1
|
Sadeghnejad A, Pazoki A, Yazdanpanah E, Esmaeili SA, Yousefi B, Sadighi-Moghaddam B, Baharlou R, Haghmorad D. Exploring the role of mesenchymal stem cells in modulating immune responses via Treg and Th2 cell activation: insights from mouse model of multiple sclerosis. APMIS 2024; 132:888-899. [PMID: 39030955 DOI: 10.1111/apm.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
Multiple sclerosis is a demyelinating neurodegenerative disease, and its animal model, experimental autoimmune encephalomyelitis (EAE), exhibits immunological and clinical similarities. The study aimed to examine mechanisms underlying therapeutic effects of mesenchymal stem cell administration in EAE. C57BL/6 mice were separated into control and treatment groups (T1, T2, and T3); EAE was induced in all animals. Clinical examinations were conducted daily, and on 25th day, animals were sacrificed, and spinal cord was stained for histological analysis. Additionally, spleen cell proliferation assay, assessments of cytokine, and gene expression in both spinal cord and spleen cells were performed. The results indicated a significant reduction in clinical symptoms among treatment groups compared to control group. Histological analyses revealed decreased infiltration of lymphocytes into the spinal cord and reduced demyelinated areas in treatment groups compared to control group. Cytokine production of IL-10, TGF-β, and IL-4 were significantly enhanced and IFN-γ and TNF-α in treatment groups were decreased relative to control group. Also, gene expression of CTLA-4, PD-1, IL-27, and IL-33 indicated a significant increase in treatment groups. The administration of MSCs significantly improved clinical symptoms, attenuated inflammation, and reduced spinal cord demyelination in EAE, suggesting a potential protective effect on disease progression.
Collapse
Affiliation(s)
- Abdolvahid Sadeghnejad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Pazoki
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Yousefi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bijan Sadighi-Moghaddam
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Rasoul Baharlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
2
|
Ghareghani M, Arneaud A, Rivest S. The evolution of mesenchymal stem cell-derived neural progenitor therapy for Multiple Sclerosis: from concept to clinic. Front Cell Neurosci 2024; 18:1428652. [PMID: 39280795 PMCID: PMC11393827 DOI: 10.3389/fncel.2024.1428652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
This review delves into the generation and therapeutic applications of mesenchymal stem cell-derived neural progenitors (MSC-NPs) in Multiple Sclerosis (MS), a chronic autoimmune disease characterized by demyelination, neuroinflammation, and progressive neurological dysfunction. Most current treatment paradigms primarily aimed at regulating the immune response show little success against the neurodegenerative aspect of MS. This calls for new therapies that would play a role in neurodegeneration and functional recovery of the central nervous system (CNS). While utilizing MSC was found to be a promising approach in MS therapy, the initiation of MSC-NPs therapy is an innovation that introduces a new perspective, a dual-action plan, that targets both the immune and neurodegenerative mechanisms of MS. The first preclinical studies using animal models of the disease showed that MSC-NPs could migrate to damaged sites, support remyelination, and possess immunomodulatory properties, thus, providing a solid basis for their human application. Based on pilot feasibility studies and phase I clinical trials, this review covers the transition from preclinical to clinical phases, where intrathecally administered autologous MSC-NPs has shown great hope in treating patients with progressive MS by providing safety, tolerability, and preliminary efficacy. This review, after addressing the role of MSCs in MS and its animal model of experimental autoimmune encephalomyelitis (EAE), highlights the significance of the MSC-NP therapy by organizing its advancement processes from experimental models to clinical translation in MS treatment. It points out the continuing obstacles, which require more studies to improve therapeutic protocols, uncovers the mechanisms of action, and establishes long-term efficacy and safety in larger controlled trials.
Collapse
Affiliation(s)
- Majid Ghareghani
- Neuroscience Laboratory, CHU de Québec Research Centre, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| | - Ayanna Arneaud
- Neuroscience Laboratory, CHU de Québec Research Centre, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Centre, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| |
Collapse
|
3
|
Hu H, Li H, Li R, Liu P, Liu H. Re-establishing immune tolerance in multiple sclerosis: focusing on novel mechanisms of mesenchymal stem cell regulation of Th17/Treg balance. J Transl Med 2024; 22:663. [PMID: 39010157 PMCID: PMC11251255 DOI: 10.1186/s12967-024-05450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
The T-helper 17 (Th17) cell and regulatory T cell (Treg) axis plays a crucial role in the development of multiple sclerosis (MS), which is regarded as an immune imbalance between pro-inflammatory cytokines and the maintenance of immune tolerance. Mesenchymal stem cell (MSC)-mediated therapies have received increasing attention in MS research. In MS and its animal model experimental autoimmune encephalomyelitis, MSC injection was shown to alter the differentiation of CD4+T cells. This alteration occurred by inducing anergy and reduction in the number of Th17 cells, stimulating the polarization of antigen-specific Treg to reverse the imbalance of the Th17/Treg axis, reducing the inflammatory cascade response and demyelination, and restoring an overall state of immune tolerance. In this review, we summarize the mechanisms by which MSCs regulate the balance between Th17 cells and Tregs, including extracellular vesicles, mitochondrial transfer, metabolic reprogramming, and autophagy. We aimed to identify new targets for MS treatment using cellular therapy by analyzing MSC-mediated Th17-to-Treg polarization.
Collapse
Affiliation(s)
- Huiru Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Hui Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ruoyu Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Peidong Liu
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Hongbo Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
4
|
Ghasemi M, Roshandel E, Mohammadian M, Farhadihosseinabadi B, Akbarzadehlaleh P, Shamsasenjan K. Mesenchymal stromal cell-derived secretome-based therapy for neurodegenerative diseases: overview of clinical trials. Stem Cell Res Ther 2023; 14:122. [PMID: 37143147 PMCID: PMC10161443 DOI: 10.1186/s13287-023-03264-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/06/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Over the past few years, mesenchymal stromal cells (MSCs) have attracted a great deal of scientific attention owing to their promising results in the treatment of incurable diseases. However, there are several concerns about their possible side effects after direct cell transplantation, including host immune response, time-consuming cell culture procedures, and the dependence of cell quality on the donor, which limit the application of MSCs in clinical trials. On the other hand, it is well accepted that the beneficial effects of MSCs are mediated by secretome rather than cell replacement. MSC secretome refers to a variety of bioactive molecules involved in different biological processes, specifically neuro-regeneration. MAIN BODY Due to the limited ability of the central nervous system to compensate for neuronal loss and relieve disease progress, mesenchymal stem cell products may be used as a potential cure for central nervous system disorders. In the present study, the therapeutic effects of MSC secretome were reviewed and discussed the possible mechanisms in the three most prevalent central nervous system disorders, namely Alzheimer's disease, multiple sclerosis, and Parkinson's disease. The current work aimed to help discover new medicine for the mentioned complications. CONCLUSION The use of MSC-derived secretomes in the treatment of the mentioned diseases has encouraging results, so it can be considered as a treatment option for which no treatment has been introduced so far.
Collapse
Affiliation(s)
- Maryam Ghasemi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Department of Hematology, School of Medicine, Tarbiat Modares University (TMU), Tehran, Iran
| | | | - Parvin Akbarzadehlaleh
- Pharmaceutical Biotechnology Department, Pharmacy Faculty, Tabriz University of Medical Science, Tabriz, Iran.
| | - Karim Shamsasenjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Robinson AM, Stavely R, Miller S, Eri R, Nurgali K. Mesenchymal stem cell treatment for enteric neuropathy in the Winnie mouse model of spontaneous chronic colitis. Cell Tissue Res 2022; 389:41-70. [PMID: 35536444 DOI: 10.1007/s00441-022-03633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic gut inflammation with periods of acute flares and remission. Beneficial effects of a single dose of mesenchymal stem cell (MSC)-based treatment have been demonstrated in acute models of colitis. No studies investigated therapeutic effects of MSCs for the attenuation of enteric neuropathy in a chronic model of colitis. The short and long-term effects of MSC treatment in modulating inflammation and damage to the enteric nervous system (ENS) were studied in the Winnie mouse model of spontaneous chronic colitis highly representative of human IBD. Winnie mice received a single dose of either 1 × 106 human bone marrow-derived MSCs or 100µL PBS by intracolonic enema. C57BL/6 mice received 100µL PBS. Colon tissues were collected at 3 and 60 days post MSC administration to evaluate the short-term and long-term effects of MSCs on inflammation and enteric neuropathy by histological and immunohistochemical analyses. In a separate set of experiments, multiple treatments with 4 × 106 and 2 × 106 MSCs were performed and tissue collected at 3 days post treatment. Chronic intestinal inflammation in Winnie mice was associated with persistent diarrhea, perianal bleeding, morphological changes, and immune cell infiltration in the colon. Significant changes to the ENS, including impairment of cholinergic, noradrenergic and sensory innervation, and myenteric neuronal loss were prominent in Winnie mice. Treatment with a single dose of bone marrow-derived MSCs was ineffective in attenuating chronic inflammation and enteric neuropathy in Winnie.
Collapse
Affiliation(s)
- Ainsley M Robinson
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rhian Stavely
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia.,Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Sarah Miller
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia
| | - Rajaraman Eri
- University of Tasmania, School of Health Sciences, Launceston, TAS, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, VIC, Australia. .,Department of Medicine Western Health, The University of Melbourne, Melbourne, VIC, Australia. .,Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Efficacy and Safety of Mesenchymal Stem Cell Transplantation in the Treatment of Autoimmune Diseases (Rheumatoid Arthritis, Systemic Lupus Erythematosus, Inflammatory Bowel Disease, Multiple Sclerosis, and Ankylosing Spondylitis): A Systematic Review and Meta-Analysis of Randomized Controlled Trial. Stem Cells Int 2022; 2022:9463314. [PMID: 35371265 PMCID: PMC8970953 DOI: 10.1155/2022/9463314] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 01/30/2023] Open
Abstract
Objective To evaluate the efficacy and safety of mesenchymal stem cell (MSC) transplantation in the treatment of autoimmune diseases. Methods The Chinese and English databases were searched for clinical research on the treatment of autoimmune diseases with mesenchymal stem cells. The search time range is from a self-built database to October 1, 2021. Two reviewers independently screened the literature according to the inclusion and exclusion criteria, extracted data, and evaluated the bias of the included studies. RevMan 5.3 analysis software was used for meta-analysis. Results A total of 18 RCTs involving 5 autoimmune diseases were included. The 5 autoimmune disease were rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease, ankylosing spondylitis, and multiple sclerosis. For RA, the current randomized controlled trials (RCTs) still believe that stem cell transplantation may reduce disease activity, improve the clinical symptoms (such as DAS28), and the percentage of CD4+CD 25+Foxp3+Tregs in the response group increased and the percentage of CD4+IL-17A+Th17 cells decreased. The total clinical effective rate of RA is 54%. For SLE, the results showed that mesenchymal stem cell transplantation may improve SLEDAI [-2.18 (-3.62, -0.75), P = 0.003], urine protein [-0.93 (-1.04, -0.81), P < 0.00001], and complement C3 [0.31 (0.19, 0.42), P < 0.00001]. For inflammatory bowel disease, the results showed that mesenchymal stem cell transplantation may improve clinical efficacy [2.50 (1.07, 5.84), P = 0.03]. For ankylosing spondylitis, MSC treatment for 6 months may increase the total effective rate; reduce erythrocyte sedimentation rate, intercellular adhesion molecules, and serum TNF-α; and improve pain and activity. For multiple sclerosis, the current research results are still controversial, so more RCTs are needed to amend or confirm the conclusions. No obvious adverse events of mesenchymal stem cell transplantation were found in all RCTs. Conclusion MSCs have a certain effect on different autoimmune diseases, but more RCTs are needed to further modify or confirm the conclusion.
Collapse
|
7
|
Lindsay SL, Molęda AM, MacLellan LM, Keh SM, McElroy DE, Linington C, Goodyear CS, Barnett SC. Human olfactory mesenchymal stromal cell transplantation ameliorates experimental autoimmune encephalomyelitis revealing an inhibitory role for IL16 on myelination. Acta Neuropathol Commun 2022; 10:12. [PMID: 35093166 PMCID: PMC8800340 DOI: 10.1186/s40478-022-01316-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
One of the therapeutic approaches for the treatment of the autoimmune demyelinating disease, multiple sclerosis (MS) is bone marrow mesenchymal stromal cell (hBM-MSCs) transplantation. However, given their capacity to enhance myelination in vitro, we hypothesised that human olfactory mucosa-derived MSCs (hOM-MSCs) may possess additional properties suitable for CNS repair. Herein, we have examined the efficacy of hOM-MSCs versus hBM-MSCs using the experimental autoimmune encephalomyelitis (EAE) model. Both MSC types ameliorated disease, if delivered during the initial onset of symptomatic disease. Yet, only hOM-MSCs improved disease outcome if administered during established disease when animals had severe neurological deficits. Histological analysis of spinal cord lesions revealed hOM-MSC transplantation reduced blood–brain barrier disruption and inflammatory cell recruitment and enhanced axonal survival. At early time points post-hOM-MSC treatment, animals had reduced levels of circulating IL-16, which was reflected in both the ability of immune cells to secrete IL-16 and the level of IL-16 in spinal cord inflammatory lesions. Further in vitro investigation revealed an inhibitory role for IL-16 on oligodendrocyte differentiation and myelination. Moreover, the availability of bioactive IL-16 after demyelination was reduced in the presence of hOM-MSCs. Combined, our data suggests that human hOM-MSCs may have therapeutic benefit in the treatment of MS via an IL-16-mediated pathway, especially if administered during active demyelination and inflammation.
Collapse
|
8
|
Lotfy A, Ali NS, Abdelgawad M, Salama M. Mesenchymal stem cells as a treatment for multiple sclerosis: a focus on experimental animal studies. Rev Neurosci 2021; 31:161-179. [PMID: 31605598 DOI: 10.1515/revneuro-2019-0040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is a progressive and debilitating neurological condition in which the immune system abnormally attacks the myelin sheath insulating the nerves. Mesenchymal stem cells (MSCs) are found in most adult tissues and play a significant systemic role in self-repair. MSCs have promising therapeutic effects in many diseases, such as autoimmune diseases, including MS. MSCs have been tested in MS animal models, such as experimental autoimmune encephalomyelitis. Other studies have combined other agents with MSCs, genetically modified MSCs, or used culture medium from MSCs. In this review, we will summarize these studies and compare the main factors in each study, such as the source of MSCs, the type of animal model, the route of injection, the number of injected cells, and the mechanism of action.
Collapse
Affiliation(s)
- Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt, e-mail:
| | - Nourhan S Ali
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed Salama
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansourah, Ad Daqahliyah, Egypt.,Institute of Global Health and Human Ecology (IGHHE), American University in Cairo (AUC), Cairo, Egypt
| |
Collapse
|
9
|
He J, Huang Y, Liu J, Lan Z, Tang X, Hu Z. The Efficacy of Mesenchymal Stem Cell Therapies in Rodent Models of Multiple Sclerosis: An Updated Systematic Review and Meta-Analysis. Front Immunol 2021; 12:711362. [PMID: 34512632 PMCID: PMC8427822 DOI: 10.3389/fimmu.2021.711362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/05/2021] [Indexed: 01/22/2023] Open
Abstract
Studies have demonstrated the potential of mesenchymal stem cell (MSC) administration to promote functional recovery in preclinical studies of multiple sclerosis (MS), yet the effects of MSCs on remyelination are poorly understood. We wished to evaluate the therapeutic effects of MSCs on functional and histopathological outcomes in MS; therefore, we undertook an updated systematic review and meta-analysis of preclinical data on MSC therapy for MS. We searched mainstream databases from inception to July 15, 2021. Interventional studies of therapy using naïve MSCs in in vivo rodent models of MS were included. From each study, the clinical score was extracted as the functional outcome, and remyelination was measured as the histopathological outcome. Eighty-eight studies published from 2005 to 2021 met the inclusion criteria. Our results revealed an overall positive effect of MSCs on the functional outcome with a standardized mean difference (SMD) of −1.99 (95% confidence interval (CI): −2.32, −1.65; p = 0.000). MSCs promoted remyelination by an SMD of −2.31 (95% CI: −2.84, −1.79; p = 0.000). Significant heterogeneity among studies was observed. Altogether, our meta-analysis indicated that MSC administration improved functional recovery and promoted remyelination prominently in rodent models of MS.
Collapse
Affiliation(s)
- Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Brown C, McKee C, Halassy S, Kojan S, Feinstein DL, Chaudhry GR. Neural stem cells derived from primitive mesenchymal stem cells reversed disease symptoms and promoted neurogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Stem Cell Res Ther 2021; 12:499. [PMID: 34503569 PMCID: PMC8427882 DOI: 10.1186/s13287-021-02563-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). MS affects millions of people and causes a great economic and societal burden. There is no cure for MS. We used a novel approach to investigate the therapeutic potential of neural stem cells (NSCs) derived from human primitive mesenchymal stem cells (MSCs) in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Methods MSCs were differentiated into NSCs, labeled with PKH26, and injected into the tail vein of EAE mice. Neurobehavioral changes in the mice assessed the effect of transplanted cells on the disease process. The animals were sacrificed two weeks following cell transplantation to collect blood, lymphatic, and CNS tissues for analysis. Transplanted cells were tracked in various tissues by flow cytometry. Immune infiltrates were determined and characterized by H&E and immunohistochemical staining, respectively. Levels of immune regulatory cells, Treg and Th17, were analyzed by flow cytometry. Myelination was determined by Luxol fast blue staining and immunostaining. In vivo fate of transplanted cells and expression of inflammation, astrogliosis, myelination, neural, neuroprotection, and neurogenesis markers were investigated by using immunohistochemical and qRT-PCR analysis.
Results MSC-derived NSCs expressed specific neural markers, NESTIN, TUJ1, VIMENTIN, and PAX6. NSCs improved EAE symptoms more than MSCs when transplanted in EAE mice. Post-transplantation analyses also showed homing of MSCs and NSCs into the CNS with concomitant induction of an anti-inflammatory response, resulting in reducing immune infiltrates. NSCs also modulated Treg and Th17 cell levels in EAE mice comparable to healthy controls. Luxol fast blue staining showed significant improvement in myelination in treated mice. Further analysis showed that NSCs upregulated genes involved in myelination and neuroprotection but downregulated inflammatory and astrogliosis genes more significantly than MSCs. Importantly, NSCs differentiated into neural derivatives and promoted neurogenesis, possibly by modulating BDNF and FGF signaling pathways. Conclusions NSC transplantation reversed the disease process by inducing an anti-inflammatory response and promoting myelination, neuroprotection, and neurogenesis in EAE disease animals. These promising results provide a basis for clinical studies to treat MS using NSCs derived from primitive MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02563-8.
Collapse
Affiliation(s)
- Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Sophia Halassy
- Ascension Providence Hospital, Southfield, MI, 48075, USA
| | - Suleiman Kojan
- Department of Neuroscience, OUWB School of Medicine, Oakland University, Rochester, MI, 48309, USA
| | - Doug L Feinstein
- Department of Anesthesiology, The University of Illinois at Chicago, Chicago, IL, 60607, USA.,Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA. .,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA.
| |
Collapse
|
11
|
Mesenchymal Stem Cells in Multiple Sclerosis: Recent Evidence from Pre-Clinical to Clinical Studies. Int J Mol Sci 2020; 21:ijms21228662. [PMID: 33212873 PMCID: PMC7698327 DOI: 10.3390/ijms21228662] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system. Nowadays, available therapies for MS can help to manage MS course and symptoms, but new therapeutic approaches are required. Stem cell therapy using mesenchymal stem cells (MSCs) appeared promising in different neurodegenerative conditions, thanks to their beneficial capacities, including the immunomodulation ability, and to their secretome. The secretome is represented by growth factors, cytokines, and extracellular vesicles (EVs) released by MSCs. In this review, we focused on studies performed on in vivo MS models involving the administration of MSCs and on clinical trials evaluating MSCs administration. Experimental models of MS evidenced that MSCs were able to reduce inflammatory cell infiltration and disease score. Moreover, MSCs engineered to express different genes, preconditioned with different compounds, differentiated or in combination with other compounds also exerted beneficial actions in MS models, in some cases also superior to native MSCs. Secretome, both conditioned medium and EVs, also showed protective effects in MS models and appeared promising to develop new approaches. Clinical trials highlighted the safety and feasibility of MSC administration and reported some improvements, but other trials using larger cohorts of patients are needed.
Collapse
|
12
|
Kurte M, Vega-Letter AM, Luz-Crawford P, Djouad F, Noël D, Khoury M, Carrión F. Time-dependent LPS exposure commands MSC immunoplasticity through TLR4 activation leading to opposite therapeutic outcome in EAE. Stem Cell Res Ther 2020; 11:416. [PMID: 32988406 PMCID: PMC7520958 DOI: 10.1186/s13287-020-01840-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been recognized for their regenerative and anti-inflammatory capacity which makes them very attractive to cell therapy, especially those ones to treat inflammatory and autoimmune disease. Two different immune-phenotypes have been described for MSCs depending on which Toll-like receptor (TLR) is activated. MSC1 is endowed with a pro-inflammatory phenotype following TLR4 activation with LPS. On the other hand, anti-inflammatory MSC2 is induced by the activation of TLR3 with Poly(I:C). High immunoplasticity of MSCs is a matter of concern in cell-based therapies. In this study, we investigated whether a single stimulus can induce both types of MSCs through a differential activation of TLR4 with LPS. Methods MSCs were activated with LPS following a short exposure of 1-h (MSCs-LPS1h) or long-time exposure for 48 h (MSCs-LPS48h), and then, we evaluated the biological response in vitro, the immunosuppressive capacity of MSCs in vitro, and the therapeutic potential of MSCs in an experimental autoimmune encephalomyelitis (EAE) mouse model. Results Our results showed that 1-h LPS exposure induced a MSC1 phenotype. Indeed, MSCs-LPS1h expressed low levels of NO/iNOS and decreased immunosuppressive capacity in vitro without therapeutic effect in the EAE model. In contrast, MSCs-LPS48h achieved a MSC2-like phenotype with significant increase in the immunosuppressive capacity on T cell proliferation in vitro, together with an improved in the therapeutic effect and higher Treg, compared to unstimulated MSCs. Furthermore, we determine through the MSCs-TLR4KO that the expression of TLR4 receptor is essential for MSCs’ suppressive activity since TLR4 deletion was associated with a diminished suppressive effect in vitro and a loss of therapeutic effect in vivo. Conclusions We demonstrate that MSCs display a high immunoplasticity commanded by a single stimulus, where LPS exposure time regulated the MSC suppressive effect leading into either an enhanced or an impairment therapeutic activity. Our results underscore the importance of phenotype conversion probably related to the TLR4 expression and activation, in the design of future clinical protocols to treat patients with inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Mónica Kurte
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile.,Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Ana María Vega-Letter
- Cells for Cells, Regenero, Av. Álvaro del Portillo 12.455, Las Condes, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | | | - Danièle Noël
- IRMB, Univ Montpellier, INSERM, Montpellier, France.,CHU Montpellier, Montpellier, France
| | - Maroun Khoury
- Cells for Cells, Regenero, Av. Álvaro del Portillo 12.455, Las Condes, Santiago, Chile. .,Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
| | - Flavio Carrión
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12496 Lo Barnechea, Santiago, Chile.
| |
Collapse
|
13
|
Yanwu Y, Meiling G, Yunxia Z, Qiukui H, Birong D. Mesenchymal stem cells in experimental autoimmune encephalomyelitis model of multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2020; 44:102200. [PMID: 32535500 DOI: 10.1016/j.msard.2020.102200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS Mesenchymal stem cells (MSCs) transplantation has been considered a possible therapeutic method for Multiple Sclerosis (MS). However, no quantitative data synthesis of MSCs therapy for MS exists. We conducted a systematic review and meta-analysis to evaluate the effects of MSCs in experimental autoimmune encephalomyelitis (EAE) animal model of MS. METHODS We identified eligible studies published from January 1980 to January 2017 by searching four electronic databases (PubMed, MEDLINE, Embase and Web of Science). The outcome was the effects of MSCs on clinical performance evaluated by the EAE clinical score. RESULTS 36 preclinical studies including 675 animals in MSCs treatment group, and 693 animals in control group were included in this meta-analysis. We found that MSCs transplantation significantly ameliorated the symptoms and delayed the disease progression (SMD = -1.25, 95% CI: -1.45 to -1.05, P < 0.001). However, no significant differences in effect sizes were unveiled relative to clinical score standard (P = 0.35), type of MSCs (P = 0.35), source of MSCs (P = 0.06), MSCs dose (P = 0.44), delivery methods (P = 0.31) and follow up period (P = 0.73). CONCLUSIONS The current study showed that MSCs transplantation could ameliorate clinical performance in EAE animal model of MS. These findings support the further studies translate MSCs to treat MS in humans.
Collapse
Affiliation(s)
- Yang Yanwu
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ge Meiling
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Zhang Yunxia
- Department of Geriatric, Sichuan Science City Hospital, No. 64, Mianshan Road, Mianyang, Sichuan, China
| | - Hao Qiukui
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Dong Birong
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China; Department of Geriatric, Sichuan Science City Hospital, No. 64, Mianshan Road, Mianyang, Sichuan, China.
| |
Collapse
|
14
|
Lin X, Liu Y, Ma L, Ma X, Chen Z, Chen H, Si L, Ma X, Yu Z, Chen X. Amelioration of experimental autoimmune encephalomyelitis by Rhodiola rosea, a natural adaptogen. Biomed Pharmacother 2020; 125:109960. [DOI: 10.1016/j.biopha.2020.109960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 12/31/2022] Open
|
15
|
MiR-219a-5p Enriched Extracellular Vesicles Induce OPC Differentiation and EAE Improvement More Efficiently Than Liposomes and Polymeric Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12020186. [PMID: 32098213 PMCID: PMC7076664 DOI: 10.3390/pharmaceutics12020186] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022] Open
Abstract
Remyelination is a key aspect in multiple sclerosis pathology and a special effort is being made to promote it. However, there is still no available treatment to regenerate myelin and several strategies are being scrutinized. Myelination is naturally performed by oligodendrocytes and microRNAs have been postulated as a promising tool to induce oligodendrocyte precursor cell differentiation and therefore remyelination. Herein, DSPC liposomes and PLGA nanoparticles were studied for miR-219a-5p encapsulation, release and remyelination promotion. In parallel, they were compared with biologically engineered extracellular vesicles overexpressing miR-219a-5p. Interestingly, extracellular vesicles showed the highest oligodendrocyte precursor cell differentiation levels and were more effective than liposomes and polymeric nanoparticles crossing the blood–brain barrier. Finally, extracellular vesicles were able to improve EAE animal model clinical evolution. Our results indicate that the use of extracellular vesicles as miR-219a-5p delivery system can be a feasible and promising strategy to induce remyelination in multiple sclerosis patients.
Collapse
|
16
|
Sava RI, Pepine CJ, March KL. Immune Dysregulation in HFpEF: A Target for Mesenchymal Stem/Stromal Cell Therapy. J Clin Med 2020; 9:jcm9010241. [PMID: 31963368 PMCID: PMC7019215 DOI: 10.3390/jcm9010241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Over 26 million people worldwide suffer from heart failure, a disease associated with a 1 year mortality rate of 22%. Half of these patients present heart failure with preserved ejection fraction (HFpEF), for which there is no available therapy to improve prognosis. HFpEF is strongly associated with aging, inflammation, and comorbid burden, which are thought to play causal roles in disease development. Mesenchymal stromal/stem cells (MSCs) have potent immunomodulatory actions and promote tissue healing, thus representing an attractive therapeutic option in HFpEF. In this review, we summarize recent data suggesting that a two-hit model of immune dysregulation lies at the heart of the HFpEF. A first hit is represented by genetic mutations associated with clonal hematopoiesis of indeterminate potential (CHIP), which skew immune cells toward a pro-inflammatory phenotype, are associated with HFpEF development in animal models, and with immune dysregulation and risk of HF hospitalization in patients. A second hit is induced by cardiovascular risk factors, which cause subclinical cardiac dysfunction and production of danger signals. In mice, these attract proinflammatory macrophages, Th1 and Th17 cells into the myocardium, where they are required for the development of HFpEF. MSCs have been shown to reduce the pro-inflammatory activity of immune cell types involved in murine HFpEF in vitro, and to reduce myocardial fibrosis and improve diastolic function in vivo, thus they may efficiently target immune dysregulation in HFpEF and stop disease progression.
Collapse
Affiliation(s)
- Ruxandra I. Sava
- Center for Regenerative Medicine, University of Florida, Gainesville, FL 32610, USA;
- Cardiology Department, Elias Emergency University Hospital, 011461 Bucharest, Romania
- Correspondence:
| | - Carl J. Pepine
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Keith L. March
- Center for Regenerative Medicine, University of Florida, Gainesville, FL 32610, USA;
- Cardiology Department, Elias Emergency University Hospital, 011461 Bucharest, Romania
| |
Collapse
|
17
|
Zhu X, Yu J, Du J, Zhong G, Qiao L, Lin J. LncRNA HOXA-AS2 positively regulates osteogenesis of mesenchymal stem cells through inactivating NF-κB signalling. J Cell Mol Med 2018; 23:1325-1332. [PMID: 30536618 PMCID: PMC6349193 DOI: 10.1111/jcmm.14034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/04/2018] [Accepted: 10/27/2018] [Indexed: 12/14/2022] Open
Abstract
As is previously reported, mesenchymal stem cells have potential ability to differentiate into osteocytes. However, the underlying mechanism during this biological process is poorly understood. In the present study, we identify a novel long non-coding RNA named HOXA-AS2 as a critical regulator during the formation of osteogenesis. Attenuation of HOXA-AS2 can reduce the calcium deposition and repress the alkaline phosphatase activity. Moreover, the expressions of osteogenic marker genes are markedly downregulated after HOXA-AS2 depletion. Mechanistically, we found HOXA-AS2 can regulate the transcriptional activity of NF-κB, a critical inhibitor of osteogenesis. More importantly, HOXA-AS2 knockdown could result in the transcriptional repression of the osteogenic master transcription factor SP7 by a NF-κB/HDAC2-coordinated H3K27 deacetylation mechanism. Based on these studies, we conclude that HOXA-AS2 may serve as a promising therapeutic target for bone tissue repair and regeneration in the near future.
Collapse
Affiliation(s)
- Xinxing Zhu
- Henan Joint International Research Laboratory of Stem Cell Medicine, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China.,Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Jinjin Yu
- School of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Jiang Du
- Henan Joint International Research Laboratory of Stem Cell Medicine, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China.,Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Genshen Zhong
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Liang Qiao
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China.,Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
18
|
Lee DK, Song SU. Immunomodulatory mechanisms of mesenchymal stem cells and their therapeutic applications. Cell Immunol 2017; 326:68-76. [PMID: 28919171 DOI: 10.1016/j.cellimm.2017.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/27/2017] [Accepted: 08/27/2017] [Indexed: 02/06/2023]
Abstract
In the recent years, many studies have shown that MSCs must be stimulated by pro-inflammatory cytokines or other immune mediators before they can modulate immune cells in inflamed and damaged tissues. MSCs appear to be involved in inducing several regulatory immune cells, such as Tregs, Bregs, and regulatory NK cells. This new immune milieu created by MSCs may establish a tolerogenic environment that leads to an optimal condition for the treatment of immune diseases. The mechanisms of MSC action to treat immune disorders need to be further investigated in more detail. Since there have been some contradictory outcomes of clinical trials, it is necessary to perform large-scale and randomized clinical studies, such as a phase 3 placebo-controlled double-blind study of a third party MSCs to optimize MSC administration and to prove safety and efficacy of MSC treatment. MSCs offer great therapeutic promise, especially for the treatment of difficult-to-treat immune diseases.
Collapse
Affiliation(s)
- Don K Lee
- SCM Lifesciences Co. Ltd., Incheon 22332 Republic of Korea
| | - Sun U Song
- Dept. of Integrated Biomedical Sciences, Inha University School of Medicine, Incheon 22332 Republic of Korea; SCM Lifesciences Co. Ltd., Incheon 22332 Republic of Korea.
| |
Collapse
|
19
|
The transplantation of mesenchymal stem cells derived from unconventional sources: an innovative approach to multiple sclerosis therapy. Arch Immunol Ther Exp (Warsz) 2017; 65:363-379. [DOI: 10.1007/s00005-017-0460-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023]
|
20
|
Volpe G, Bernstock JD, Peruzzotti-Jametti L, Pluchino S. Modulation of host immune responses following non-hematopoietic stem cell transplantation: Translational implications in progressive multiple sclerosis. J Neuroimmunol 2016; 331:11-27. [PMID: 28034466 DOI: 10.1016/j.jneuroim.2016.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
There exists an urgent need for effective treatments for those patients suffering from chronic/progressive multiple sclerosis (MS). Accordingly, it has become readily apparent that different classes of stem cell-based therapies must be explored at both the basic science and clinical levels. Herein, we provide an overview of the basic mechanisms underlying the pre-clinical benefits of exogenously delivered non-hematopoietic stem cells (nHSCs) in animal models of MS. Further, we highlight a number of early clinical trials in which nHSCs have been used to treat MS. Finally, we identify a series of challenges that must be met and ultimately overcome if such promising therapeutics are to be advanced from the bench to the bedside.
Collapse
Affiliation(s)
- Giulio Volpe
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; University of Cambridge, Clifford Allbutt Building - Cambridge Biosciences Campus, Hills Road, CB2 0AH Cambridge, UK.
| | - Joshua D Bernstock
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA.
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK; University of Cambridge, Clifford Allbutt Building - Cambridge Biosciences Campus, Hills Road, CB2 0AH Cambridge, UK.
| | - Stefano Pluchino
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute, NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Fuenzalida P, Kurte M, Fernández-O'ryan C, Ibañez C, Gauthier-Abeliuk M, Vega-Letter AM, Gonzalez P, Irarrázabal C, Quezada N, Figueroa F, Carrión F. Toll-like receptor 3 pre-conditioning increases the therapeutic efficacy of umbilical cord mesenchymal stromal cells in a dextran sulfate sodium-induced colitis model. Cytotherapy 2016; 18:630-41. [PMID: 27059200 DOI: 10.1016/j.jcyt.2016.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AIMS Immunomodulatory properties of human umbilical cord-derived mesenchymal stromal cells (UCMSCs) can be differentially modulated by toll-like receptors (TLR) agonists. Here, the therapeutic efficacy of short TLR3 and TLR4 pre-conditioning of UCMSCs was evaluated in a dextran sulfate sodium (DSS)-induced colitis in mice. The novelty of this study is that although modulation of human MSCs activity by TLRs is not a new concept, this is the first time that short TLR pre-conditioning has been carried out in a murine inflammatory model of acute colitis. METHODS C57BL/6 mice were exposed to 2.5% dextran sulfate sodium (DSS) in drinking water ad libitum for 7 days. At days 1 and 3, mice were injected intraperitoneally with 1 × 10(6) UCMSCs untreated or TLR3 and TLR4 pre-conditioned UCMSCs. UCMSCs were pre-conditioned with poly(I:C) for TLR3 and LPS for TLR4 for 1 h at 37°C and 5% CO2. We evaluated clinical signs of disease and body weights daily. At the end of the experiment, colon length and histological changes were assessed. RESULTS poly(I:C) pre-conditioned UCMSCs significantly ameliorated the clinical and histopathological severity of DSS-induced colitis compared with UCMSCs or LPS pre-conditioned UCMSCs. In contrast, infusion of LPS pre-conditioned UCMSCs significantly increased clinical signs of disease, colon shortening and histological disease index in DSS-induced colitis. CONCLUSIONS These results show that short in vitro TLR3 pre-conditioning with poly(I:C) enhances the therapeutic efficacy of UCMSCs, which is a major breakthrough for developing improved treatments to patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Patricia Fuenzalida
- Cellular and Molecular Immunology Laboratory, Faculty of Medicine, University of the Andes, Santiago, Chile
| | - Mónica Kurte
- Cellular and Molecular Immunology Laboratory, Faculty of Medicine, University of the Andes, Santiago, Chile
| | - Catalina Fernández-O'ryan
- Cellular and Molecular Immunology Laboratory, Faculty of Medicine, University of the Andes, Santiago, Chile
| | - Cristina Ibañez
- Cellular and Molecular Immunology Laboratory, Faculty of Medicine, University of the Andes, Santiago, Chile
| | - Melanie Gauthier-Abeliuk
- Cellular and Molecular Immunology Laboratory, Faculty of Medicine, University of the Andes, Santiago, Chile
| | - Ana María Vega-Letter
- Cellular and Molecular Immunology Laboratory, Faculty of Medicine, University of the Andes, Santiago, Chile
| | - Paz Gonzalez
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, University of the Andes, Santiago, Chile; Cells for Cells, Santiago, Chile, Faculty of Medicine, University of the Andes, Santiago, Chile
| | - Carlos Irarrázabal
- Laboratory of Integrative and Molecular Physiology, Faculty of Medicine, University of the Andes, Santiago, Chile
| | - Nataly Quezada
- Cellular and Molecular Immunology Laboratory, Faculty of Medicine, University of the Andes, Santiago, Chile
| | - Fernando Figueroa
- Cellular and Molecular Immunology Laboratory, Faculty of Medicine, University of the Andes, Santiago, Chile
| | - Flavio Carrión
- Cellular and Molecular Immunology Laboratory, Faculty of Medicine, University of the Andes, Santiago, Chile.
| |
Collapse
|
22
|
Vega-Letter AM, Kurte M, Fernández-O'Ryan C, Gauthier-Abeliuk M, Fuenzalida P, Moya-Uribe I, Altamirano C, Figueroa F, Irarrázabal C, Carrión F. Differential TLR activation of murine mesenchymal stem cells generates distinct immunomodulatory effects in EAE. Stem Cell Res Ther 2016; 7:150. [PMID: 27724984 PMCID: PMC5057482 DOI: 10.1186/s13287-016-0402-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/30/2016] [Indexed: 02/15/2023] Open
Abstract
Background Recently, it has been observed that mesenchymal stem cells (MSCs) can modulate their immunoregulatory properties depending on the specific in-vitro activation of different Toll-like receptors (TLR), such as TLR3 and TLR4. In the present study, we evaluated the effect of polyinosinic:polycytidylic acid (poly(I:C)) and lipopolysaccharide (LPS) pretreatment on the immunological capacity of MSCs in vitro and in vivo. Methods C57BL/6 bone marrow-derived MSCs were pretreated with poly(I:C) and LPS for 1 hour and their immunomodulatory capacity was evaluated. T-cell proliferation and their effect on Th1, Th17, and Treg differentiation/activation were measured. Next, we evaluated the therapeutic effect of MSCs in an experimental autoimmune encephalomyelitis (EAE) model, which was induced for 27 days with MOG35–55 peptide following the standard protocol. Mice were subjected to a single intraperitoneal injection (2 × 106 MSCs/100 μl) on day 4. Clinical score and body weight were monitored daily by blinded analysis. At day 27, mice were euthanized and draining lymph nodes were extracted for Th1, Th17, and Treg detection by flow cytometry. Results Pretreatment of MSCs with poly(I:C) significantly reduced the proliferation of CD3+ T cells as well as nitric oxide secretion, an important immunosuppressive factor. Furthermore, MSCs treated with poly(I:C) reduced the differentiation/activation of proinflammatory lymphocytes, Th1 and Th17. In contrast, MSCs pretreated with LPS increased CD3+ T-cell proliferation, and induced Th1 and Th17 cells, as well as the levels of proinflammatory cytokine IL-6. Finally, we observed that intraperitoneal administration of MSCs pretreated with poly(I:C) significantly reduced the severity of EAE as well as the percentages of Th1 and Th17 proinflammatory subsets, while the pretreatment of MSCs with LPS completely reversed the therapeutic immunosuppressive effect of MSCs. Conclusions Taken together, these data show that pretreatment of MSCs with poly(I:C) improved their immunosuppressive abilities. This may provide an opportunity to better define strategies for cell-based therapies to autoimmune diseases.
Collapse
Affiliation(s)
- Ana María Vega-Letter
- Laboratory of Cellular and Molecular Immunology, Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo N°12.455, Las Condes, Santiago, 750000, Chile.,Cell Culture Laboratory Animals, School of of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, 2362803, Chile
| | - Mónica Kurte
- Laboratory of Cellular and Molecular Immunology, Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo N°12.455, Las Condes, Santiago, 750000, Chile
| | - Catalina Fernández-O'Ryan
- Laboratory of Cellular and Molecular Immunology, Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo N°12.455, Las Condes, Santiago, 750000, Chile
| | - Melanie Gauthier-Abeliuk
- Laboratory of Cellular and Molecular Immunology, Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo N°12.455, Las Condes, Santiago, 750000, Chile
| | - Patricia Fuenzalida
- Laboratory of Cellular and Molecular Immunology, Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo N°12.455, Las Condes, Santiago, 750000, Chile
| | - Ivón Moya-Uribe
- Laboratory of Cellular and Molecular Immunology, Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo N°12.455, Las Condes, Santiago, 750000, Chile
| | - Claudia Altamirano
- Cell Culture Laboratory Animals, School of of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso, 2362803, Chile
| | - Fernando Figueroa
- Laboratory of Cellular and Molecular Immunology, Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo N°12.455, Las Condes, Santiago, 750000, Chile
| | - Carlos Irarrázabal
- Laboratory of Integrative and Molecular Physiology, Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo N°12.455, Las Condes, Santiago, 750000, Chile
| | - Flavio Carrión
- Laboratory of Cellular and Molecular Immunology, Faculty of Medicine, Universidad de los Andes, Monseñor Álvaro del Portillo N°12.455, Las Condes, Santiago, 750000, Chile.
| |
Collapse
|
23
|
Urrutia M, Fernández S, González M, Vilches R, Rojas P, Vásquez M, Kurte M, Vega-Letter AM, Carrión F, Figueroa F, Rojas P, Irarrázabal C, Fuentealba RA. Overexpression of Glutamate Decarboxylase in Mesenchymal Stem Cells Enhances Their Immunosuppressive Properties and Increases GABA and Nitric Oxide Levels. PLoS One 2016; 11:e0163735. [PMID: 27662193 PMCID: PMC5035029 DOI: 10.1371/journal.pone.0163735] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
The neurotransmitter GABA has been recently identified as a potent immunosuppressive agent that targets both innate and adaptive immune systems and prevents disease progression of several autoimmunity models. Mesenchymal stem cells (MSCs) are self-renewing progenitor cells that differentiate into various cell types under specific conditions, including neurons. In addition, MSC possess strong immunosuppressive capabilities. Upon cytokine priming, undifferentiated MSC suppress T-cell proliferation via cell-to-cell contact mechanisms and the secretion of soluble factors like nitric oxide, prostaglandin E2 and IDO. Although MSC and MSC-derived neuron-like cells express some GABAergic markers in vitro, the role for GABAergic signaling in MSC-mediated immunosuppression remains completely unexplored. Here, we demonstrate that pro-inflammatory cytokines selectively regulate GAD-67 expression in murine bone marrow-MSC. However, expression of GAD-65 is required for maximal GABA release by MSC. Gain of function experiments using GAD-67 and GAD-65 co-expression demonstrates that GAD increases immunosuppressive function in the absence of pro-inflammatory licensing. Moreover, GAD expression in MSC evokes an increase in both GABA and NO levels in the supernatants of co-cultured MSC with activated splenocytes. Notably, the increase in NO levels by GAD expression was not observed in cultures of isolated MSC expressing GAD, suggesting crosstalk between these two pathways in the setting of immunosuppression. These results indicate that GAD expression increases MSC-mediated immunosuppression via secretion of immunosuppressive agents. Our findings may help reconsider GABAergic activation in MSC for immunological disorders.
Collapse
Affiliation(s)
- Mariana Urrutia
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Sebastián Fernández
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Marisol González
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Rodrigo Vilches
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Pablo Rojas
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Manuel Vásquez
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Mónica Kurte
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Ana María Vega-Letter
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Flavio Carrión
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Fernando Figueroa
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Patricio Rojas
- Departamento de Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Carlos Irarrázabal
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Rodrigo A. Fuentealba
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- * E-mail:
| |
Collapse
|
24
|
Selim AO, Selim SA, Shalaby SM, Mosaad H, Saber T. Neuroprotective effects of placenta-derived mesenchymal stromal cells in a rat model of experimental autoimmune encephalomyelitis. Cytotherapy 2016; 18:1100-13. [DOI: 10.1016/j.jcyt.2016.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 01/08/2023]
|
25
|
Synergistic and Superimposed Effect of Bone Marrow-Derived Mesenchymal Stem Cells Combined with Fasudil in Experimental Autoimmune Encephalomyelitis. J Mol Neurosci 2016; 60:486-497. [PMID: 27573128 DOI: 10.1007/s12031-016-0819-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 12/23/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) are the ideal transplanted cells of cellular therapy for promoting neuroprotection and neurorestoration. However, the optimization of transplanted cells and the improvement of microenvironment around implanted cells are still two critical challenges for enhancing therapeutic effect. In the current study, we observed the therapeutic potential of MSCs combined with Fasudil in mouse model of experimental autoimmune encephalomyelitis (EAE) and explored possible mechanisms of action. The results clearly show that combined intervention of MSCs and Fasudil further reduced the severity of EAE compared with MSCs or Fasudil alone, indicating a synergistic and superimposed effect in treating EAE. The addition of Fasudil inhibited MSC-induced inflammatory signaling TLR-4/MyD88 and inflammatory molecule IFN-γ, IL-1β, and TNF-α but did not convert M1 microglia to M2 phenotype. The delivery of MSCs enhanced the expression of glial cell-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) compared with that of Fasudil. Importantly, combined intervention of MSCs and Fasudil further increased the expression of BDNF and GDNF compared with the delivery of MSCs alone, indicating that combined intervention of MSCs and Fasudil synergistically contributes to the expression of neurotrophic factors which should be related to the expression of increased galactocerebroside (GalC) compared with mice treated with Fasudil and MSCs alone. However, a lot of investigation is warranted to further elucidate the cross talk of MSCs and Fasudil in the therapeutic potential of EAE/multiple sclerosis.
Collapse
|
26
|
Rozenberg A, Rezk A, Boivin MN, Darlington PJ, Nyirenda M, Li R, Jalili F, Winer R, Artsy EA, Uccelli A, Reese JS, Planchon SM, Cohen JA, Bar-Or A. Human Mesenchymal Stem Cells Impact Th17 and Th1 Responses Through a Prostaglandin E2 and Myeloid-Dependent Mechanism. Stem Cells Transl Med 2016; 5:1506-1514. [PMID: 27400792 PMCID: PMC5070498 DOI: 10.5966/sctm.2015-0243] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 05/02/2016] [Indexed: 12/13/2022] Open
Abstract
: Human mesenchymal stem cells (hMSCs) are being increasingly pursued as potential therapies for immune-mediated conditions, including multiple sclerosis. Although they can suppress human Th1 responses, they reportedly can reciprocally enhance human Th17 responses. Here, we investigated the mechanisms underlying the capacity of hMSCs to modulate human Th1 and Th17 responses. Human adult bone marrow-derived MSCs were isolated, and their purity and differentiation capacity were confirmed. Human venous peripheral blood mononuclear cells (PBMC) were activated, alone, together with hMSC, or in the presence of hMSC-derived supernatants (sups). Cytokine expression by CD4+ T-cell subsets (intracellular staining by fluorescence-activated cell sorting) and secreted cytokines (enzyme-linked immunosorbent assay) were then quantified. The contribution of prostaglandin E2 (PGE2) as well as of myeloid cells to the hMSC-mediated regulation of T-cell responses was investigated by selective depletion of PGE2 from the hMSC sups (anti-PGE2 beads) and by the selective removal of CD14+ cells from the PBMC (magnetic-activated cell sorting separation). Human MSC-secreted products could reciprocally induce interleukin-17 expression while decreasing interferon-γ expression by human CD4+ T cells, both in coculture and through soluble products. Pre-exposure of hMSCs to IL-1β accentuated their capacity to reciprocally regulate Th1 and Th17 responses. Human MSCs secreted high levels of PGE2, which correlated with their capacity to regulate the T-cell responses. Selective removal of PGE2 from the hMSC supernatants abrogated the impact of hMSC on the T cells. Selective removal of CD14+ cells from the PBMCs also limited the capacity of hMSC-secreted PGE2 to affect T-cell responses. Our discovery of a novel PGE2-dependent and myeloid cell-mediated mechanism by which human MSCs can reciprocally induce human Th17 while suppressing Th1 responses has implications for the use of, as well as monitoring of, MSCs as a potential therapeutic for patients with multiple sclerosis and other immune-mediated diseases. SIGNIFICANCE Although animal studies have generated a growing interest in the anti-inflammatory potential of mesenchymal stem cells (MSCs) for the treatment of autoimmune diseases, MSCs possess the capacity to both limit and promote immune responses. Yet relatively little is known about human-MSC modulation of human disease-implicated T-cell responses, or the mechanisms underlying such modulation. The current study reveals a novel prostaglandin E2-dependent and myeloid cell-mediated mechanism by which human MSCs can reciprocally regulate human Th17 and Th1 responses, with implications for the use of MSCs as a potential therapeutic for patients with multiple sclerosis and other immune-mediated diseases.
Collapse
Affiliation(s)
- Ayal Rozenberg
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Neuroimmunology Unit, Rambam Medical Center, Haifa, Israel
| | - Ayman Rezk
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Marie-Noëlle Boivin
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Peter J Darlington
- Department of Exercise Science, Concordia University, Montreal, Quebec, Canada
| | - Mukanthu Nyirenda
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Rui Li
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Farzaneh Jalili
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Raz Winer
- Neuroimmunology Unit, Rambam Medical Center, Haifa, Israel
| | - Elinor A Artsy
- American Medical Students Program, Technion Institute of Technology, Haifa, Israel
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa, Genova, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy
| | - Jane S Reese
- National Center for Regenerative Medicine, Case Western Reserve University, and University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Sarah M Planchon
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jeffrey A Cohen
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amit Bar-Or
- Neuroimmunology Unit, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Experimental Therapeutics Program, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Chen X, Yang X, Wu R, Chen W, Xie H, Qian X, Zhang Y. Therapeutic effects of Wharton jelly-derived mesenchymal stem cells on rat abortion models. J Obstet Gynaecol Res 2016; 42:972-82. [PMID: 27147487 DOI: 10.1111/jog.12984] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/13/2016] [Accepted: 01/31/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaojing Chen
- Department of Obstetrics and Gynecology; Affiliated Hospital of Nantong University; Nantong China
- Department of Gynecology; Tumor Hospital of Nantong; Nantong China
| | - Xiaoqing Yang
- Department of Obstetrics and Gynecology; Affiliated Hospital of Nantong University; Nantong China
| | - Rongrong Wu
- Department of Obstetrics and Gynecology; Affiliated Hospital of Nantong University; Nantong China
| | - Weiwei Chen
- Department of Social Security; Medical University of Chongqing; Chongqing China
| | - Huihui Xie
- Department of Obstetrics and Gynecology; Affiliated Hospital of Nantong University; Nantong China
| | - Xia Qian
- Department of Gynecology; Tumor Hospital of Nantong; Nantong China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology; Affiliated Hospital of Nantong University; Nantong China
| |
Collapse
|
28
|
Hasan M, Seo JE, Rahaman KA, Kang MJ, Jung BH, Kwon OS. Increased levels of brain serotonin correlated with MMP-9 activity and IL-4 levels resulted in severe experimental autoimmune encephalomyelitis (EAE) in obese mice. Neuroscience 2016; 319:168-82. [PMID: 26820599 DOI: 10.1016/j.neuroscience.2016.01.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/27/2022]
Abstract
The aim of this study was to investigate the role of monoamine neurotransmitters on the severity of experimental autoimmune encephalomyelitis (EAE) in obese mice. EAE was induced in mice with normal diets (ND-EAE) and obese mice with high-fat diets (HFD-EAE) through the immune response to myelin oligodendrocyte glycoprotein (MOG) (35-55). The levels of dopamine (DA), serotonin (5-HT) and their metabolites in different anatomical brain regions were measured by high-performance liquid chromatography. The plasma and tissue NADPH oxidase and matrix metalloproteinases (MMP)-9 activities were analyzed by fluorescence spectrophotometry. The cumulative disease index and disease peaks were significantly higher in HFD-EAE compared with those in ND-EAE. Significantly higher 5-HT levels and lower 5-HT turnovers 5-hydroxyindole acetic acid ((5-HIAA)/5-HT) were found in the brains of HFD-EAE mice compared with those found in the HFD-CON and ND-EAE mice brains. Moreover, increased DA levels were observed in the caudate nucleus of the HFD-EAE mice compared with the control and ND-EAE mice. The NADPH oxidase and MMP-9 activities in the plasma and tissues were significantly higher in both the ND-EAE and HFD-EAE groups than in their respective controls. The cytokine levels in the plasma, tissues, and cultured splenocytes were found to be significantly altered in EAE mice compared with control mice. Moreover, HFD-EAE mice exhibited significantly higher MMP-9 activity and lower IL-4 levels than ND-EAE mice and were significantly correlated with brain 5-HT levels. In conclusion, the increased 5-HT levels in the brain significantly correlated with MMP-9 activity and IL-4 levels play an important role in the exacerbation of disease severity in HFD-EAE mice.
Collapse
Affiliation(s)
- M Hasan
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - J-E Seo
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - K A Rahaman
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - M-J Kang
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - B-H Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - O-S Kwon
- Toxicology Laboratory, Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
29
|
Shalaby SM, Sabbah NA, Saber T, Abdel Hamid RA. Adipose-derived mesenchymal stem cells modulate the immune response in chronic experimental autoimmune encephalomyelitis model. IUBMB Life 2016; 68:106-15. [DOI: 10.1002/iub.1469] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/16/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Sally M. Shalaby
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Norhan A. Sabbah
- Medical Biochemistry Department; Faculty of Medicine, Zagazig University; Zagazig Egypt
| | - Taisir Saber
- Medical Microbiology & Immunology; Faculty of Medicine, Zagazig University; Zagazig Egypt
- Medical Laboratories Department; Faculty of Applied Medical Sciences, Taif University; Taif Saudi Arabia
| | - Reda A. Abdel Hamid
- Anatomy & Embryology Department, Faculty of Medicine; Zagazig University; Zagazig Egypt
| |
Collapse
|
30
|
Trubiani O, Giacoppo S, Ballerini P, Diomede F, Piattelli A, Bramanti P, Mazzon E. Alternative source of stem cells derived from human periodontal ligament: a new treatment for experimental autoimmune encephalomyelitis. Stem Cell Res Ther 2016; 7:1. [PMID: 26729060 PMCID: PMC4700621 DOI: 10.1186/s13287-015-0253-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/15/2015] [Accepted: 12/02/2015] [Indexed: 01/08/2023] Open
Abstract
Background Multiple sclerosis is a demyelinating disease mostly of autoimmune origin that affects and damages the central nervous system, leading to a disabling condition. The aim of the present study was to investigate whether administration of mesenchymal stem cells from human periodontal ligament (hPDLSCs) could ameliorate multiple sclerosis progression by exerting neuroprotective effects in an experimental model of autoimmune encephalomyelitis (EAE). Methods EAE was induced by immunization with myelin oligodendroglial glycoprotein peptide (MOG)35–55 in C57BL/6 mice. After immunization, mice were observed every 48 hours for signs of EAE and weight loss. At the onset of disease, approximately 14 days after immunization, EAE mice were subjected to a single intravenous injection of hPDLSCs (106 cells/150 μl) into the tail vein. At the point of animal sacrifice on day 56 after EAE induction, spinal cord and brain tissues were collected in order to perform histological evaluation, immunohistochemistry and western blotting analysis. Results Achieved results reveal that treatment with hPDLSCs may exert neuroprotective effects against EAE, diminishing both clinical signs and histological score typical of the disease (lymphocytic infiltration and demyelination) probably through the production of neurotrophic factors (results focused on brain-derived neurotrophic factor and nerve growth factor expression). Furthermore, administration of hPDLSCs modulates expression of inflammatory key markers (tumor necrosis factor-α, interleukin (IL)-1β, IL-10, glial fibrillary acidic protein, Nrf2 and Foxp3), the release of CD4 and CD8α T cells, and the triggering of apoptotic death pathway (data shown for cleaved caspase 3, p53 and p21). Conclusions In light of the achieved results, transplantation of hPDLSCs may represent a putative novel and helpful tool for multiple sclerosis treatment. These cells could have considerable implication for future therapies for multiple sclerosis and this study may represent the starting point for further investigations.
Collapse
Affiliation(s)
- Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy.
| | - Sabrina Giacoppo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124, Messina, Italy.
| | - Patrizia Ballerini
- Department of Psychological, Humanities and Territorial Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
| | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy.
| | - Adriano Piattelli
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", Chieti-Pescara, via dei Vestini, 31, 66100, Chieti, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124, Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, contrada Casazza, 98124, Messina, Italy.
| |
Collapse
|
31
|
Nie Y, Yan Z, Yan W, Xia Q, Zhang Y. Cold exposure stimulates lipid metabolism, induces inflammatory response in the adipose tissue of mice and promotes the osteogenic differentiation of BMMSCs via the p38 MAPK pathway in vitro. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:10875-10886. [PMID: 26617802 PMCID: PMC4637617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
This study was to explore the effect of long-term cold exposure on morphological changes of WAT and BAT, metabolic changes and inflammatory responses in vivo. We also investigated the effect of cold exposure on the osteogenic differentiation of BMMSCs and the mechanism involved in vitro. At the end of the animal experiments, WAT and BAT were isolated and analyzed by HE staining. The results showed that both temperature and exposure time were associated with the degree of WAT browning. Then, peripheral blood samples were collected and centrifuged to obtain serum. Serum biochemical analysis was performed. After exposure to cold air for 21 d, cyclic adenosine monophosphate (cAMP) level in BAT was greatly upregulated. cAMP in WAT and glycerol levels were slightly increased. Cold exposure decreased triglyceride (TG) level and increased the levels of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). Whereas, high-density lipoprotein cholesterol (HDL-C) and free fatty acid (FFA) levels remains unchanged. Moreover, leptin and adiponectin (ADP) levels were remarkably downregulated. Tumor necrosis factor (TNF)-α and interleukin (IL)-6 concentrations were significantly elevated. Furthermore, the results showed that cold exposure significantly elevated runt-related transcription factor 2 (Runx2), bone sialoprotein (BSP), osteopontin (OPN) and collagen I levels and promoted the phosphorylation of p38 MAPK. However, the inducing effects were greatly inhibited by p38 MAPK inhibitor SB203580. These data suggest that long-term cold exposure activate BAT, increase lipolysis rate and enhance inflammatory response in mice. Furthermore, cold exposure promoted the osteogenic differentiation of BMMSCs partially via the p38 MAPK pathway.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/enzymology
- Adipose Tissue, Brown/pathology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/enzymology
- Adipose Tissue, White/pathology
- Animals
- Cell Differentiation/drug effects
- Cells, Cultured
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Cold Temperature
- Cyclic AMP/metabolism
- Cytokines/blood
- Enzyme Activation
- Fatty Acids, Nonesterified/blood
- Glycerol/metabolism
- Inflammation Mediators/blood
- Lipids/blood
- Lipolysis
- Mesenchymal Stem Cells/enzymology
- Mice, Inbred C57BL
- Osteogenesis/drug effects
- Phenotype
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Signal Transduction
- Time Factors
- Triglycerides/blood
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Yizhen Nie
- Physical Examination Center, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, People’s Republic of China
| | - Zhaoqi Yan
- Physical Examination Center, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, People’s Republic of China
| | - Wei Yan
- Physical Examination Center, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, People’s Republic of China
| | - Qingyan Xia
- Department of Medical Imaging, Harbin Fourth HospitalHarbin 150026, People’s Republic of China
| | - Yina Zhang
- Cadre Ward, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150001, People’s Republic of China
| |
Collapse
|