1
|
Huang R, Lu X, Sun X, Ge H. Clinical study on changes of peripheral blood immune function indicators in adults with newly diagnosed glioblastoma during the peri-radiotherapy period. Biotechnol Genet Eng Rev 2024; 40:1924-1946. [PMID: 37009846 DOI: 10.1080/02648725.2023.2197331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
To analyze the changes of immune function-related indicators with newly diagnosed glioblastoma before and after radiotherapy and their clinical significance. Clinical data of 104 patients were analyzed. The independent samples t-test or chi-square test was used to compare changes in immune function indicators and to ascertain the differences between groups with different doses or volumes. The grading of the lowest lymphocyte count during radiotherapy was compared. The log-rank (Mantel - Cox) test of the Kaplan - Meier method was used to compare the survival rate, and the relationship of radiotherapy-related parameters, with the survival rate was evaluated by using the Spearman correlation coefficient. A Cox regression model was used to determine the relationship between various immune function indicators and prognosis. The percentages of total T lymphocytes and CD4+ T cells, the CD4-to-CD8 subset ratio, and the percentages of B cells and NKT cells showed an overall decreasing trend, whereas the percentages of CD8+ T cells and NK cells displayed an overall increasing trend. The lower CD4+ T cell percentage and CD4/CD8 ratio after radiotherapy were independent risk factors for OS. Short OS was observed in patients with grade 3 or 4 lymphopenia or with low levels of hemoglobin and serum albumin before radiotherapy. The percentage of CD4+ T cells and the CD4/CD8 ratio were higher in patients with the low tumor-irradiated volume and irradiated volume and dose of the OAR, than in patients from the corresponding high indicator group. Different irradiation dose or volume can differentially alter various immune function indicators.
Collapse
Affiliation(s)
- Rong Huang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoxu Lu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University Henan Cancer Hospital, Zhengzhou, China
| | - Xueming Sun
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University Henan Cancer Hospital, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Liu Y, Peng C, Brorson IS, O'Mahony DG, Kelly RL, Heng YJ, Baker GM, Grenaker Alnæs GI, Bodelon C, Stover DG, Van Allen EM, Eliassen AH, Kristensen VN, Tamimi RM, Kraft P. Germline polygenic risk scores are associated with immune gene expression signature and immune cell infiltration in breast cancer. Am J Hum Genet 2024; 111:2150-2163. [PMID: 39270649 PMCID: PMC11480808 DOI: 10.1016/j.ajhg.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
The tumor immune microenvironment (TIME) plays key roles in tumor progression and response to immunotherapy. Previous studies have identified individual germline variants associated with differences in TIME. Here, we hypothesize that common variants associated with breast cancer risk or cancer-related traits, represented by polygenic risk scores (PRSs), may jointly influence immune features in TIME. We derived 154 immune traits from bulk gene expression profiles of 764 breast tumors and 598 adjacent normal tissue samples from 825 individuals with breast cancer in the Nurses' Health Study (NHS) and NHSII. Immunohistochemical staining of four immune cell markers were available for a subset of 205 individuals. Germline PRSs were calculated for 16 different traits including breast cancer, autoimmune diseases, type 2 diabetes, ages at menarche and menopause, body mass index (BMI), BMI-adjusted waist-to-hip ratio, alcohol intake, and tobacco smoking. Overall, we identified 44 associations between germline PRSs and immune traits at false discovery rate q < 0.25, including 3 associations with q < 0.05. We observed consistent inverse associations of inflammatory bowel disease (IBD) and Crohn disease (CD) PRSs with interferon signaling and STAT1 scores in breast tumor and adjacent normal tissue; these associations were replicated in a Norwegian cohort. Inverse associations were also consistently observed for IBD PRS and B cell abundance in normal tissue. We also observed positive associations between CD PRS and endothelial cell abundance in tumor. Our findings suggest that the genetic mechanisms that influence immune-related diseases are also associated with TIME in breast cancer.
Collapse
Affiliation(s)
- Yuxi Liu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cheng Peng
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ina S Brorson
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Denise G O'Mahony
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rebecca L Kelly
- Cancer Prevention Fellowship Program, National Cancer Institute, Rockville, MD, USA; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Gabrielle M Baker
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Grethe I Grenaker Alnæs
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Clara Bodelon
- Department of Population Science, American Cancer Society, Atlanta, GA, USA
| | - Daniel G Stover
- Division of Medical Oncology, Stefanie Spielman Comprehensive Breast Center, Columbus, OH, USA; Department of Biomedical Informatics, Ohio State University, Columbus, OH, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Cancer Program, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
3
|
Zhang M, Zhang Y, Zhang J, Zhang J, Gao S, Li Z, Tao K, Liang X, Pan J, Zhu M. An automatic analysis and quality assurance method for lymphocyte subset identification. Clin Chem Lab Med 2024; 62:1411-1420. [PMID: 38217085 DOI: 10.1515/cclm-2023-1141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024]
Abstract
OBJECTIVES Lymphocyte subsets are the predictors of disease diagnosis, treatment, and prognosis. Determination of lymphocyte subsets is usually carried out by flow cytometry. Despite recent advances in flow cytometry analysis, most flow cytometry data can be challenging with manual gating, which is labor-intensive, time-consuming, and error-prone. This study aimed to develop an automated method to identify lymphocyte subsets. METHODS We propose a knowledge-driven combined with data-driven method which can gate automatically to achieve subset identification. To improve accuracy and stability, we have implemented a Loop Adjustment Gating to optimize the gating result of the lymphocyte population. Furthermore, we have incorporated an anomaly detection mechanism to issue warnings for samples that might not have been successfully analyzed, ensuring the quality of the results. RESULTS The evaluation showed a 99.2 % correlation between our method results and manual analysis with a dataset of 2,000 individual cases from lymphocyte subset assays. Our proposed method attained 97.7 % accuracy for all cases and 100 % for the high-confidence cases. With our automated method, 99.1 % of manual labor can be saved when reviewing only the low-confidence cases, while the average turnaround time required is only 29 s, reducing by 83.7 %. CONCLUSIONS Our proposed method can achieve high accuracy in flow cytometry data from lymphocyte subset assays. Additionally, it can save manual labor and reduce the turnaround time, making it have the potential for application in the laboratory.
Collapse
Affiliation(s)
- MinYang Zhang
- Department of Digital Management Center, Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - YaLi Zhang
- Department of Digital Management Center, Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - JingWen Zhang
- Department of Clinical Hematology and Flow Cytometry Lab, Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - JiaLi Zhang
- Department of Clinical Hematology and Flow Cytometry Lab, Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - SiYuan Gao
- Department of Digital Management Center, Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - ZeChao Li
- Department of Digital Management Center, Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - KangPei Tao
- Department of Digital Management Center, Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - XiaoDan Liang
- Department of Digital Management Center, Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - JianHua Pan
- Department of Clinical Hematology and Flow Cytometry Lab, Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| | - Min Zhu
- Department of Digital Management Center, Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou Kingmed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guandong, P.R. China
| |
Collapse
|
4
|
Sun N, Li R, Deng H, Li Q, Deng J, Zhu Y, Mo W, Guan W, Hu M, Liu M, Xie X, Lin X, Zhou C. The prognostic impact of severe grade immune checkpoint inhibitor related pneumonitis in non-small cell lung cancer patients. Front Oncol 2024; 14:1372532. [PMID: 38983925 PMCID: PMC11231069 DOI: 10.3389/fonc.2024.1372532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024] Open
Abstract
Objective To compare the prognostic differences between non-small cell lung cancer (NSCLC) patients with mild and severe checkpoint inhibitor-associated pneumonitis (CIP), and explore the causes of death and prognostic risk factors in NSCLC patients with severe CIP. Methods A retrospective study of a cohort of 116 patients with unresectable stage III or IV NSCLC with any grade CIP from April 2016 to August 2022 were conducted. To analyze the clinical characteristics of patients with different CIP grades, patients were divided into mild CIP group (grade 1-2, n=49) and severe CIP group (grade 3-5, n=67) according to the grade of CIP. To explore the OS-related risk factors in the severe CIP group, the patients were divided into a good prognosis (GP) group (≥ median OS, n=30) and a poor prognosis (PP) group (< median OS, n=37) based on whether their overall survival (OS) were greater than median OS. Baseline clinical and laboratory data were collected for analysis. Results The median OS of all NSCLC patients combined with CIP was 11.4 months (95%CI, 8.070-16.100), The median OS for mild CIP and severe CIP was 22.1 months and 4.4 months respectively (HR=3.076, 95%CI, 1.904-4.970, P<0.0001). The results showed that the most common cause of death among severe CIP patients in the PP group was CIP and the most common cause in the GP group was tumor. The univariate regression analysis showed that suspension of antitumor therapy was a risk factor for poor prognosis (OR=3.598, 95%CI, 1.307-9.905, p=0.013). The multivariate logistic regression analysis showed that suspension of anti-tumor therapy (OR=4.24, 95%CI, 1.067-16.915, p=0.040) and elevated KL-6 (OR=1.002, 95%CI, 1.001-1.002, p<0.001) were independent risk factors for poor prognosis. Conclusion In conclusion, patients with severe CIP had a poor prognosis, especially those with elevated KL-6, and the main cause of death is immune checkpoint inhibitor-associated pneumonitis complicated with infection. In addition, anti-tumor therapy for severe CIP patients should be resumed in time and should not be delayed for too long.
Collapse
Affiliation(s)
- Ni Sun
- Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ru Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Henan University, Kaifeng, Henan, China
| | - Haiyi Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qingyang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaxi Deng
- Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yue Zhu
- Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenwei Mo
- Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenhui Guan
- Guangzhou Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Minjuan Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ming Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohong Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine-Section 5, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Roostaee A, Yaghobi R, Afshari A, Jafarinia M. Regulatory role of T helper 9/interleukin-9: Transplantation view. Heliyon 2024; 10:e26359. [PMID: 38420400 PMCID: PMC10900956 DOI: 10.1016/j.heliyon.2024.e26359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
T helper 9 (Th9) cells, a subset of CD4+ T helper cells, have emerged as a valuable target for immune cell therapy due to their potential to induce immunomodulation and tolerance. The Th9 cells mainly produce interleukin (IL)-9 and are known for their defensive effects against helminth infections, allergic and autoimmune responses, and tumor suppression. This paper explores the mechanisms involved in the generation and differentiation of Th9 cells, including the cytokines responsible for their polarization and stabilization, the transcription factors necessary for their differentiation, as well as the role of Th9 cells in inflammatory and autoimmune diseases, allergic reactions, and cancer immunotherapies. Recent research has shown that the differentiation of Th9 cells is coregulated by the transcription factors transforming growth factor β (TGF-β), IL-4, and PU.1, which are also known to secrete IL-10 and IL-21. Multiple cell types, such as T and B cells, mast cells, and airway epithelial cells, are influenced by IL-9 due to its pleiotropic effects.
Collapse
Affiliation(s)
- Azadeh Roostaee
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Jafarinia
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
6
|
Sarkar SK, Willson AML, Jordan MA. The Plasticity of Immune Cell Response Complicates Dissecting the Underlying Pathology of Multiple Sclerosis. J Immunol Res 2024; 2024:5383099. [PMID: 38213874 PMCID: PMC10783990 DOI: 10.1155/2024/5383099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease characterized by the destruction of the myelin sheath of the neuronal axon in the central nervous system. Many risk factors, including environmental, epigenetic, genetic, and lifestyle factors, are responsible for the development of MS. It has long been thought that only adaptive immune cells, especially autoreactive T cells, are responsible for the pathophysiology; however, recent evidence has indicated that innate immune cells are also highly involved in disease initiation and progression. Here, we compile the available data regarding the role immune cells play in MS, drawn from both human and animal research. While T and B lymphocytes, chiefly enhance MS pathology, regulatory T cells (Tregs) may serve a more protective role, as can B cells, depending on context and location. Cells chiefly involved in innate immunity, including macrophages, microglia, astrocytes, dendritic cells, natural killer (NK) cells, eosinophils, and mast cells, play varied roles. In addition, there is evidence regarding the involvement of innate-like immune cells, such as γδ T cells, NKT cells, MAIT cells, and innate-like B cells as crucial contributors to MS pathophysiology. It is unclear which of these cell subsets are involved in the onset or progression of disease or in protective mechanisms due to their plastic nature, which can change their properties and functions depending on microenvironmental exposure and the response of neural networks in damage control. This highlights the need for a multipronged approach, combining stringently designed clinical data with carefully controlled in vitro and in vivo research findings, to identify the underlying mechanisms so that more effective therapeutics can be developed.
Collapse
Affiliation(s)
- Sujan Kumar Sarkar
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Annie M. L. Willson
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| | - Margaret A. Jordan
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
7
|
Zhang Y, Song Y, Zhang J, Li L, He L, Bo J, Gong Z, Xiao W. L-theanine regulates the immune function of SD rats fed high-protein diets through the FABP5/IL-6/STAT3/PPARα pathway. Food Chem Toxicol 2023; 181:114095. [PMID: 37827328 DOI: 10.1016/j.fct.2023.114095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
The protein levels in a diet are correlated with immunity but the long-term intake of excessive protein can compromise various aspects of health. L-theanine regulates immunity and protein metabolism; however, how its regulatory immunity effects under a high-protein diet are unclear. We used proteomics, metabonomics, and western blotting to analyze the effects of diets with different protein levels on immune function in rats to determine the role of L-theanine in immunity under a high-protein diet. The long-term intake of high-protein diets (≥40% protein) promoted oxidative imbalance and inflammation. These were alleviated by L-theanine. High-protein diets inhibited peroxisome proliferator-activated receptor (PPAR)α expression through the interleukin (IL)-6/signal transducer and activator of transcription (STAT)3 pathway and mediated inflammation. L-theanine downregulated anti-fatty acid-binding protein 5 (FABP5), inhibited the IL-6/STAT3 axis, and reduced high-protein diet-induced PPARα inhibition. Therefore, L-theanine alleviates the adverse effects of high-protein diets via the FABP5/IL-6/STAT3/PPARα pathway and regulates the immunity of normally fed rats through the epoxide hydrolase (EPHX)2/nuclear factor-kappa B inhibitor (IκB)α/triggering receptor expressed on myeloid cells (TREM)1 axis.
Collapse
Affiliation(s)
- Yangling Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China; Lushan Tea Science Research Institute, Jiujiang, Jiangxi, 332000, China
| | - Yuxin Song
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jiao Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Lanlan Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Lin He
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jiahui Bo
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
8
|
Hu X, Ren J, Xue Q, Luan R, Ding D, Tan J, Su X, Yang J. Anti‑PD‑1/PD‑L1 and anti‑CTLA‑4 associated checkpoint inhibitor pneumonitis in non‑small cell lung cancer: Occurrence, pathogenesis and risk factors (Review). Int J Oncol 2023; 63:122. [PMID: 37681488 PMCID: PMC10552702 DOI: 10.3892/ijo.2023.5570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) play a significant anti‑tumor role in the management of non‑small cell lung cancer. The most broadly used ICIs are anti‑programmed death 1 (PD‑1), anti‑programmed cell death‑ligand 1, and anti‑cytotoxic T lymphocyte‑associated antigen‑4 monoclonal antibody. Compared with traditional chemotherapy, ICIs have the advantages of greater efficiency and more specific targeting. However, the resulting immune‑related adverse events limit the clinical application of ICIs, especially checkpoint inhibitor pneumonitis (CIP). CIP chiefly occurs within 6 months of administration of ICIs. Excessive activation and amplification of cytotoxic T lymphocytes, helper T cells, downregulation of regulatory T cells, and over‑secretion of pro‑inflammatory cytokines are the dominant mechanisms underlying the pathophysiology of CIP. The dysregulation of innate immune cells, such as an increase in inflammatory monocytes, dendritic cells, neutrophils and M1 polarization of macrophages, an increase in IL‑10 and IL‑35, and a decrease in eosinophils, may underlie CIP. Although contested, several factors may accelerate CIP, such as a history of previous respiratory disease, radiotherapy, chemotherapy, administration of epidermal growth factor receptor tyrosine kinase inhibitors, PD‑1 blockers, first‑line application of ICIs, and combined immunotherapy. Interestingly, first‑line ICIs plus chemotherapy may reduce CIP. Steroid hormones remain the primary treatment strategy against grade ≥2 CIP, although cytokine blockers are promising therapeutic agents. Herein, the current research on CIP occurrence, clinical and radiological characteristics, pathogenesis, risk factors, and management is summarized to further expand our understanding, clarify the prognosis, and guide treatment.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Jin Ren
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Qianfei Xue
- Department of Respiratory Medicine, Hospital of Jilin University, Changchun, Jilin 130012,
P.R. China
| | - Rumei Luan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Dongyan Ding
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Jie Tan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Xin Su
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| | - Junling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041
| |
Collapse
|
9
|
Rostoka E, Shvirksts K, Salna E, Trapina I, Fedulovs A, Grube M, Sokolovska J. Prediction of type 1 diabetes with machine learning algorithms based on FTIR spectral data in peripheral blood mononuclear cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4926-4937. [PMID: 37721124 DOI: 10.1039/d3ay01080e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The incidence of autoimmunity is increasing, to ensure timely and comprehensive treatment, there must be a diagnostic method or markers that would be available to the general public. Fourier-transform infrared spectroscopy (FTIR) is a relatively inexpensive and accurate method for determining metabolic fingerprint. The metabolism, molecular composition and function of blood cells vary according to individual physiological and pathological conditions. Thus, by obtaining autoimmune disease-specific metabolic fingerprint markers in peripheral blood mononuclear cells (PBMC) and subsequently using machine learning algorithms, it might be possible to create a tool that will allow the diagnosis of autoimmune diseases. In this preliminary study, it was found that the peak shift at 1545 cm-1 could be considered specific for autoimmune disease type 1 diabetes (T1D), while the shifts at 1070 and 1417 cm-1 could be more attributed to the autoimmune condition per se. The prediction of T1D, despite the small number of participants in the study, showed an inverse AUC = 0.33 ± 0.096, n = 15, indicating a stable trend in the prediction of T1D based on FTIR metabolic fingerprint data in the PBMC.
Collapse
Affiliation(s)
- Evita Rostoka
- Faculty of Medicine, University of Latvia, Jelgavas iela 3, LV 1004, Riga, Latvia.
| | - Karlis Shvirksts
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas iela 1, LV1004, Riga, Latvia
| | - Edgars Salna
- Faculty of Medicine, University of Latvia, Jelgavas iela 3, LV 1004, Riga, Latvia.
| | - Ilva Trapina
- Institute of Biology, University of Latvia, Jelgavas iela 1, LV1004 Riga, Latvia
| | - Aleksejs Fedulovs
- Faculty of Medicine, University of Latvia, Jelgavas iela 3, LV 1004, Riga, Latvia.
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas iela 1, LV1004, Riga, Latvia
| | | |
Collapse
|
10
|
Mandal A, Biswas N, Alam MN. Implications of xenobiotic-response element(s) and aryl hydrocarbon receptor in health and diseases. Hum Cell 2023; 36:1638-1655. [PMID: 37329424 DOI: 10.1007/s13577-023-00931-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
The effect of air pollution on public health is severely detrimental. In humans; the physiological response against pollutants is mainly elicited via the activation of aryl hydrocarbon receptor (AhR). It acts as a prime sensor of xenobiotic chemicals, also functioning as a transcription factor regulating a variety of gene expressions. Along with AhR, another pivotal element of the pollution stress pathway is Xenobiotic Response Elements (XREs). XRE, as studied are some conserved sequences in the DNA, responsible for the physiological response against pollutants. XRE is present at the upstream of the inducible target genes of AhR and it regulates the function of the AhR. XRE(s) are highly conserved in species as it has only eight specific sequences found so far in humans, mice, and rats. Inhalation of toxicants like dioxins, gaseous industrial effluents, and smoke from burning fuel and tobacco leads to predominant damage to the lungs. However, scientists are exploring the involvement of AhR in chronic diseases for example chronic obstructive pulmonary disease (COPD) and also other lethal diseases like lung cancer. In this review, we summarise what is known at this time about the roles played by the XRE and AhR in our molecular systems that have a defined control in the normal maintenance of homeostasis as well as dysfunctions.
Collapse
Affiliation(s)
- Avijit Mandal
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Nabendu Biswas
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Md Nur Alam
- Department of Life Sciences, Presidency University, Kolkata, 700073, India.
| |
Collapse
|
11
|
Comparative study on the impacts of visnagin and its methoxy derivative khellin on human lymphocyte proliferation and Th 1/Th 2 balance. Pharmacol Rep 2023; 75:411-422. [PMID: 36745338 DOI: 10.1007/s43440-023-00452-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND Visnagin is a phenolic and natural compound in turmeric and fenugreek, and its anti-inflammatory effect has been indicated. Therefore, this study aimed to investigate and compare the anti-inflammatory properties of visnagin and its methoxy derivative khellin on human lymphocytes. METHODS Human lymphocytes were treated with khellin, visnagin (10, 30, and 100 µM), and dexamethasone (0.1 mM) in the presence of phytohemagglutinin (PHA). The levels of cell proliferation, nitric oxide (NO), glutathione (GSH), malondialdehyde (MDA), and MDA/GSH ratio were measured using biochemistry methods. Furthermore, the mRNA levels of interferon-γ (IFN-γ), interleukin (IL)-4, and IL-10 were assessed using real-time PCR, while IFN-γ/IL-4(Th1/Th2), IFN-γ/IL-10(Th1/Treg), and IL-4/IL-10(Th2/Treg) ratios were made by dividing their exact values. RESULTS In the PHA-stimulated group, GSH and IFN-γ/IL-4 levels were markedly diminished, but other variables were significantly elevated compared to the control group. Khellin and visnagin significantly declined the levels of cell proliferation, MDA, MDA/GSH ratio, and NO production. Khellin and visnagin concentration-dependently diminished IFN-γ and IL-4 levels and increased IL-10 levels compared to the PHA-stimulated group. Two higher concentrations of khellin and visnagin (30 and 100 μM) considerably diminished the IFN-γ, IFN-γ/IL-10, and IL-4/IL-10 values compared to the PHA-stimulated group. However, 100 µM of khellin and visnagin significantly increased GSH level compared to the PHA-stimulated group. CONCLUSIONS In PHA-stimulated lymphocytes, representing Th2 dominant allergic diseases, khellin and visnagin provides more specific anti-oxidant, anti-inflammatory, and immunomodulatory functions than dexamethasone. In addition, the effects of khellin were more prominent than visnagin.
Collapse
|
12
|
Karakucuk A, Canpinar H, Celebi N. Ritonavir nanosuspensions prepared by microfluidization with enhanced solubility and desirable immunological properties. Pharm Dev Technol 2022; 27:1027-1037. [PMID: 36343117 DOI: 10.1080/10837450.2022.2145309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The objective of this study was to develop ritonavir (RTV) nanosuspensions (NSs) by microfluidization method. Particle size (PS) measurements were performed by photon correlation spectroscopy. Amorphous properties of the particles were evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dissolution studies were conducted in fed state simulated intestinal fluid (FeSSIF) medium. The flow cytometry was utilized to determine the lymphocyte sub-groups and immune response of NSs. RTV NSs were obtained with 400-500 nm PS. The crystal properties of RTV remain unchanged. The solubility of NS was enhanced five times. 57% and 18% of RTV were dissolved in FeSSIF medium for NSs and coarse powder. According to immunological studies, the prepared NSs did not significantly alter the ratio of CD4+/CD8+. Therefore, NSs may be a beneficial approach for the oral administration of RTV.
Collapse
Affiliation(s)
- Alptug Karakucuk
- Department of Pharmaceutical Technology, Ankara Medipol University Faculty of Pharmacy, Ankara, Turkey.,Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, Ankara, Turkey
| | - Hande Canpinar
- Department of Basic Oncology, School of Medicine, Institute of Oncology, Hacettepe University, Ankara, Turkey
| | - Nevin Celebi
- Department of Pharmaceutical Technology, Gazi University Faculty of Pharmacy, Ankara, Turkey.,Department of Pharmaceutical Technology, Baskent University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
13
|
Thin KA, Angsuwatcharakon P, Edwards SW, Mutirangura A, Puttipanyalears C. Upregulation of p16INK4A in Peripheral White Blood Cells as a Novel Screening Marker for Colorectal Carcinoma. Asian Pac J Cancer Prev 2022; 23:3753-3761. [PMID: 36444588 PMCID: PMC9930939 DOI: 10.31557/apjcp.2022.23.11.3753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Screening of colorectal cancer (CRC) is important for the early detection. CRC is relating to aging and immuno-senescence. One such senescent marker is p16INK4A expression in immune cells. The objective of the study is to investigate the protein expression of p16INK4A in peripheral white blood cells as a screening marker for colorectal cancer. METHODS A case-control studies were conducted. Cases were patients with colorectal cancer and controls were matched with cases based on age and sex. Peripheral blood was collected from patients and controls and the protein p16INK4A was measured with immunofluorescent techniques. The p16INK4A levels from cases and controls were evaluated using ROC analysis to be used as a screening marker in CRC patients. Mean fluorescent intensity of p16INK4A of cases and controls were analyzed in CD45+, CD3+ or CD14+ cells. The p16INK4A levels of cases were also correlated with clinical data. RESULT Statistically significant increased expression of p16INK4A levels were found in cases compared to controls. p16INK4A in peripheral immune cells had 78% sensitivity and 71% specificity which can possibly be used as a diagnosis tool for colorectal cancer. P16INK4A-positive cell percentage and mean florescent intensity were significantly higher in CD45+ cells, CD3 positive cells and CD14 positive cells. No significant correlation was observed with the clinical data and p16INK4A level of CRC patients. CONCLUSION The significant increase of p16 INK4A expression level in peripheral immune cells represents potential for use as a CRC screening marker.
Collapse
Affiliation(s)
- Khin Aye Thin
- Joint PhD Program in Biomedical Sciences and Biotechnology between Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand and Institute of Integrative Biology, University of Liverpool, Liverpool, L7 8TX, United Kingdom.
| | | | - Steven W Edwards
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L7 8TX, United Kingdom.
| | - Apiwat Mutirangura
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand. ,Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Charoenchai Puttipanyalears
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand. ,Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand. ,For Correspondence:
| |
Collapse
|
14
|
Filip-Psurska B, Zachary H, Strzykalska A, Wietrzyk J. Vitamin D, Th17 Lymphocytes, and Breast Cancer. Cancers (Basel) 2022; 14:cancers14153649. [PMID: 35954312 PMCID: PMC9367508 DOI: 10.3390/cancers14153649] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The effect of vitamin D3 on the development of breast cancer (favorable, ineffective, or even unfavorable) depends on many factors, such as age, menopausal status, or obesity. The immunomodulatory effect of vitamin D may be unfavorable in case of breast cancer progression. The effect of vitamin D on Th17 cells may depend on disease type and patients’ age. Our goal was to summarize the data available and to find indications of vitamin D treatment failure or success. Therefore, in this review, we present data describing the effects of vitamin D3 on Th17 cells, mainly in breast cancer. Abstract Vitamin D3, which is well known to maintain calcium homeostasis, plays an important role in various cellular processes. It regulates the proliferation and differentiation of several normal cells, including immune and neoplastic cells, influences the cell cycle, and stimulates cell maturation and apoptosis through a mechanism dependent on the vitamin D receptor. The involvement of vitamin D3 in breast cancer development has been observed in numerous clinical studies. However, not all studies support the protective effect of vitamin D3 against the development of this condition. Furthermore, animal studies have revealed that calcitriol or its analogs may stimulate tumor growth or metastasis in some breast cancer models. It has been postulated that the effect of vitamin D3 on T helper (Th) 17 lymphocytes is one of the mechanisms promoting metastasis in these murine models. Herein we present a literature review on the existing data according to the interplay between vitamin D, Th17 cell and breast cancer. We also discuss the effects of this vitamin on Th17 lymphocytes in various disease entities known to date, due to the scarcity of scientific data on Th17 lymphocytes and breast cancer. The presented data indicate that the effect of vitamin D3 on breast cancer development depends on many factors, such as age, menopausal status, or obesity. According to that, more extensive clinical trials and studies are needed to assess the importance of vitamin D in breast cancer, especially when no correlations seem to be obvious.
Collapse
|
15
|
Yin J, Wu Y, Yang X, Gan L, Xue J. Checkpoint Inhibitor Pneumonitis Induced by Anti-PD-1/PD-L1 Therapy in Non-Small-Cell Lung Cancer: Occurrence and Mechanism. Front Immunol 2022; 13:830631. [PMID: 35464480 PMCID: PMC9021596 DOI: 10.3389/fimmu.2022.830631] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Immune checkpointty inhibitors (ICIs), particularly those targeting programmed death 1 (PD-1) and anti-programmed death ligand 1 (PD-L1), enhance the antitumor effect by restoring the function of the inhibited effector T cells and produce durable responses in a large variety of metastatic and late patients with non-small-cell lung cancer. Although often well tolerated, the activation of the immune system results in side effects known as immune-related adverse events (irAEs), which can affect multiple organ systems, including the lungs. The occurrence of severe pulmonary irAEs, especially checkpoint inhibitor pneumonitis (CIP), is rare but has extremely high mortality and often overlaps with the respiratory symptoms and imaging of primary tumors. The development of CIP may be accompanied by radiation pneumonia and infectious pneumonia, leading to the simultaneous occurrence of a mixture of several types of inflammation in the lungs. However, there is a lack of authoritative diagnosis, grading criteria and clarified mechanisms of CIP. In this article, we review the incidence and median time to onset of CIP in patients with non-small-cell lung cancer treated with PD-1/PD-L1 blockade in clinical studies. We also summarize the clinical features, potential mechanisms, management and predictive biomarkers of CIP caused by PD-1/PD-L1 blockade in non-small-cell lung cancer treatment.
Collapse
Affiliation(s)
- Jianqiong Yin
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanjun Wu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Yang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Lv H, Fei Y, Li W, Wang Y, Wang J, He J, Liu X, Li L, Qiu L, Qian Z, Zhou S, Meng B, Zhai Q, Ren X, Zou D, Cai Q, Wang X, Zhang H. A Novel Clinical Immune‐Related Prognostic Model Predicts the Overall Survival of Mantle Cell Lymphoma. Hematol Oncol 2022; 40:343-355. [PMID: 35368100 DOI: 10.1002/hon.2994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Huijuan Lv
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
- Department of Medical Oncology The Fourth People’s Hospital of Jinan Jinan Shandong250031 China
| | - Yue Fei
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Wei Li
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Yi Wang
- State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases Haihe Laboratory of Cell Ecosystem Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Jinni Wang
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou PR China
| | - Jin He
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Xianming Liu
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Lanfang Li
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Lihua Qiu
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Zhengzi Qian
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Shiyong Zhou
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Bin Meng
- Department of Pathology Tianjin Medical University Cancer Institute and Hospital Tianjin300060 China
| | - Qiongli Zhai
- Department of Pathology Tianjin Medical University Cancer Institute and Hospital Tianjin300060 China
| | - Xiubao Ren
- Department of Immunology/Biotherapy Tianjin Medical University Cancer Institute and Hospital Tianjin300060 China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology National Clinical Research Center for Blood Diseases Haihe Laboratory of Cell Ecosystem Institute of Hematology & Blood Diseases Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Qingqing Cai
- State Key Laboratory of Oncology in South China Collaborative Innovation Center of Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou PR China
| | - Xianhuo Wang
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| | - Huilai Zhang
- Departments of Lymphoma Tianjin Medical University Cancer Institute and Hospital National Clinical Research Center of Cancer Key Laboratory of Cancer Prevention and Therapy Tianjin’s Clinical Research Center for Cancer Sino‐US Center for Lymphoma and Leukemia Research Tianjin300060 China
| |
Collapse
|
17
|
Saghafi N, Rezaee SA, Momtazi-Borojeni AA, Tavasolian F, Sathyapalan T, Abdollahi E, Sahebkar A. The therapeutic potential of regulatory T cells in reducing cardiovascular complications in patients with severe COVID-19. Life Sci 2022; 294:120392. [PMID: 35149115 PMCID: PMC8824166 DOI: 10.1016/j.lfs.2022.120392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/15/2022]
Abstract
The SARS coronavirus 2 (SARS CoV-2) causes Coronavirus Disease (COVID-19), is an emerging viral infection. SARS CoV-2 infects target cells by attaching to Angiotensin-Converting Enzyme (ACE2). SARS CoV-2 could cause cardiac damage in patients with severe COVID-19, as ACE2 is expressed in cardiac cells, including cardiomyocytes, pericytes, and fibroblasts, and coronavirus could directly infect these cells. Cardiovascular disorders are the most frequent comorbidity found in COVID-19 patients. Immune cells such as monocytes, macrophages, and T cells may produce inflammatory cytokines and chemokines that contribute to COVID-19 pathogenesis if their functions are uncontrolled. This causes a cytokine storm in COVID-19 patients, which has been associated with cardiac damage. Tregs are a subset of immune cells that regulate immune and inflammatory responses. Tregs suppress inflammation and improve cardiovascular function through a variety of mechanisms. This is an exciting research area to explore the cellular, molecular, and immunological mechanisms related to reducing risks of cardiovascular complications in severe COVID-19. This review evaluated whether Tregs can affect COVID-19-related cardiovascular complications, as well as the mechanisms through which Tregs act.
Collapse
Affiliation(s)
- Nafiseh Saghafi
- Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Research Center for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch, Mashhad, Iran; Inflammation and Inflammatory Diseases Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK
| | - Elham Abdollahi
- Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Abstract
Immune principles formulated by Jenner, Pasteur, and early immunologists served as fundamental propositions for vaccine discovery against many dreadful pathogens. However, decisive success in the form of an efficacious vaccine still eludes for diseases such as tuberculosis, leishmaniasis, and trypanosomiasis. Several antileishmanial vaccine trials have been undertaken in past decades incorporating live, attenuated, killed, or subunit vaccination, but the goal remains unmet. In light of the above facts, we have to reassess the principles of vaccination by dissecting factors associated with the hosts' immune response. This chapter discusses the pathogen-associated perturbations at various junctures during the generation of the immune response which inhibits antigenic processing, presentation, or remodels memory T cell repertoire. This can lead to ineffective priming or inappropriate activation of memory T cells during challenge infection. Thus, despite a protective primary response, vaccine failure can occur due to altered immune environments in the presence of pathogens.
Collapse
Affiliation(s)
| | - Sunil Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | - Bhaskar Saha
- National Centre for Cell Science, Pune, Maharashtra, India.
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
19
|
Czajka-Francuz P, Cisoń-Jurek S, Czajka A, Kozaczka M, Wojnar J, Chudek J, Francuz T. Systemic Interleukins' Profile in Early and Advanced Colorectal Cancer. Int J Mol Sci 2021; 23:124. [PMID: 35008550 PMCID: PMC8745135 DOI: 10.3390/ijms23010124] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023] Open
Abstract
Tumor microenvironment (TME) is characterized by mutual interactions of the tumor, stromal and immune cells. Early and advanced colorectal tumors differ in structure and present altered serum cytokine levels. Mutual crosstalk among TME infiltrating cells may shift the balance into immune suppressive or pro-inflammatory, antitumor response this way influencing patients' prognosis. Cancer-related inflammation affects all the body and this way, the systemic level of cytokines could reflect TME processes. Despite numerous studies, it is still not known how systemic cytokines levels change during colorectal cancer (CRC) tumor development. Better understanding tumor microenvironment processes could help in planning therapeutic interventions and more accurate patient prognosis. To contribute to the comprehension of these processes within TME, we reviewed cytokines levels from clinical trials in early and advanced colorectal cancer. Presented data were analyzed in the context of experimental studies and studies analyzing tumor infiltration with immune cells. The review summarizes clinical data of cytokines secreted by tumor microenvironment cells: lymphocytes T helper 1 (Th1), lymphocytes T helper 2 (Th2), lymphocytes T helper 17 (Th17), regulatory T cells (Treg cells), regulatory T cells (Breg cells), M1/M2 macrophages, N1/N2 neutrophils, myeloid-derived suppressor cells (MDSC), dendritic cells (DC), innate lymphoid cells (ILC) natural killer (NK) cells and tumor cells.
Collapse
Affiliation(s)
- Paulina Czajka-Francuz
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Sylwia Cisoń-Jurek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Aleksander Czajka
- Department of General Surgery, Vascular Surgery, Angiology and Phlebology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Maciej Kozaczka
- Department of Radiotherapy and Chemotherapy, National Institute of Oncology, Public Research Institute in Gliwice, 44-101 Gliwice, Poland;
| | - Jerzy Wojnar
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Tomasz Francuz
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
20
|
Shin JS, Kim I, Moon JS, Ho CC, Choi MS, Ghosh S, Lee SK. Intranuclear Delivery of HIF-1α-TMD Alleviates EAE via Functional Conversion of TH17 Cells. Front Immunol 2021; 12:741938. [PMID: 34745114 PMCID: PMC8566938 DOI: 10.3389/fimmu.2021.741938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
T helper 17 (TH17) cells are involved in several autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis (RA). In addition to retinoic acid receptor-related orphan nuclear receptor gamma t (ROR-γt), hypoxia-inducible factor-1α (HIF-1α) is essential for the differentiation and inflammatory function of TH17 cells. To investigate the roles of HIF-1α in the functional regulation of TH17 cells under the normal physiological condition without genetic modification, the nucleus-transducible form of transcription modulation domain (TMD) of HIF-1α (ntHIF-1α-TMD) was generated by conjugating HIF-1α-TMD to Hph-1 protein transduction domain (PTD). ntHIF-1α-TMD was effectively delivered into the nucleus of T cells without cellular cytotoxicity. ntHIF-1α-TMD significantly blocked the differentiation of naïve T cells into TH17 cells in a dose-dependent manner via IL-17A and ROR-γt expression inhibition. However, T-cell activation events such as induction of CD69, CD25, and IL-2 and the differentiation potential of naïve T cells into TH1, TH2, or Treg cells were not affected by ntHIF-1α-TMD. Interestingly, TH17 cells differentiated from naïve T cells in the presence of ntHIF-1α-TMD showed a substantial level of suppressive activity toward the activated T cells, and the increase of Foxp3 and IL-10 expression was detected in these TH17 cells. When mRNA expression pattern was compared between TH17 cells and ntHIF-1α-TMD-treated TH17 cells, the expression of the genes involved in the differentiation and functions of TH17 cells was downregulated, and that of the genes necessary for immune-suppressive functions of Treg cells was upregulated. When the mice with experimental autoimmune encephalomyelitis (EAE) were treated with ntHIF-1α-TMD with anti-IL-17A mAb as a positive control, the therapeutic efficacy of ntHIF-1α-TMD in vivo was comparable with that of anti-IL-17A mAb, and ntHIF-1α-TMD-mediated therapeutic effect was contributed by the functional conversion of TH17 cells into immune-suppressive T cells. The results in this study demonstrate that ntHIF-1α-TMD can be a new therapeutic reagent for the treatment of various autoimmune diseases in which TH17 cells are dominant and pathogenic T cells.
Collapse
Affiliation(s)
- Jin-Su Shin
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, South Korea
| | - Ilkoo Kim
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, South Korea
| | - Jae-Seung Moon
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, South Korea
| | - Chun-Chang Ho
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, South Korea
| | - Min-Sun Choi
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, South Korea
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Sang-Kyou Lee
- Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul, South Korea.,Research Institute for Precision Immune-Medicine, Good T Cells, Inc., Seoul, South Korea
| |
Collapse
|
21
|
The Role of Peptide-Based Tumor Vaccines on Cytokines of Adaptive Immunity: A Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Identification and Purification of Human Memory T Helper Cells from Peripheral Blood. Methods Mol Biol 2021. [PMID: 33928540 DOI: 10.1007/978-1-0716-1311-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
T helper (Th) cells are involved in various physiopathological systems, including response to infections, vaccination, cancer, and autoimmunity. The isolation of viable human Th cells is a procedure that allows a broad study of both phenotypical and functional features of each Th subset, and thus, it is necessary to study these cells in different contexts. In particular, the purification of human memory Th cells from peripheral blood is preparatory for further complex experiments on these cells, such as global transcriptional analysis, coculture assays, silencing experiments, and drug assays.Here, we describe the method for the identification and isolation of pure memory human Th1, Th2, Th17, Th1/17, and T regulatory cells, derived from peripheral blood mononuclear cells. Moreover, we show the purity of each purified Th subset, verified by the analysis of specific transcription factors.
Collapse
|
23
|
Lopes A, Bastiancich C, Bausart M, Ligot S, Lambricht L, Vanvarenberg K, Ucakar B, Gallez B, Préat V, Vandermeulen G. New generation of DNA-based immunotherapy induces a potent immune response and increases the survival in different tumor models. J Immunother Cancer 2021; 9:e001243. [PMID: 33795383 PMCID: PMC8021892 DOI: 10.1136/jitc-2020-001243] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Strategies to increase nucleic acid vaccine immunogenicity are needed to move towards clinical applications in oncology. In this study, we designed a new generation of DNA vaccines, encoding an engineered vesicular stomatitis virus glycoprotein as a carrier of foreign T cell tumor epitopes (plasmid to deliver T cell epitopes, pTOP). We hypothesized that pTOP could activate a more potent response compared with the traditional DNA-based immunotherapies, due to both the innate immune properties of the viral protein and the specific induction of CD4 and CD8 T cells targeting tumor antigens. This could improve the outcome in different tumor models, especially when the DNA-based immunotherapy is combined with a rational therapeutic strategy. METHODS The ability of pTOP DNA vaccine to activate a specific CD4 and CD8 response and the antitumor efficacy were tested in a B16F10-OVA melanoma (subcutaneous model) and GL261 glioblastoma (subcutaneous and orthotopic models). RESULTS In B16F10-OVA melanoma, pTOP promoted immune recognition by adequate processing of both MHC-I and MHC-II epitopes and had a higher antigen-specific cytotoxic T cell (CTL) killing activity. In a GL261 orthotopic glioblastoma, pTOP immunization prior to tumor debulking resulted in 78% durable remission and long-term survival and induced a decrease of the number of immunosuppressive cells and an increase of immunologically active CTLs in the brain. The combination of pTOP with immune checkpoint blockade or with tumor resection improved the survival of mice bearing, a subcutaneous melanoma or an orthotopic glioblastoma, respectively. CONCLUSIONS In this work, we showed that pTOP plasmids encoding an engineered vesicular stomatitis virus glycoprotein, and containing various foreign T cell tumor epitopes, successfully triggered innate immunity and effectively promoted immune recognition by adequate processing of both MHC-I and MHC-II epitopes. These results highlight the potential of DNA-based immunotherapies coding for viral proteins to induce potent and specific antitumor responses.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Brain Neoplasms/drug therapy
- Brain Neoplasms/immunology
- Brain Neoplasms/metabolism
- Brain Neoplasms/pathology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Cell Line, Tumor
- Combined Modality Therapy
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/pharmacology
- Glioblastoma/drug therapy
- Glioblastoma/immunology
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Immune Checkpoint Inhibitors/pharmacology
- Immunity, Innate/drug effects
- Immunogenicity, Vaccine
- Immunotherapy
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/pharmacology
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/pharmacology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/pharmacology
- Mice
Collapse
Affiliation(s)
- Alessandra Lopes
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Brussels, Belgium
| | - Chiara Bastiancich
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Brussels, Belgium
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Mathilde Bausart
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Brussels, Belgium
| | - Sophie Ligot
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Brussels, Belgium
| | - Laure Lambricht
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Brussels, Belgium
| | - Kevin Vanvarenberg
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Ucakar
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Gallez
- Louvain Drug Research Institute, Biomedical Magnetic Resonance, Université catholique de Louvain, Brussels, Belgium
| | - Véronique Préat
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Brussels, Belgium
| | - Gaëlle Vandermeulen
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
24
|
Integrative computational approach identifies drug targets in CD4 + T-cell-mediated immune disorders. NPJ Syst Biol Appl 2021; 7:4. [PMID: 33483502 PMCID: PMC7822845 DOI: 10.1038/s41540-020-00165-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
CD4+ T cells provide adaptive immunity against pathogens and abnormal cells, and they are also associated with various immune-related diseases. CD4+ T cells’ metabolism is dysregulated in these pathologies and represents an opportunity for drug discovery and development. Genome-scale metabolic modeling offers an opportunity to accelerate drug discovery by providing high-quality information about possible target space in the context of a modeled disease. Here, we develop genome-scale models of naïve, Th1, Th2, and Th17 CD4+ T-cell subtypes to map metabolic perturbations in rheumatoid arthritis, multiple sclerosis, and primary biliary cholangitis. We subjected these models to in silico simulations for drug response analysis of existing FDA-approved drugs and compounds. Integration of disease-specific differentially expressed genes with altered reactions in response to metabolic perturbations identified 68 drug targets for the three autoimmune diseases. In vitro experimental validation, together with literature-based evidence, showed that modulation of fifty percent of identified drug targets suppressed CD4+ T cells, further increasing their potential impact as therapeutic interventions. Our approach can be generalized in the context of other diseases, and the metabolic models can be further used to dissect CD4+ T-cell metabolism.
Collapse
|
25
|
Microbial Lipid A Remodeling Controls Cross-Presentation Efficiency and CD8 T Cell Priming by Modulating Dendritic Cell Function. Infect Immun 2021; 89:IAI.00335-20. [PMID: 33257533 DOI: 10.1128/iai.00335-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
The majority of Gram-negative bacteria elicit a potent immune response via recognition of lipid A expressed on the outer bacterial membrane by the host immune receptor Toll-like receptor 4 (TLR4). However, some Gram-negative bacteria evade detection by TLR4 or alter the outcome of TLR4 signaling by modification of lipid A species. Although the role of lipid A modifications on host innate immunity has been examined in some detail, it is currently unclear how lipid A remodeling influences host adaptive immunity. One prototypic Gram-negative bacterium that modifies its lipid A structure is Porphyromonas gingivalis, an anaerobic pathobiont that colonizes the human periodontium and induces chronic low-grade inflammation that is associated with periodontal disease as well as a number of systemic inflammatory disorders. P. gingivalis produces dephosphorylated and deacylated lipid A structures displaying altered activities at TLR4. Here, we explored the functional role of P. gingivalis lipid A modifications on TLR4-dependent innate and adaptive immune responses in mouse bone marrow-derived dendritic cells (BMDCs). We discovered that lipid A 4'-phosphate removal is required for P. gingivalis to evade BMDC-dependent proinflammatory cytokine responses and markedly limits the bacterium's capacity to induce beta interferon (IFN-β) production. In addition, lipid A 4'-phosphatase activity prevents canonical bacterium-induced delay in antigen degradation, which leads to inefficient antigen cross-presentation and a failure to cross-prime CD8 T cells specific for a P. gingivalis-associated antigen. We propose that lipid A modifications produced by this bacterium alter host TLR4-dependent adaptive immunity to establish chronic infections associated with a number of systemic inflammatory disorders.
Collapse
|
26
|
Hofschröer V, Najder K, Rugi M, Bouazzi R, Cozzolino M, Arcangeli A, Panyi G, Schwab A. Ion Channels Orchestrate Pancreatic Ductal Adenocarcinoma Progression and Therapy. Front Pharmacol 2021; 11:586599. [PMID: 33841132 PMCID: PMC8025202 DOI: 10.3389/fphar.2020.586599] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is a devastating disease with a dismal prognosis. Therapeutic interventions are largely ineffective. A better understanding of the pathophysiology is required. Ion channels contribute substantially to the "hallmarks of cancer." Their expression is dysregulated in cancer, and they are "misused" to drive cancer progression, but the underlying mechanisms are unclear. Ion channels are located in the cell membrane at the interface between the intracellular and extracellular space. They sense and modify the tumor microenvironment which in itself is a driver of PDAC aggressiveness. Ion channels detect, for example, locally altered proton and electrolyte concentrations or mechanical stimuli and transduce signals triggered by these microenvironmental cues through association with intracellular signaling cascades. While these concepts have been firmly established for other cancers, evidence has emerged only recently that ion channels are drivers of PDAC aggressiveness. Particularly, they appear to contribute to two of the characteristic PDAC features: the massive fibrosis of the tumor stroma (desmoplasia) and the efficient immune evasion. Our critical review of the literature clearly shows that there is still a remarkable lack of knowledge with respect to the contribution of ion channels to these two typical PDAC properties. Yet, we can draw parallels from ion channel research in other fibrotic and inflammatory diseases. Evidence is accumulating that pancreatic stellate cells express the same "profibrotic" ion channels. Similarly, it is at least in part known which major ion channels are expressed in those innate and adaptive immune cells that populate the PDAC microenvironment. We explore potential therapeutic avenues derived thereof. Since drugs targeting PDAC-relevant ion channels are already in clinical use, we propose to repurpose those in PDAC. The quest for ion channel targets is both motivated and complicated by the fact that some of the relevant channels, for example, KCa3.1, are functionally expressed in the cancer, stroma, and immune cells. Only in vivo studies will reveal which arm of the balance we should put our weights on when developing channel-targeting PDAC therapies. The time is up to explore the efficacy of ion channel targeting in (transgenic) murine PDAC models before launching clinical trials with repurposed drugs.
Collapse
Affiliation(s)
| | - Karolina Najder
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Rayhana Bouazzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Marco Cozzolino
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Münster, Germany
| |
Collapse
|
27
|
Lei TY, Ye YZ, Zhu XQ, Smerin D, Gu LJ, Xiong XX, Zhang HF, Jian ZH. The immune response of T cells and therapeutic targets related to regulating the levels of T helper cells after ischaemic stroke. J Neuroinflammation 2021; 18:25. [PMID: 33461586 PMCID: PMC7814595 DOI: 10.1186/s12974-020-02057-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Through considerable effort in research and clinical studies, the immune system has been identified as a participant in the onset and progression of brain injury after ischaemic stroke. Due to the involvement of all types of immune cells, the roles of the immune system in stroke pathology and associated effects are complicated. Past research concentrated on the functions of monocytes and neutrophils in the pathogenesis of ischaemic stroke and tried to demonstrate the mechanisms of tissue injury and protection involving these immune cells. Within the past several years, an increasing number of studies have elucidated the vital functions of T cells in the innate and adaptive immune responses in both the acute and chronic phases of ischaemic stroke. Recently, the phenotypes of T cells with proinflammatory or anti-inflammatory function have been demonstrated in detail. T cells with distinctive phenotypes can also influence cerebral inflammation through various pathways, such as regulating the immune response, interacting with brain-resident immune cells and modulating neurogenesis and angiogenesis during different phases following stroke. In view of the limited treatment options available following stroke other than tissue plasminogen activator therapy, understanding the function of immune responses, especially T cell responses, in the post-stroke recovery period can provide a new therapeutic direction. Here, we discuss the different functions and temporal evolution of T cells with different phenotypes during the acute and chronic phases of ischaemic stroke. We suggest that modulating the balance between the proinflammatory and anti-inflammatory functions of T cells with distinct phenotypes may become a potential therapeutic approach that reduces the mortality and improves the functional outcomes and prognosis of patients suffering from ischaemic stroke.
Collapse
Affiliation(s)
- Tian-Yu Lei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Ying-Ze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Xi-Qun Zhu
- Department of Head and Neck and Neurosurgery, Hubei Cancer Hospital, Wuhan, 430079, Hubei Province, People's Republic of China
| | - Daniel Smerin
- University of Central Florida College of Medicine, Orlando, FL, 32827, USA
| | - Li-Juan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Xiao-Xing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Hong-Fei Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Zhi-Hong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
28
|
Peng Z, Hu Y, Ren J, Yu N, Li Z, Xu Z. Circulating Th22 cells, as well as Th17 cells, are elevated in patients with renal cell carcinoma. Int J Med Sci 2021; 18:99-108. [PMID: 33390778 PMCID: PMC7738959 DOI: 10.7150/ijms.47384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
T-helper (Th) 22 cells serve an essential role in different types of tumors and autoimmune diseases. No research has been conducted to study the role of Th22 cells in the pathogenesis of renal cell carcinoma (RCC). We aimed to evaluate the prognostic value of circulating Th22, Th17, and Th1 cells in RCC patients. Thirty-two newly diagnosed RCC patients and thirty healthy controls were enlisted in the research. Their peripheral blood was collected, and the frequencies of circulating Th22, Th17, and Th1 cells were detected by flow cytometry. Plasma IL-22 concentrations were examined by an enzyme-linked immunosorbent assay (ELISA). Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to identify the mRNA expression levels of aromatic hydrocarbon receptor (AHR) and RAR-associated orphan receptor C (RORC) in peripheral blood mononuclear cells (PBMC). Compared with the healthy control group, the frequency of circulating Th22 and Th17 cells and concentrations of plasma IL-22 were significantly increased in RCC patients. However, there was no significant difference in the frequency of Th1 cells. A positive correlation between Th22 cells and plasma IL-22 levels was found in RCC patients. Also, there was a significant positive correlation between Th22 and Th17 cells in RCC patients. An up-regulated expression of AHR and RORC transcription factors were also observed in RCC patients. As tumor stage and grade progressed, the frequencies of Th22 and Th17 cells and the level of plasma IL-22 significantly increased. Meanwhile, there was a positive correlation between Th22 and Th17 cells and RCC tumor stage or grade. Furthermore, patients with high Th22 or Th17 cells frequency displayed a decreased trend in survival rate. Our research indicated that the increased circulating Th22 and Th17 cells and plasma IL-22 may be involved in the pathogenesis of RCC and may be involved in the occurrence and development of tumors. Th22 cells, plasma IL-22, and Th17 cells may be promising new clinical biomarkers and may be used as cellular targets for RCC therapeutic intervention.
Collapse
Affiliation(s)
- Zhiguo Peng
- Department of Urology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan 250012, PR China
| | - Yu Hu
- Department of Medical Oncology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan 250012, PR China
| | - Juchao Ren
- Department of Urology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan 250012, PR China
| | - Nengwang Yu
- Department of Urology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan 250012, PR China
| | - Zeyan Li
- Department of Urology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan 250012, PR China
| | - Zhonghua Xu
- Department of Urology, Qilu Hospital, Shandong University, 107 Wenhua West Road, Jinan 250012, PR China
| |
Collapse
|
29
|
Rodero M, Cuéllar C. Modulation by Anisakis simplex antigen of inflammatory response generated in experimental autoimmune encephalomyelitis. Int Immunopharmacol 2020; 90:107241. [PMID: 33321294 DOI: 10.1016/j.intimp.2020.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022]
Abstract
The impact of immunization with Anisakis simplex larval antigen on the occurrence and progression of experimental autoimmune encephalomyelitis (EAE) induced in mice was studied. C57BL/6J mice were immunized with the MOG35-55 peptide and one batch was treated with A. simplex total larval antigen on days 1, 8, 10 and 12 after EAE induction. Significantly higher values were obtained in the EAE clinical parameters of the antigen-treated group. Likewise, there was a significant decrease in the weights of the animals. Anisakis-treatment produced a significant decrease in anti-MOG35-55 specific IgG1 on day 21. On day 14 there was an increase in serum IL-2, IL-6, IL-10, IL-17A, and TGF-β in the treated group. On day 21, a decrease in IL-4, IL-6, TNF-α, TGF-β was observed. All brain determinations were made on day 21. The treatment decreased values of IL-6, IL-10, IL-17A and TNF-α. A. simplex antigen caused a significantly higher incidence of EAE and an advance in the appearance of the disease manifestations. However, treatment with the antigen was able to cause a decrease in proinflammatory cytokines (IL-6, IL-17A, and TNF-α) in nervous tissue that could establish a future preventive scenario for myelin damage.
Collapse
Affiliation(s)
- Marta Rodero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Carmen Cuéllar
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
30
|
Askari VR, Alavinezhad A, Rahimi VB, Rezaee SA, Boskabady MH. Immuno-modulatory effects of methanolic extract of Ferula szowitsiana on isolated human Th 1/Th 2/T reg cytokines levels, and their genes expression and nitric oxide production. Cytokine 2020; 138:155387. [PMID: 33278664 DOI: 10.1016/j.cyto.2020.155387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Anti-inflammatory and anti-oxidants activities of Ferula szowitsiana L. (F. szowitsiana) were shown in ancient texts and assayed by modern studies. However, immunomodulatory properties of the plant are poorly understood. METHODS The effects of F. szowitsiana extract (10, 40 and 160 µg/ml), dexamethasone and vehicle were investigated on nitric oxide (NO) level, cell proliferation, and cytokines (IL-4, IL10 and IFN-γ) expression at gene and protein levels in non-stimulated and phytohaemagglutinin-stimulated human lymphocytes (n = 15 in each group). RESULTS Cell proliferation, cytokines secretion, NO production and levels of genes expression were significantly inhibited but IFN-γ/IL-4 and IL-10/IL-4 ratios (T helper 1/Th2 and Treg/Th2 balances respectively) were increased by dexamethasone and all three concentrations of the extract compared to control group in stimulated lymphocytes (P < 0.001 for all cases). The effect of three concentrations of the extract in all experiments was significantly lower than dexamethasone (P < 0.001 for all cases). CONCLUSION The extract of F. szowitsiana concentration-dependently decreased NO level but increased Th1/Th2 and Treg/Th2 ratios toward Th1 and Treg. These results suggest the therapeutic potential of the plant's extract in inflammatory diseases with dominant Th2 polarization such as asthma or cancers.
Collapse
Affiliation(s)
- Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Alavinezhad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyyed Abdorrahim Rezaee
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Papathemeli D, Patsatsi A, Papanastassiou D, Koletsa T, Papathemelis T, Avgeros C, Pikou O, Lazaridou E, Georgiou E. Protein and mRNA Expression Levels of Interleukin-17A, -17F and -22 in Blood and Skin Samples of Patients with Mycosis Fungoides. Acta Derm Venereol 2020; 100:adv00326. [PMID: 33170303 PMCID: PMC9309846 DOI: 10.2340/00015555-3688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
This study investigated the expression of interleukin (IL)-17A, -17F and -22 in mycosis fungoides. Blood samples were collected from 50 patients with mycosis fungoides and 50 healthy controls. Skin samples were obtained from 26 patients with mycosis fungoides and 5 healthy controls. Protein levels of IL-17A, -17F and -22 were measured in serum by multiplex enzyme-linked immunosorbent assay, and mRNA expression levels were measured in blood and skin samples by real-time quantitative reverse transcription PCR. Both IL-17A and IL-17F mRNA expression levels were significantly lower in blood of patients with mycosis fungoides in comparison with healthy controls. IL-22 serum levels and expression levels of IL-22 mRNA in skin tissue, were significantly increased in patients with mycosis fungoides in comparison with healthy controls. These results suggest that low levels of IL-17A and IL-17F in mycosis fungoides may be connected to impaired immune surveillance contributing to tumourigenesis. Upregulation of IL-22 may play a role in the establishment of the tumour microenvironment in mycosis fungoides.
Collapse
Affiliation(s)
- Despoina Papathemeli
- 2nd Department of Dermatology and Venereology, Cutaneous Lymphoma Outpatient Clinic, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu C, Wang Y, Li S, Jiao X, Zou J, Wang Z, Qi C, Zhang X, Li J, Lu Z, Shen L. Early change in peripheral CD4 + T cells associated with clinical outcomes of immunotherapy in gastrointestinal cancer. Immunotherapy 2020; 13:55-66. [PMID: 33086925 DOI: 10.2217/imt-2020-0068] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Biomarkers for immune checkpoint inhibitors (ICIs) are limited in gastrointestinal cancer. Peripheral blood lymphocyte subset and associated dynamic changes were retrospectively analyzed in patients with gastrointestinal cancer treated with ICIs. Cox regression and Kaplan-Meier analyses were conducted for survival. A total of 80 patients were enrolled. Baseline CD4+/CD8+ T cells were lower in patients who experienced tumor progression by 6 months than in patients who did not (1.160 ± 0.652 vs 1.705 ± 0.924, respectively; p = 0.003). In multivariate analyses, decline in CD4+ T cells after the first dose of ICIs (CD4-C1-decline) was an independent prognostic factor for overall survival (hazard ratio: 13.00; 95% CI: 2.24-75.54; p = 0.004). Furthermore, CD4-C1-decline was a preferable indicator for progression in patients with deficient mismatch repair/microsatellite instability-high (p = 0.027). Early change in CD4+ T cell counts in peripheral blood may act as a prognostic biomarker for gastrointestinal cancer patients treated with ICIs.
Collapse
Affiliation(s)
- Chang Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing 100142, China
| | - Yanni Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing 100142, China
| | - Shuang Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing 100142, China
| | - Xi Jiao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing 100142, China
| | - Jianling Zou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing 100142, China
| | - Changsong Qi
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing 100142, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing 100142, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing 100142, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Road, Hai-Dian District, Beijing 100142, China
| |
Collapse
|
33
|
Masuelli L, Benvenuto M, Focaccetti C, Ciuffa S, Fazi S, Bei A, Miele MT, Piredda L, Manzari V, Modesti A, Bei R. Targeting the tumor immune microenvironment with "nutraceuticals": From bench to clinical trials. Pharmacol Ther 2020; 219:107700. [PMID: 33045254 DOI: 10.1016/j.pharmthera.2020.107700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of immune effector cells in the tissue microenvironment during neoplastic progression is critical in determining tumor growth outcomes. On the other hand, tumors may also avoid immune system-mediated elimination by recruiting immunosuppressive leukocytes and soluble factors, which coordinate a tumor microenvironment that counteracts the efficiency of the antitumor immune response. Checkpoint inhibitor therapy results have indicated a way forward via activation of the immune system against cancer. Widespread evidence has shown that different compounds in foods, when administered as purified substances, can act as immunomodulators in humans and animals. Although there is no universally accepted definition of nutraceuticals, the term identifies a wide category of natural compounds that may impact health and disease statuses and includes purified substances from natural sources, plant extracts, dietary supplements, vitamins, phytonutrients, and various products with combinations of functional ingredients. In this review, we summarize the current knowledge on the immunomodulatory effects of nutraceuticals with a special focus on the cancer microenvironment, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of nutraceuticals for envisioning future therapies employing nutraceuticals as chemoadjuvants.
Collapse
Affiliation(s)
- Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy; Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Arianna Bei
- Medical School, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Lucia Piredda
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy; CIMER, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
34
|
Wang Y, Li G. Effects of S-1 combined with palliative care on immune function and quality of life of patients with advanced stomach cancer. Oncol Lett 2020; 20:2021-2027. [PMID: 32724449 PMCID: PMC7377188 DOI: 10.3892/ol.2020.11720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/08/2020] [Indexed: 12/09/2022] Open
Abstract
The present study aimed to investigate the effects of S-1 combined with palliative care (PC) on the immune function and quality of life (QOL) of patients with advanced stomach cancer (ASC). In this prospective study, 168 patients with ASC admitted to our hospital from September 2016 to March 2018 were enrolled as research objects. Seventy-seven cases were treated with S-1 alone (single drug group, SDG), while another 91 cases were treated with S-1 combined with PC (combined drug group, CDG). The effects of the two therapeutic methods on the efficacy [overall response rate (ORR)], 1-year overall survival rate (OSR), safety, negative emotions, nutritional indices, QOL, and immune function indices of patients were analyzed. After treatment, ORR, OSR, levels of nutritional indices [albumin (ALB), prealbumin (PA), and transferrin (TF)], and QOL improvement rate in the CDG were significantly higher than those in the SDG (P<0.05). After treatment, compared with those in the SDG, patients in the CDG had a lower Self-Rating Anxiety Scale (SAS) score, Self-Rating Depression Scale (SDS) score, and number of adverse reactions (P<0.05), and significantly improved immune function indices (CD4+, CD8+, and CD4+/CD8+) (P<0.05). S-1 combined with PC treatment was superior to S-1 treatment alone in patients with ASC. The patients treated with the combination exhibited improved efficacy (a higher ORR), higher QOL, and improved immune function, and thus this treatment can be clinically popularized.
Collapse
Affiliation(s)
- Ying Wang
- Department of Hematology, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| | - Guozhong Li
- Department of Hematology, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| |
Collapse
|
35
|
Chen J, Jiang J, Liu Y, Ye Y, Ma Y, Cen Y, Chen W, Wang S, Yang G, Zhang A. Arsenite induces dysfunction of regulatory T cells through acetylation control of the Foxp3 promoter. Hum Exp Toxicol 2020; 40:35-46. [PMID: 32735129 DOI: 10.1177/0960327120934533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arsenic is known to cause damage to the body's immune system by inducing epigenetic changes. However, the molecular mechanism of this damage remains elusive. Here, we report that arsenic disrupts the morphology of lymphocytes, decreases cell viability, and results in abnormal proportions of T lymphocyte subsets. Moreover, our results revealed that arsenic can reduce global acetylation of histone H4 at K16 (H4K16 ac) in lymphocytes via decreasing the level of males absent on the first but upregulates mRNA and protein levels of the forkhead/winged-helix box P3 (Foxp3) gene by increasing the acetylation of histone H4 at K16 (H4K16) at the promoter of Foxp3. Finally, arsenic-induced dysfunction of regulatory T cells (Tregs) could be ameliorated by trichostatin A. Our research indicates that arsenic-induced immunosuppressive effect in human lymphocytes may be related to the acetylation of H4K16 at the promoter of Foxp3 and that histone deacetylase inhibitors may play a role in the prevention and treatment of immune injury caused by arsenic.
Collapse
Affiliation(s)
- J Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - J Jiang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Y Liu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Y Ye
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Y Ma
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Y Cen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - W Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - S Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - G Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - A Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| |
Collapse
|
36
|
Li Y, Wang D, Li X. The blood cells in NSCLC and the changes after RFA. Int J Hyperthermia 2020; 37:753-762. [PMID: 32619369 DOI: 10.1080/02656736.2020.1782486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Lung cancer has attracted a lot of attention because of its high morbidity and mortality. The emergence of RFA provides a new treatment for unresectable NSCLC patients. In addition to killing in situ lung tumors, RFA also provides new immuno-activated antigens, for the treatment of lung cancer. It changes the tumor microenvironment and activates the entire immune system of patients. The peripheral blood cell count is easy to achieve and the blood cells are important in tumor immunity, which changes after RFA. On the one hand, the changes in blood cells identify the immune changes of NSCLC; on the other hand, it provides support and suspicion for the treatment of RFA.
Collapse
Affiliation(s)
- Yunfang Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Graduate School of Perking Union Medical College, China Academy of Medical Sciences, Beijing, China
| | - Dongdong Wang
- Minimally Invasive Interventional Therapy Center Department, Qingdao Municipal Hospital, Qingdao, China
| | - Xiaoguang Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Graduate School of Perking Union Medical College, China Academy of Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Wang YY, Zhou N, Liu HS, Gong XL, Zhu R, Li XY, Sun Z, Zong XH, Li NN, Meng CT, Bai CM, Li TS. Circulating activated lymphocyte subsets as potential blood biomarkers of cancer progression. Cancer Med 2020; 9:5086-5094. [PMID: 32459060 PMCID: PMC7367640 DOI: 10.1002/cam4.3150] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/13/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022] Open
Abstract
The objective of this study was to predict the value of lymphocyte subsets in cancer progression. Peripheral blood was obtained from 327 untreated patients with cancer and 158 healthy volunteers. Levels of lymphocyte subsets were determined by flow cytometry. There were decreased levels of natural killer (NK) cells, CD8+ T cells, and naïve CD4+/CD4+ T cells in untreated patients with cancer compared to those in healthy controls. Inversely, there were elevated levels of the following T‐cell percentages in cancer patients compared to those in healthy controls: memory CD4+/CD4+, CD8+ T cells, HLA‐DR/CD8+, CD8+ CD38+/CD8+, and CD4+/CD8+. In addition, there are a decreasing trend in terms of CD4+ T‐cell counts and an increase CD8+ HLA‐DR/CD8+ T‐cell and CD8+ CD38+/CD8+ T‐cell percentages in the advanced stage. An increasing trend with advanced tumor stage and the percentages of CD8+ HLA‐DR/CD8+ T cells and CD8+ CD38+/CD8+ T cells was shown in this study. There are a negative correlation for CD4+ T‐cell counts and positive correlation for percentages of CD8+ HLA‐DR/CD8+ T cell and CD8+ CD38+/CD8+ T cells with the lymph node metastasis. In the presence of distant metastatic spread, we observed higher NK‐cell counts, CD8+ HLA‐DR/CD8+ T‐cell percentages, CD8+ CD38+/CD8+ T‐cell percentages, as well as lower CD4+ T‐cell counts than those in the absence of distant metastases spread. Abnormal levels of NK cell, CD8+ T cells, memory CD4+/CD4+, naïve CD4+/ CD4+, CD8+ HLA‐DR/CD8+, CD8+ CD38+/CD8+, and CD4+/CD8+ can be a potential blood biomarkers of cancer development. CD4+ T‐cell counts and percentages of CD8+ HLA‐DR/ CD8+ and CD8+ CD38+/ CD8+ can predict the cancer progression.
Collapse
Affiliation(s)
- Ying-Yi Wang
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Zhou
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Sheng Liu
- Department of Thoracic surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Lei Gong
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhu
- Department of Medical Record, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Yuan Li
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu-Hong Zong
- Department of Medical Oncology, Wangshi Town Hospital, Haicheng, China
| | - Ning-Ning Li
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Chun-Mei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tai-Sheng Li
- Department of Thoracic surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
38
|
Cota-Arce JM, Zazueta-Favela D, Díaz-Castillo F, Jiménez S, Bernáldez-Sarabia J, Caram-Salas NL, Dan KWL, Escobedo G, Licea-Navarro AF, Possani LD, De León-Nava MA. Venom components of the scorpion Centruroides limpidus modulate cytokine expression by T helper lymphocytes: Identification of ion channel-related toxins by mass spectrometry. Int Immunopharmacol 2020; 84:106505. [PMID: 32380407 DOI: 10.1016/j.intimp.2020.106505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 11/19/2022]
Abstract
The study of the effector mechanisms of T helper cells has revealed different phenotypic characteristics that can be manipulated for designing new therapeutic schemes in different pathological scenarios. Ion channels are significant targets in T lymphocyte modulation since they are closely related to their effector activity. Remarkably, some toxins produced by scorpions specifically affect the function of these membrane proteins. For that reason, these toxins are important candidates in the search for new immunomodulators. Here, the effect of two venom fractions of the scorpion Centruroides limpidus was assessed on T lymphocyte proliferation and cytokine production. The venom fractions ClF8 and ClF9 were separated by reversed-phase high-performance liquid chromatography (RP-HPLC) and cultured at 25 and 35 µg/ml with murine T lymphocytes. The results indicate that the fraction ClF8 increased both production and secretion levels of IFN-γ, IL-4, IL-17A and IL-10 by CD4+ T cells at 24 h. In contrast, fraction ClF9 only promoted the secretion of IL-17A and IL-10 at its highest concentration (35 µg/ml). Both fractions did not show any effect on T cell proliferation. Subsequent analyses by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed seventeen toxins in the fraction ClF8 and five toxins in the fraction ClF9, most of them with voltage-gated sodium (NaScTx) and potassium (KScTx) channels as molecular targets. These toxins might probably interact with ion channels involved in T lymphocyte activity. Our findings suggest that the difference in composition between the two fractions could be related to the observed effects, and the components identified could be isolated to search for possible immunomodulatory molecules.
Collapse
Affiliation(s)
- Julián M Cota-Arce
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Daniela Zazueta-Favela
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Fernando Díaz-Castillo
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Samanta Jiménez
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Johanna Bernáldez-Sarabia
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Nadia L Caram-Salas
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México; Cátedra CONACYT/Departamento de Innovación Biomédica, CICESE, México
| | - Kee W L Dan
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Galileo Escobedo
- Laboratorio de Proteómica y Metabolómica, Dirección de Investigación, Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, C.P. 06720, México
| | - Alexei F Licea-Navarro
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210, México
| | - Marco A De León-Nava
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Baja California, C.P. 22860, México.
| |
Collapse
|
39
|
Wang J, Han B. Dysregulated CD4+ T Cells and microRNAs in Myocarditis. Front Immunol 2020; 11:539. [PMID: 32269577 PMCID: PMC7109299 DOI: 10.3389/fimmu.2020.00539] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Myocarditis is a polymorphic disease complicated with indeterminate etiology and pathogenesis, and represents one of the most challenging clinical problems lacking specific diagnosis and effective therapy. It is caused by a complex interplay of environmental and genetic factors, and causal links between dysregulated microribonucleic acids (miRNAs) and myocarditis have also been supported by recent epigenetic researches. Both dysregulated CD4+ T cells and miRNAs play critical roles in the pathogenesis of myocarditis, and the classic triphasic model of its pathogenesis consists of the acute infectious, subacute immune, and recovery/chronic myopathic phase. CD4+ T cells are key pathogenic factors underlying the development and progression of myocarditis, and the effector and regulatory subsets, respectively, promote and inhibit autoimmune responses. Furthermore, the reciprocal interplay of these subsets influences the pathogenesis as well. Dysregulated miRNAs along with their mRNA and protein targets have been identified in heart biopsies (intracellular miRNAs) and body fluids (circulating miRNAs) during myocarditis. These miRNAs show phase-dependent changes, and correlate with viral infection, immune status, fibrosis, destruction of cardiomyocytes, arrhythmias, cardiac functions, and outcomes. Thus, miRNAs are promising diagnostic markers and therapeutic targets in myocarditis. In this review, we review myocarditis with an emphasis on its pathogenesis, and present a summary of current knowledge of dysregulated CD4+ T cells and miRNAs in myocarditis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
40
|
A Comparison of Characterization and Its Actions on Immunocompetent Cells of Polysaccharides from Sijunzi Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2019:9860381. [PMID: 31915457 PMCID: PMC6935442 DOI: 10.1155/2019/9860381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/03/2019] [Accepted: 11/04/2019] [Indexed: 01/30/2023]
Abstract
Sijunzi decoction (SJZD) is a classic recipe in Traditional Chinese Medicine (TCM) with strong immune-enhancement activity. To further understand the characterization and immunomodulatory effect of polysaccharides from SJZD, the monosaccharide compositions of crude polysaccharide (SJZDP), polysaccharide fraction (S-3), and homogeneous polysaccharide (S-3-AG) from SJZD were compared by GC analysis, as well as their immunomodulatory effects on Peyer's patch cells, splenocytes, and macrophages which are related to intestinal immunity, specific immunity, and nonspecific immunity. The results showed that S-3-AG mainly contained Ara with a proportion of 38.9%, while Glc accounted for the largest proportion in S-3 (55.6%) and SJZDP (87.6%). The SJZDP, S-3, and S-3-AG all showed strong capability to stimulate Peyer's patch cells to proliferate and produce IgA and promoted the proliferation and IFN-γ production of splenocytes and increased the NO production and TNF-α production of macrophages. However, S-3 and S-3-AG were able to stimulate splenocytes to secret IL-4, SJZDP had no effect on IL-4 production of splenocytes in the tested concentrations. In addition, S-3 could stimulate the phagocytic activity of macrophages, and S-3-AG restrained the proliferation of macrophages at the concentration of 50–200 µg/mL. These results suggested that SJZDP, S-3, and S-3-AG might have different immunomodulatory effects on intestinal immunity, specific immunity, and nonspecific immunity due to their different monosaccharide compositions. It will provide references for the material basis and mechanism of SJZD immunomodulation activity.
Collapse
|
41
|
Xia S, Sun Q, Zou Z, Liu Y, Fang X, Sun B, Wei S, Wang D, Zhang A, Liu Q. Ginkgo biloba extract attenuates the disruption of pro-and anti-inflammatory T-cell balance in peripheral blood of arsenicosis patients. Int J Biol Sci 2020; 16:483-494. [PMID: 32015684 PMCID: PMC6990893 DOI: 10.7150/ijbs.39351] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022] Open
Abstract
Endemic arsenicosis is a public health problem that affects thousands of people worldwide. However, the biological mechanism involved is not well characterized, and there is no specific treatment. Exposure to arsenic may be associated with immune-related problems. In the present work, we performed an investigation to determine whether the Th17/Treg balance was abnormal in peripheral blood mononuclear cells (PBMCs) of patients with arsenicosis caused by burning coal. Furthermore, we investigated the effect of Ginkgo biloba extract (GBE) on the Th17/Treg imbalance in patients with arsenicosis. In this trial, 81 arsenicosis patients and 37 controls were enrolled. The numbers of Th17 and Treg cells, as well as related transcription factors and serum cytokines, were determined at the beginning and end of the study. Patients with arsenicosis exhibited higher levels of Th17 cells, Th17-related cytokines (IL-17A and IL-6), and the transcription factor RORγt. There were lower levels of Treg cells, a Treg-related cytokine (IL-10), and the transcription factor Foxp3 as compared with controls. There was a positive correlation between the levels of Th17 cells and IL-17A and the levels of arsenic in hair. Arsenicosis patients were randomly assigned to a GBE treatment group or a placebo group. After 3 months of follow-up, 74 patients completed the study (39 cases in the GBE group and 35 in the placebo group). Administration of GBE to patient upregulated the numbers of Treg cells and the level of IL-10 and downregulated the numbers of Th17 cells and the levels of cytokines associated with Th17 cells. The mRNA levels of Foxp3 and RORγt were increased and decreased, respectively. These results indicated that exposure to arsenic is associated with immune-related problems. The present investigation describes a previously unknown mechanism showing that an imbalance of pro- and anti-inflammatory T cells is involved in the pathogenesis of arsenicosis and that a GBE exerts effects on arsenicosis through regulation of the pro- and anti-inflammatory T cell balance.
Collapse
Affiliation(s)
- Shiqing Xia
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Qian Sun
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Yonglian Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Xiaolin Fang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| |
Collapse
|
42
|
Ribeiro Franco PI, Rodrigues AP, de Menezes LB, Pacheco Miguel M. Tumor microenvironment components: Allies of cancer progression. Pathol Res Pract 2019; 216:152729. [PMID: 31735322 DOI: 10.1016/j.prp.2019.152729] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022]
Abstract
Cancer is a disease that affects millions of individuals worldwide and has a great impact on public health. Therefore, the study of tumor biology and an understanding of how the components of the tumor microenvironment behave and interact is extremely important for cancer research. Factors expressed by the components of the tumor microenvironment and induce angiogenesis have important roles in the onset and progression of the tumor. These components are represented by the extracellular matrix, fibroblasts, adipocytes, immune cells, and macrophages, besides endothelial cells, which modulate tumor cells and the tumor microenvironment to favor survival and the progression of cancer. The characteristics and function of the main stromal components and their mechanisms of interaction with the tumor cells that contribute to progression, tumor invasion, and tumor spread will be addressed in this review. Furthermore, reviewing these components is expected to indicate their importance as possible prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - Arthur Perillo Rodrigues
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Marina Pacheco Miguel
- Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
43
|
Wang Y, Zhang Q, Chen Y, Liang CL, Liu H, Qiu F, Dai Z. Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed Pharmacother 2019; 121:109570. [PMID: 31710893 DOI: 10.1016/j.biopha.2019.109570] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/07/2019] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has been traditionally used to treat patients with cancers in China. It not only alleviates the symptoms of tumor patients and improves their quality of life, but also controls the size of tumors and prolongs the survival of tumor patients. While some herbs of TCM may exert therapeutic effects by directly targeting cancer cells or reducing side effects caused by antitumor drugs, others can control tumor growth and metastasis via enhancing antitumor immunity. In particular, TCM can exert antitumor effects by upregulating immune responses even in immunosuppressive tumor microenvironment. For instance, it reduces the number of M2-type macrophages and Treg cells in the tumor tissue. Although extensive reviews on directly killing cancer cells by TCM have been conducted, a review of anticancer activity of TCM solely based on its immunity-enhancing capacity is unusual. This review will summarize research progress of antitumor TCM that regulates the immune system, including both innate immunity, such as macrophages, dendritic cells, natural killer cells and MDSCs, and adaptive immunity, including CD4+/CD8+ T lymphocytes, regulatory T cells (Tregs) and B cells. As cancer immunotherapy has recently achieved certain success, it is expected that the clinical applications of immunity-enhancing TCM or traditional medicine for treating various cancer patients will be expanded. Further studies on the mechanisms by which TCM regulates immunity will provide new insights into how TCM controls tumor growth and metastasis, and may help improve its therapeutic effects on various cancers in clinic.
Collapse
Affiliation(s)
- Yeshu Wang
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Qunfang Zhang
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Yuchao Chen
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Chun-Ling Liang
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Huazhen Liu
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Feifei Qiu
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Zhenhua Dai
- Section of Immunology & Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
44
|
Schwing A, Pomares C, Majoor A, Boyer L, Marty P, Michel G. Leishmania infection: Misdiagnosis as cancer and tumor-promoting potential. Acta Trop 2019; 197:104855. [PMID: 30529443 DOI: 10.1016/j.actatropica.2018.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022]
Abstract
Given the prevalence of cancer and leishmaniasis worldwide, the presence of these two pathologies in the same tissue sample may be merely fortuitous. The clinical outcome of both diseases is under the control of innate and adaptive immunity, and in both cases these progressive diseases are characterized by an impaired host Th1 response. As a consequence, the Th2 cytokine microenvironment occurring in progressive leishmaniasis may potentially promote tumor cell proliferation and vice versa. On the other hand, clinical aspects of subclinical cutaneous or visceral leishmaniasis sometimes closely resemble those observed in various neoplasms thus leading to misdiagnosis. In this review, we present recent findings on the association between leishmaniasis and malignant disorders. Our review includes HIV positive, HIV negative subjects and patients whose HIV status has not been established. Leishmaniasis mimicking a malignant disorder was confirmed and extended to unreported neoplastic disorders including squamous cell carcinoma, T-cell and B-cell lymphoma, oral and intranasal tumors and granulomas. Thus, leishmaniasis should be considered in the differential diagnosis and course of various cancers in Leishmania endemic areas or in patients with travel history to these areas. We also listed recent reports showing that Leishmania can promote cancer development in immunocompromised as well as in immunocompetent patients. The potential mechanisms supporting this promoting effect are discussed.
Collapse
|
45
|
Byrum SD, Washam CL, Patterson JD, Vyas KK, Gilbert KM, Blossom SJ. Continuous Developmental and Early Life Trichloroethylene Exposure Promoted DNA Methylation Alterations in Polycomb Protein Binding Sites in Effector/Memory CD4 + T Cells. Front Immunol 2019; 10:2016. [PMID: 31555266 PMCID: PMC6724578 DOI: 10.3389/fimmu.2019.02016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Trichloroethylene (TCE) is an industrial solvent and drinking water pollutant associated with CD4+ T cell-mediated autoimmunity. In our mouse model, discontinuation of TCE exposure during adulthood after developmental exposure did not prevent immunotoxicity. To determine whether persistent effects were linked to epigenetic changes we conducted whole genome reduced representation bisulfite sequencing (RRBS) to evaluate methylation of CpG sites in autosomal chromosomes in activated effector/memory CD4+ T cells. Female MRL+/+ mice were exposed to vehicle control or TCE in the drinking water from gestation until ~37 weeks of age [postnatal day (PND) 259]. In a subset of mice, TCE exposure was discontinued at ~22 weeks of age (PND 154). At PND 259, RRBS assessment revealed more global methylation changes in the continuous exposure group vs. the discontinuous exposure group. A majority of the differentially methylated CpG regions (DMRs) across promoters, islands, and regulatory elements were hypermethylated (~90%). However, continuous developmental TCE exposure altered the methylation of 274 CpG sites in promoters and CpG islands. In contrast, only 4 CpG island regions were differentially methylated (hypermethylated) in the discontinuous group. Interestingly, 2 of these 4 sites were also hypermethylated in the continuous exposure group, and both of these island regions are associated with lysine 27 on histone H3 (H3K27) involved in polycomb complex-dependent transcriptional repression via H3K27 tri-methylation. CpG sites were overlapped with the Open Regulatory Annotation database. Unlike the discontinuous group, continuous TCE treatment resulted in 129 DMRs including 12 unique transcription factors and regulatory elements; 80% of which were enriched for one or more polycomb group (PcG) protein binding regions (i.e., SUZ12, EZH2, JARID2, and MTF2). Pathway analysis of the DMRs indicated that TCE primarily altered the methylation of genes associated with regulation of cellular metabolism and cell signaling. The results demonstrated that continuous developmental exposure to TCE differentially methylated binding sites of PcG proteins in effector/memory CD4+ cells. There were minimal yet potentially biologically significant effects that occurred when exposure was discontinued. These results point toward a novel mechanism by which chronic developmental TCE exposure may alter terminally differentiated CD4+ T cell function in adulthood.
Collapse
Affiliation(s)
- Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Charity L Washam
- Department of Biochemistry and Molecular Biology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John D Patterson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kanan K Vyas
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kathleen M Gilbert
- Department of Microbiology and Immunology, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sarah J Blossom
- Department of Pediatrics, Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
46
|
Activation of the Notch signaling pathway disturbs the CD4 +/CD8 +, Th17/Treg balance in rats with experimental autoimmune uveitis. Inflamm Res 2019; 68:761-774. [PMID: 31209505 DOI: 10.1007/s00011-019-01260-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE AND DESIGN The present study aimed to investigate the relationship between the disturbed balance of CD4+/CD8+, Th17/Treg and the activation of the Notch signaling pathway in experimental autoimmune uveitis (EAU). METHODS An EAU rat model was induced in Lewis rats, and pathology analysis was performed by hematoxylin and eosin (H&E) staining. CD4+, CD8+, Th17, and Treg levels in spleen, lymph nodes and eye tissues were determined by flow cytometry. Meanwhile, the expression of Notch1, DLL4, IL-10, and IL-17 was determined by quantitative polymerase chain reaction (Q-PCR) and enzyme-linked immunosorbent assay (ELISA). In addition, the inhibitory effect of N-(N-(3,5-difluorophenacetyl-L-alanyl))-S-phenylglycine t-butyl ester (DAPT) on Th17 differentiation by Notch signaling in vitro was further investigated using T lymphocytes from EAU rats on day 12 post-immunization by flow cytometry. RESULTS The pathological results showed that inflammatory cell infiltration occurred in ocular tissues in EAU rats. The CD4+/CD8+ and Th17/Treg ratios in EAU rats were apparently higher than those in normal control individuals. Q-PCR and ELISA analyses indicated the expression of Notch1, DLL4, IL-10, and IL-17 in EAU rats gradually increased on day 6 after immunization, peaked on day 12, and then gradually decreased. The dynamic trends in Notch1 and DLL4 expression in EAU rats were identical to those of CD4+/CD8+ and Th17/Treg levels. DAPT can significantly inhibit the activation of Notch signaling, decrease Th17 cell differentiation, and attenuate the level of the Th17 cell lineage, contributing to the balance of the Th17/Treg ratio. CONCLUSION The activation of the Notch signaling pathway can regulate Th17 and Treg cell differentiation, disrupt the CD4+/CD8+ and Th17/Treg balance, and aggravate the severity of EAU; inactivation of the Notch signaling pathway contributes to the CD4+/CD8+ and Th17/Treg balance in EAU rats. Our findings highlighted that the dynamic change in the CD4+/CD8+ and Th17/Treg ratio was consistent with the expression trend of Notch signaling in EAU rats, suggesting that Notch signaling may be a potentially important therapeutic target in clinical practice.
Collapse
|
47
|
Killer-like receptors and GPR56 progressive expression defines cytokine production of human CD4 + memory T cells. Nat Commun 2019; 10:2263. [PMID: 31118448 PMCID: PMC6531457 DOI: 10.1038/s41467-019-10018-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
All memory T cells mount an accelerated response on antigen reencounter, but significant functional heterogeneity is present within the respective memory T-cell subsets as defined by CCR7 and CD45RA expression, thereby warranting further stratification. Here we show that several surface markers, including KLRB1, KLRG1, GPR56, and KLRF1, help define low, high, or exhausted cytokine producers within human peripheral and intrahepatic CD4+ memory T-cell populations. Highest simultaneous production of TNF and IFN-γ is observed in KLRB1+KLRG1+GPR56+ CD4 T cells. By contrast, KLRF1 expression is associated with T-cell exhaustion and reduced TNF/IFN-γ production. Lastly, TCRβ repertoire analysis and in vitro differentiation support a regulated, progressive expression for these markers during CD4+ memory T-cell differentiation. Our results thus help refine the classification of human memory T cells to provide insights on inflammatory disease progression and immunotherapy development. Despite the current human CD4 memory T cell stratification by CD45RA/CCR7, functional heterogeneities still exist within the respective subsets. Here the authors show that several surface markers, including KLRB1, KLRG1, GPR56 and KLRF1, help to further refine the subsetting of human CD4 memory T cells and provide insights for their differentiation.
Collapse
|
48
|
Stressed: The Unfolded Protein Response in T Cell Development, Activation, and Function. Int J Mol Sci 2019; 20:ijms20071792. [PMID: 30978945 PMCID: PMC6479341 DOI: 10.3390/ijms20071792] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows cells to respond to stress in the endoplasmic reticulum caused by an accumulation of misfolded and unfolded protein. This is of great importance to secretory cells because, in order for proteins to traffic from the endoplasmic reticulum (ER), they need to be folded appropriately. While a wealth of literature has implicated UPR in immune responses, less attention has been given to the role of UPR in T cell development and function. This review discusses the importance of UPR in T cell development, homeostasis, activation, and effector functions. We also speculate about how UPR may be manipulated in T cells to ameliorate pathologies.
Collapse
|
49
|
Zhang S, Zhang E, Long J, Hu Z, Peng J, Liu L, Tang F, Li L, Ouyang Y, Zeng Z. Immune infiltration in renal cell carcinoma. Cancer Sci 2019; 110:1564-1572. [PMID: 30861269 PMCID: PMC6501001 DOI: 10.1111/cas.13996] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Immune infiltration of tumors is closely associated with clinical outcome in renal cell carcinoma (RCC). Tumor‐infiltrating immune cells (TIICs) regulate cancer progression and are appealing therapeutic targets. The purpose of this study was to determine the composition of TIICs in RCC and further reveal the independent prognostic values of TIICs. CIBERSORT, an established algorithm, was applied to estimate the proportions of 22 immune cell types based on gene expression profiles of 891 tumors. Cox regression was used to evaluate the association of TIICs and immune checkpoint modulators with overall survival (OS). We found that CD8+ T cells were associated with prolonged OS (hazard ratio [HR] = 0.09, 95% confidence interval [CI].01‐.53; P = 0.03) in chromophobe carcinoma (KICH). A higher proportion of regulatory T cells was associated with a worse outcome (HR = 1.59, 95% CI 1.23‐.06; P < 0.01) in renal clear cell carcinoma (KIRC). In renal papillary cell carcinoma (KIRP), M1 macrophages were associated with a favorable outcome (HR = .43, 95% CI .25‐.72; P < 0.01), while M2 macrophages indicated a worse outcome (HR = 2.55, 95% CI 1.45‐4.47; P < 0.01). Moreover, the immunomodulator molecules CTLA4 and LAG3 were associated with a poor prognosis in KIRC, and IDO1 and PD‐L2 were associated with a poor prognosis in KIRP. This study indicates TIICs are important determinants of prognosis in RCC meanwhile reveals potential targets and biomarkers for immunotherapy development.
Collapse
Affiliation(s)
- Shichao Zhang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Erdong Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jinhua Long
- Affiliated Tumor Hospital, Guizhou Medical University, Guiyang, China
| | - Zuquan Hu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Jian Peng
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Lina Liu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Fuzhou Tang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Long Li
- Department of Nephrology, The Third Affiliated Hospital of Guizhou Medical University, Duyun, China
| | - Yan Ouyang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.,School of Biology and Engineering, Guizhou Medical University, Guiyang, China.,School of Basic Medical Science, Guizhou Medical University, Guiyang, China
| |
Collapse
|
50
|
Wery M, Dameron O, Nicolas J, Remy E, Siegel A. Formalizing and enriching phenotype signatures using Boolean networks. J Theor Biol 2019; 467:66-79. [DOI: 10.1016/j.jtbi.2019.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/30/2018] [Accepted: 01/08/2019] [Indexed: 01/12/2023]
|