these steroid hormones in the treatment of various autoimmune and inflammatory-linked diseases. However, aside from the onset of severe side-effects, chronic GC therapy often leads to the ligand-mediated downregulation of the GRα which, in turn, leads to a decrease in GC sensitivity, and effectively, the development of acquired GC resistance. Although the ligand-mediated downregulation of GRα is well documented, the precise factors which influence this process are not well understood and, thus, the development of an acquired GC resistance presents an ever-increasing challenge to the pharmaceutical industry. Recently, however, studies have correlated the dimerization status of the GRα with its ligand-mediated downregulation. Therefore, the current review will be discussing the major role-players in the homologous downregulation of the GRα pool, with a specific focus on previously reported GC-mediated reductions in GRα mRNA and protein levels, the molecular mechanisms through which the GRα functional pool is maintained and the possible impact of receptor conformation on GC-mediated GRα downregulation.
Collapse
Affiliation(s)
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch 7200, South Africa; (L.-M.L.S.); (N.J.D.V.)
| |
Collapse
|
23
|
Ali A, Shibu MA, Kuo CH, Lo JF, Chen RJ, Day CH, Ho TJ, PadmaViswanadha V, Kuo WW, Huang CY. CHIP-overexpressing Wharton's jelly-derived mesenchymal stem cells attenuate hyperglycemia-induced oxidative stress-mediated kidney injuries in diabetic rats. Free Radic Biol Med 2021; 173:70-80. [PMID: 34298092 DOI: 10.1016/j.freeradbiomed.2021.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Accumulating studies have demonstrated the protective roles of mesenchymal stem cells against several disorders. However, one of their crucial limitations is reduced viability under stress conditions, including the hyperglycemia induced by diabetes. The molecular mechanisms involved in diabetes-induced kidney injuries are not fully elucidated. In this study, we found that high glucose (HG) reduced human proximal tubular epithelial cell viability. Further, hyperglycemia induced oxidative stress-mediated apoptosis and fibrosis in HK-2 cells via activation of the mitogen-activated protein kinases (MAPKs) including c-Jun N-terminal kinase JNK and p38 kinase. Carboxyl terminus of HSP70 interacting protein (CHIP) overactivation considerably rescued cell viability under HG stress. Moreover, Western blot analysis, flow cytometry, and MitoSOX staining revealed that hyperglycemia-induced mitochondrial oxidative stress production and apoptosis were attenuated in CHIP-overexpressing Wharton's jelly-derived mesenchymal stem cells (WJMSCs). Co-culture with CHIP-expressing WJMSCs maintained HK-2 cell viability, and inhibited apoptosis and fibrosis by attenuating HG-induced ROS-mediated MAPK activation. CHIP-overexpressing WJMSCs also rescued the decreased kidney weight and hyperglycemia-induced kidney damage observed in streptozotocin-induced diabetic rats. Cumulatively, the current research findings demonstrate that CHIP suppresses hyperglycemia-induced oxidative stress and confers resistance to MAPK-induced apoptosis and fibrosis, and suggests that CHIP protects WJMSCs and the high quality WJMSCs have therapeutic effects against diabetes-induced kidney injuries.
Collapse
Affiliation(s)
- Ayaz Ali
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Since Medical Foundation, Hualien, 970, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Jeng-Feng Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | | | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan; Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, 406, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Since Medical Foundation, Hualien, 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
| |
Collapse
|
24
|
Nutraceutical and Probiotic Approaches to Examine Molecular Interactions of the Amyloid Precursor Protein APP in Drosophila Models of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22137022. [PMID: 34209883 PMCID: PMC8269328 DOI: 10.3390/ijms22137022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Studies using animal models have shed light into the molecular and cellular basis for the neuropathology observed in patients with Alzheimer’s disease (AD). In particular, the role of the amyloid precursor protein (APP) plays a crucial role in the formation of senile plaques and aging-dependent degeneration. Here, we focus our review on recent findings using the Drosophila AD model to expand our understanding of APP molecular function and interactions, including insights gained from the fly homolog APP-like (APPL). Finally, as there is still no cure for AD, we review some approaches that have shown promising results in ameliorating AD-associated phenotypes, with special attention on the use of nutraceuticals and their molecular effects, as well as interactions with the gut microbiome. Overall, the phenomena described here are of fundamental significance for understanding network development and degeneration. Given the highly conserved nature of fundamental signaling pathways, the insight gained from animal models such as Drosophila melanogaster will likely advance the understanding of the mammalian brain, and thus be relevant to human health.
Collapse
|
25
|
Jiang L, Liao J, Liu J, Wei Q, Wang Y. Geranylgeranylacetone promotes human osteosarcoma cell apoptosis by inducing the degradation of PRMT1 through the E3 ubiquitin ligase CHIP. J Cell Mol Med 2021; 25:7961-7972. [PMID: 34155784 PMCID: PMC8358878 DOI: 10.1111/jcmm.16725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Geranylgeranylacetone (GGA), an inducer of heat shock proteins, exerts anticancer activity in some tumours. However, the effect of GGA on human osteosarcoma (OS) has not been reported. This work is designed to evaluate the effect of GGA on the proliferation and apoptosis of human OS cells and to explore the underlying mechanisms. It was found that GGA markedly inhibited the proliferation and induced apoptosis of U-2 OS cells in a dose-dependent manner and also up-regulated the expression of heat shock protein 70 (Hsp70). The degradation and ubiquitination of protein arginine N-methyltransferase 1 (PRMT1) were obviously enhanced in U-2 OS cells with CHIP overexpression and GGA treatment. The expression of PRMT1 was reversed in GGA-treated cell after CHIP knockdown. The turnover of PRMT1 was obviously faster in cells overexpressing CHIP than that in control cells. The methylation and activity of STAT3 were induced by PRMT1, resulting in the inhibition of FAS transcription. Overexpression of PRMT1 reversed the effect of GGA on activation of apoptosis-related proteins and U-2 OS cell apoptosis. The expressions of PRMT1 were significantly up-regulated in OS tissues compared with the adjacent normal tissues and benign bone tumours. In conclusion, GGA promotes the degradation of PRMT1 through the Hsp70-CHIP-mediated proteasome pathway, thereby inducing the FAS-triggered cell apoptosis. Inhibition of PRMT1 may be a potential therapeutic strategy for OS patients.
Collapse
Affiliation(s)
- Lucen Jiang
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jia Liao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jianghuan Liu
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qingzhu Wei
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yiyang Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Šalandová M, van Hengel IAJ, Apachitei I, Zadpoor AA, van der Eerden BCJ, Fratila‐Apachitei LE. Inorganic Agents for Enhanced Angiogenesis of Orthopedic Biomaterials. Adv Healthc Mater 2021; 10:e2002254. [PMID: 34036754 PMCID: PMC11469191 DOI: 10.1002/adhm.202002254] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/30/2021] [Indexed: 01/02/2023]
Abstract
Aseptic loosening of a permanent prosthesis remains one of the most common reasons for bone implant failure. To improve the fixation between implant and bone tissue as well as enhance blood vessel formation, bioactive agents are incorporated into the surface of the biomaterial. This study reviews and compares five bioactive elements (copper, magnesium, silicon, strontium, and zinc) with respect to their effect on the angiogenic behavior of endothelial cells (ECs) when incorporated on the surface of biomaterials. Moreover, it provides an overview of the state-of-the-art methodologies used for the in vitro assessment of the angiogenic properties of these elements. Two databases are searched using keywords containing ECs and copper, magnesium, silicon, strontium, and zinc. After applying the defined inclusion and exclusion criteria, 59 articles are retained for the final assessment. An overview of the angiogenic properties of five bioactive elements and the methods used for assessment of their in vitro angiogenic potential is presented. The findings show that silicon and strontium can effectively enhance osseointegration through the simultaneous promotion of both angiogenesis and osteogenesis. Therefore, their integration onto the surface of biomaterials can ultimately decrease the incidence of implant failure due to aseptic loosening.
Collapse
Affiliation(s)
- Monika Šalandová
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Ingmar A. J. van Hengel
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Iulian Apachitei
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Amir A. Zadpoor
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Bram C. J. van der Eerden
- Department of Internal MedicineErasmus Medical CenterDoctor Molewaterplein 40Rotterdam3015 GDThe Netherlands
| | - Lidy E. Fratila‐Apachitei
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| |
Collapse
|
27
|
Xu Y, Xu G, Dang H, Qu W, Chang D, He X, Li M, Wang Q. Carboxy terminus of HSP70-interacting protein (CHIP) attenuates the stemness of thyroid cancer cells through decreasing OCT4 protein stability. ENVIRONMENTAL TOXICOLOGY 2021; 36:686-693. [PMID: 33270330 DOI: 10.1002/tox.23072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Cancer cell stemness results in the occurrence and progression of tumors and Oct4 (octamer-binding transcription factor) has been confirmed to be a critical contributor and marker of cancer cell stemness. Here, we aimed to explore the underlying mechanisms contributing to Oct4 protein stability, which is necessary for thyroid cancer (TC) cell stemness. We indicated that carboxy terminus of HSP70-interacting protein (CHIP) protein was lowly expressed in TC tissues and cells, and positively correlated with the overall survival of TC patients. By analyzing the co-expression network in TC tissues, we found that CHIP and Oct4 expression exhibited a negative correlation. Functional experiments showed that CHIP knockdown promoted the stemness of TC cells, while CHIP overexpression reduced the stemness of TC spheroids formed by TC cells, in which CHIP expression was significantly decreased. Furthermore, CHIP had no effect on TC cell viability. Mechanistic studies revealed that CHIP directly interacted with Oct4 protein and induced Oct4 ubiquitination, whereas a catalytic CHIP mutant (H260Q) did not. And CHIP regulated the stemness of TC cells in an Oct4-dependent manner. Overall, this work indicates that the CHIP/Oct4 axis is essential for TC cell stemness.
Collapse
Affiliation(s)
- Ying Xu
- Department of the Health Management, Neurosurgery, Traditional Chinese Medicine, Nuclear Medicine, Ultrasonic Examination Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Xu
- Department of the Health Management, Neurosurgery, Traditional Chinese Medicine, Nuclear Medicine, Ultrasonic Examination Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huimin Dang
- Department of the Health Management, Neurosurgery, Traditional Chinese Medicine, Nuclear Medicine, Ultrasonic Examination Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Qu
- Department of the Health Management, Neurosurgery, Traditional Chinese Medicine, Nuclear Medicine, Ultrasonic Examination Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Chang
- Department of the Health Management, Neurosurgery, Traditional Chinese Medicine, Nuclear Medicine, Ultrasonic Examination Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin He
- Department of the Health Management, Neurosurgery, Traditional Chinese Medicine, Nuclear Medicine, Ultrasonic Examination Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Minmin Li
- Department of the Health Management, Neurosurgery, Traditional Chinese Medicine, Nuclear Medicine, Ultrasonic Examination Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian Wang
- Department of the Health Management, Neurosurgery, Traditional Chinese Medicine, Nuclear Medicine, Ultrasonic Examination Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
28
|
Lin CY, Huang KY, Lin YC, Yang SC, Chung WC, Chang YL, Shih JY, Ho CC, Lin CA, Shih CC, Chang YH, Kao SH, Yang PC. Vorinostat combined with brigatinib overcomes acquired resistance in EGFR-C797S-mutated lung cancer. Cancer Lett 2021; 508:76-91. [PMID: 33775711 DOI: 10.1016/j.canlet.2021.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/25/2022]
Abstract
The development of a new generation of tyrosine kinase inhibitors (TKIs) has improved the treatment response in lung adenocarcinomas. However, acquired resistance often occurs due to new epidermal growth factor receptor (EGFR) mutations. In particular, the C797S mutation confers drug resistance to T790M-targeting EGFR TKIs. To address C797S resistance, a promising therapeutic avenue is combination therapy that targets both total EGFR and acquired mutations to increase drug efficacy. We showed that combining vorinostat, a histone deacetylase inhibitor (HDACi), with brigatinib, a TKI, enhanced antitumor effects in primary culture and cell lines of lung adenocarcinomas harboring EGFR L858R/T790M/C797S mutations (EGFR-3M). While EGFR phosphorylation was decreased by brigatinib, vorinostat reduced total EGFR-3M (L858R/T790M/C797S) proteins through STUB1-mediated ubiquitination and degradation. STUB1 preferably ubiquitinated other EGFR mutants and facilitated protein turnover compared to EGFR-WT. The association between EGFR and STUB1 required the functional chaperone-binding domain of STUB1 and was further enhanced by vorinostat. Finally, STUB1 levels modulated EGFR downstream functions. Low STUB1 expression was associated with significantly poorer overall survival than high STUB1 expression in patients harboring mutant EGFR. Vorinostat combined with brigatinib significantly improved EGFR-TKI sensitivity to EGFR C797S by inducing EGFR-dependent cell death and may be a promising therapy in treating C797S-resistant lung adenocarcinomas.
Collapse
Affiliation(s)
- Chia-Yi Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Kuo-Yen Huang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Yi-Chun Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Shuenn-Chen Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Wei-Chia Chung
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Yih-Leong Chang
- Graduate Institute of Pathology, College of Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan; Department of Pathology, National Taiwan University Cancer Center and National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital, Taipei City, 10002, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Chih-An Lin
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Chih-Chun Shih
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan
| | - Shih-Han Kao
- Resuscitation Science Center of Emphasis, Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA.
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan; Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
29
|
Dong Y, Pan F. Ubiquitin-Dependent Regulation of Treg Function and Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:63-80. [PMID: 33523443 DOI: 10.1007/978-981-15-6407-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
As an indispensable part of peripheral tolerance, regulatory T (Treg) cells play an important role in immune homeostasis by suppressing other immune cells. Behind this function is a complex network of transcription factors and signaling cascades that regulates the function and plasticity of regulatory T cells. Among these, Forkhead box P3 (Foxp3) is considered as the master transcription factor, and its stability will influence the function and viability of Treg cells. Because of this, understanding the mechanisms that regulate Foxp3 and its co-regulators will provide more understanding to Treg cells and uncover more targets to manipulate Treg cells in treating autoimmune diseases, organ transplantation, and tumor. Interestingly, several recent studies show that ubiquitin-dependent pathways are important regulators of Foxp3, which suggest both great scientific and therapeutic values. In this chapter, we cover emerging evidence of ubiquitin-dependent, posttranslational regulation of Treg function and plasticity.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fan Pan
- Center for Cancer Immunology Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
30
|
Wu X, Sun X, Sharma S, Lu Q, Yegambaram M, Hou Y, Wang T, Fineman JR, Black SM. Arginine recycling in endothelial cells is regulated BY HSP90 and the ubiquitin proteasome system. Nitric Oxide 2020; 108:12-19. [PMID: 33338599 DOI: 10.1016/j.niox.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022]
Abstract
Despite the saturating concentrations of intracellular l-arginine, nitric oxide (NO) production in endothelial cells (EC) can be stimulated by exogenous arginine. This phenomenon, termed the "arginine paradox" led to the discovery of an arginine recycling pathway in which l-citrulline is recycled to l-arginine by utilizing two important urea cycle enzymes argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL). Prior work has shown that ASL is present in a NO synthetic complex containing hsp90 and endothelial NO synthase (eNOS). However, it is unclear whether hsp90 forms functional complexes with ASS and ASL and if it is involved regulating their activity. Thus, elucidating the role of hsp90 in the arginine recycling pathway was the goal of this study. Our data indicate that both ASS and ASL are chaperoned by hsp90. Inhibiting hsp90 activity with geldanamycin (GA), decreased the activity of both ASS and ASL and decreased cellular l-arginine levels in bovine aortic endothelial cells (BAEC). hsp90 inhibition led to a time-dependent decrease in ASS and ASL protein, despite no changes in mRNA levels. We further linked this protein loss to a proteasome dependent degradation of ASS and ASL via the E3 ubiquitin ligase, C-terminus of Hsc70-interacting protein (CHIP) and the heat shock protein, hsp70. Transient over-expression of CHIP was sufficient to stimulate ASS and ASL degradation while the over-expression of CHIP mutant proteins identified both TPR- and U-box-domain as essential for ASS and ASL degradation. This study provides a novel insight into the molecular regulation l-arginine recycling in EC and implicates the proteasome pathway as a possible therapeutic target to stimulate NO signaling.
Collapse
Affiliation(s)
- Xiaomin Wu
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Xutong Sun
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Shruti Sharma
- Center for Biotechnology & Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qing Lu
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Manivannan Yegambaram
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Yali Hou
- Center for Biotechnology & Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Ting Wang
- Department of Internal Medicine, University of Arizona, Phoenix, AZ, 85004, USA
| | - Jeffrey R Fineman
- The Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; The Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Stephen M Black
- Department of Medicine, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
31
|
Martinho MS, Nancarrow DJ, Lawrence TS, Beer DG, Ray D. Chaperones and Ubiquitin Ligases Balance Mutant p53 Protein Stability in Esophageal and Other Digestive Cancers. Cell Mol Gastroenterol Hepatol 2020; 11:449-464. [PMID: 33130332 PMCID: PMC7788241 DOI: 10.1016/j.jcmgh.2020.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
The incidence of esophageal adenocarcinoma (EAC) and other gastrointestinal (GI) cancers have risen dramatically, thus defining the oncogenic drivers to develop effective therapies are necessary. Patients with Barrett's Esophagus (BE), have an elevated risk of developing EAC. Around 70%-80% of BE cases that progress to dysplasia and cancer have detectable TP53 mutations. Similarly, in other GI cancers higher rates of TP53 mutation are reported, which provide a significant survival advantage to dysplastic/cancer cells. Targeting molecular chaperones that mediate mutant p53 stability may effectively induce mutant p53 degradation and improve cancer outcomes. Statins can achieve this via disrupting the interaction between mutant p53 and the chaperone DNAJA1, promoting CHIP-mediated degradation of mutant p53, and statins are reported to significantly reduce the risk of BE progression to EAC. However, statins demonstrated sub-optimal efficacy depending on cancer types and TP53 mutation specificity. Besides the well-established role of MDM2 in p53 stability, we reported that individual isoforms of the E3 ubiquitin ligase GRAIL (RNF128) are critical, tissue-specific regulators of mutant p53 stability in BE progression to EAC, and targeting the interaction of mutant p53 with these isoforms may help mitigate EAC development. In this review, we discuss the critical ubiquitin-proteasome and chaperone regulation of mutant p53 stability in EAC and other GI cancers with future insights as to how to affect mutant p53 stability, further noting how the precise p53 mutation may influence the efficacy of treatment strategies and identifying necessary directions for further research in this field.
Collapse
Affiliation(s)
- May San Martinho
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Derek J Nancarrow
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - David G Beer
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
32
|
Lopata A, Kniss A, Löhr F, Rogov VV, Dötsch V. Ubiquitination in the ERAD Process. Int J Mol Sci 2020; 21:ijms21155369. [PMID: 32731622 PMCID: PMC7432864 DOI: 10.3390/ijms21155369] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
In this review, we focus on the ubiquitination process within the endoplasmic reticulum associated protein degradation (ERAD) pathway. Approximately one third of all synthesized proteins in a cell are channeled into the endoplasmic reticulum (ER) lumen or are incorporated into the ER membrane. Since all newly synthesized proteins enter the ER in an unfolded manner, folding must occur within the ER lumen or co-translationally, rendering misfolding events a serious threat. To prevent the accumulation of misfolded protein in the ER, proteins that fail the quality control undergo retrotranslocation into the cytosol where they proceed with ubiquitination and degradation. The wide variety of misfolded targets requires on the one hand a promiscuity of the ubiquitination process and on the other hand a fast and highly processive mechanism. We present the various ERAD components involved in the ubiquitination process including the different E2 conjugating enzymes, E3 ligases, and E4 factors. The resulting K48-linked and K11-linked ubiquitin chains do not only represent a signal for degradation by the proteasome but are also recognized by the AAA+ ATPase Cdc48 and get in the process of retrotranslocation modified by enzymes bound to Cdc48. Lastly we discuss the conformations adopted in particular by K48-linked ubiquitin chains and their importance for degradation.
Collapse
|
33
|
Kim J, Chung JY, Park YS, Jang SJ, Kim HR, Choi CM, Song JS. Prognostic Significance of CHIP and RIPK3 in Non-Small Cell Lung Cancer. Cancers (Basel) 2020; 12:E1496. [PMID: 32521727 PMCID: PMC7352347 DOI: 10.3390/cancers12061496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
RIPK3 is a key regulator of necroptosis, which plays a double-edged sword role in tumor progression. CHIP is an E3 ubiquitin ligase that regulates necroptosis by degrading RIPK3. Here, we investigated the prognostic value of RIPK3 and CHIP expression in 404 patients with non-small cell lung cancer (NSCLC). Expressions of CHIP and RIPK3 showed opposite correlations with survival. CHIP expression was associated with the longer overall survival (OS), whereas RIPK3 expression was associated with the shorter OS. RIPK3 positivity showed marginal association with shorter OS and disease-free survival (DFS) in adjuvant radiotherapy recipients but not in non-recipients, suggesting that necroptosis may induce radioresistance. In multivariate analysis, CHIP expression was associated with longer OS. Compared with other patients, CHIP(-)/RIPK3(+) patients had shorter OS and DFS. In summary, in patients with NSCLC, the expression of CHIP was an independent favorable prognostic factor while that of RIPK3 was an adverse prognostic factor.
Collapse
Affiliation(s)
- Jisup Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.K.); (Y.S.P.); (S.J.J.)
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.K.); (Y.S.P.); (S.J.J.)
| | - Se Jin Jang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.K.); (Y.S.P.); (S.J.J.)
- Center for Cancer Genome Discovery, Asan Medical Center, Asan Institute for Life Sciences, Seoul 05505, Korea
| | - Hyeong Ryul Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Chang-Min Choi
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, Korea
- Department of Oncology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul 05505, Korea
| | - Joon Seon Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.K.); (Y.S.P.); (S.J.J.)
| |
Collapse
|
34
|
Naito S, Fukushima T, Endo A, Denda K, Komada M. Nik-related kinase is targeted for proteasomal degradation by the chaperone-dependent ubiquitin ligase CHIP. FEBS Lett 2020; 594:1778-1786. [PMID: 32162334 DOI: 10.1002/1873-3468.13769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Nik-related kinase (Nrk) is a member of the germinal center kinase IV family and suppresses Akt signaling. In vivo, Nrk prevents placental hyperplasia and breast cancer formation. Here, we show that Nrk is regulated by the chaperone-dependent ubiquitin ligase carboxyl terminus of heat-shock protein (Hsp)70-interacting protein (CHIP). Immunoprecipitation and liquid chromatography-tandem mass spectrometry analysis reveal that Nrk preferentially interacts with CHIP and Hsp70/90 family proteins. Nrk protein levels are decreased by CHIP overexpression and increased by siRNA-mediated CHIP knockdown. Our results indicate that Nrk is ubiquitinated by CHIP in a chaperone-dependent manner, resulting in its proteasomal degradation. CHIP targets a fraction of Nrk molecules that have lost the ability to regulate Akt signaling. We conclude that CHIP plays an important role in regulating Nrk protein levels.
Collapse
Affiliation(s)
- Satomi Naito
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshiaki Fukushima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Akinori Endo
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Kimitoshi Denda
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masayuki Komada
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
35
|
Zhuang L, Peng F, Huang Y, Li W, Huang J, Chu Y, Ren P, Sun Y, Zhang Y, Xue E, Guo X, Shen X, Xue L. CHIP modulates APP-induced autophagy-dependent pathological symptoms in Drosophila. Aging Cell 2020; 19:e13070. [PMID: 31777182 PMCID: PMC6996943 DOI: 10.1111/acel.13070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/28/2019] [Accepted: 10/25/2019] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of autophagy is associated with the neurodegenerative processes in Alzheimer's disease (AD), yet it remains controversial whether autophagy is a cause or consequence of AD. We have previously expressed the full-length human APP in Drosophila and established a fly AD model that exhibits multiple AD-like symptoms. Here we report that depletion of CHIP effectively palliated APP-induced pathological symptoms, including morphological, behavioral, and cognitive defects. Mechanistically, CHIP is required for APP-induced autophagy dysfunction, which promotes Aβ production via increased expression of BACE and Psn. Our findings suggest that aberrant autophagy is not only a consequence of abnormal APP activity, but also contributes to dysregulated APP metabolism and subsequent AD pathogenesis.
Collapse
Affiliation(s)
- Luming Zhuang
- The First Rehabilitation Hospital of Shanghai Shanghai Key Laboratory of Signaling and Diseases Research School of Life Science and Technology Tongji University Shanghai China
| | - Fei Peng
- The First Rehabilitation Hospital of Shanghai Shanghai Key Laboratory of Signaling and Diseases Research School of Life Science and Technology Tongji University Shanghai China
| | - Yuanyuan Huang
- The First Rehabilitation Hospital of Shanghai Shanghai Key Laboratory of Signaling and Diseases Research School of Life Science and Technology Tongji University Shanghai China
| | - Wenzhe Li
- The First Rehabilitation Hospital of Shanghai Shanghai Key Laboratory of Signaling and Diseases Research School of Life Science and Technology Tongji University Shanghai China
| | - Jiuhong Huang
- International Academy of Targeted Therapeutics and Innovation Chongqing University of Arts and Sciences Chongqing China
| | - Yunqiang Chu
- The First Rehabilitation Hospital of Shanghai Shanghai Key Laboratory of Signaling and Diseases Research School of Life Science and Technology Tongji University Shanghai China
| | - Pu Ren
- The First Rehabilitation Hospital of Shanghai Shanghai Key Laboratory of Signaling and Diseases Research School of Life Science and Technology Tongji University Shanghai China
| | - Ying Sun
- The First Rehabilitation Hospital of Shanghai Shanghai Key Laboratory of Signaling and Diseases Research School of Life Science and Technology Tongji University Shanghai China
| | - Yan Zhang
- The First Rehabilitation Hospital of Shanghai Shanghai Key Laboratory of Signaling and Diseases Research School of Life Science and Technology Tongji University Shanghai China
| | | | - Xiaowei Guo
- The First Rehabilitation Hospital of Shanghai Shanghai Key Laboratory of Signaling and Diseases Research School of Life Science and Technology Tongji University Shanghai China
| | - Xiafeng Shen
- The First Rehabilitation Hospital of Shanghai Shanghai Key Laboratory of Signaling and Diseases Research School of Life Science and Technology Tongji University Shanghai China
| | - Lei Xue
- The First Rehabilitation Hospital of Shanghai Shanghai Key Laboratory of Signaling and Diseases Research School of Life Science and Technology Tongji University Shanghai China
| |
Collapse
|
36
|
Wang W, Zhou Z, Xiang L, Lv M, Ni T, Deng J, Wang H, Masatara S, Zhou Y, Liu Y. CHIP-mediated ubiquitination of Galectin-1 predicts colorectal cancer prognosis. Int J Biol Sci 2020; 16:719-729. [PMID: 32025218 PMCID: PMC6990922 DOI: 10.7150/ijbs.41125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
CHIP and Galectin-1 are associated with the development of metastasis in cancer. However, the precise roles of CHIP or Gal1 in colorectal cancer are uncertain. Here, our study explored the relationship and clinical significance of CHIP or Gal1 in CRC. CHIP or Gal1 expression was significantly decreased or up-regulated in CRC compared with adjacent noncancerous tissues by immunohistochemistry on a CRC tissue microarray, respectively. Low CHIP or high Gal1 expression significantly correlated with clinicopathological characteristics in patients, as well as with shorter overall survival. Multivariate Cox regression analysis revealed that CHIP or Gal1 expression was an independent prognostic factor for CRC patients. Moreover, CHIP associated with Gal1 has a synergistic effect on the prediction of CRC prognosis. In vitro and vivo, high CHIP or low Gal1 expression inhibit CRC growth or metastasis. Our results found that CHIP could degradate Gal1 by ubiquitination. In summary, CHIP could inhibit CRC growth or metastasis through promoting Gal1 ubiquitination and degradation by proteasome. CHIP and Gal1 expressions are novel candidate prognostic markers in CRC. A combined effect of CHIP and Gal1 as efficient prognostic indicators was found for the first time.
Collapse
Affiliation(s)
- Weimin Wang
- Institute of Traslational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China.,Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, 214200, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China
| | - Zhen Zhou
- Institute of Traslational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China
| | - Liangliang Xiang
- Institute of Traslational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China
| | - Mengying Lv
- Institute of Traslational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China
| | - Tengyang Ni
- Institute of Traslational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China
| | - Jianliang Deng
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, 214200, PR China
| | - Haibo Wang
- Institute of Traslational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China
| | - Sunagawa Masatara
- Department of Physiology, School of Medicine, Showa University, Tokyo 142, Japan
| | - Yan Zhou
- Institute of Traslational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China.,Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, 214200, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China
| | - Yanqing Liu
- Institute of Traslational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China.,Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu, 214200, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, 225001, PR China
| |
Collapse
|
37
|
Schuppe ER, Miles MC, Fuxjager MJ. Evolution of the androgen receptor: Perspectives from human health to dancing birds. Mol Cell Endocrinol 2020; 499:110577. [PMID: 31525432 DOI: 10.1016/j.mce.2019.110577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/23/2022]
Abstract
Androgenic hormones orchestrate the development and activation of diverse reproductive phenotypes across vertebrates. Although extensive work investigates how selection for these traits modifies individual elements of this signaling system (e.g., hormone or androgen receptor [AR] levels), we know less about natural variation in the AR sequence across vertebrates. Our knowledge of AR sequence mutations is largely limited to work in human patients or cell-lines, providing a framework to contextualize single mutations at the expense of evolutionary timescale. Here we unite both perspectives in a review that explores the functional significance of AR on a domain-by-domain basis, using existing knowledge to highlight how and why each region might evolve. We then examine AR sequence variation on different timescales by examining sequence variation in clades originating in the Cambrian (vertebrates; >500 mya) and Cretaceous (birds; >65 mya). In each case, we characterize how the receptor has changed over time and discuss which regions are most likely to evolve in response to selection. Overall, domains that are required for androgenic signaling to function (e.g., DNA- and ligand-binding) tend to be conserved. Meanwhile, areas that interface with co-regulatory molecules can exhibit notable variation even between closely related species. We propose that accumulating mutations in regulatory regions is one way that AR structure might act as a substrate for selection to guide the evolution of reproductive traits. By synthesizing literature across disciplines and highlighting the evolutionary potential of specific AR regions, we hope to inspire new avenues of integrative research into endocrine system evolution.
Collapse
Affiliation(s)
- Eric R Schuppe
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Meredith C Miles
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA
| | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
38
|
Pidugu VK, Pidugu HB, Wu MM, Liu CJ, Lee TC. Emerging Functions of Human IFIT Proteins in Cancer. Front Mol Biosci 2019; 6:148. [PMID: 31921891 PMCID: PMC6930875 DOI: 10.3389/fmolb.2019.00148] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Interferon-induced protein with tetratricopeptide repeats (IFIT) genes are prominent interferon-stimulated genes (ISGs). The human IFIT gene family consists of four genes named IFIT1, IFIT2, IFIT3, and IFIT5. The expression of IFIT genes is very low in most cell types, whereas their expression is greatly enhanced by interferon treatment, viral infection, and pathogen-associated molecular patterns (PAMPs). The proteins encoded by IFIT genes have multiple tetratricopeptide repeat (TPR) motifs. IFIT proteins do not have any known enzymatic roles. However, they execute a variety of cellular functions by mediating protein-protein interactions and forming multiprotein complexes with cellular and viral proteins through their multiple TPR motifs. The versatile tertiary structure of TPR motifs in IFIT proteins enables them to be involved in distinct biological functions, including host innate immunity, antiviral immune response, virus-induced translation initiation, replication, double-stranded RNA signaling, and PAMP recognition. The current understanding of the IFIT proteins and their role in cellular signaling mechanisms is limited to the antiviral immune response and innate immunity. However, recent studies on IFIT protein functions and their involvement in various molecular signaling mechanisms have implicated them in cancer progression and metastasis. In this article, we focused on critical molecular, biological and oncogenic functions of human IFIT proteins by reviewing their prognostic significance in health and cancer. Research suggests that IFIT proteins could be novel therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
| | | | - Meei-Maan Wu
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
39
|
Dynamic Phosphorylation of the C Terminus of Hsp70 Regulates the Mitochondrial Import of SOD2 and Redox Balance. Cell Rep 2019; 25:2605-2616.e7. [PMID: 30485823 DOI: 10.1016/j.celrep.2018.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/14/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
The import of superoxide dismutase-2 (SOD2) into mitochondria is vital for the survival of eukaryotic cells. SOD2 is encoded within the nuclear genome and translocated into mitochondria for activation after translation in the cytosol. The molecular chaperone Hsp70 modulates SOD2 activity by promoting import of SOD2 into mitochondria. In turn, the activity of Hsp70 is controlled by co-chaperones, particularly CHIP, which directs Hsp70-bound proteins for degradation in the proteasomes. We investigated the mechanisms controlling the activity of SOD2 to signal activation and maintain mitochondrial redox balance. We demonstrate that Akt1 binds to and phosphorylates the C terminus of Hsp70 on Serine631, which inhibits CHIP-mediated SOD2 degradation thereby stabilizing and promoting SOD2 import. Conversely, increased mitochondrial-H2O2 formation disrupts Akt1-mediated phosphorylation of Hsp70, and non-phosphorylatable Hsp70 mutants decrease SOD2 import, resulting in mitochondrial oxidative stress. Our findings identify Hsp70 phosphorylation as a physiological mechanism essential for regulation of mitochondrial redox balance.
Collapse
|
40
|
Griffith AA, Holmes W. Fine Tuning: Effects of Post-Translational Modification on Hsp70 Chaperones. Int J Mol Sci 2019; 20:ijms20174207. [PMID: 31466231 PMCID: PMC6747426 DOI: 10.3390/ijms20174207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
The discovery of heat shock proteins shaped our view of protein folding in the cell. Since their initial discovery, chaperone proteins were identified in all domains of life, demonstrating their vital and conserved functional roles in protein homeostasis. Chaperone proteins maintain proper protein folding in the cell by utilizing a variety of distinct, characteristic mechanisms to prevent aberrant intermolecular interactions, prevent protein aggregation, and lower entropic costs to allow for protein refolding. Continued study has found that chaperones may exhibit alternative functions, including maintaining protein folding during endoplasmic reticulum (ER) import and chaperone-mediated degradation, among others. Alternative chaperone functions are frequently controlled by post-translational modification, in which a given chaperone can switch between functions through covalent modification. This review will focus on the Hsp70 class chaperones and their Hsp40 co-chaperones, specifically highlighting the importance of post-translational control of chaperones. These modifications may serve as a target for therapeutic intervention in the treatment of diseases of protein misfolding and aggregation.
Collapse
Affiliation(s)
| | - William Holmes
- Rhode Island College, Biology Department, Providence, RI 02908, USA.
| |
Collapse
|
41
|
Sun G, Cao Y, Xu Y, Huai D, Chen P, Guo J, Li M, Dai Y. Overexpression of Hsc70 promotes proliferation, migration, and invasion of human glioma cells. J Cell Biochem 2019; 120:10707-10714. [PMID: 30816582 DOI: 10.1002/jcb.28362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/29/2018] [Indexed: 12/29/2022]
Abstract
Migration and invasion are often recognized as the main reasons for the high recurrence and death rates of glioma and limit the efficacy of surgery and other antitumor therapies. In this study, we found over activation of heat shock cognate protein 70 (Hsc70) in human glioma specimens, which was closely related to glioma grade. We investigated whether Hsc70 induced the migration and invasion of glioma cells. Wound healing and transwell migration assay were used to determine the migration and invasion ability of human glioma U251 and U87 cells, in which the expression of Hsc70 was knocked down by small interfering RNA. Western blot analysis was performed to determine the expression of FAK-Src signaling in malignant glioma cells. The results showed that Hsc70 deficiency significantly retarded migration and invasion and reduced the phosphorylation of FAK, Src, and Pyk2 in U251 and U87 cells. Overall, our results indicate that the migration and invasion capacity of human brain glioma cells is at least partly induced by Hsc70-dependent activation of FAK-Src signaling.
Collapse
Affiliation(s)
- Guan Sun
- Department of Neurosurgery, Yancheng City No. 1 People's Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng, P. R. China
| | - Ying Cao
- Department of Ear-Nose-Throat, The Second People's Hospital of Huai'an, Huai'an Affiliated Hospital of Xuzhou Medical University, Huai'an, P. R. China
| | - Yitian Xu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - De Huai
- Department of Ear-Nose-Throat, The Second People's Hospital of Huai'an, Huai'an Affiliated Hospital of Xuzhou Medical University, Huai'an, P. R. China
| | - Ping Chen
- Department of Oncology, Yancheng City No. 1 People's Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng, P. R. China
| | - Jun Guo
- Department of Neurosurgery, Yancheng City No. 1 People's Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng, P. R. China
| | - Min Li
- Department of Neurosurgery, Jiangning Hospital Affiliated with Nanjing Medical University, Nanjing, P. R. China
| | - Yuyu Dai
- Department of Neurosurgery, Yancheng Third People's Hospital, Yancheng, P. R. China
| |
Collapse
|
42
|
Regulation of c-Raf Stability through the CTLH Complex. Int J Mol Sci 2019; 20:ijms20040934. [PMID: 30795516 PMCID: PMC6412545 DOI: 10.3390/ijms20040934] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/23/2022] Open
Abstract
c-Raf is a central component of the extracellular signal-regulated kinase (ERK) pathway which is implicated in the development of many cancer types. RanBPM (Ran-Binding Protein M) was previously shown to inhibit c-Raf expression, but how this is achieved remains unclear. RanBPM is part of a recently identified E3 ubiquitin ligase complex, the CTLH (C-terminal to LisH) complex. Here, we show that the CTLH complex regulates c-Raf expression through a control of its degradation. Several domains of RanBPM were found necessary to regulate c-Raf levels, but only the C-terminal CRA (CT11-RanBPM) domain showed direct interaction with c-Raf. c-Raf ubiquitination and degradation is promoted by the CTLH complex. Furthermore, A-Raf and B-Raf protein levels are also regulated by the CTLH complex, indicating a common regulation of Raf family members. Finally, depletion of CTLH subunits RMND5A (required for meiotic nuclear division 5A) and RanBPM resulted in enhanced proliferation and loss of RanBPM promoted tumour growth in a mouse model. This study uncovers a new mode of control of c-Raf expression through regulation of its degradation by the CTLH complex. These findings also uncover a novel target of the CTLH complex, and suggest that the CTLH complex has activities that suppress cell transformation and tumour formation.
Collapse
|
43
|
van den Tempel N, Zelensky AN, Odijk H, Laffeber C, Schmidt CK, Brandsma I, Demmers J, Krawczyk PM, Kanaar R. On the Mechanism of Hyperthermia-Induced BRCA2 Protein Degradation. Cancers (Basel) 2019; 11:cancers11010097. [PMID: 30650591 PMCID: PMC6356811 DOI: 10.3390/cancers11010097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is a designation for a number of pathways that protects our DNA from various damaging agents. In normal cells, the DDR is extremely important for maintaining genome integrity, but in cancer cells these mechanisms counteract therapy-induced DNA damage. Inhibition of the DDR could therefore be used to increase the efficacy of anti-cancer treatments. Hyperthermia is an example of such a treatment—it inhibits a sub-pathway of the DDR, called homologous recombination (HR). It does so by inducing proteasomal degradation of BRCA2 —one of the key HR factors. Understanding the precise mechanism that mediates this degradation is important for our understanding of how hyperthermia affects therapy and how homologous recombination and BRCA2 itself function. In addition, mechanistic insight into the process of hyperthermia-induced BRCA2 degradation can yield new therapeutic strategies to enhance the effects of local hyperthermia or to inhibit HR. Here, we investigate the mechanisms driving hyperthermia-induced BRCA2 degradation. We find that BRCA2 degradation is evolutionarily conserved, that BRCA2 stability is dependent on HSP90, that ubiquitin might not be involved in directly targeting BRCA2 for protein degradation via the proteasome, and that BRCA2 degradation might be modulated by oxidative stress and radical scavengers.
Collapse
Affiliation(s)
- Nathalie van den Tempel
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Hanny Odijk
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Charlie Laffeber
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Christine K Schmidt
- Department of Biochemistry, The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK.
| | - Inger Brandsma
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Jeroen Demmers
- Department of Biochemistry, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Przemek M Krawczyk
- Department of Cell Biology and Histology Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
44
|
Khan QA, Pediaditakis P, Malakhau Y, Esmaeilniakooshkghazi A, Ashkavand Z, Sereda V, Krupenko NI, Krupenko SA. CHIP E3 ligase mediates proteasomal degradation of the proliferation regulatory protein ALDH1L1 during the transition of NIH3T3 fibroblasts from G0/G1 to S-phase. PLoS One 2018; 13:e0199699. [PMID: 29979702 PMCID: PMC6034817 DOI: 10.1371/journal.pone.0199699] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/12/2018] [Indexed: 12/27/2022] Open
Abstract
ALDH1L1 is a folate-metabolizing enzyme abundant in liver and several other tissues. In human cancers and cell lines derived from malignant tumors, the ALDH1L1 gene is commonly silenced through the promoter methylation. It was suggested that ALDH1L1 limits proliferation capacity of the cell and thus functions as putative tumor suppressor. In contrast to cancer cells, mouse cell lines NIH3T3 and AML12 do express the ALDH1L1 protein. In the present study, we show that the levels of ALDH1L1 in these cell lines fluctuate throughout the cell cycle. During S-phase, ALDH1L1 is markedly down regulated at the protein level. As the cell cultures become confluent and cells experience increased contact inhibition, ALDH1L1 accumulates in the cells. In agreement with this finding, NIH3T3 cells arrested in G1/S-phase by a thymidine block completely lose the ALDH1L1 protein. Treatment with the proteasome inhibitor MG-132 prevents such loss in proliferating NIH3T3 cells, suggesting the proteasomal degradation of the ALDH1L1 protein. The co-localization of ALDH1L1 with proteasomes, demonstrated by confocal microscopy, supports this mechanism. We further show that ALDH1L1 interacts with the chaperone-dependent E3 ligase CHIP, which plays a key role in the ALDH1L1 ubiquitination and degradation. In NIH3T3 cells, silencing of CHIP by siRNA halts, while transient expression of CHIP promotes, the ALDH1L1 loss. The downregulation of ALDH1L1 is associated with the accumulation of the ALDH1L1 substrate 10-formyltetrahydrofolate, which is required for de novo purine biosynthesis, a key pathway activated in S-phase. Overall, our data indicate that CHIP-mediated proteasomal degradation of ALDH1L1 facilitates cellular proliferation.
Collapse
Affiliation(s)
- Qasim A. Khan
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Peter Pediaditakis
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Yuryi Malakhau
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Amin Esmaeilniakooshkghazi
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Zahra Ashkavand
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Valentin Sereda
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
| | - Natalia I. Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sergey A. Krupenko
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, United States of America
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
45
|
Cheng L, Zang J, Dai HJ, Li F, Guo F. Ubiquitin ligase CHIP functions as an oncogene and activates the AKT signaling pathway in prostate cancer. Int J Oncol 2018; 53:203-214. [PMID: 29693147 DOI: 10.3892/ijo.2018.4377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/12/2018] [Indexed: 11/06/2022] Open
Abstract
Carboxyl terminus of Hsc-70-interacting protein (CHIP) is an E3 ubiquitin ligase that induces the ubiquitination and degradation of numerous tumor-associated proteins and serves as a suppressor or promoter in tumor progression. To date, the molecular mechanism of CHIP in prostate cancer remains unknown. Therefore, the present study investigated the biological function of CHIP in prostate cancer cells and obtained evidence that CHIP expression is upregulated in prostate cancer tissues. The CHIP vector was introduced into DU145 cancer cells and the cell biological behaviour was examined through a series of experiments, including cell growth, cell apoptosis and migration and invasion assays. The results indicated that the overexpression of CHIP in DU145 prostatic cancer cells promoted cell proliferation through activation of the protein kinase B (AKT) signaling pathway, which subsequently increased cyclin D1 protein levels and decreased p21 and p27 protein levels. The overexpression of CHIP significantly increased the migration and invasion of the DU145 cells, which is possible due to activation of the AKT signaling pathway and upregulation of vimentin. The expression level of CHIP was observed to be increased in human prostate cancer tissues compared with the adjacent normal tissue. Furthermore, the CHIP expression level exhibited a positively association with the Gleason score of the patents. These findings indicate that CHIP functions as an oncogene in prostate cancer.
Collapse
Affiliation(s)
- Li Cheng
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jin Zang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Han-Jue Dai
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Feng Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Feng Guo
- Department of Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu 215001, P.R. China
| |
Collapse
|
46
|
Yoo L, Yoon AR, Yun CO, Chung KC. Covalent ISG15 conjugation to CHIP promotes its ubiquitin E3 ligase activity and inhibits lung cancer cell growth in response to type I interferon. Cell Death Dis 2018; 9:97. [PMID: 29367604 PMCID: PMC5833375 DOI: 10.1038/s41419-017-0138-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022]
Abstract
The carboxyl terminus of Hsp70-interacting protein (CHIP) acts as a ubiquitin E3 ligase and a link between the chaperones Hsp70/90 and the proteasome system, playing a vital role in maintaining protein homeostasis. CHIP regulates a number of proteins involved in a myriad of physiological and pathological processes, but the underlying mechanism of action via posttranslational modification has not been extensively explored. In this study, we investigated a novel modulatory mode of CHIP and its effect on CHIP enzymatic activity. ISG15, an ubiquitin-like modifier, is induced by type I interferon (IFN) stimulation and can be conjugated to target proteins (ISGylation). Here we demonstrated that CHIP may be a novel target of ISGylation in HEK293 cells stimulated with type I IFN. We also found that Lys143/144/145 and Lys287 residues in CHIP are important for and target residues of ISGylation. Moreover, ISGylation promotes the E3 ubiquitin ligase activity of CHIP, subsequently causing a decrease in levels of oncogenic c-Myc, one of its many ubiquitination targets, in A549 lung cancer cells and inhibiting A549 cell and tumor growth. In conclusion, the present study demonstrates that covalent ISG15 conjugation produces a novel CHIP regulatory mode that enhances the tumor-suppressive activity of CHIP, thereby contributing to the antitumor effect of type I IFN.
Collapse
Affiliation(s)
- Lang Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, 04763, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
47
|
Yoo L, Chung KC. The ubiquitin E3 ligase CHIP promotes proteasomal degradation of the serine/threonine protein kinase PINK1 during staurosporine-induced cell death. J Biol Chem 2017; 293:1286-1297. [PMID: 29242192 DOI: 10.1074/jbc.m117.803890] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/10/2017] [Indexed: 11/06/2022] Open
Abstract
Mutations in the gene for the serine/threonine protein kinase PTEN-induced putative kinase 1 (PINK1) are the second most frequent cause of autosomal recessive Parkinson's disease (PD). Via its kinase activity, PINK1 regulates neuronal cell survival and mitochondrial quality control. Numerous reports have revealed that PINK1 has diverse and physiologically significant functions, and therefore its activity should be tightly regulated. However, the molecular mechanisms regulating PINK1 stability and the modulator(s) involved have not been elucidated. In this study, we demonstrate that the ubiquitin E3 ligase carboxyl terminus of Hsp70-interacting protein (CHIP) promotes PINK1 ubiquitination and decreases its steady-state levels. Moreover, PINK1 levels were strongly reduced in HEK293 and SH-SY5Y cells exposed to the apoptosis-inducer staurosporine. Of note, we found that this reduction resulted from CHIP-mediated PINK1 ubiquitination. Accordingly, siRNA-mediated CHIP knockdown reduced susceptibility to staurosporine-induced cell death. Taken together, these findings suggest that CHIP plays a role in negative regulation of PINK1 stability and may suppress PINK1's cytoprotective effect during staurosporine-induced mammalian cell death. We propose that this PINK1 regulatory pathway might contribute to Parkinson's disease pathogenesis.
Collapse
Affiliation(s)
- Lang Yoo
- From the Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Kwang Chul Chung
- From the Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
48
|
Molecular control of chaperone-mediated autophagy. Essays Biochem 2017; 61:663-674. [DOI: 10.1042/ebc20170057] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/23/2017] [Accepted: 11/01/2017] [Indexed: 01/26/2023]
Abstract
Chaperone-mediated autophagy (CMA) is a selective form of autophagy in which cytosolic proteins bearing a pentapeptide motif biochemically related to the KFERQ sequence, are recognized by the heat shock protein family A member 8 (HSPA8) chaperone, delivered to the lysomal membrane, and directly translocated across the lysosomal membrane by a protein complex containing lysosomal associated membrane protein 2a (Lamp2a). Since its discovery over two decades ago, the importance of this pathway in cell proteostasis has been made increasingly apparent. Deregulation of this pathway has been implicated in a variety of diseases and conditions, including lysosomal storage diseases, cancer, neurodegeneration and even aging. Here, we describe the main molecular features of the pathway, its regulation, cross-talk with other degradation pathways and importance in disease.
Collapse
|
49
|
Chen J, Xue J, Ruan J, Zhao J, Tang B, Duan R. Drosophila
CHIP protects against mitochondrial dysfunction by acting downstream of Pink1 in parallel with Parkin. FASEB J 2017; 31:5234-5245. [DOI: 10.1096/fj.201700011r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/25/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Jia Chen
- The State Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South University Changsha China
| | - Jin Xue
- The State Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South University Changsha China
| | - Jingsong Ruan
- The State Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South University Changsha China
| | - Juan Zhao
- The State Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South University Changsha China
| | - Beisha Tang
- The State Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South University Changsha China
- Department of NeurologyXiangya HospitalCentral South University Changsha China
| | - Ranhui Duan
- The State Key Laboratory of Medical GeneticsSchool of Life SciencesCentral South University Changsha China
| |
Collapse
|
50
|
Shang Y, He J, Wang Y, Feng Q, Zhang Y, Guo J, Li J, Li S, Wang Y, Yan G, Ren F, Shi Y, Xu J, Zeps N, Zhai Y, He D, Chang Z. CHIP/Stub1 regulates the Warburg effect by promoting degradation of PKM2 in ovarian carcinoma. Oncogene 2017; 36:4191-4200. [PMID: 28346425 DOI: 10.1038/onc.2017.31] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/25/2016] [Accepted: 01/11/2017] [Indexed: 12/18/2022]
Abstract
Tumor cells preferentially adopt aerobic glycolysis for their energy supply, a phenomenon known as the Warburg effect. It remains a matter of debate as to how the Warburg effect is regulated during tumor progression. Here, we show that CHIP (carboxyl terminus of Hsc70-interacting protein), a U-box E3 ligase, suppresses tumor progression in ovarian carcinomas by inhibiting aerobic glycolysis. While CHIP is downregulated in ovarian carcinoma, induced expression of CHIP results in significant inhibition of the tumor growth examined by in vitro and in vivo experiments. Reciprocally, depletion of CHIP leads to promotion of tumor growth. By a SiLAD proteomics analysis, we identified pyruvate kinase isoenzyme M2 (PKM2), a critical regulator of glycolysis in tumors, as a target that CHIP mediated for degradation. Accordingly, we show that CHIP regulates PKM2 protein stability and thereafter the energy metabolic processes. Depletion or knockout of CHIP increased the glycolytic products in both tumor and mouse embryonic fibroblast cells. Simultaneously, we observed that CHIP expression inversely correlated with PKM2 levels in human ovarian carcinomas. This study reveals a mechanism that the Warburg effect is regulated by CHIP through its function as an E3 ligase, which mediates the degradation of PKM2 during tumor progression. Our findings shed new light into understanding of ovarian carcinomas and may provide a new therapeutic strategy for ovarian cancer.
Collapse
Affiliation(s)
- Y Shang
- The Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Department of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
- State Key Laboratory of Membrane Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - J He
- The Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Department of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Y Wang
- State Key Laboratory of Membrane Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Q Feng
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Y Zhang
- State Key Laboratory of Membrane Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - J Guo
- State Key Laboratory of Membrane Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - J Li
- State Key Laboratory of Membrane Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - S Li
- State Key Laboratory of Membrane Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Y Wang
- State Key Laboratory of Membrane Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - G Yan
- The Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Department of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - F Ren
- State Key Laboratory of Membrane Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Y Shi
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - J Xu
- School of Pathology and Laboratory Medicine, The University of Western Australia (M504), Crawley, WA, Australia
| | - N Zeps
- School of Surgery, The University of Western Australia (M509), Crawley, WA, Australia
- St John of God HealthCare, The Bendat Family Comprehensive Cancer Centre, Subiaco, WA, Australia
| | - Y Zhai
- The Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Department of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - D He
- The Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Department of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Z Chang
- State Key Laboratory of Membrane Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|