1
|
Lee JY, Jang H, Kim S, Kang T, Park SG, Lee MY. Nanoplasmonic microarray-based solid-phase amplification for highly sensitive and multiplexed molecular diagnostics: application for detecting SARS-CoV-2. Mikrochim Acta 2024; 191:715. [PMID: 39472332 PMCID: PMC11522150 DOI: 10.1007/s00604-024-06723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/21/2024] [Indexed: 11/02/2024]
Abstract
A novel approach is introduced using nanoplasmonic microarray-based solid-phase recombinase polymerase amplification (RPA) that offers high sensitivity and multiplexing capabilities for gene detection. Nanoplasmonic microarrays were developed through one-step immobilization of streptavidin/biotin primers and fine-tuning the amplicon size to achieve high plasmon-enhanced fluorescence (PEF) on the nanoplasmonic substrate, thereby improving sensitivity. The specificity and sensitivity of solid-phase RPA on nanoplasmonic microarrays was evaluated in detecting E, N, and RdRP genes of SARS-CoV-2. High specificity was achieved by minimizing primer-dimer formation and employing a stringent washing process and high sensitivity obtained with a limit of detection of four copies per reaction within 30 min. In clinical testing with nasopharyngeal swab samples (n = 30), the nanoplasmonic microarrays demonstrated a 100% consistency with the PCR results for detecting SARS-CoV-2, including differentiation of Omicron mutations BA.1 and BA.2. This approach overcomes the sensitivity issue of solid-phase amplification, as well as offers rapidity, high multiplexing capabilities, and simplified equipment by using isothermal reaction, making it a valuable tool for on-site molecular diagnostics.
Collapse
Affiliation(s)
- Ji Young Lee
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-Daero, Seongsan-Gu, Changwon-Si, Gyeongsangnam-Do, 51508, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, 79 Gangnam-Ro, Jinju, Gyeongsangnam-Do, 52727, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Sung-Gyu Park
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-Daero, Seongsan-Gu, Changwon-Si, Gyeongsangnam-Do, 51508, Republic of Korea.
| | - Min-Young Lee
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-Daero, Seongsan-Gu, Changwon-Si, Gyeongsangnam-Do, 51508, Republic of Korea.
| |
Collapse
|
2
|
Wang Y, Bednarcik M, Ament C, Cheever ML, Cummings S, Geng T, Gunasekara DB, Houston N, Kouba K, Liu Z, Shippar J. Immunoassays and Mass Spectrometry for Determination of Protein Concentrations in Genetically Modified Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 38607999 PMCID: PMC11046482 DOI: 10.1021/acs.jafc.3c09188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Quantifying protein levels in genetically modified (GM) crops is crucial in every phase of development, deregulation, and seed production. Immunoassays, particularly enzyme-linked immunosorbent assay, have been the primary protein quantitation techniques for decades within the industry due to their efficiency, adaptability, and credibility. Newer immunoassay technologies like Meso Scale Discovery and Luminex offer enhanced sensitivity and multiplexing capabilities. While mass spectrometry (MS) has been widely used for small molecules and protein detection in the pharmaceutical and agricultural industries (e.g., biomarkers, endogenous allergens), its use in quantifying protein levels in GM crops has been limited. However, as trait portfolios for GM crop have expanded, MS has been increasingly adopted due to its comparable sensitivity, increased specificity, and multiplexing capabilities. This review contrasts the benefits and limitations of immunoassays and MS technologies for protein measurement in GM crops, considering factors such as cost, convenience, and specific analytical needs. Ultimately, both techniques are suitable for assessing protein concentrations in GM crops, with MS offering complementary capabilities to immunoassays. This comparison aims to provide insights into selecting between these techniques based on the user's end point needs.
Collapse
Affiliation(s)
- Yanfei Wang
- Bayer
CropScience, 700 Chesterfield
Pkwy West, Chesterfield, Missouri 63017, United
States
| | - Mark Bednarcik
- Syngenta
Crop Protection, Limited Liability Company, 9 Davis Drive, Post Office Box 12257, Research Triangle Park, North Carolina 27709-2257, United
States
| | - Christopher Ament
- Eurofins
Food Chemistry Testing Madison, Incorporated, 6304 Ronald Reagan Avenue, Madison, Wisconsin 53704, United States
| | - Matthew L. Cheever
- BASF
Corporation, 26 Davis Drive, Research Triangle Park, North Carolina 27709, United States
| | - Simone Cummings
- Syngenta
Crop Protection, Limited Liability Company, 9 Davis Drive, Post Office Box 12257, Research Triangle Park, North Carolina 27709-2257, United
States
| | - Tao Geng
- Bayer
CropScience, 700 Chesterfield
Pkwy West, Chesterfield, Missouri 63017, United
States
| | - Dulan B. Gunasekara
- BASF
Corporation, 26 Davis Drive, Research Triangle Park, North Carolina 27709, United States
| | - Norma Houston
- Corteva
Agriscience, Johnston, Iowa 50131, United States
| | - Kristen Kouba
- Corteva
Agriscience, Johnston, Iowa 50131, United States
| | - Zi Liu
- Bayer
CropScience, 700 Chesterfield
Pkwy West, Chesterfield, Missouri 63017, United
States
| | - Jeffrey Shippar
- Eurofins
Food Chemistry Testing Madison, Incorporated, 6304 Ronald Reagan Avenue, Madison, Wisconsin 53704, United States
| |
Collapse
|
3
|
Chen SL, Xiao H, Li GJ, Shen YJ. Expression Pattern of Cytokines in Patients with Chronic Hepatitis B Receiving PEGinterferon Therapy. Int J Gen Med 2023; 16:1771-1782. [PMID: 37193251 PMCID: PMC10183186 DOI: 10.2147/ijgm.s402524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
Purpose Chronic hepatitis B virus (CHB) infection is a worldwide health problem. Polyethylene glycol (PEG)ylated interferon (PEG-IFN) is an available therapy for CHB that has antiviral and immunomodulatory effects. However, PEG-IFN therapy is limited by the fact that only a subset of patients show a sustained response, its severe side effects, and high cost. The aim of this study was to explore novel biomarkers for the early prediction of PEG-IFN treatment response and to uncover its underlying mechanism. Patients and Methods We enrolled 10 paired patients with Hepatitis B e antigen (HBeAg)-positive CHB who received PEG-IFN-α2a monotherapy. Patient serum samples were collected at 0, 4, 12, 24, and 48 weeks and serum samples were collected from eight healthy people as healthy controls. For confirmation, we enrolled 27 patients with HBeAg-positive CHB receiving PEG-IFN therapy and serum samples at 0 and 12 weeks were obtained. Serum samples were analyzed using Luminex technology. Results Among 27 assessed cytokines, 10 cytokines were identified to have high expression levels. Among them, six cytokines had significant differences in their levels between the patients with HBeAg-positive CHB and the healthy controls (P < 0.05). Potentially, treatment response could be predicted using the early time points of 4, 12, and 24 weeks. Moreover, after 12 weeks of PEG-IFN treatment, increased levels of pro-inflammatory cytokines and decreased levels of anti-inflammatory cytokines were observed. The fold change of IP-10 between 12 weeks and 0 weeks correlated with the decrease in ALT levels from 0 to 12 weeks (r = 0.2675, P = 0.0024). Conclusion In patients with CHB, we observed a certain pattern in the levels of cytokines during treatment with PEG-IFN, and the cytokine IP-10 might be a potential biomarker for treatment response.
Collapse
Affiliation(s)
- Shao-Long Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China
- Correspondence: Shao-Long Chen, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, People’s Republic of China, Email
| | - Hong Xiao
- Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, People’s Republic of China
| | - Guo-Jun Li
- Department of Hepatology, The Second Hospital of Yinzhou of Ningbo, Ningbo, 315100, People’s Republic of China
| | - Yao-Jie Shen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, People’s Republic of China
| |
Collapse
|
4
|
Platchek M, Lu Q, Tran H, Xie W. Comparative Analysis of Multiple Immunoassays for Cytokine Profiling in Drug Discovery. SLAS DISCOVERY 2020; 25:1197-1213. [PMID: 32924773 DOI: 10.1177/2472555220954389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cytokines and their receptors play critical roles in biological processes. Dysfunction or dysregulation of cytokines may cause a variety of pathophysiological conditions. Consequently, cytokine profiling and related technologies are essential for biological studies, disease diagnosis, and drug discovery. In this report, three cytokines, interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α), from the same sets of samples were analyzed with several commonly used technologies (enzyme-linked immunosorbent assay [ELISA], Luminex, Meso Scale Discovery [MSD], time-resolved fluorescence resonance energy transfer [TR-FRET], cytometric bead array [CBA], AlphaLISA, and FirePlex). Through experimental data analysis, several assay features were compared, including sensitivity, dynamic range, and robustness. Our studies reveal that MSD has the best sensitivity in the low detection limit and the broadest dynamic range, while CBA and Luminex also demonstrate superior performance in the sensitivity and dynamic range. Additional aspects of these technologies, including assay principles, formats, throughputs, robustness, costs, and multiplexing capabilities, were also reviewed and compared. Combining all these features, our comparison highlights MSD as the most sensitive technology, while CBA is the most suitable one for cytokine high-throughput screening with multiplexing capability. Along with perspectives on new technology development in the field, this report aims to help readers understand these technologies and select the proper one for specific applications.
Collapse
Affiliation(s)
- Michael Platchek
- Novel Human Genetics Research Unit, GlaxoSmithKline, Collegeville, PA, USA
| | - Quinn Lu
- Novel Human Genetics Research Unit, GlaxoSmithKline, Collegeville, PA, USA
| | - Hoang Tran
- Research Statistics, GlaxoSmithKline, Collegeville, PA, USA
| | - Wensheng Xie
- Novel Human Genetics Research Unit, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
5
|
Harms RZ, Ostlund KR, Cabrera MS, Edwards E, Fisher M, Sarvetnick N. Confirmation and Identification of Biomarkers Implicating Environmental Triggers in the Pathogenesis of Type 1 Diabetes. Front Immunol 2020; 11:1922. [PMID: 33042112 PMCID: PMC7523316 DOI: 10.3389/fimmu.2020.01922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Multiple environmental triggers have been proposed to explain the increased incidence of type 1 diabetes (T1D). These include viral infections, microbiome disturbances, metabolic disorders, and vitamin D deficiency. Here, we used ELISA to examine blood plasma from juvenile T1D subjects and age-matched controls for the abundance of several circulating factors relevant to these hypotheses. We screened plasma for sCD14, mannose binding lectin (MBL), lipopolysaccharide binding protein (LBP), c-reactive protein (CRP), fatty acid binding protein 2 (FABP2), human growth hormone, leptin, total adiponectin, high molecular weight (HMW) adiponectin, total IgG, total IgA, total IgM, endotoxin core antibodies (EndoCAbs), 25(OH) vitamin D, vitamin D binding protein, IL-7, IL-10, IFN-γ, TNF-α, IL-17A, IL-18, and IL-18BPa. Subjects also were tested for prevalence of antibodies targeting adenovirus, parainfluenza 1/2/3, Coxsackievirus, cytomegalovirus, Epstein-Barr virus viral capsid antigen (EBV VCA), herpes simplex virus 1, and Saccharomyces cerevisiae. Finally, all subjects were screened for presence and abundance of autoantibodies targeting islet cell cytoplasmic proteins (ICA), glutamate decarboxylase 2 (GAD65), zinc transporter 8 (ZNT8), insulinoma antigen 2 (IA-2), tissue transglutaminase, and thyroid peroxidase, while β cell function was gauged by measuring c-peptide levels. We observed few differences between control and T1D subjects. Of these, we found elevated sCD14, IL-18BPa, and FABP2, and reduced total IgM. Female T1D subjects were notably elevated in CRP levels compared to control, while males were similar. T1D subjects also had significantly lower prevalence of EBV VCA antibodies compared to control. Lastly, we observed that c-peptide levels were significantly correlated with leptin levels among controls, but this relationship was not significant among T1D subjects. Alternatively, adiponectin levels were significantly correlated with c-peptide levels among T1D subjects, while controls showed no relationship between these two factors. Among T1D subjects, the highest c-peptide levels were associated with the lowest adiponectin levels, an indication of insulin resistance. In total, from our examination we found limited data that strongly support any of the hypotheses investigated. Rather, we observed an indication of unexplained monocyte/macrophage activation in T1D subjects judging from elevated levels of sCD14 and IL-18BPa. These observations were partnered with unique associations between adipokines and c-peptide levels among T1D subjects.
Collapse
Affiliation(s)
- Robert Z Harms
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Katie R Ostlund
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Monina S Cabrera
- Endocrine Clinic, Children's Hospital and Medical Center, Omaha, NE, United States
| | - Earline Edwards
- Endocrine Clinic, Children's Hospital and Medical Center, Omaha, NE, United States
| | - Marisa Fisher
- Endocrine Clinic, Children's Hospital and Medical Center, Omaha, NE, United States
| | - Nora Sarvetnick
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States.,Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
6
|
Pezeshki A, Ovsyannikova IG, McKinney BA, Poland GA, Kennedy RB. The role of systems biology approaches in determining molecular signatures for the development of more effective vaccines. Expert Rev Vaccines 2019; 18:253-267. [PMID: 30700167 DOI: 10.1080/14760584.2019.1575208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Emerging infectious diseases are a major threat to public health, and while vaccines have proven to be one of the most effective preventive measures for infectious diseases, we still do not have safe and effective vaccines against many human pathogens, and emerging diseases continually pose new threats. The purpose of this review is to discuss how the creation of vaccines for these new threats has been hindered by limitations in the current approach to vaccine development. Recent advances in high-throughput technologies have enabled scientists to apply systems biology approaches to collect and integrate increasingly large datasets that capture comprehensive biological changes induced by vaccines, and then decipher the complex immune response to those vaccines. AREAS COVERED This review covers advances in these technologies and recent publications that describe systems biology approaches to understanding vaccine immune responses and to understanding the rational design of new vaccine candidates. EXPERT OPINION Systems biology approaches to vaccine development provide novel information regarding both the immune response and the underlying mechanisms and can inform vaccine development.
Collapse
Affiliation(s)
| | | | - Brett A McKinney
- b Department of Mathematics , University of Tulsa , Tulsa , OK , USA.,c Tandy School of Computer Science , University of Tulsa , Tulsa , OK , USA
| | - Gregory A Poland
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| | | |
Collapse
|
7
|
White SP, Frisbie CD, Dorfman KD. Detection and Sourcing of Gluten in Grain with Multiple Floating-Gate Transistor Biosensors. ACS Sens 2018; 3:395-402. [PMID: 29411606 DOI: 10.1021/acssensors.7b00810] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a chemically tunable electronic sensor for quantitation of gluten based on a floating-gate transistor (FGT) architecture. The FGTs are fabricated in parallel and each one is functionalized with a different chemical moiety designed to preferentially bind a specific grain source of gluten. The resulting set of FGT sensors can detect both wheat and barley gluten below the gluten-free limit of 20 ppm (w/w) while providing a source-dependent signature for improved accuracy. This label-free transduction method does not require any secondary binding events, resulting in a ca. 45 min reduction in analysis time relative to state-of-the-art ELISA kits with a simple and easily implemented workflow.
Collapse
Affiliation(s)
- Scott P. White
- Department of Chemical Engineering
and Materials Science, University of Minnesota − Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - C. Daniel Frisbie
- Department of Chemical Engineering
and Materials Science, University of Minnesota − Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Kevin D. Dorfman
- Department of Chemical Engineering
and Materials Science, University of Minnesota − Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Abstract
This chapter describes innovations in biomarker testing that can facilitate earlier and better treatment of patients who suffer from metabolic disorders. The use of new microfluidic devices along with miniaturized biosensors and transducers enables analysis of a single drop of a blood within the time frame of a typical visit to a doctor's office. Steps are underway so that these approaches will incorporate both biochemical and clinical data, resulting in unique bioprofiles for each patient. This will allow earlier, personalized, and more effective therapeutic options. In addition, smartphone apps for self-monitoring will be used increasingly for the best possible patient outcomes.
Collapse
Affiliation(s)
| | - Paul C Guest
- Laboratory of Neuroproteomics, Institute of Biology, University of Campinas, Campinas, Brazil.
| |
Collapse
|
9
|
Savioli B, Abdulahad WH, Brouwer E, Kallenberg CG, de Souza AWS. Are cytokines and chemokines suitable biomarkers for Takayasu arteritis? Autoimmun Rev 2017; 16:1071-1078. [DOI: 10.1016/j.autrev.2017.07.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/26/2022]
|
10
|
Stewart A, Banerji U. Utilizing the Luminex Magnetic Bead-Based Suspension Array for Rapid Multiplexed Phosphoprotein Quantification. Methods Mol Biol 2017; 1636:119-131. [PMID: 28730477 DOI: 10.1007/978-1-4939-7154-1_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The study of protein phosphorylation is critical for the advancement of our understanding of cellular responses to external and internal stimuli. Phosphorylation, the addition of phosphate groups, most often occurs on serine, threonine, or tyrosine residues due to the action of protein kinases. This structural change causes the protein to become activated (or deactivated) and enables it in turn to initiate the phosphorylation of other proteins in a cascade, eventually causing cell-wide changes such as apoptosis, cell differentiation, and growth (among others). Cellular phosphoprotein pathway dysregulation by mutation or chromosomal instability can often give the cell a selective advantage and lead to cancer. Obviously the understanding of these systems is of huge importance to the field of oncology.This chapter aims to provide a "how to" manual for one such technology, the 96-well plate-based xMAP® platform from Luminex. The system utilizes antibody-bound free-floating magnetic spheres which can easily be removed from suspension via magnetization. There are 100 unique bead sets (moving up to 500 bead sets for the most recent system) identified by the ratio of two dyes coating the microsphere. Each bead set is conjugated to a specific antibody which allows targeted protein extraction from low-concentration lysate solution. Biotinylated secondary antibodies/streptavidin-R-phycoerythrin (SAPE) complexes provide the quantification mechanism for the phosphoprotein of interest.
Collapse
Affiliation(s)
- Adam Stewart
- The Institute of Cancer Research, London, UK
- The Royal Marsden, Sycamore House, Downs Road, Sutton, London, SM2 5PT, UK
| | - Udai Banerji
- The Institute of Cancer Research, London, UK.
- The Royal Marsden, Sycamore House, Downs Road, Sutton, London, SM2 5PT, UK.
- Drug Development Unit, Sycamore House, London, UK.
| |
Collapse
|
11
|
Collins AR, Annangi B, Rubio L, Marcos R, Dorn M, Merker C, Estrela-Lopis I, Cimpan MR, Ibrahim M, Cimpan E, Ostermann M, Sauter A, Yamani NE, Shaposhnikov S, Chevillard S, Paget V, Grall R, Delic J, de-Cerio FG, Suarez-Merino B, Fessard V, Hogeveen KN, Fjellsbø LM, Pran ER, Brzicova T, Topinka J, Silva MJ, Leite PE, Ribeiro AR, Granjeiro JM, Grafström R, Prina-Mello A, Dusinska M. High throughput toxicity screening and intracellular detection of nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27273980 PMCID: PMC5215403 DOI: 10.1002/wnan.1413] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 12/25/2022]
Abstract
With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety—preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read‐across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter‐experimental variation, and makes substantial savings in time and cost. HTS/HCA approaches facilitate the classification of key biological indicators of NM‐cell interactions. Validation of in vitroHTS tests is required, taking account of relevance to in vivo results. HTS/HCA approaches are needed to assess dose‐ and time‐dependent toxicity, allowing prediction of in vivo adverse effects. Several HTS/HCA methods are being validated and applied for NM testing in the FP7 project NANoREG, including Label‐free cellular screening of NM uptake, HCA, High throughput flow cytometry, Impedance‐based monitoring, Multiplex analysis of secreted products, and genotoxicity methods—namely High throughput comet assay, High throughput in vitro micronucleus assay, and γH2AX assay. There are several technical challenges with HTS/HCA for NM testing, as toxicity screening needs to be coupled with characterization of NMs in exposure medium prior to the test; possible interference of NMs with HTS/HCA techniques is another concern. Advantages and challenges of HTS/HCA approaches in NM safety are discussed. WIREs Nanomed Nanobiotechnol 2017, 9:e1413. doi: 10.1002/wnan.1413 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Andrew R Collins
- Comet Biotech AS, and Department of Nutrition, University of Oslo, Norway
| | | | - Laura Rubio
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain.,CIBER Epidemiología y Salud Pública, ISCIII, Spain
| | - Marco Dorn
- Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany
| | - Carolin Merker
- Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany
| | - Irina Estrela-Lopis
- Institute of Biophysics and Medical Physics, University of Leipzig, Leipzig, Germany
| | - Mihaela Roxana Cimpan
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Mohamed Ibrahim
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Emil Cimpan
- Department of Electrical Engineering, Faculty of Engineering, Bergen University College, Norway
| | - Melanie Ostermann
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Alexander Sauter
- Department of Clinical Dentistry, Faculty of Medicine and Dentistry, University of Bergen, Norway
| | - Naouale El Yamani
- Comet Biotech AS, and Department of Nutrition, University of Oslo, Norway.,Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| | | | - Sylvie Chevillard
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | - Vincent Paget
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | - Romain Grall
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | - Jozo Delic
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction des Sciences du Vivant, Institut de Radiobiologie Cellulaire et Moléculaire, Service de Radiobiologie Expérimentale et d'Innovation Technologique, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses cedex, France
| | | | | | - Valérie Fessard
- ANSES Fougères Laboratory, Contaminant Toxicology Unit, France
| | | | - Lise Maria Fjellsbø
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| | - Elise Runden Pran
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| | - Tana Brzicova
- Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | - Jan Topinka
- Institute of Experimental Medicine AS CR, Prague, Czech Republic
| | - Maria João Silva
- Human Genetics Department, National Institute of Health Doutor Ricardo Jorge and Centre for Toxicogenomics and Human Health, NMS/FCM, UNL, Lisbon, Portugal
| | - P E Leite
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - A R Ribeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - J M Granjeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - Roland Grafström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Adriele Prina-Mello
- Nanomedicine Group, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Maria Dusinska
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| |
Collapse
|
12
|
Gutierrez-Arcelus M, Rich SS, Raychaudhuri S. Autoimmune diseases - connecting risk alleles with molecular traits of the immune system. Nat Rev Genet 2016; 17:160-74. [PMID: 26907721 PMCID: PMC4896831 DOI: 10.1038/nrg.2015.33] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome-wide strategies have driven the discovery of more than 300 susceptibility loci for autoimmune diseases. However, for almost all loci, understanding of the mechanisms leading to autoimmunity remains limited, and most variants that are likely to be causal are in non-coding regions of the genome. A critical next step will be to identify the in vivo and ex vivo immunophenotypes that are affected by risk variants. To do this, key cell types and cell states that are implicated in autoimmune diseases will need to be defined. Functional genomic annotations from these cell types and states can then be used to resolve candidate genes and causal variants. Together with longitudinal studies, this approach may yield pivotal insights into how autoimmunity is triggered.
Collapse
Affiliation(s)
- Maria Gutierrez-Arcelus
- Division of Genetics, and Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA
- Partners Center for Personalized Genetic Medicine, Boston, Massachusetts 02115, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Soumya Raychaudhuri
- Division of Genetics, and Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts 02142, USA
- Partners Center for Personalized Genetic Medicine, Boston, Massachusetts 02115, USA
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK
- Department of Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm SE-171 77, Sweden
| |
Collapse
|
13
|
Heinonen MT, Moulder R, Lahesmaa R. New Insights and Biomarkers for Type 1 Diabetes: Review for Scandinavian Journal of Immunology. Scand J Immunol 2015; 82:244-53. [DOI: 10.1111/sji.12338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- M. T. Heinonen
- Turku Centre for Biotechnology; University of Turku; Åbo Akademi University; Turku Finland
| | - R. Moulder
- Turku Centre for Biotechnology; University of Turku; Åbo Akademi University; Turku Finland
| | - R. Lahesmaa
- Turku Centre for Biotechnology; University of Turku; Åbo Akademi University; Turku Finland
| |
Collapse
|