1
|
Habibi E, Miller MR, Schreier A, Campbell MA, Hung TC, Gille D, Baerwald M, Finger AJ. Single generation epigenetic change in captivity and reinforcement in subsequent generations in a delta smelt (Hypomesus transpacificus) conservation hatchery. Mol Ecol 2024; 33:e17449. [PMID: 38967124 DOI: 10.1111/mec.17449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/24/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
A refugial population of the endangered delta smelt (Hypomesus transpacificus) has been maintained at the Fish Conservation and Culture Laboratory (FCCL) at UC Davis since 2008. Despite intense genetic management, fitness differences between wild and cultured fish have been observed at the FCCL. To investigate the molecular underpinnings of hatchery domestication, we used whole-genome bisulfite sequencing to quantify epigenetic differences between wild and hatchery-origin delta smelt. Differentially methylated regions (DMRs) were identified from 104 individuals by comparing the methylation patterns in different generations of hatchery fish (G1, G2, G3) with their wild parents (G0). We discovered a total of 132 significant DMRs (p < .05) between G0 and G1, 132 significant DMRs between G0 and G2, and 201 significant DMRs between G0 and G3. Our results demonstrate substantial differences in methylation patterns emerged between the wild and hatchery-reared fish in the early generations in the hatchery, with a higher proportion of hypermethylated DMRs in hatchery-reared fish. The rearing environment was found to be a stronger predictor of individual clustering based on methylation patterns than family, sex or generation. Our study indicates a reinforcement of the epigenetic status with successive generations in the hatchery environment, as evidenced by an increase in methylation in hypermethylated DMRs and a decrease in methylation in hypomethylated DMRs over time. Lastly, our results demonstrated heterogeneity in inherited methylation pattern in families across generations. These insights highlight the long-term consequences of hatchery practices on the epigenetic landscape, potentially impacting wild fish populations.
Collapse
Affiliation(s)
- Ensieh Habibi
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Michael R Miller
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Andrea Schreier
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Matthew A Campbell
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Biological and Agricultural Engineering Department, University of California Davis, Davis, California, USA
| | - Daphne Gille
- California Department of Water Resources, Division of Integrated Science and Engineering, West Sacramento, California, USA
| | - Melinda Baerwald
- California Department of Water Resources, Division of Integrated Science and Engineering, West Sacramento, California, USA
| | - Amanda J Finger
- Department of Animal Science, University of California Davis, Davis, California, USA
| |
Collapse
|
2
|
Opare-Addo PA, Sarfo FS, Aikins M, Bediako SA, Ovbiagele B. Epigenetics as a target to mitigate excess stroke risk in people of African ancestry: A scoping review. J Stroke Cerebrovasc Dis 2024; 33:107585. [PMID: 38253246 PMCID: PMC11060795 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Globally, individuals of African ancestry have a relatively greater stroke preponderance compared to other racial/ethnic groups. The higher prevalence of traditional stroke risk factors in this population, however, only partially explains this longstanding disparity. Epigenetic signatures are transgenerational and could be a plausible therapeutic target to further bend the stroke disparities curve for people of African ancestry. There is, however, limited data on epigenetics and stroke risk in this population. PURPOSE To examine existing evidence and knowledge gaps on the potential contribution of epigenetics to excess stroke risk in people of African ancestry and avenues for mitigation. MATERIALS AND METHODS We conducted a scoping review of studies published between January 2003 and July 2023, on epigenetics and stroke risk. We then summarized our findings, highlighting the results for people of African ancestry. RESULTS Of 104 studies, there were only 6 studies that specifically looked at epigenetic mechanisms and stroke risk in people of African ancestry. Results of these studies show how patterns of DNA methylation and non-coding RNA interact with lifestyle choices, xenobiotics, and FVIII levels to raise stroke risk in people of African ancestry. However, no studies evaluated epigenetic patterns as actionable targets for the influence of psychosocial stressors or social context and excess stroke risk in this population (versus others). Also, no studies interrogated the role of established or novel therapeutic agents with the potential to reprogram DNA by adding or removing epigenetic markers in people of African ancestry. CONCLUSION Epigenetics potentially offers a promising target for modifying the effects of lifestyle, environmental exposures, and other factors that differentially affect people of African ancestry and place them at relatively greater stroke risk compared to other populations. Studies that precisely assess the pathways by which epigenetic mechanisms modulate population-specific disparities in the risk of stroke are needed.
Collapse
Affiliation(s)
| | - Fred Stephen Sarfo
- Komfo Anokye Teaching Hospital, Kumasi, Ghana; Neurology Division, Kwame Nkrumah University of Science & Technology, P. O. Box 1934, Kumasi, Ghana.
| | | | | | | |
Collapse
|
3
|
Li Y, Wang Y, An T, Tang Y, Shi M, Zhang W, Xue M, Wang X, Zhang J. Non-thermal plasma promotes boar sperm quality through increasing AMPK methylation. Int J Biol Macromol 2024; 257:128768. [PMID: 38096931 DOI: 10.1016/j.ijbiomac.2023.128768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
Boar sperm quality, as an important indicator of reproductive efficiency, directly affects the efficiency of livestock production. Here, this study was conducted to improve the boar sperm quality by using a non-thermal dielectric barrier discharge (DBD) plasma. Our results showed that DBD plasma exposure at 2.1 W for 15 s could improve boar sperm quality by increasing exon methylation level of adenosine monophosphate-activated protein kinase (AMPK) and thus improving the glycolytic flux, mitochondrial function, and antioxidant capacity without damaging the integrity of sperm DNA and acrosome. In addition, DBD plasma could rescue DNA methyltransferase inhibitor decitabine-caused low sperm quality through reducing the oxidative stress and mitochondrial damage. Therefore, the application of non-thermal plasma provides a new strategy for reducing sperm oxidative damage and improving sperm quality, which shows a great potential in assisted reproduction to solve the problem of male infertility.
Collapse
Affiliation(s)
- Yaqi Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China; Jianyang Municipal People's Government Shiqiao Street Office Comprehensive Convenience Service Center, Jianyang, Sichuan 641400, China
| | - Yusha Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Tianyi An
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yao Tang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Mei Shi
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Wenyu Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Mengqing Xue
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Xianzhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China.
| | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
4
|
Lichtiger L, Jezioro J, Rivera J, McDonald JD, Terry MB, Sahay D, Miller RL. Prenatal airborne polycyclic aromatic hydrocarbon exposure, altered regulation of peroxisome proliferator-activated receptor gamma (Ppar)γ, and links with mammary cancer. ENVIRONMENTAL RESEARCH 2023; 231:116213. [PMID: 37224940 PMCID: PMC10330651 DOI: 10.1016/j.envres.2023.116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Environmental exposure to polycyclic aromatic hydrocarbons (PAH) has been shown to be associated with chronic disease outcomes through multiple mechanisms including altered regulation of the transcription factor peroxisome proliferator-activated receptor gamma (Ppar) γ. Because PAH exposure and Pparγ each have been associated with mammary cancer, we asked whether PAH would induce altered regulation of Pparγ in mammary tissue, and whether this association may underlie the association between PAH and mammary cancer. Pregnant mice were exposed to aerosolized PAH at proportions that mimic equivalent human exposures in New York City air. We hypothesized that prenatal PAH exposure would alter Pparγ DNA methylation and gene expression and induce the epithelial to mesenchymal transition (EMT) in mammary tissue of offspring (F1) and grandoffspring (F2) mice. We also hypothesized that altered regulation of Pparγ in mammary tissue would associate with biomarkers of EMT, and examined associations with whole body weight. We found that prenatal PAH exposure lowered Pparγ mammary tissue methylation among grandoffspring mice at postnatal day (PND) 28. However, PAH exposure did not associate with altered Pparγ gene expression or consistently with biomarkers of EMT. Finally, lower Pparγ methylation, but not gene expression, was associated with higher body weight among offspring and grandoffspring mice at PND28 and PND60. Findings suggest additional evidence of multi-generational adverse epigenetic effects of prenatal PAH exposure among grandoffspring mice.
Collapse
Affiliation(s)
- Lydia Lichtiger
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York City, NY, United States
| | - Jacqueline Jezioro
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York City, NY, United States
| | - Janelle Rivera
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York City, NY, United States
| | - Jacob D McDonald
- Department of Toxicology, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, NY, United States; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York City, NY, United States
| | - Debashish Sahay
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York City, NY, United States
| | - Rachel L Miller
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York City, NY, United States.
| |
Collapse
|
5
|
Uehara R, Au Yeung WK, Toriyama K, Ohishi H, Kubo N, Toh H, Suetake I, Shirane K, Sasaki H. The DNMT3A ADD domain is required for efficient de novo DNA methylation and maternal imprinting in mouse oocytes. PLoS Genet 2023; 19:e1010855. [PMID: 37527244 PMCID: PMC10393158 DOI: 10.1371/journal.pgen.1010855] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Establishment of a proper DNA methylation landscape in mammalian oocytes is important for maternal imprinting and embryonic development. De novo DNA methylation in oocytes is mediated by the DNA methyltransferase DNMT3A, which has an ATRX-DNMT3-DNMT3L (ADD) domain that interacts with histone H3 tail unmethylated at lysine-4 (H3K4me0). The domain normally blocks the methyltransferase domain via intramolecular interaction and binding to histone H3K4me0 releases the autoinhibition. However, H3K4me0 is widespread in chromatin and the role of the ADD-histone interaction has not been studied in vivo. We herein show that amino-acid substitutions in the ADD domain of mouse DNMT3A cause dwarfism. Oocytes derived from homozygous females show mosaic loss of CG methylation and almost complete loss of non-CG methylation. Embryos derived from such oocytes die in mid-to-late gestation, with stochastic and often all-or-none-type CG-methylation loss at imprinting control regions and misexpression of the linked genes. The stochastic loss is a two-step process, with loss occurring in cleavage-stage embryos and regaining occurring after implantation. These results highlight an important role for the ADD domain in efficient, and likely processive, de novo CG methylation and pose a model for stochastic inheritance of epigenetic perturbations in germ cells to the next generation.
Collapse
Affiliation(s)
- Ryuji Uehara
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Wan Kin Au Yeung
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keisuke Toriyama
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroaki Ohishi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Division of Gene Expression Dynamics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Naoki Kubo
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hidehiro Toh
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Isao Suetake
- Department of Nutrition Science, Nakamura Gakuen University, Fukuoka, Japan
| | - Kenjiro Shirane
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Otsuka K, Iwasaki T. Insights into radiation carcinogenesis based on dose-rate effects in tissue stem cells. Int J Radiat Biol 2023; 99:1503-1521. [PMID: 36971595 DOI: 10.1080/09553002.2023.2194398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Increasing epidemiological and biological evidence suggests that radiation exposure enhances cancer risk in a dose-dependent manner. This can be attributed to the 'dose-rate effect,' where the biological effect of low dose-rate radiation is lower than that of the same dose at a high dose-rate. This effect has been reported in epidemiological studies and experimental biology, although the underlying biological mechanisms are not completely understood. In this review, we aim to propose a suitable model for radiation carcinogenesis based on the dose-rate effect in tissue stem cells. METHODS We surveyed and summarized the latest studies on the mechanisms of carcinogenesis. Next, we summarized the radiosensitivity of intestinal stem cells and the role of dose-rate in the modulation of stem-cell dynamics after irradiation. RESULTS Consistently, driver mutations can be detected in most cancers from past to present, supporting the hypothesis that cancer progression is initiated by the accumulation of driver mutations. Recent reports demonstrated that driver mutations can be observed even in normal tissues, which suggests that the accumulation of mutations is a necessary condition for cancer progression. In addition, driver mutations in tissue stem cells can cause tumors, whereas they are not sufficient when they occur in non-stem cells. For non-stem cells, tissue remodeling induced by marked inflammation after the loss of tissue cells is important in addition to the accumulation of mutations. Therefore, the mechanism of carcinogenesis differs according to the cell type and magnitude of stress. In addition, our results indicated that non-irradiated stem cells tend to be eliminated from three-dimensional cultures of intestinal stem cells (organoids) composed of irradiated and non-irradiated stem cells, supporting the stem-cell competition. CONCLUSIONS We propose a unique scheme in which the dose-rate dependent response of intestinal stem cells incorporates the concept of the threshold of stem-cell competition and context-dependent target shift from stem cells to whole tissue. The concept highlights four key issues that should be considered in radiation carcinogenesis: i.e. accumulation of mutations; tissue reconstitution; stem-cell competition; and environmental factors like epigenetic modifications.
Collapse
Affiliation(s)
- Kensuke Otsuka
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| | - Toshiyasu Iwasaki
- Strategy and Planning Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| |
Collapse
|
7
|
Wang Q, Liu S. The Effects and Pathogenesis of PM2.5 and Its Components on Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:493-506. [PMID: 37056681 PMCID: PMC10086390 DOI: 10.2147/copd.s402122] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a heterogeneous disease, is the leading cause of death worldwide. In recent years, air pollution, especially particulate matter (PM), has been widely studied as a contributing factor to COPD. As an essential component of PM, PM2.5 is associated with COPD prevalence, morbidity, and acute exacerbations. However, the specific pathogenic mechanisms were still unclear and deserve further research. The diversity and complexity of PM2.5 components make it challenging to get its accurate effects and mechanisms for COPD. It has been determined that the most toxic PM2.5 components are metals, polycyclic aromatic hydrocarbons (PAHs), carbonaceous particles (CPs), and other organic compounds. PM2.5-induced cytokine release and oxidative stress are the main mechanisms reported leading to COPD. Nonnegligibly, the microorganism in PM 2.5 may directly cause mononuclear inflammation or break the microorganism balance contributing to the development and exacerbation of COPD. This review focuses on the pathophysiology and consequences of PM2.5 and its components on COPD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Sha Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
- Correspondence: Sha Liu, Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, 35 Jiefang Avenue, Zhengxiang District, Hengyang, Hunan, 421001, People’s Republic of China, Email
| |
Collapse
|
8
|
Lecante LL, Gaye B, Delbes G. Impact of in Utero Rat Exposure to 17Alpha-Ethinylestradiol or Genistein on Testicular Development and Germ Cell Gene Expression. FRONTIERS IN TOXICOLOGY 2022; 4:893050. [PMID: 35722060 PMCID: PMC9201280 DOI: 10.3389/ftox.2022.893050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Although the decline in male fertility is believed to partially result from environmental exposures to xenoestrogens during critical developmental windows, the underlying mechanisms are still poorly understood. Experimental in utero exposures in rodents have demonstrated the negative impact of xenoestrogens on reproductive development, long-term adult reproductive function and offspring health. In addition, transcriptomic studies have demonstrated immediate effects on gene expression in fetal reproductive tissues, However, the immediate molecular effects on the developing germ cells have been poorly investigated. Here, we took advantage of a transgenic rat expressing the green fluorescent protein specifically in germ cells allowing purification of perinatal GFP-positive germ cells. Timed-pregnant rats were exposed to ethinylestradiol (EE2, 2 μg/kg/d), genistein (GE, 10 mg/kg/d) or vehicle by gavage, from gestational days (GD) 13–19; testes were sampled at GD20 or post-natal (PND) 5 for histological analysis and sorting of GFP-positive cells. While EE2-exposed females gained less weight during treatment compared to controls, neither treatment affected the number of pups per litter, sex ratio, anogenital distance, or body and gonadal weights of the offspring. Although GE significantly decreased circulating testosterone at GD20, no change was observed in either testicular histology or germ cell and sertoli cell densities. Gene expression was assessed in GFP-positive cells using Affymetrix Rat Gene 2.0 ST microarrays. Analysis of differentially expressed genes (DEGs) (p < 0.05; fold change 1.5) identified expression changes of 149 and 128 transcripts by EE2 and GE respectively at GD20, and 287 and 207 transcripts at PND5, revealing an increased effect after the end of treatment. Only about 1% of DEGs were common to both stages for each treatment. Functional analysis of coding DEG revealed an overrepresentation of olfactory transduction in all groups. In parallel, many non-coding RNAs were affected by both treatments, the most represented being small nucleolar and small nuclear RNAs. Our data suggest that despite no immediate toxic effects, fetal exposure to xenoestrogens can induce subtle immediate changes in germ cell gene expression. Moreover, the increased number of DEGs between GD20 and PND5 suggests an effect of early exposures with latent impact on later germ cell differentiation.
Collapse
|
9
|
Vijay A, Jha PK, Parveen S, Goel S, Prabhakar A, Sharma S, Kumar B, Chatterjee T, Bajaj N, Nair V, Sharma M, Ashraf MZ. Aberrant promoter hypermethylation regulates thrombomodulin in high altitude induced deep vein thrombosis. Thromb Res 2022; 215:5-13. [DOI: 10.1016/j.thromres.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
|
10
|
Mukherjee S, Dasgupta S, Mishra PK, Chaudhury K. Air pollution-induced epigenetic changes: disease development and a possible link with hypersensitivity pneumonitis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55981-56002. [PMID: 34498177 PMCID: PMC8425320 DOI: 10.1007/s11356-021-16056-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 05/16/2023]
Abstract
Air pollution is a serious threat to our health and has become one of the major causes of many diseases including cardiovascular disease, respiratory disease, and cancer. The association between air pollution and various diseases has long been a topic of research interest. However, it remains unclear how air pollution actually impacts health by modulating several important cellular functions. Recently, some evidence has emerged about air pollution-induced epigenetic changes, which are linked with the etiology of various human diseases. Among several epigenetic modifications, DNA methylation represents the most prominent epigenetic alteration underlying the air pollution-induced pathogenic mechanism. Several other types of epigenetic changes, such as histone modifications, miRNA, and non-coding RNA expression, have also been found to have been linked with air pollution. Hypersensitivity pneumonitis (HP), one of the most prevalent forms of interstitial lung diseases (ILDs), is triggered by the inhalation of certain organic and inorganic substances. HP is characterized by inflammation in the tissues around the lungs' airways and may lead to irreversible lung scarring over time. This review, in addition to other diseases, attempts to understand whether certain pollutants influence HP development through such epigenetic modifications.
Collapse
Affiliation(s)
- Suranjana Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
11
|
Zhang T, Ru YF, Wu B, Dong H, Chen L, Zheng J, Li J, Wang X, Wang Z, Wang X, Shen X, Wu J, Qian J, Miao M, Gu Y, Shi H. Effects of low lead exposure on sperm quality and sperm DNA methylation in adult men. Cell Biosci 2021; 11:150. [PMID: 34344450 PMCID: PMC8335892 DOI: 10.1186/s13578-021-00665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/20/2021] [Indexed: 11/26/2022] Open
Abstract
INSTRUCTION Lead (Pb) exposure is a risk factor for male infertility, but the epigenetic changes in sperm DNAattributable to lead exposure is poorly defined. METHODS In this study, we investigated whether low Pb exposure (< 10 µg/dL) affects the sperm quality. Blood, urine, and semen samples of 297 men of childbearing age were analyzed for all relevant parameters. Based on the blood Pb level (BLL), participants were allocated to RL (0-2.5 µg/dL), RM (2.5-5 µg/dL), and RH (5-10 µg/dL) groups. The 5-methylcytosine and 5-hydroxymethylcytosine patterns in the sperm DNA were identified using methylated DNA immunoprecipitation and hydroxymethylated DNA immunoprecipitation sequencing. RESULTS The non-progressive motility (NP) was significantly increased and associated with global hypomethylation of sperm DNA in the RH group compared with the RL group, indicating that aberrant sperm methylation due to low Pb exposure is possibly associated with reduced sperm motility. The hypomethylated promoter regions were primarily enriched in the calcium (Ca) homeostasis pathway. Further, the interaction between Ca and Pb was associated with sperm rapid progressive motility and asthenospermia risk, although no significant methylation abnormality was observed in those with BLL < 5 µg/dL. When BLL was > 5 µg/dL or when predicting NP, no significant Pb-Ca interaction was observed. DISCUSSION Overall, our results indicate that aberrant DNA methylation of the Ca homeostasis pathway, induced by low Pb exposure, is the potential cause for reduced sperm velocity.
Collapse
Affiliation(s)
- Tiancheng Zhang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Yan Fei Ru
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Bin Wu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Haiyan Dong
- Shanghai Kelin Institute of clinical bioinformatics, Shanghai, China
| | - Liang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Jufen Zheng
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Jianhui Li
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Xin Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Zhikai Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Xuemei Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Xiaorong Shen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Jun Wu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Jun Qian
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China.
| | - Maohua Miao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China.
| | - Yihua Gu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China.
| | - Huijuan Shi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Meng X, Yao Y, Ma Y, Zhong N, Alphonse S, Pei J. Effect of fluoride in drinking water on the level of 5-methylcytosine in human and rat blood. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103511. [PMID: 33035703 DOI: 10.1016/j.etap.2020.103511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
DNA methylation is an epigenetic modification of genome that is involved in many human diseases. Recent studies revealed DNA methylation may be associated with fluorosis. This study was aimed to evaluate the dose-response effect of fluoride on DNA methylation in human and rat blood. A commercial ELISA kit was employed to evaluate 5-methylcytosine (5-mC) level of genome in human and rat blood. A total of 281 subjects were enrolled in this study and divided into four equal-size groups by the quartile of fluoride in drinking water. The difference of 5-mC among the four groups was significant. The U-shaped relationship was found between fluoride and 5-mC in the population. The U-shaped curve was also observed in the rats with three months of fluoride treatments. Taken together, these results clue the disruption of DNA methylation in mammals may has a certain association with fluoride in natural exposures.
Collapse
Affiliation(s)
- Xinyue Meng
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yingjie Yao
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yongzheng Ma
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Nan Zhong
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Sowanou Alphonse
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Junrui Pei
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| |
Collapse
|
13
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
14
|
Nohara K, Suzuki T, Okamura K. Gestational arsenic exposure and paternal intergenerational epigenetic inheritance. Toxicol Appl Pharmacol 2020; 409:115319. [PMID: 33160984 DOI: 10.1016/j.taap.2020.115319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/22/2020] [Accepted: 11/01/2020] [Indexed: 02/09/2023]
Abstract
A growing body of evidence has shown that gestational exposure to environmental factors such as imbalanced diet, environmental chemicals, and stress can lead to late-onset health effects in offspring and that some of these effects are heritable by the next generation and subsequent generations. Furthermore, altered epigenetic modifications in DNA methylation, histone modifications and small RNAs in a single sperm genome have been shown to transmit disease phenotypes acquired from the environment to later generations. Recently, our group found that gestational exposure of F0 pregnant dams to an inorganic arsenic, sodium arsenite, increases the incidence of hepatic tumors in male F2 mice, and the effects are paternally transmitted to the F2. Here, we first overview the epigenetic changes involved in paternal intergenerational and transgenerational inheritance caused by exposure to environmental factors. Then, we discuss our recent studies regarding paternal inheritance of the tumor-augmenting effects in F2 mice by gestational arsenite exposure, in which we investigated alterations of DNA methylation status in F2 tumors and causative F1 sperm. We also discuss the possible targets of the F2 effects. Finally, we discuss future perspectives on the studies that are needed to fully understand the health effects of arsenic exposure.
Collapse
Affiliation(s)
- Keiko Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan.
| | - Takehiro Suzuki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Kazuyuki Okamura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| |
Collapse
|
15
|
Forghanifard MM, Aarabi A, Nasiri Aghdam M, Memar B, Hasanzadeh Khayat M, Dadkhah E, Abbaszadegan MR. GSTs polymorphisms are associated with epigenetic silencing of CDKN2A gene in esophageal squamous cell carcinoma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31269-31277. [PMID: 32488710 DOI: 10.1007/s11356-020-09408-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Esophageal cancer is the eighth most common cancer and the sixth most frequent cause of cancer mortality worldwide. Exposure to polycyclic aromatic hydrocarbons formed by incomplete combustion of organic matter is an important risk factor. Genetic polymorphisms in genes encoding PAH-metabolizing enzymes like glutathione S-transferases (GSTM1, GSTP1, GSTT1) which conjugate glutathione to PAHs for reduction of oxidative stress may affect an individual's response to PAH exposure. Genomic DNA from 50 esophageal squamous cell carcinoma patients extracted from peripheral blood. PCR-RFLP technique was employed to determine GSTM1, GSTT1, and GSTP1 polymorphisms. Aberrant promoter methylation of CDKN2A was applied by methylation-specific PCR technique. Concentration of urinary 1-hydroxypyrene was determined using a HPLC system. About 38.7% showed the null GSTM1 genotype (54% cases and 13% controls), 23.7% showed GSTT1 null genotype (30% cases and 13% controls), and 62.5% were GSTP1 A/A genotype (66% cases and 56% controls). Polymorphic variants of GSTM1 and GSTT1 were significantly associated with aberrant methylation of CDKN2A gene. The null state of GSTT1 was significantly associated with high concentrations of 1-OHP in urea (p < 0.01). There was significant association between methylated states of CDKN2A and high concentrations of 1-OHP in urine (p < 0.01). We identified significant association between polymorphism of GSTs genes and epigenetic silencing of tumor suppressor gene CDKN2A in esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
| | - Azadeh Aarabi
- Immunology research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Nasiri Aghdam
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Memar
- Department of Pathology, Omeed Hospital, Mashhad University of Medical Sciences, Mashhad, 9196773117, Iran
| | | | - Ezzat Dadkhah
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | | |
Collapse
|
16
|
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020; 21:ijms21175993. [PMID: 32825382 PMCID: PMC7503247 DOI: 10.3390/ijms21175993] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
Collapse
|
17
|
Gomez-Verjan JC, Barrera-Vázquez OS, García-Velázquez L, Samper-Ternent R, Arroyo P. Epigenetic variations due to nutritional status in early-life and its later impact on aging and disease. Clin Genet 2020; 98:313-321. [PMID: 32246454 DOI: 10.1111/cge.13748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/11/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
Abstract
Epigenetics refers to changes in gene function, not resulting from the primary DNA sequence, influenced by the environment. It provides a link between the molecular regulation of the genome and the environmental signals exposed during the life of individuals (including lifestyle, social behavior, development, and nutrition). Notably, early development (intrauterine or postnatal) is highly influenced by the adverse socioeconomic status that leads to malnutrition or obesity; these conditions induce changes over the fetal epigenetic programming and can be transferred by transgenerational inheritance, inducing alterations of the transcription of genes related to several metabolic and neurological processes. Moreover, obesity during pregnancy, and excessive gestational weight gain are associated with an increased risk of fatal pregnancy complications, and adverse cardio-metabolic, respiratory and cognitive-related outcomes of the future child. However, most of our knowledge in this field comes from experimental animal models, that partially resemble the nutritional effects of humans. In this context, nutritional effects implicated in historical famines represent valuable information about the transgenerational effects of undernutrition and stress. In the present review, we attempt to describe the most outstanding results from the most studied famines about the impact of malnutrition on the epigenome.
Collapse
Affiliation(s)
- Juan C Gomez-Verjan
- División de Ciencias Básicas, Instituto Nacional de Geriatría (INGER), Mexico City, Mexico
| | | | - Lizbeth García-Velázquez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Rafael Samper-Ternent
- Geriatric/Sealy Center on Aging, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Pedro Arroyo
- División de Epidemiología, Instituto Nacional de Geriatría (INGER), Mexico City, Mexico
| |
Collapse
|
18
|
Lu Z, Liu Z, Mao W, Wang X, Zheng X, Chen S, Cao B, Huang S, Zhang X, Zhou T, Zhang Y, Huang X, Sun Q, Li JD. Locus-specific DNA methylation of Mecp2 promoter leads to autism-like phenotypes in mice. Cell Death Dis 2020; 11:85. [PMID: 32015323 PMCID: PMC6997184 DOI: 10.1038/s41419-020-2290-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease with a strong heritability, but recent evidence suggests that epigenetic dysregulation may also contribute to the pathogenesis of ASD. Especially, increased methylation at the MECP2 promoter and decreased MECP2 expression were observed in the brains of ASD patients. However, the causative relationship of MECP2 promoter methylation and ASD has not been established. In this study, we achieved locus-specific methylation at the transcription start site (TSS) of Mecp2 in Neuro-2a cells and in mice, using nuclease-deactivated Cas9 (dCas9) fused with DNA methyltransferase catalytic domains, together with five locus-targeting sgRNAs. This locus-specific epigenetic modification led to a reduced Mecp2 expression and a series of behavioral alterations in mice, including reduced social interaction, increased grooming, enhanced anxiety/depression, and poor performance in memory tasks. We further found that specifically increasing the Mecp2 promoter methylation in the hippocampus was sufficient to induce most of the behavioral changes. Our finding therefore demonstrated for the first time the casual relationship between locus-specific DNA methylation and diseases symptoms in vivo, warranting potential therapeutic application of epigenetic editing.
Collapse
Affiliation(s)
- Zongyang Lu
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai, 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhen Liu
- Institute of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China
| | - Wei Mao
- Hunan Key Laboratory of Animal Models for Human Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078, China
| | - Xinying Wang
- Hunan Key Laboratory of Animal Models for Human Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078, China
| | - Xiaoguo Zheng
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai, 201210, China
| | - Shanshan Chen
- Institute of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China
| | - Beibei Cao
- Hunan Key Laboratory of Animal Models for Human Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai, 201210, China
| | - Xuliang Zhang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai, 201210, China
| | - Tao Zhou
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai, 201210, China
| | - Yu Zhang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai, 201210, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai, 201210, China. .,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| | - Qiang Sun
- Institute of Neuroscience, Chinese Academy of Sciences (CAS) Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, CAS, Shanghai, 200031, China.
| | - Jia-Da Li
- Hunan Key Laboratory of Animal Models for Human Genetics, School of Life Sciences, Central South University, 110 Xiangya Road, Changsha, 410078, China.
| |
Collapse
|
19
|
Ferrari L, Carugno M, Bollati V. Particulate matter exposure shapes DNA methylation through the lifespan. Clin Epigenetics 2019; 11:129. [PMID: 31470889 PMCID: PMC6717322 DOI: 10.1186/s13148-019-0726-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
Exposure to airborne particulate matter (PM) has been associated with detrimental health effects. DNA methylation represents the most well-studied epigenetic factor among the possible mechanisms underlying this association. Interestingly, changes of DNA methylation in response to environmental stimuli are being considered for their role in the pathogenic mechanism, but also as mediators of the body adaptation to air pollutants.Several studies have evaluated both global and gene-specific methylation in relation to PM exposure in different clinical conditions and life stages. The purpose of the present literature review is to evaluate the most relevant and recent studies in the field in order to analyze the available evidences on long- and short-term PM exposure and DNA methylation changes, with a particular focus on the different life stages when the alteration occurs. PM exposure modulates DNA methylation affecting several biological mechanisms with marked effects on health, especially during susceptible life stages such as pregnancy, childhood, and the older age.Although many cross-sectional investigations have been conducted so far, only a limited number of prospective studies have explored the potential role of DNA methylation. Future studies are needed in order to evaluate whether these changes might be reverted.
Collapse
Affiliation(s)
- L Ferrari
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, via San Barnaba 8, 20122, Milan, Italy
| | - M Carugno
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, via San Barnaba 8, 20122, Milan, Italy
| | - V Bollati
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, via San Barnaba 8, 20122, Milan, Italy.
| |
Collapse
|
20
|
Ganguly BB. Exposure index of methyl isocyanate (MIC) gas disaster and a comprehensive spectrum of cytogenetic analysis after 30 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18208-18229. [PMID: 31041706 DOI: 10.1007/s11356-019-04439-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Severity of clinical expression and high mortality could not facilitate establishing exposure index/association following MIC disaster in Bhopal. Mortality-based exposure stratification was critiqued by the International Medical Commission on Bhopal (IMCB). IMCB stratified exposure considering distance as surrogate at 2 km intervals after 10 years. The first follow-up cytogenetic screening of the pre-screened survivors after 30 years has demonstrated chromosome abnormalities (CA). Exposure stratification was attempted considering cytogenetic screening conducted during 1986-1988. Elevation of CA appeared proportional to exposure status and authenticated the initial mortality-based stratification. The one-on-one comparison of the previous and present cytogenetics has described the individual response to MIC exposure over 30 years. Chi-square test has been carried out for checking the cytogenetic changes at the individual level statistically, which revealed that differences of chromosomal aberrations collected immediately post-disaster and 30 years later are nonsignificant. The prominence of interindividual variation was noticed in general. The impact of overall exposure was higher in males. Constitutional abnormalities in 8.5% of the study population, including translocation, inversion, deletion, fragile sites, etc., necessitate screening of blood-linked members. The incidence of acrocentric association was prominent in the study population. Normal karyotype in children born to severely exposed parents with congenital anomalies indicates necessity of molecular karyotyping and/or screening of mutations. The study highlights follow-up of the health of the index cases at shorter (3-6 months) intervals. This comprehensive spectrum of cytogenetic report highlights immediate post-disaster chromosomal aberrations, the changes that occurred over 30 years in conjunction with other environmental factors at the individual level, constitutive genomic aberrations, polymorphic variations, and chromosomal patterns in congenitally malformed children of the survivors, which collectively indicate the possibility of acquisition/persistence of stable aberrations in MIC-exposed lymphocytes through interaction with environmental/biological confounders.
Collapse
Affiliation(s)
- Bani Bandana Ganguly
- MGM Center for Genetic Research & Diagnosis, MGM New Bombay Hospital, Vashi Sector 3, Navi Mumbai, 400703, India.
| |
Collapse
|
21
|
Prosocial Emotion, Adolescence, and Warfare. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2019; 30:192-216. [DOI: 10.1007/s12110-019-09344-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Shukla A, Bunkar N, Kumar R, Bhargava A, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:760-777. [PMID: 30530146 DOI: 10.1016/j.scitotenv.2018.11.381] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/23/2018] [Accepted: 11/25/2018] [Indexed: 05/28/2023]
Abstract
Air pollution is one of the leading causes of deaths in Southeast Asian countries including India. Exposure to air pollutants affects vital cellular mechanisms and is intimately linked with the etiology of a number of chronic diseases. Earlier work from our laboratory has shown that airborne particulate matter disturbs the mitochondrial machinery and causes significant damage to the epigenome. Mitochondrial reactive oxygen species possess the ability to trigger redox-sensitive signaling mechanisms and induce irreversible epigenomic changes. The electrophilic nature of reactive metabolites can directly result in deprotonation of cytosine at C-5 position or interfere with the DNA methyltransferases activity to cause alterations in DNA methylation. In addition, it also perturbs level of cellular metabolites critically involved in different epigenetic processes like acetylation and methylation of histone code and DNA hypo or hypermethylation. Interestingly, these modifications may persist through downstream generations and result in the transgenerational epigenomic inheritance. This phenomenon of subsequent transfer of epigenetic modifications is mainly associated with the germ cells and relies on the germline stability of the epigenetic states. Overall, the recent literature supports, and arguably strengthens, the contention that air pollution might contribute to transmission of epimutations from gametes to zygotes by involving mitochondrial DNA, parental allele imprinting, histone withholding and non-coding RNAs. However, larger prospective studies using innovative, integrated epigenome-wide metabolomic strategy are highly warranted to assess the air pollution induced transgenerational epigenetic inheritance and associated human health effects.
Collapse
Affiliation(s)
- Anushi Shukla
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajat Kumar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Irina Y Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
23
|
Lioznova AV, Khamis AM, Artemov AV, Besedina E, Ramensky V, Bajic VB, Kulakovskiy IV, Medvedeva YA. CpG traffic lights are markers of regulatory regions in human genome. BMC Genomics 2019; 20:102. [PMID: 30709331 PMCID: PMC6359853 DOI: 10.1186/s12864-018-5387-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
Background DNA methylation is involved in the regulation of gene expression. Although bisulfite-sequencing based methods profile DNA methylation at a single CpG resolution, methylation levels are usually averaged over genomic regions in the downstream bioinformatic analysis. Results We demonstrate that on the genome level a single CpG methylation can serve as a more accurate predictor of gene expression than an average promoter / gene body methylation. We define CpG traffic lights (CpG TL) as CpG dinucleotides with a significant correlation between methylation and expression of a gene nearby. CpG TL are enriched in all regulatory regions. Among all promoters, CpG TL are especially enriched in poised ones, suggesting involvement of DNA methylation in their regulation. Yet, binding of only a handful of transcription factors, such as NRF1, ETS, STAT and IRF-family members, could be regulated by direct methylation of transcription factor binding sites (TFBS) or its close proximity. For the majority of TF, an alternative scenario is more likely: methylation and inactivation of the whole regulatory element indirectly represses functional TF binding with a CpG TL being a reliable marker of such inactivation. Conclusions CpG TL provide a promising insight into mechanisms of enhancer activity and gene regulation linking methylation of single CpG to gene expression. CpG TL methylation can be used as reliable markers of enhancer activity and gene expression in applications, e.g. in clinic where measuring DNA methylation is easier compared to directly measuring gene expression due to more stable nature of DNA. Electronic supplementary material The online version of this article (10.1186/s12864-018-5387-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna V Lioznova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Abdullah M Khamis
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Artem V Artemov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
| | - Elizaveta Besedina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vasily Ramensky
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia. .,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
24
|
Sarker G, Berrens R, von Arx J, Pelczar P, Reik W, Wolfrum C, Peleg-Raibstein D. Transgenerational transmission of hedonic behaviors and metabolic phenotypes induced by maternal overnutrition. Transl Psychiatry 2018; 8:195. [PMID: 30315171 PMCID: PMC6185972 DOI: 10.1038/s41398-018-0243-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/18/2018] [Accepted: 04/15/2018] [Indexed: 12/22/2022] Open
Abstract
Maternal overnutrition has been associated with increased susceptibility to develop obesity and neurological disorders later in life. Most epidemiological as well as experimental studies have focused on the metabolic consequences across generations following an early developmental nutritional insult. Recently, it has been shown that maternal high-fat diet (HFD) affects third-generation female body mass via the paternal lineage. We showed here that the offspring born to HFD ancestors displayed addictive-like behaviors as well as obesity and insulin resistance up to the third generation in the absence of any further exposure to HFD. These findings, implicate that the male germ line is a major player in transferring phenotypic traits. These behavioral and physiological alterations were paralleled by reduced striatal dopamine levels and increased dopamine 2 receptor density. Interestingly, by the third generation a clear gender segregation emerged, where females showed addictive-like behaviors while male HFD offspring showed an obesogenic phenotype. However, methylome profiling of F1 and F2 sperm revealed no significant difference between the offspring groups, suggesting that the sperm methylome might not be the major carrier for the transmission of the phenotypes observed in our mouse model. Together, our study for the first time demonstrates that maternal HFD insult causes sustained alterations of the mesolimbic dopaminergic system suggestive of a predisposition to develop obesity and addictive-like behaviors across multiple generations.
Collapse
Affiliation(s)
- Gitalee Sarker
- Laboratory of Translational Nutrition Biology, Department of Health Sciences and Technology, ETH Zurich, 8603, Schwerzenbach, Switzerland
| | | | - Judith von Arx
- Laboratory of Translational Nutrition Biology, Department of Health Sciences and Technology, ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Wolf Reik
- The Babraham Institute, Babraham, Cambridge, CB223AT, UK
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Department of Health Sciences and Technology, ETH Zurich, 8603, Schwerzenbach, Switzerland
| | - Daria Peleg-Raibstein
- Laboratory of Translational Nutrition Biology, Department of Health Sciences and Technology, ETH Zurich, 8603, Schwerzenbach, Switzerland.
| |
Collapse
|
25
|
Shokoohi F, Stephens DA, Bourque G, Pastinen T, Greenwood CMT, Labbe A. A hidden markov model for identifying differentially methylated sites in bisulfite sequencing data. Biometrics 2018; 75:210-221. [PMID: 30168593 DOI: 10.1111/biom.12965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 07/01/2018] [Accepted: 08/01/2018] [Indexed: 12/28/2022]
Abstract
DNA methylation studies have enabled researchers to understand methylation patterns and their regulatory roles in biological processes and disease. However, only a limited number of statistical approaches have been developed to provide formal quantitative analysis. Specifically, a few available methods do identify differentially methylated CpG (DMC) sites or regions (DMR), but they suffer from limitations that arise mostly due to challenges inherent in bisulfite sequencing data. These challenges include: (1) that read-depths vary considerably among genomic positions and are often low; (2) both methylation and autocorrelation patterns change as regions change; and (3) CpG sites are distributed unevenly. Furthermore, there are several methodological limitations: almost none of these tools is capable of comparing multiple groups and/or working with missing values, and only a few allow continuous or multiple covariates. The last of these is of great interest among researchers, as the goal is often to find which regions of the genome are associated with several exposures and traits. To tackle these issues, we have developed an efficient DMC identification method based on Hidden Markov Models (HMMs) called "DMCHMM" which is a three-step approach (model selection, prediction, testing) aiming to address the aforementioned drawbacks. Our proposed method is different from other HMM methods since it profiles methylation of each sample separately, hence exploiting inter-CpG autocorrelation within samples, and it is more flexible than previous approaches by allowing multiple hidden states. Using simulations, we show that DMCHMM has the best performance among several competing methods. An analysis of cell-separated blood methylation profiles is also provided.
Collapse
Affiliation(s)
- Farhad Shokoohi
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada.,Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - David A Stephens
- Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Aurélie Labbe
- Department of Decision Sciences, HEC Montreal, Quebec, Canada
| |
Collapse
|
26
|
Uli N, Michelen-Gomez E, Ramos EI, Druley TE. Age-specific changes in genome-wide methylation enrich for Foxa2 and estrogen receptor alpha binding sites. PLoS One 2018; 13:e0203147. [PMID: 30256791 PMCID: PMC6157835 DOI: 10.1371/journal.pone.0203147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/15/2018] [Indexed: 12/26/2022] Open
Abstract
The role of DNA methylation patterns in complex phenotypes remains unclear. To explore this question, we adapted our methods for rare variant analysis to characterize genome-wide murine DNA hybridization array to investigate methylation at CpG islands, shores, and regulatory elements. We have applied this platform to compare age and tissue- specific methylation differences in the brain and spleen of young and aged mice. As expected from prior studies, there are clear global differences in organ-specific, but not age-specific, methylation due mostly to changes at repetitive elements. Surprisingly, out of 200,000 loci there were only 946 differentially methylated cytosines (DMCs) between young and old samples (529 hypermethylated, 417 hypomethylated in aged mice) compared to thousands of tissue-specific DMCs. Hypermethylated loci were clustered around the promoter region of Sfi1, exon 2 of Slc11a2, Drg1, Esr1 and Foxa2 transcription factor binding sites. In particular, there were 75 hypermethylated Foxa2 binding sites across a 2.7 Mb region of chromosome 11. Hypomethylated loci were clustered around Mid1, Isoc2b and genome-wide loci with binding sites for Foxa2 and Esr1, which are known to play important roles in development and aging. These data suggest discreet tissue-independent methylation changes associated with aging processes such as cell division (Sfi1, Mid1), energy production (Drg1, Isoc2b) and cell death (Foxa2, Esr1).
Collapse
Affiliation(s)
- Nishanth Uli
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eduardo Michelen-Gomez
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Enrique I. Ramos
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Todd E. Druley
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
27
|
Lim E, Xu H, Wu P, Posner D, Wu J, Peloso GM, Pitsillides AN, DeStefano AL, Adrienne Cupples L, Liu CT. Network analysis of drug effect on triglyceride-associated DNA methylation. BMC Proc 2018; 12:27. [PMID: 30275881 PMCID: PMC6157190 DOI: 10.1186/s12919-018-0130-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND DNA methylation, an epigenetic modification, can be affected by environmental factors and thus regulate gene expression levels that can lead to alterations of certain phenotypes. Network analysis has been used successfully to discover gene sets that are expressed differently across multiple disease states and suggest possible pathways of disease progression. We applied this framework to compare DNA methylation levels before and after lipid-lowering medication and to identify modules that differ topologically between the two time points, revealing the association between lipid medication and these triglyceride-related methylation sites. METHODS We performed quality control using beta-mixture quantile normalization on 463,995 cytosine-phosphate-guanine (CpG) sites and deleted problematic sites, resulting in 423,004 probes. We identified 14,850 probes that were nominally associated with triglycerides prior to treatment and performed weighted gene correlation network analysis (WGCNA) to construct pre- and posttreatment methylation networks of these probes. We then applied both WGCNA module preservation and generalized Hamming distance (GHD) to identify modules with topological differences between the pre- and posttreatment. For modules with structural changes between 2 time points, we performed pathway-enrichment analysis to gain further insight into the biological function of the genes from these modules. RESULTS Six triglyceride-associated modules were identified using pretreatment methylation probes. The same 3 modules were not preserved in posttreatment data using both the module-preservation and the GHD methods. Top-enriched pathways for the 3 differentially methylated modules are sphingolipid signaling pathway, proteoglycans in cancer, and metabolic pathways (p values < 0.005). One module in particular included an enrichment of lipid-related pathways among the top results. CONCLUSIONS The same 3 modules, which were differentially methylated between pre- and posttreatment, were identified using both WGCNA module-preservation and GHD methods. Pathway analysis revealed that triglyceride-associated modules contain groups of genes that are involved in lipid signaling and metabolism. These 3 modules may provide insight into the effect of fenofibrate on changes in triglyceride levels and these methylation sites.
Collapse
Affiliation(s)
- Elise Lim
- Department of Biostatistics, Boston University, 801 Massachusetts Avenue 3rd Floor, Boston, MA 02118 USA
| | - Hanfei Xu
- Department of Biostatistics, Boston University, 801 Massachusetts Avenue 3rd Floor, Boston, MA 02118 USA
| | - Peitao Wu
- Department of Biostatistics, Boston University, 801 Massachusetts Avenue 3rd Floor, Boston, MA 02118 USA
| | - Daniel Posner
- Department of Biostatistics, Boston University, 801 Massachusetts Avenue 3rd Floor, Boston, MA 02118 USA
| | - Jiayi Wu
- Department of Genetics and Genomics, Boston University, 72 East Concord Street, Boston, MA 02118 USA
| | - Gina M. Peloso
- Department of Biostatistics, Boston University, 801 Massachusetts Avenue 3rd Floor, Boston, MA 02118 USA
| | - Achilleas N. Pitsillides
- Department of Biostatistics, Boston University, 801 Massachusetts Avenue 3rd Floor, Boston, MA 02118 USA
| | - Anita L. DeStefano
- Department of Biostatistics, Boston University, 801 Massachusetts Avenue 3rd Floor, Boston, MA 02118 USA
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University, 801 Massachusetts Avenue 3rd Floor, Boston, MA 02118 USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University, 801 Massachusetts Avenue 3rd Floor, Boston, MA 02118 USA
| |
Collapse
|
28
|
Kim D, Chen Z, Zhou LF, Huang SX. Air pollutants and early origins of respiratory diseases. Chronic Dis Transl Med 2018; 4:75-94. [PMID: 29988883 PMCID: PMC6033955 DOI: 10.1016/j.cdtm.2018.03.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Air pollution is a global health threat and causes millions of human deaths annually. The late onset of respiratory diseases in children and adults due to prenatal or perinatal exposure to air pollutants is emerging as a critical concern in human health. Pregnancy and fetal development stages are highly susceptible to environmental exposure and tend to develop a long-term impact in later life. In this review, we briefly glance at the direct impact of outdoor and indoor air pollutants on lung diseases and pregnancy disorders. We further focus on lung complications in later life with early exposure to air pollutants. Epidemiological evidence is provided to show the association of prenatal or perinatal exposure to air pollutants with various adverse birth outcomes, such as preterm birth, lower birth weight, and lung developmental defects, which further associate with respiratory diseases and reduced lung function in children and adults. Mechanistic evidence is also discussed to support that air pollutants impact various cellular and molecular targets at early life, which link to the pathogenesis and altered immune responses related to abnormal respiratory functions and lung diseases in later life.
Collapse
Affiliation(s)
- Dasom Kim
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45249, USA
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lin-Fu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shou-Xiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45249, USA
| |
Collapse
|
29
|
Gaskins AJ, Hart JE, Mínguez-Alarcón L, Chavarro JE, Laden F, Coull BA, Ford JB, Souter I, Hauser R. Residential proximity to major roadways and traffic in relation to outcomes of in vitro fertilization. ENVIRONMENT INTERNATIONAL 2018; 115:239-246. [PMID: 29605676 PMCID: PMC5970056 DOI: 10.1016/j.envint.2018.03.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Emerging data from animal and human studies suggest that traffic-related air pollution adversely affects early pregnancy outcomes; however evidence is limited. OBJECTIVE We examined whether residential proximity to major roadways and traffic, as proxies for traffic-related air pollution, are associated with in vitro fertilization (IVF) outcomes. METHODS This analysis included 423 women enrolled in the Environment and Reproductive Health (EARTH) Study, a prospective cohort study, who underwent 726 IVF cycles (2004-2017). Using geocoded residential addresses collected at study entry, we calculated the distance to nearest major roadway and the traffic density within a 100 m radius. IVF outcomes were abstracted from electronic medical records. We used multivariable generalized linear mixed models to evaluate the associations between residential proximity to major roadways and traffic density and IVF outcomes adjusting for maternal age, body mass index, race, education level, smoking status, and census tract median income. RESULTS Closer residential proximity to major roadways was statistically significantly associated with lower probability of implantation and live birth following IVF. The adjusted percentage of IVF cycles resulting in live birth for women living ≥400 m from a major roadway was 46% (95% CI 36, 56%) compared to 33% (95% CI 26, 40%) for women living <50 m (p-for-comparison, 0.04). Of the intermediate outcomes, there were suggestive associations between living closer to major roadways and slightly higher estradiol trigger concentrations (p-trend = 0.16) and lower endometrial thickness (p-trend = 0.06). Near-residence traffic density was not associated with outcomes of IVF. CONCLUSION Closer residential proximity to major roadways was related to reduced likelihood of live birth following IVF.
Collapse
Affiliation(s)
- Audrey J Gaskins
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Irene Souter
- Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Zhang JJ, Do HL, Chandimali N, Lee SB, Mok YS, Kim N, Kim SB, Kwon T, Jeong DK. Non-thermal plasma treatment improves chicken sperm motility via the regulation of demethylation levels. Sci Rep 2018; 8:7576. [PMID: 29765100 PMCID: PMC5953930 DOI: 10.1038/s41598-018-26049-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 12/25/2022] Open
Abstract
The quality of avian semen is an important economic trait in poultry production. The present study examines the in vitro effects of non-thermal dielectric barrier discharge plasma on chicken sperm to determine the plasma conditions that can produce the optimum sperm quality. Exposure to 11.7 kV of plasma for 20 s is found to produce maximum sperm motility by controlling the homeostasis of reactive oxygen species and boosting the release of adenosine triphosphate and respiratory enzyme activity in the mitochondria. However, prolonged exposure or further increase in plasma potential impairs the sperm quality in a time- and dose-dependent manner. Optimal plasma treatment of sperm results in upregulated mRNA and protein expression of antioxidant defense-related and energetic metabolism-related genes by increasing their demethylation levels. However, 27.6 kV of plasma exerts significant adverse effects. Thus, our findings indicate that appropriate plasma exposure conditions improve chicken sperm motility by regulating demethylation levels of genes involved in antioxidant defense and energetic metabolism.
Collapse
Affiliation(s)
- Jiao Jiao Zhang
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Huynh Luong Do
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Nisansala Chandimali
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sang Baek Lee
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Young Sun Mok
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Nameun Kim
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - Seong Bong Kim
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si, Jeollabuk-Do, 54004, Republic of Korea
| | - Taeho Kwon
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Dong Kee Jeong
- Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea. .,Laboratory of Animal Genetic Engineering and Stem Cell Biology, Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
31
|
Mok A, Rhead B, Holingue C, Shao X, Quach HL, Quach D, Sinclair E, Graf J, Imboden J, Link T, Harrison R, Chernitskiy V, Barcellos LF, Criswell LA. Hypomethylation of CYP2E1 and DUSP22 Promoters Associated With Disease Activity and Erosive Disease Among Rheumatoid Arthritis Patients. Arthritis Rheumatol 2018; 70:528-536. [PMID: 29287311 PMCID: PMC5876118 DOI: 10.1002/art.40408] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/20/2017] [Indexed: 01/13/2023]
Abstract
Objective Epigenetic modifications have previously been associated with rheumatoid arthritis (RA). In this study, we aimed to determine whether differential DNA methylation in peripheral blood cell subpopulations is associated with any of 4 clinical outcomes among RA patients. Methods Peripheral blood samples were obtained from 63 patients in the University of California, San Francisco RA cohort (all satisfied the American College of Rheumatology classification criteria; 57 were seropositive for rheumatoid factor and/or anti‐cyclic citrullinated protein). Fluorescence‐activated cell sorting was used to separate the cells into 4 immune cell subpopulations (CD14+ monocytes, CD19+ B cells, CD4+ naive T cells, and CD4+ memory T cells) per individual, and 229 epigenome‐wide DNA methylation profiles were generated using Illumina HumanMethylation450 BeadChips. Differentially methylated positions and regions associated with the Clinical Disease Activity Index score, erosive disease, RA Articular Damage score, Sharp score, medication at time of blood draw, smoking status, and disease duration were identified using robust regression models and empirical Bayes variance estimators. Results Differential methylation of CpG sites associated with clinical outcomes was observed in all 4 cell types. Hypomethylated regions in the CYP2E1 and DUSP22 gene promoters were associated with active and erosive disease, respectively. Pathway analyses suggested that the biologic mechanisms underlying each clinical outcome are cell type–specific. Evidence of independent effects on DNA methylation from smoking, medication use, and disease duration were also identified. Conclusion Methylation signatures specific to RA clinical outcomes may have utility as biomarkers or predictors of exposure, disease progression, and disease severity.
Collapse
|
32
|
Zhang M, Huang M, Cao B, Sheng X, Li P. Methylation of the DKK3 promoter is associated with poor prognosis in patients with cervical adenocarcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:788-794. [PMID: 31938166 PMCID: PMC6958050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/27/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the mRNA of DKK3 (Dickkopf-3) in cervical adenocarcinoma, and to explore correlations between methylation status of the DKK3 promoter and biological behaviors of cervical adenocarcinoma. METHODS The mRNA expression level of DKK3 was detected by real-time quantitative reverse transcription PCR. Methylation-specific PCR (MSP) analysis was performed to detect the methylated degrees of the DNA of the DKK3 promoter. RESULTS The mRNA expression levels of DKK3 in cervical adenocarcinoma tissues were lower than those in adjacent normal cervical tissues. MSP detection found DKK3 promoter methylation was 38% in cervical adenocarcinoma tissues, while no normal cervical tissues were found to be methylated.FIGO staging and pelvic lymph node metastasis were identified as relative factors of methylation status of the DKK3 promoter. Multivariate analysis demonstrated methylation status of the DKK3 promoter was an independent prognostic indicator of cervical adenocarcinoma. Patients with methylated DKK3 promoter exhibited significantly shorter OS than those with an unmethylated DKK3 promoter. CONCLUSIONS The methylation status of the DKK3 promoter may indicate poor prognosis of patients with cervical adenocarcinoma.
Collapse
Affiliation(s)
| | - Minna Huang
- Department of Oncology, The First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin, China
| | | | | | - Ping Li
- Nankai HospitalTianjin, China
| |
Collapse
|
33
|
Ganguly BB, Mandal S. Cytogenetic changes in the Bhopal population exposed to methyl isocyanate (MIC) in 1984: Then and 30 years later. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 824:9-19. [PMID: 29150050 DOI: 10.1016/j.mrgentox.2017.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022]
Abstract
Following the 1984 Bhopal methyl isocyanate (MIC) gas disaster, genetic alterations were sporadically reported on small cohorts. However, the outcome of the multi-center cytogenetic screening conducted at that time remains unknown and no follow-up studies on the long-term effects of MIC exposure have been published. The present work examines genetic changes in the exposed population,with the aim of identifying any long-term effects of MIC. G-Banded metaphases were studied in lymphocytes of 130 individuals. Chromosomal aberrations (CA) were broadly grouped as abnormal cells (Abc), aberrations (Abn), and aberration/abnormal cell (Abn/Abc). From the previous multi-center screening, 946 records were retrieved, from which CA, sister chromatid exchanges (SCE), and cell-cycle kinetics (RI) were computed. In our analysis of the previous study, Abc and Abn were higher in the moderately and severely exposed groups than in the unexposed population. Abc appeared uniform in all groups of the present study, although Abn and Abn/Abc were higher in the exposed groups. Aberrations were now significantly higher in the unexposed and moderately exposed groups than in the previous screening. Although Abn and Abc now appeared lower in severely exposed subjects, the Abn/Abc ratio was higher, perhaps due to more rearrangements and damage in a smaller number of Abc. This result may be attributed to differences between the methods used in the studies, then and now. Elevated SCEs and reduced RI were seen in the severely exposed population shortly after exposure, and stable/clonal rearrangements were seen 30 y later. Follow-up of index cases and their progenies is needed.
Collapse
Affiliation(s)
- Bani Bandana Ganguly
- MGM Center for Genetic Research & Diagnosis, MGM New Bombay Hospital, Navi Mumbai, India.
| | - Shouvik Mandal
- MGM Center for Genetic Research & Diagnosis, MGM New Bombay Hospital, Navi Mumbai, India
| |
Collapse
|
34
|
Hughes CL, Waters MD. What Stressors Cause Cancer and When? TRANSLATIONAL TOXICOLOGY AND THERAPEUTICS: WINDOWS OF DEVELOPMENTAL SUSCEPTIBILITY IN REPRODUCTION AND CANCER 2017:1-60. [DOI: 10.1002/9781119023647.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Claude L. Hughes
- Therapeutic Science and Strategy Unit, QuintilesIMS, Inc.; Department of Obstetrics and Gynecology; Duke University Medical Center; and Department of Mathematics, North Carolina State University; Morrisville NC USA
| | | |
Collapse
|
35
|
Kusari F, O'Doherty AM, Hodges NJ, Wojewodzic MW. Bi-directional effects of vitamin B 12 and methotrexate on Daphnia magna fitness and genomic methylation. Sci Rep 2017; 7:11872. [PMID: 28928387 PMCID: PMC5605502 DOI: 10.1038/s41598-017-12148-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022] Open
Abstract
Here we interrogated, using three separate but complementary experimental approaches, the impact of vitamin B12 availability and methotrexate exposure on Daphnia magna, which we hypothesised should have an opposite effect on One carbon metabolism (OCM). OCM is a vital biological process supporting a variety of physiological processes, including DNA methylation. Contrary to mammalian models, this process remains largely unexplored in invertebrates. The purpose of this study was to elucidate the impact of OCM short-term alteration on the fitness and epigenome of the keystone species, Daphnia. We used maternal age at reproduction, brood size and survival rates in combination with DNA methylation sensitive comet assay to determine the effects of vitamin B12 or MTX on fitness and the epigenome. Vitamin B12 had a positive influence on Daphnia fitness and we provide evidence demonstrating that this may be associated with an increased level of genome-wide DNA methylation. Conversely, exposing D. magna to MTX negatively influenced the fitness of the animals and was associated with loss of global DNA methylation, translating in decreased fitness. These results highlight the potential importance of OCM in invertebrates, providing novel evidence supporting a potential role for epigenetic modifications to the genome in D. magna environmental adaptability.
Collapse
Affiliation(s)
- Fitore Kusari
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT,, UK
| | - Alan M O'Doherty
- School of Agriculture & Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nikolas J Hodges
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT,, UK
| | - Marcin W Wojewodzic
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT,, UK.
| |
Collapse
|
36
|
Carrell DT, Hotaling J. Using sperm testing to improve patient and offspring health: rational, evidence-based care of the infertile male in the ART clinic. Transl Androl Urol 2017; 6:S443-S445. [PMID: 29082158 PMCID: PMC5643637 DOI: 10.21037/tau.2017.03.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Douglas T Carrell
- Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - James Hotaling
- Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
37
|
Ferranti EP, Grossmann R, Starkweather A, Heitkemper M. Biological determinants of health: Genes, microbes, and metabolism exemplars of nursing science. Nurs Outlook 2017; 65:506-514. [PMID: 28576296 PMCID: PMC5657318 DOI: 10.1016/j.outlook.2017.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Increasingly, nurse scientists are incorporating "omics" measures (e.g., genomics, transcriptomics, proteomics, and metabolomics) in studies of biologic determinants of health and behavior. The role of omics in nursing science can be conceptualized in several ways: (a) as a portfolio of biological measures (biomarkers) to monitor individual risk, (b) as a set of combined data elements that can generate new knowledge based on large and complex patient data sets, (c) as baseline information that promotes health education and potentially personalized interventions, and (d) as a platform to understand how environmental parameters (e.g., diet) interact with the individual's physiology. PURPOSE In this article, we provide exemplars of nursing scientists who use omics to better understand specific health conditions. METHODS We highlight various ongoing nursing research investigations incorporating omics technologies to study chronic pain vulnerability, risk for a pain-related condition, cardiometabolic complications associated with pregnancy, and as biomarkers of response to a dietary intervention. DISCUSSION Omics technologies add an important dimension to nursing science across many foci of investigation. However, there are also challenges and opportunities for nurse scientists who consider using omics in their research. CONCLUSION The integration of omics holds promise for increasing the impact of nursing research and practice on population health outcomes.
Collapse
Affiliation(s)
- Erin P Ferranti
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | | | - Angela Starkweather
- Center for Advancement in Managing Pain and P20 Center for Accelerating Precision Pain Self-Management, University of Connecticut School of Nursing, Storrs, CT
| | - Margaret Heitkemper
- Department of Biobehavioral Nursing and Health Informatics, University of Washington School of Nursing, Seattle, WA.
| |
Collapse
|
38
|
Rossnerova A, Pokorna M, Svecova V, Sram RJ, Topinka J, Zölzer F, Rossner P. Adaptation of the human population to the environment: Current knowledge, clues from Czech cytogenetic and "omics" biomonitoring studies and possible mechanisms. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:188-203. [PMID: 28927528 DOI: 10.1016/j.mrrev.2017.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022]
Abstract
The human population is continually exposed to numerous harmful environmental stressors, causing negative health effects and/or deregulation of biomarker levels. However, studies reporting no or even positive impacts of some stressors on humans are also sometimes published. The main aim of this review is to provide a comprehensive overview of the last decade of Czech biomonitoring research, concerning the effect of various levels of air pollution (benzo[a]pyrene) and radiation (uranium, X-ray examination and natural radon background), on the differently exposed population groups. Because some results obtained from cytogenetic studies were opposite than hypothesized, we have searched for a meaningful interpretation in genomic/epigenetic studies. A detailed analysis of our data supported by the studies of others and current epigenetic knowledge, leads to a hypothesis of the versatile mechanism of adaptation to environmental stressors via DNA methylation settings which may even originate in prenatal development, and help to reduce the resulting DNA damage levels. This hypothesis is fully in agreement with unexpected data from our studies (e.g. lower levels of DNA damage in subjects from highly polluted regions than in controls or in subjects exposed repeatedly to a pollutant than in those without previous exposure), and is also supported by differences in DNA methylation patterns in groups from regions with various levels of pollution. In light of the adaptation hypothesis, the following points may be suggested for future research: (i) the chronic and acute exposure of study subjects should be distinguished; (ii) the exposure history should be mapped including place of residence during the life and prenatal development; (iii) changes of epigenetic markers should be monitored over time. In summary, investigation of human adaptation to the environment, one of the most important processes of survival, is a new challenge for future research in the field of human biomonitoring that may change our view on the results of biomarker analyses and potential negative health impacts of the environment.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Michaela Pokorna
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Vlasta Svecova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Radim J Sram
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Friedo Zölzer
- Institute of Radiology, Toxicology and Civil Protection, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Pavel Rossner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague 4, Czech Republic.
| |
Collapse
|
39
|
Malmuthuge N, Guan LL. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health. J Dairy Sci 2017; 100:5996-6005. [PMID: 28501408 DOI: 10.3168/jds.2016-12239] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/04/2017] [Indexed: 12/17/2022]
Abstract
Early gut microbiota plays a vital role in the long-term health of the host. However, understanding of these microbiota is very limited in livestock species, especially in dairy calves. Neonatal calves are highly susceptible to enteric infections, one of the major causes of calf death, so approaches to improving gut health and overall calf health are needed. An increasing number of studies are exploring the microbial composition of the gut, the mucosal immune system, and early dietary interventions to improve the health of dairy calves, revealing possibilities for effectively reducing the susceptibility of calves to enteric infections while promoting growth. Still, comprehensive understanding of the effect of dietary interventions on gut microbiota-one of the key aspects of gut health-is lacking. Such knowledge may provide in-depth understanding of the mechanisms behind functional changes in response to dietary interventions. Understanding of host-microbial interactions with dietary interventions and the role of the gut microbiota during pathogenesis at the site of infection in early life is vital for designing effective tools and techniques to improve calf gut health.
Collapse
Affiliation(s)
- Nilusha Malmuthuge
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5 Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5 Canada.
| |
Collapse
|
40
|
Shnorhavorian M, Schwartz SM, Stansfeld B, Sadler-Riggleman I, Beck D, Skinner MK. Differential DNA Methylation Regions in Adult Human Sperm following Adolescent Chemotherapy: Potential for Epigenetic Inheritance. PLoS One 2017; 12:e0170085. [PMID: 28146567 PMCID: PMC5287489 DOI: 10.1371/journal.pone.0170085] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/28/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The potential that adolescent chemotherapy can impact the epigenetic programming of the germ line to influence later life adult fertility and promote epigenetic inheritance was investigated. Previous studies have demonstrated a number of environmental exposures such as abnormal nutrition and toxicants can promote sperm epigenetic changes that impact offspring. METHODS Adult males approximately ten years after pubertal exposure to chemotherapy were compared to adult males with no previous exposure. Sperm were collected to examine differential DNA methylation regions (DMRs) between the exposed and control populations. Gene associations and correlations to genetic mutations (copy number variation) were also investigated. METHODS AND FINDINGS A signature of statistically significant DMRs was identified in the chemotherapy exposed male sperm. The DMRs, termed epimutations, were found in CpG desert regions of primarily 1 kilobase size. Observations indicate adolescent chemotherapy exposure can promote epigenetic alterations that persist in later life. CONCLUSIONS This is the first observation in humans that an early life chemical exposure can permanently reprogram the spermatogenic stem cell epigenome. The germline (i.e., sperm) epimutations identified suggest chemotherapy has the potential to promote epigenetic inheritance to the next generation.
Collapse
Affiliation(s)
| | - Stephen M. Schwartz
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Barbara Stansfeld
- Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
41
|
Transgenerational inheritance of enhanced susceptibility to radiation-induced medulloblastoma in newborn Ptch1⁺/⁻ mice after paternal irradiation. Oncotarget 2016; 6:36098-112. [PMID: 26452034 PMCID: PMC4742164 DOI: 10.18632/oncotarget.5553] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022] Open
Abstract
The hypothesis of transgenerational induction of increased cancer susceptibility after paternal radiation exposure has long been controversial because of inconsistent results and the lack of a mechanistic interpretation. Here, exploiting Ptch1 heterozygous knockout mice, susceptible to spontaneous and radiation-induced medulloblastoma, we show that exposure of paternal germ cells to 1 Gy X-rays, at the spermatogonial stage, increased by a considerable 1.4-fold the offspring susceptibility to medulloblastoma induced by neonatal irradiation. This effect gained further biological significance thanks to a number of supporting data on the immunohistochemical characterization of the target tissue and preneoplastic lesions (PNLs). These results altogether pointed to increased proliferation of cerebellar granule cell precursors and PNLs cells, which favoured the development of frank tumours. The LOH analysis of tumor DNA showed Ptch1 biallelic loss in all tumor samples, suggesting that mechanisms other than interstitial deletions, typical of radiation-induced medulloblastoma, did not account for the observed increased cancer risk. This data was supported by comet analysis showing no differences in DNA damage induction and repair in cerebellar cells as a function of paternal irradiation. Finally, we provide biological plausibility to our results offering evidence of a possible epigenetic mechanism of inheritance based on radiation-induced changes of the microRNA profile of paternal sperm.
Collapse
|
42
|
Bolondi A, Caldarelli F, Di Felice F, Durano D, Germani G, Michetti L, Tramutolo A, Micheli G, Camilloni G. What is a Gene? A Two Sided View. Evol Biol 2016. [DOI: 10.1007/s11692-016-9392-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Lappé M. Epigenetics, Media Coverage, and Parent Responsibilities in the Post-Genomic Era. CURRENT GENETIC MEDICINE REPORTS 2016; 4:92-97. [PMID: 27867757 PMCID: PMC5111809 DOI: 10.1007/s40142-016-0092-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Environmental epigenetics is the study of how exposures and experiences can turn genes "on" or "off" without changing DNA sequence. By examining the influence that environmental conditions including diet, stress, trauma, toxins, and care can have on gene expression, this science suggests molecular connections between the environment, genetics, and how acquired characteristics may be inherited across generations. The rapid expansion of research in this area has attracted growing media attention. This coverage has implications for how parents and prospective parents understand health and their perceived responsibilities for children's wellbeing. This review provides insight into epigenetic research, its coverage in the media, and the social and ethical implications of this science for patients and clinicians. As epigenetic findings continue to elucidate the complex relationships between nature and nurture, it becomes critical to examine how representations of this science may influence patient experiences of risk and responsibility. This review describes some of the social and ethical implications of epigenetic research today.
Collapse
Affiliation(s)
- Martine Lappé
- Postdoctoral Fellow, Columbia University Center for Ethical, Legal and Social Implications of Psychiatric, Neurologic, and Behavioral Genetics, Unit 122 New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032
| |
Collapse
|
44
|
Consales C, Toft G, Leter G, Bonde JPE, Uccelli R, Pacchierotti F, Eleuteri P, Jönsson BAG, Giwercman A, Pedersen HS, Struciński P, Góralczyk K, Zviezdai V, Spanò M. Exposure to persistent organic pollutants and sperm DNA methylation changes in Arctic and European populations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:200-9. [PMID: 26801515 DOI: 10.1002/em.21994] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/06/2015] [Indexed: 05/28/2023]
Abstract
Persistent organic pollutants (POPs), such as PCBs (polychlorinated biphenyls) and DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane], are environmental contaminants with potential endocrine disrupting activity. DNA methylation levels in peripheral blood lymphocytes have been associated with serum concentrations of POPs in Greenland Inuit and Korean populations. Greenland Inuits are characterized by the highest worldwide POP levels. In this cross-sectional study we evaluated the relationship between serum POP concentrations and DNA methylation levels in sperm of non-occupationally exposed fertile men from Greenland, Warsaw (Poland), and Kharkiv (Ukraine). Serum levels of PCB-153 [1,2,4-trichloro-5-(2,4,5-trichlorophenyl)benzene], as a proxy of the total PCBs body burden, and of p,p'-DDE [1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene], the main metabolite of DDT were measured. Sperm DNA methylation level was assessed globally by flow cytometric (FCM) immunodetection of 5-methyl-cytosines and at specific repetitive DNA sequences (Alu, LINE-1, Satα) by PCR-pyrosequencing after bisulfite conversion. Multivariate linear regression analysis was applied to investigate correlations between serum POP concentrations and DNA methylation. No consistent associations between exposure to POPs and sperm DNA methylation at repetitive DNA sequences were detected. A statistically significant global decrease in methylation was associated with exposure to either POP by FCM analysis. This is the first study to investigate environmental exposure to POPs and DNA methylation levels considering sperm as the target cells. Although POP exposure appears to have a limited negative impact on sperm DNA methylation levels in adult males, the global hypomethylation detected by one of the methods applied suggests that further investigation is warranted.
Collapse
Affiliation(s)
- Claudia Consales
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center, Rome, 00123, Italy
| | - Gunnar Toft
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, DK-8200, Denmark
| | - Giorgio Leter
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center, Rome, 00123, Italy
| | - Jens Peter E Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg University Hospital of Copenhagen, Copenhagen, NV, DK-2400, Denmark
| | - Raffaella Uccelli
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center, Rome, 00123, Italy
| | - Francesca Pacchierotti
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center, Rome, 00123, Italy
| | - Patrizia Eleuteri
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center, Rome, 00123, Italy
| | - Bo A G Jönsson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, SE-22185, Sweden
| | - Aleksander Giwercman
- Molecular Reproductive Medicine, Department of Translational Medicine, Skåne University Hospital Malmö, Lund University, Malmö, SE-20502, Sweden
| | - Henning S Pedersen
- Centre for Arctic Environmental Medicine, Greenland Institute of Natural Resources, Nuuk, Greenland, DK-3900, Denmark
| | - Paweł Struciński
- Department of Toxicology and Risk Assessment, National Institute of Public Health-National Institute of Hygiene, Warsaw, 00791, Poland
| | - Katarzyna Góralczyk
- Department of Toxicology and Risk Assessment, National Institute of Public Health-National Institute of Hygiene, Warsaw, 00791, Poland
| | - Valentyna Zviezdai
- Laboratory of Human Reproduction, Department of Social Medicine and Organization of Public Health, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
| | - Marcello Spanò
- Laboratory of Biosafety and Risk Assessment, Division of Health Technologies, Department of Sustainable Territorial and Production Systems, ENEA Casaccia Research Center, Rome, 00123, Italy
| |
Collapse
|
45
|
Laurentino S, Borgmann J, Gromoll J. On the origin of sperm epigenetic heterogeneity. Reproduction 2016; 151:R71-8. [PMID: 26884419 DOI: 10.1530/rep-15-0436] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/15/2016] [Indexed: 01/05/2023]
Abstract
The influence of epigenetic modifications on reproduction and on the function of male germ cells has been thoroughly demonstrated. In particular, aberrant DNA methylation levels in sperm have been associated with abnormal sperm parameters, lower fertilization rates and impaired embryo development. Recent reports have indicated that human sperm might be epigenetically heterogeneous and that abnormal DNA methylation levels found in the sperm of infertile men could be due to the presence of sperm populations with different epigenetic quality. However, the origin and the contribution of different germ cell types to this suspected heterogeneity remain unclear. In this review, we focus on sperm epigenetics at the DNA methylation level and its importance in reproduction. We take into account the latest developments and hypotheses concerning the functional significance of epigenetic heterogeneity coming from the field of stem cell and cancer biology and discuss the potential importance and consequences of sperm epigenetic heterogeneity for reproduction, male (in)fertility and assisted reproductive technologies (ART). Based on the current information, we propose a model in which spermatogonial stem cell variability, either intrinsic or due to external factors (such as endocrine action and environmental stimuli), can lead to epigenetic sperm heterogeneity, sperm epimutations and male infertility. The elucidation of the precise causes for epimutations, the conception of adequate therapeutic options and the development of sperm selection technologies based on epigenetic quality should be regarded as crucial to the improvement of ART outcome in the near future.
Collapse
Affiliation(s)
- Sandra Laurentino
- Centre of Reproductive Medicine and AndrologyAlbert-Schweitzer Campus, Münster, Germany
| | - Jennifer Borgmann
- Centre of Reproductive Medicine and AndrologyAlbert-Schweitzer Campus, Münster, Germany
| | - Jörg Gromoll
- Centre of Reproductive Medicine and AndrologyAlbert-Schweitzer Campus, Münster, Germany
| |
Collapse
|