1
|
Hu K, Wen H, Song T, Che Z, Song Y, Song M. Deciphering the Role of LncRNAs in Osteoarthritis: Inflammatory Pathways Unveiled. J Inflamm Res 2024; 17:6563-6581. [PMID: 39318993 PMCID: PMC11421445 DOI: 10.2147/jir.s489682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Long non-coding RNA (LncRNA), with transcripts over 200 nucleotides in length, play critical roles in numerous biological functions and have emerged as significant players in the pathogenesis of osteoarthritis (OA), an inflammatory condition traditionally viewed as a degenerative joint disease. This review comprehensively examines the influence of LncRNA on the inflammatory processes driving OA progression, focusing on their role in regulating gene expression, cellular activities, and inflammatory pathways. Notably, LncRNAs such as MALAT1, H19, and HOTAIR are upregulated in OA and exacerbate the inflammatory milieu by modulating key signaling pathways like NF-κB, TGF-β/SMAD, and Wnt/β-catenin. Conversely, LncRNA like MEG3 and GAS5, which are downregulated in OA, show potential in dampening inflammatory responses and protecting against cartilage degradation by influencing miRNA interactions and cytokine production. By enhancing our understanding of LncRNA' roles in OA inflammation, we can better leverage them as potential biomarkers for the disease and develop innovative therapeutic strategies for OA management. This paper aims to delineate the mechanisms by which LncRNA influence inflammatory responses in OA and propose them as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kangyi Hu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Haonan Wen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Ting Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Zhixin Che
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongjia Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Min Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
2
|
Shakeri M, Aminian A, Mokhtari K, Bahaeddini M, Tabrizian P, Farahani N, Nabavi N, Hashemi M. Unraveling the molecular landscape of osteoarthritis: A comprehensive review focused on the role of non-coding RNAs. Pathol Res Pract 2024; 260:155446. [PMID: 39004001 DOI: 10.1016/j.prp.2024.155446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Osteoarthritis (OA) poses a significant global health challenge, with its prevalence anticipated to increase in the coming years. This review delves into the emerging molecular biomarkers in OA pathology, focusing on the roles of various molecules such as metabolites, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Advances in omics technologies have transformed biomarker identification, enabling comprehensive analyses of the complex pathways involved in OA pathogenesis. Notably, ncRNAs, especially miRNAs and lncRNAs, exhibit dysregulated expression patterns in OA, presenting promising opportunities for diagnosis and therapy. Additionally, the intricate interplay between epigenetic modifications and OA progression highlights the regulatory role of epigenetics in gene expression dynamics. Genome-wide association studies have pinpointed key genes undergoing epigenetic changes, providing insights into the inflammatory processes and chondrocyte hypertrophy typical of OA. Understanding the molecular landscape of OA, including biomarkers and epigenetic mechanisms, holds significant potential for developing innovative diagnostic tools and therapeutic strategies for OA management.
Collapse
Affiliation(s)
- Mohammadreza Shakeri
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Aminian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Bahaeddini
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Pouria Tabrizian
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Wang G, Li Z, Wang G, Sun Q, Lin P, Wang Q, Zhang H, Wang Y, Zhang T, Cui F, Zhong Z. Advances in Engineered Nanoparticles for the Treatment of Ischemic Stroke by Enhancing Angiogenesis. Int J Nanomedicine 2024; 19:4377-4409. [PMID: 38774029 PMCID: PMC11108071 DOI: 10.2147/ijn.s463333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Angiogenesis, or the formation of new blood vessels, is a natural defensive mechanism that aids in the restoration of oxygen and nutrition delivery to injured brain tissue after an ischemic stroke. Angiogenesis, by increasing vessel development, may maintain brain perfusion, enabling neuronal survival, brain plasticity, and neurologic recovery. Induction of angiogenesis and the formation of new vessels aid in neurorepair processes such as neurogenesis and synaptogenesis. Advanced nano drug delivery systems hold promise for treatment stroke by facilitating efficient transportation across the the blood-brain barrier and maintaining optimal drug concentrations. Nanoparticle has recently been shown to greatly boost angiogenesis and decrease vascular permeability, as well as improve neuroplasticity and neurological recovery after ischemic stroke. We describe current breakthroughs in the development of nanoparticle-based treatments for better angiogenesis therapy for ischemic stroke employing polymeric nanoparticles, liposomes, inorganic nanoparticles, and biomimetic nanoparticles in this study. We outline new nanoparticles in detail, review the hurdles and strategies for conveying nanoparticle to lesions, and demonstrate the most recent advances in nanoparticle in angiogenesis for stroke treatment.
Collapse
Affiliation(s)
- Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Gongchen Wang
- Department of Vascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Qixu Sun
- Department of Gastroenterology, Penglai People’s Hospital, Yantai, Shandong, 265600, People’s Republic of China
| | - Peng Lin
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Qian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Huishu Zhang
- Teaching Center of Biotechnology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Tongshuai Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Feiyun Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhaohua Zhong
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| |
Collapse
|
4
|
He F, Liu Z, Feng M, Xiao Z, Yi X, Wu J, Liu Z, Wang G, Li L, Yao H. The lncRNA MEG3/miRNA-21/P38MAPK axis inhibits coxsackievirus 3 replication in acute viral myocarditis. Virus Res 2024; 339:199250. [PMID: 37865350 PMCID: PMC10643532 DOI: 10.1016/j.virusres.2023.199250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Evidence is emerging on the roles of long noncoding RNAs (lncRNAs) as regulatory factors in a variety of viral infection processes, but the mechanisms underlying their functions in coxsackievirus group B type3 (CVB3)-induced acute viral myocarditis have not been explicitly delineated. We previously demonstrated that CVB3 infection decreases miRNA-21 expression; however, lncRNAs that regulate the miRNA-21-dependent CVB3 disease process have yet to be identified. To evaluate lncRNAs upstream of miRNA-21, differentially expressed lncRNAs in CVB3-infected mouse hearts were identified by microarray analysis and lncRNA/miRNA-21 interactions were predicted bioinformatically. MEG3 was identified as a candidate miRNA-21-interacting lncRNA upregulated in CVB3-infected mouse hearts. MEG3 expression was verified to be upregulated in HeLa cells 48 h post CVB3 infection and to act as a competitive endogenous RNA of miRNA-21. MEG3 knockdown resulted in the upregulation of miRNA-21, which inhibited CVB3 replication by attenuating P38-MAPK signaling in vitro and in vivo. Knockdown of MEG3 expression before CVB3 infection inhibited viral replication in mouse hearts and alleviated cardiac injury, which improved survival. Furthermore, the knockdown of CREB5, which was predicted bioinformatically to function upstream of MEG3, was demonstrated to decrease MEG3 expression and CVB3 viral replication. This study identifies the function of the lncRNA MEG3/miRNA-21/P38 MAPK axis in the process of CVB3 replication, for which CREB5 could serve as an upstream modulator.
Collapse
Affiliation(s)
- Feng He
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China
| | - Zhuo Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China
| | - Miao Feng
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China
| | - Zonghui Xiao
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China
| | - Xiaoyu Yi
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China
| | - Jianxin Wu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China; Beijing Municipal Key Laboratory of Child Development and Nutriomics, Beijing, China; Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhewei Liu
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China
| | - Gaoyu Wang
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China
| | - Le Li
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China.
| | - Hailan Yao
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, YaBaoRoad 2, Beijing, China.
| |
Collapse
|
5
|
Liu X, Zhang P, Gu Y, Guo Q, Liu Y. Type H vessels: functions in bone development and diseases. Front Cell Dev Biol 2023; 11:1236545. [PMID: 38033859 PMCID: PMC10687371 DOI: 10.3389/fcell.2023.1236545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Type H vessels are specialized blood vessels found in the bone marrow that are closely associated with osteogenic activity. They are characterized by high expression of endomucin and CD31. Type H vessels form in the cancellous bone area during long bone development to provide adequate nutritional support for cells near the growth plate. They also influence the proliferation and differentiation of osteoprogenitors and osteoclasts in a paracrine manner, thereby creating a suitable microenvironment to facilitate new bone formation. Because of the close relationship between type H vessels and osteogenic activity, it has been found that type H vessels play a role in the physiological and pathological processes of bone diseases such as fracture healing, osteoporosis, osteoarthritis, osteonecrosis, and tumor bone metastasis. Moreover, experimental treatments targeting type H vessels can improve the outcomes of these diseases. Here, we reviewed the molecular mechanisms related to type H vessels and their associated osteogenic activities, which are helpful in further understanding the role of type H vessels in bone metabolism and will provide a theoretical basis and ideas for comprehending bone diseases from the vascular perspective.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Colorectal and Anal Surgery, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| | - Peilin Zhang
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Gu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiaoyue Guo
- Endocrinology Research Center, Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yonggan Liu
- Department of Colorectal and Anal Surgery, Zhongshan City People’s Hospital, Zhongshan, Guangdong, China
| |
Collapse
|
6
|
Zhang X, Liu Q, Zhang J, Song C, Han Z, Wang J, Shu L, Liu W, He J, Wang P. The emerging role of lncRNAs in osteoarthritis development and potential therapy. Front Genet 2023; 14:1273933. [PMID: 37779916 PMCID: PMC10538550 DOI: 10.3389/fgene.2023.1273933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Osteoarthritis impairs the functions of various joints, such as knees, hips, hands and spine, which causes pain, swelling, stiffness and reduced mobility in joints. Multiple factors, including age, joint injuries, obesity, and mechanical stress, could contribute to osteoarthritis development and progression. Evidence has demonstrated that genetics and epigenetics play a critical role in osteoarthritis initiation and progression. Noncoding RNAs (ncRNAs) have been revealed to participate in osteoarthritis development. In this review, we describe the pivotal functions and molecular mechanisms of numerous lncRNAs in osteoarthritis progression. We mention that long noncoding RNAs (lncRNAs) could be biomarkers for osteoarthritis diagnosis, prognosis and therapeutic targets. Moreover, we highlight the several compounds that alleviate osteoarthritis progression in part via targeting lncRNAs. Furthermore, we provide the future perspectives regarding the potential application of lncRNAs in diagnosis, treatment and prognosis of osteoarthritis.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Qishun Liu
- Department of Orthopedics, Zhejiang Medical & Health Group Hangzhou Hospital, Hang Gang Hospital, Hangzhou, China
| | - Jiandong Zhang
- Department of Orthopedics and Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Caiyuan Song
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Zongxiao Han
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Jinjie Wang
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Lilu Shu
- Zhejiang Zhongwei Medical Research Center, Department of Medicine, Hangzhou, Zhejiang, China
| | - Wenjun Liu
- Zhejiang Zhongwei Medical Research Center, Department of Medicine, Hangzhou, Zhejiang, China
| | - Jinlin He
- Department of Traumatology, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, Zhejiang, China
| | - Peter Wang
- Zhejiang Zhongwei Medical Research Center, Department of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Efovi D, Xiao Q. Noncoding RNAs in Vascular Cell Biology and Restenosis. BIOLOGY 2022; 12:24. [PMID: 36671717 PMCID: PMC9855655 DOI: 10.3390/biology12010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
In-stent restenosis (ISR), characterised by ≥50% re-narrowing of the target vessel, is a common complication following stent implantation and remains a significant challenge to the long-term success of angioplasty procedures. Considering the global burden of cardiovascular diseases, improving angioplasty patient outcomes remains a key priority. Noncoding RNAs (ncRNAs) including microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) have been extensively implicated in vascular cell biology and ISR through multiple, both distinct and overlapping, mechanisms. Vascular smooth muscle cells, endothelial cells and macrophages constitute the main cell types involved in the multifactorial pathophysiology of ISR. The identification of critical regulators exemplified by ncRNAs in all these cell types and processes makes them an exciting therapeutic target in the field of restenosis. In this review, we will comprehensively explore the potential functions and underlying molecular mechanisms of ncRNAs in vascular cell biology in the context of restenosis, with an in-depth focus on vascular cell dysfunction during restenosis development and progression. We will also discuss the diagnostic biomarker and therapeutic target potential of ncRNAs in ISR. Finally, we will discuss the current shortcomings, challenges, and perspectives toward the clinical application of ncRNAs.
Collapse
Affiliation(s)
- Denis Efovi
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Qingzhong Xiao
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Key Laboratory of Cardiovascular Diseases, School of Basic Medical Sciences, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
8
|
Peng JW, Gu YY, Wei J, Sun Y, Zhu CL, Zhang L, Song Y, Chen L, Chen X, Wang Q, Zhang HL. LncRNA MEG3-TRPV1 signaling regulates chronic inflammatory pain in rats. Mol Pain 2022; 18:17448069221144246. [PMID: 36424837 PMCID: PMC9726848 DOI: 10.1177/17448069221144246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Osteoarthritis (OA) is a common osteoarthropathy with chronic inflammatory pain as the core symptom in middle-aged and elderly people. LncRNA MEG3 (Maternally expressed gene 3) is involved in the development of OA via regulation of angiogenesis, which causes the activation and overexpression of transient receptor potential vanilloid type-1 (TRPV1). In this study, we investigated the mechanism of MEG3-TRPV1 signaling in chronic inflammatory pain (CIP) of rat model. Chronic inflammatory pain was modeled using subcutaneous microinjection of complete Freund's adjuvant (CFA) into the left hind paw of rats. We showed that TRPV1 mRNA and protein were significantly increased, while MEG3 mRNA was significantly decreased, in the DRG and SDH of CFA-induced rats. In addition, intrathecal injection of MEG3-overexpressing lentivirus significantly downregulated TRPV1 expression and alleviated chronic inflammatory pain in CFA-induced rats. Treatment with a TRPV1 antagonist also significantly relieved chronic inflammatory pain in CFA-induced rats. In general, our results reveal that MEG3 alleviates chronic inflammatory pain by downregulating TRPV1 expression. These findings may provide new therapeutic targets in the treatment of patients with OA.
Collapse
Affiliation(s)
- Jing-Wei Peng
- Department of Traditional Chinese Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China,Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Yin-Yin Gu
- Department of Traditional Chinese Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Jia Wei
- Department of Traditional Chinese Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Ye Sun
- Department of Traditional Chinese Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Chun-Long Zhu
- Department of Traditional Chinese Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Ling Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Yu Song
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Long Chen
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Xia Chen
- Department of Anesthesiology, Children’s Hospital of Soochow University, Suzhou, China
| | - Qian Wang
- Department of Anesthesiology, Children’s Hospital of Soochow University, Suzhou, China,Qian Wang, Department of Anesthesiology, Children’s Hospital of Soochow University, Suzhou 215123, China.
| | - Hai-Long Zhang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China,Hai-Long Zhang, Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Wahba AS, Ibrahim ME, Mesbah NM, Saleh SM, Abo-Elmatty DM, Mehanna ET. Long non-coding RNA MEG3 and its genetic variant rs941576 are associated with rheumatoid arthritis pathogenesis in Egyptian patients. Arch Physiol Biochem 2022; 128:1571-1578. [PMID: 32608280 DOI: 10.1080/13813455.2020.1784951] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a joint destructive disorder. This study aimed to assess lncRNA MEG3 expression and its variant rs941576 in Egyptian patients with RA. SUBJECTS AND METHODS 100 RA patients and 100 healthy individuals were enrolled in the study. Quantitative PCR was used for expression analysis and allelic discrimination technology for genotyping. RESULTS LncRNA MEG3 was down-regulated in RA patients and negatively associated with RA clinical features and HIF-1α and VEGF serum levels. On the contrary, it was positively associated with BAX serum levels in RA patients. The major A allele of rs941576 variant was associated with RA patients (p = .0003). AA genotype showed a significant decrease in lncRNA MEG3 expression and BAX and increase in HIF-1α and VEGF. CONCLUSIONS Serum lncRNA MEG3 expression showed negative association with increased susceptibility to RA. MEG3 gene rs941576 (A/G) polymorphism was associated with increased severity of RA in the current population.
Collapse
Affiliation(s)
- Alaa S Wahba
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Maha E Ibrahim
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samy M Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
10
|
Wang R, Shiu HT, Lee WYW. Emerging role of lncRNAs in osteoarthritis: An updated review. Front Immunol 2022; 13:982773. [PMID: 36304464 PMCID: PMC9593085 DOI: 10.3389/fimmu.2022.982773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease, which is associated with progressive articular cartilage loss, synovial inflammation, subchondral sclerosis and meniscus injury. The molecular mechanism underlying OA pathogenesis is multifactorial. Long non-coding RNAs (lncRNAs) are non-protein coding RNAs with length more than 200 nucleotides. They have various functions such as modulating transcription and protein activity, as well as forming endogenous small interfering RNAs (siRNAs) and microRNA (miRNA) sponges. Emerging evidence suggests that lncRNAs might be involved in the pathogenesis of OA which opens up a new avenue for the development of new biomarkers and therapeutic strategies. The purpose of this review is to summarize the current clinical and basic experiments related to lncRNAs and OA with a focus on the extensively studied H19, GAS5, MALAT1, XIST and HOTAIR. The potential translational value of these lncRNAs as therapeutic targets for OA is also discussed.
Collapse
Affiliation(s)
- Rongliang Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi Ting Shiu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Wayne Yuk Wai Lee,
| |
Collapse
|
11
|
Okuyan HM, Begen MA. LncRNAs in Osteoarthritis. Clin Chim Acta 2022; 532:145-163. [PMID: 35667478 DOI: 10.1016/j.cca.2022.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
Osteoarthritis (OA) is a progressive joint disease that affects millions of older adults around the world. With increasing rates of incidence and prevalence worldwide, OA has become an enormous global socioeconomic burden on healthcare systems. Long non-coding ribonucleic acids (lncRNAs), essential functional molecules in many biological processes, are a group of non-coding RNAs that are greater than approximately 200 nucleotides in length. Fast-growing and recent developments in lncRNA research are captivating and represent a novel and promising field in understanding the complexity of OA pathogenesis. The involvement of lncRNAs in OA's pathological processes and their altered expressions in joint tissues, blood and synovial fluid make them attractive candidates for the diagnosis and treatment of OA. We focus on the recent advances in major regulator mechanisms of lncRNAs in the pathophysiology of OA and discuss potential diagnostic and therapeutic uses of lncRNAs for OA. We investigate how upregulation or downregulation of lncRNAs influences the pathogenesis of OA and how we can use lncRNAs to elucidate the molecular mechanism of OA. Furthermore, we evaluate how we can use lncRNAs as a diagnostic marker or therapeutic target for OA. Our study not only provides a comprehensive review of lncRNAs regarding OA's pathogenesis but also contributes to the elucidation of its molecular mechanisms and to the development of diagnostic and therapeutic approaches for OA.
Collapse
Affiliation(s)
- Hamza Malik Okuyan
- Biomedical Engineering, Physiotherapy and Rehabilitation, Faculty of Health Sciences, Sakarya University of Applied Sciences, Sakarya, Turkey; Ivey Business School, Epidemiology and Biostatistics - Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| | - Mehmet A Begen
- Ivey Business School, Epidemiology and Biostatistics - Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
12
|
The Role of Mitochondrial Metabolism, AMPK-SIRT Mediated Pathway, LncRNA and MicroRNA in Osteoarthritis. Biomedicines 2022; 10:biomedicines10071477. [PMID: 35884782 PMCID: PMC9312479 DOI: 10.3390/biomedicines10071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease characterized by degeneration of articular cartilage and causes severe joint pain, physical disability, and impaired quality of life. Recently, it was found that mitochondria not only act as a powerhouse of cells that provide energy for cellular metabolism, but are also involved in crucial pathways responsible for maintaining chondrocyte physiology. Therefore, a growing amount of evidence emphasizes that impairment of mitochondrial function is associated with OA pathogenesis; however, the exact mechanism is not well known. Moreover, the AMP-activated protein kinase (AMPK)–Sirtuin (SIRT) signaling pathway, long non-coding RNA (lncRNA), and microRNA (miRNA) are important for regulating the physiological and pathological processes of chondrocytes, indicating that these may be targets for OA treatment. In this review, we first focus on the importance of mitochondria metabolic dysregulation related to OA. Then, we show recent evidence on the AMPK-SIRT mediated pathway associated with OA pathogenesis and potential treatment options. Finally, we discuss current research into the effects of lncRNA and miRNA on OA progression or inhibition.
Collapse
|
13
|
Rasoulinejad SA, Sarreshtehdari N, Mafi AR. The crosstalk between VEGF signaling pathway and long non-coding RNAs in neovascular retinal diseases: Implications for anti-VEGF therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Wu X, Yin S, Yan L, Liu Y, Shang L, Liu J. lncRNA DLEU1 Modulates Proliferation, Inflammation, and Extracellular Matrix Degradation of Chondrocytes through Regulating miR-671-5p. J Immunol Res 2022; 2022:1816217. [PMID: 35647200 PMCID: PMC9132666 DOI: 10.1155/2022/1816217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to be involved in the development of osteoarthritis. However, the expression, function, and mechanism of DLEU1 in OA development remain largely unclear. The present reference demonstrates that DLEU1 is overexpressed in OA specimens compared to control cartilages. Inflammatory cytokines IL-1β, TNF-α, and IL-6 induce DLEU1 expression in chondrocytes. Ectopic expression of DLEU1 induces chondrocyte proliferation, degradation of ECM, and inflammation mediators such as IL-6, IL-8, and TNF-α secretion. Moreover, we demonstrated that DLEU1 targets miR-671-5p expression in chondrocytes. Overexpression of DLEU1 suppresses miR-671-5p expression in chondrocytes. The expression of miR-671-5p is decreased in OA specimens compared to control cartilages. There is a negative correlation between the expression of miR-671-5p and DLEU1 in OA specimens. Inflammatory mediators IL-1β, TNF-α, and IL-6 suppress miR-671-5p expression in OA specimens. Elevated expression of miR-671-5p suppresses chondrocyte proliferation, degradation of ECM, and secretion of inflammation mediators. DLEU1 overexpression promotes chondrocytes proliferation, degradation of ECM, and secretion of inflammation mediators via regulating miR-671-5p. These results suggested that DLEU1 acts as one destructive role in OA development via regulating miR-671-5p.
Collapse
Affiliation(s)
- Xiangkun Wu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China 473000
| | - Shuai Yin
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Lihua Yan
- Department of Medical Oncology, Nanyang Second People's Hospital, Nanyang, Henan, China 473000
| | - Yongxi Liu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China 473000
| | - Lilin Shang
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China 473000
| | - Jun Liu
- Department of Joint Surgery, Tianjin Hospital, Tianjin 300211, China
| |
Collapse
|
15
|
Construction and Analysis of lncRNA-Associated ceRNA Network in Atherosclerotic Plaque Formation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4895611. [PMID: 35463977 PMCID: PMC9033352 DOI: 10.1155/2022/4895611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/05/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
Atherosclerosis (AS) is a vascular disease with plaque formation. Unstable plaques can be expected to result in cardiovascular disease, such as myocardial infarction and stroke. Studies have verified that long noncoding RNAs (lncRNAs) play a critical role in atherosclerotic plaque formation (APF), including MALAT1, GAS5, and H19. A ceRNA network is a combination of these two interacting processes, which regulate the occurrence and progression of many diseases. However, lncRNA-associated ceRNA network in terms of APF is limited. This study sought to discover novel potential biomarkers and ceRNA network for APF. We designed a triple network based on the lncRNA-miRNA and mRNA-miRNA pairs obtained from lncRNASNP and starBase. Differentially expressed genes (DEGs) and lncRNAs in human vascular tissues derived from the Gene Expression Omnibus database (GSE43292, GSE97210) were systematically selected and analyzed. A ceRNA network was constructed by hypergeometric test, including 8 lncRNAs, 243 miRNAs, and 8 mRNAs. APF-related ceRNA structure was discovered for the first time by combining network analysis and statistical validation. Topological analysis determined the key lncRNAs with the highest centroid. GO and KEGG enrichment analysis indicated that the ceRNA network was primarily enriched in “regulation of platelet-derived growth factor receptor signaling pathway,” “negative regulation of leukocyte chemotaxis,” and “axonal fasciculation.” A functional lncRNA, HAND2-AS1, was identified in the ceRNA network, and the main miRNA (miRNA-570-3p) regulated by HAND2-AS1 was further screened. This present study elucidated the important function of lncRNA in the origination and progression of APF and indicated the potential use of these hub nodes as diagnostic biomarkers and therapeutic targets.
Collapse
|
16
|
Liu J, Qi X, Wang XH, Miao HS, Xue ZC, Zhang LL, Zhao SH, Wu LH, Gao GY, Lou MQ, Yi CQ. Downregulation of the LncRNA MEG3 Promotes Osteogenic Differentiation of BMSCs and Bone Repairing by Activating Wnt/β-Catenin Signaling Pathway. J Clin Med 2022; 11:jcm11020395. [PMID: 35054086 PMCID: PMC8781453 DOI: 10.3390/jcm11020395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/25/2021] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Previous studies have demonstrated that long non-coding RNA maternally expressed gene 3 (MEG3) emerged as a key regulator in development and tumorigenesis. This study aims to investigate the function and mechanism of MEG3 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and explores the use of MEG3 in skull defects bone repairing. Methods: Endogenous expression of MEG3 during BMSCs osteogenic differentiation was detected by quantitative real-time polymerase chain reaction (qPCR). MEG3 was knockdown in BMSCs by lentiviral transduction. The proliferation, osteogenic-related genes and proteins expression of MEG3 knockdown BMSCs were assessed by Cell Counting Kit-8 (CCK-8) assay, qPCR, alizarin red and alkaline phosphatase staining. Western blot was used to detect β-catenin expression in MEG3 knockdown BMSCs. Dickkopf 1 (DKK1) was used to block wnt/β-catenin pathway. The osteogenic-related genes and proteins expression of MEG3 knockdown BMSCs after wnt/β-catenin inhibition were assessed by qPCR, alizarin red and alkaline phosphatase staining. MEG3 knockdown BMSCs scaffold with PHMG were implanted in a critical-sized skull defects of rat model. Micro-computed tomography(micro-CT), hematoxylin and eosin staining and immunohistochemistry were performed to evaluate the bone repairing. Results: Endogenous expression of MEG3 was increased during osteogenic differentiation of BMSCs. Downregulation of MEG3 could promote osteogenic differentiation of BMSCs in vitro. Notably, a further mechanism study revealed that MEG3 knockdown could activate Wnt/β-catenin signaling pathway in BMSCs. Wnt/β-catenin inhibition would impair MEG3-induced osteogenic differentiation of BMSCs. By using poly (3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBHHx)-mesoporous bioactive glass (PHMG) scaffold with MEG3 knockdown BMSCs, we found that downregulation of MEG3 in BMSCs could accelerate bone repairing in a critical-sized skull defects rat model. Conclusions: Our study reveals the important role of MEG3 during osteogenic differentiation and bone regeneration. Thus, MEG3 engineered BMSCs may be effective potential therapeutic targets for skull defects.
Collapse
Affiliation(s)
- Juan Liu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; (J.L.); (H.-S.M.); (S.-H.Z.); (G.-Y.G.)
| | - Xin Qi
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China; (X.Q.); (L.-H.W.)
| | - Xiao-Hong Wang
- Department of Operating Room, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China;
| | - Hong-Sheng Miao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; (J.L.); (H.-S.M.); (S.-H.Z.); (G.-Y.G.)
| | - Zi-Chao Xue
- Department of Orthopaedics, Qingdao Municipal Hospital, Qingdao 266001, China;
| | - Le-Le Zhang
- Department of Nursing, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China;
| | - San-Hu Zhao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; (J.L.); (H.-S.M.); (S.-H.Z.); (G.-Y.G.)
| | - Liang-Hao Wu
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China; (X.Q.); (L.-H.W.)
| | - Guo-Yi Gao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; (J.L.); (H.-S.M.); (S.-H.Z.); (G.-Y.G.)
| | - Mei-Qing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; (J.L.); (H.-S.M.); (S.-H.Z.); (G.-Y.G.)
- Correspondence: (M.-Q.L.); (C.-Q.Y.)
| | - Cheng-Qing Yi
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Huinan Town, Pudong, Shanghai 201399, China; (X.Q.); (L.-H.W.)
- Correspondence: (M.-Q.L.); (C.-Q.Y.)
| |
Collapse
|
17
|
Kong H, Sun ML, Zhang XA, Wang XQ. Crosstalk Among circRNA/lncRNA, miRNA, and mRNA in Osteoarthritis. Front Cell Dev Biol 2022; 9:774370. [PMID: 34977024 PMCID: PMC8714905 DOI: 10.3389/fcell.2021.774370] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a joint disease that is pervasive in life, and the incidence and mortality of OA are increasing, causing many adverse effects on people's life. Therefore, it is very vital to identify new biomarkers and therapeutic targets in the clinical diagnosis and treatment of OA. ncRNA is a nonprotein-coding RNA that does not translate into proteins but participates in protein translation. At the RNA level, it can perform biological functions. Many studies have found that miRNA, lncRNA, and circRNA are closely related to the course of OA and play important regulatory roles in transcription, post-transcription, and post-translation, which can be used as biological targets for the prevention, diagnosis, and treatment of OA. In this review, we summarized and described the various roles of different types of miRNA, lncRNA, and circRNA in OA, the roles of different lncRNA/circRNA-miRNA-mRNA axis in OA, and the possible prospects of these ncRNAs in clinical application.
Collapse
Affiliation(s)
- Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
18
|
Abstract
The last decade has seen an enormous increase in long non-coding RNA (lncRNA) research within rheumatology. LncRNAs are arbitrarily classed as non-protein encoding RNA transcripts that exceed 200 nucleotides in length. These transcripts have tissue and cell specific patterns of expression and are implicated in a variety of biological processes. Unsurprisingly, numerous lncRNAs are dysregulated in rheumatoid conditions, correlating with disease activity and cited as potential biomarkers and targets for therapeutic intervention. In this chapter, following an introduction into each condition, we discuss the lncRNAs involved in rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. These inflammatory joint conditions share several inflammatory signalling pathways and therefore not surprisingly many commonly dysregulated lncRNAs are shared across these conditions. In the interest of translational research only those lncRNAs which are strongly conserved have been addressed. The lncRNAs discussed here have diverse roles in regulating inflammation, proliferation, migration, invasion and apoptosis. Understanding the molecular basis of lncRNA function in rheumatology will be crucial in fully determining the inflammatory mechanisms that drive these conditions.
Collapse
|
19
|
Chen K, Zhu H, Zheng MQ, Dong QR. LncRNA MEG3 Inhibits the Degradation of the Extracellular Matrix of Chondrocytes in Osteoarthritis via Targeting miR-93/TGFBR2 Axis. Cartilage 2021; 13:1274S-1284S. [PMID: 31253047 PMCID: PMC8804796 DOI: 10.1177/1947603519855759] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND As a degenerative joint disease, osteoarthritis (OA) is characterized by articular cartilage degradation. Long noncoding RNAs (lncRNAs) act critical roles in the regulation of OA development, including affecting the proliferation, apoptosis, extracellular matrix (ECM) degradation, and inflammatory response of chondrocytes. The current study's aim was to investigate the regulatory function and the underlying molecular mechanism of lncRNA MEG3 in ECM degradation of chondrocytes in OA. METHODS In the current study, chondrocytes were induced by interleukin-1β (IL-1β) to simulate OA condition, and further assessed cell viability, lncRNA MEG3 and miR-93 expression levels. Overexpression or knockdown of lncRNA MEG3 in chondrocytes treated with IL-1β were performed to investigate the function of MEG3 in regulating cell proliferation, apoptosis and ECM degradation using EdU assay, flow cytometry, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and Western blot. The interaction between MEG3 and miR-93 was assessed using qRT-PCR. Furthermore, overexpression of miR-93 was performed as recovery experiment to explore the functional mechanism of MEG3. RESULTS MEG3 was significantly downregulated in chondrocytes treated with IL-1β, whereas miR-93 was upregulated concomitantly. Overexpression of MEG3 induced the proliferation, suppressed the apoptosis, and relieved the degradation of ECM in IL-1β-induced chondrocytes. By contrast, knockdown of MEG3 suppressed the proliferation, promoted the apoptosis, and aggravated ECM degradation in IL-1β induced chondrocytes. In addition, MEG3 was found to relieve the inhibitive expression of TGFBR2 as a competitive endogenous RNA (ceRNA) of miR-93, and then activated transforming growth factor-β (TGF-β) signaling pathway, regulated chondrocytes ECM degradation in IL-1β induced chondrocytes subsequently. CONCLUSION LncRNA MEG3 targeted miR-93/TGFBR2 axis, regulated the proliferation, apoptosis and ECM degradation of chondrocytes in OA.
Collapse
Affiliation(s)
- Kang Chen
- Department of Orthopedics, the Second
Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China,Department of Orthopedics, Yancheng City
No. 1 People’s Hospital, Yancheng, People’s Republic of China
| | - Hao Zhu
- Department of Orthopedics, Yancheng City
No. 1 People’s Hospital, Yancheng, People’s Republic of China
| | - Min-Qian Zheng
- Department of Orthopedics, Yancheng City
No. 1 People’s Hospital, Yancheng, People’s Republic of China
| | - Qi-Rong Dong
- Department of Orthopedics, the Second
Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China,Qi-Rong Dong, Department of Orthopedics, the
Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road,
Suzhou 215004, Jiangsu Province, People’s Republic of China.
| |
Collapse
|
20
|
Ding A, Li CH, Yu CY, Zhou HT, Zhang ZH. Long non-coding RNA MALAT1 enhances angiogenesis during bone regeneration by regulating the miR-494/SP1 axis. J Transl Med 2021; 101:1458-1466. [PMID: 34392309 DOI: 10.1038/s41374-021-00649-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 01/16/2023] Open
Abstract
Bone regeneration is a coordinated process involving connections between blood vessels and osteocytes. Angiogenesis and osteogenesis are tightly connected throughout the progression of bone regeneration. This study aimed to explore the underlying mechanism of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)-regulated angiogenesis during bone regeneration. Gene and protein expression was detected by quantitative real-time PCR and western blot assay. Vascular endothelial growth factor (VEGFA) secretion was assessed by enzyme-linked immunosorbent assay. To evaluate the effect of osteogenic differentiation, alkaline phosphatase (ALP) and alizarin red staining assays were performed. Proliferation was detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Migration and angiogenesis were measured using Transwell and tube formation assays. A dual luciferase reporter assay was performed to confirm the binding relationship among MALAT1, miR-494, and specificity protein 1 (SP1). Expression levels of MALAT1, SP1, and VEGFA were elevated and miR-494 was suppressed in MC3T3-E1 cells after culture in osteogenic medium. MALAT1 knockdown suppressed the osteogenic differentiation of MC3T3-E1, since ALP activity, mineralized nodules, and expression of the osteodifferentiated markers runt-related transcription factor 2 and osterix were restrained. In addition, MALAT1 silencing inhibited angiogenesis during bone regeneration, as the proliferation, migration, and capillary tube formation of human umbilical vein endothelial cells were blocked. Furthermore, miR-494 was directly targeted by MALAT1 and regulated the SP1/Toll-like receptor 2 (TLR2)/bone morphogenetic protein 2 (BMP2) axis by targeting SP1. Furthermore, miR-494 overexpression inhibited angiogenesis and osteogenic differentiation. Moreover, SP1 overexpression or miR-494 inhibition rescued the regulatory effect of sh-MALAT1 on angiogenesis and osteogenic differentiation. Taken together, these findings indicate that MALAT1 promotes angiogenesis and osteogenic differentiation by targeting miR-494 and activating the SP1/TLR2/BMP2 pathway, suggesting a novel target for bone regeneration therapy by promoting angiogenesis.
Collapse
Affiliation(s)
- Ao Ding
- Department of Stomatology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, P.R. China
| | - Cheng-Hua Li
- Department of Stomatology, Beidaihe Rihabilitation and Recuperation Center of PLA, Qinhuangdao, Hebei Province, P.R. China
| | - Chan-Yuan Yu
- Department of Stomatology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, P.R. China
| | - Hang-Tian Zhou
- Department of Stomatology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, P.R. China
| | - Zhi-Hong Zhang
- Department of Stomatology, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, P.R. China.
| |
Collapse
|
21
|
Wu ZY, Du G, Lin YC. Identifying hub genes and immune infiltration of osteoarthritis using comprehensive bioinformatics analysis. J Orthop Surg Res 2021; 16:630. [PMID: 34670585 PMCID: PMC8527722 DOI: 10.1186/s13018-021-02796-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/12/2021] [Indexed: 01/18/2023] Open
Abstract
Background Osteoarthritis (OA) is the most common chronic degenerative joint disorder globally that is characterized by synovitis, cartilage degeneration, joint space stenosis, and sub-cartilage bone hyperplasia. However, the pathophysiologic mechanisms of OA have not been thoroughly investigated. Methods In this study, we conducted various bioinformatics analyses to identify hub biomarkers and immune infiltration in OA. The gene expression profiles of synovial tissues from 29 healthy controls and 36 OA samples were obtained from the gene expression omnibus database to identify differentially expressed genes (DEGs). The CIBERSORT algorithm was used to explore the association between immune infiltration and arthritis. Results Eighteen hub DEGs were identified as critical biomarkers for OA. Through gene ontology and pathway enrichment analyses, it was found that these DEGs were primarily involved in PI3K-Akt signaling pathway and Rap1 signaling pathway. Furthermore, immune infiltration analysis revealed differences in immune infiltration between patients with OA and healthy controls. The hub gene ZNF160 was closely related to immune cells, especially mast cell activation in OA. Conclusion Overall, this study presented a novel method to identify hub DEGs and their correlation with immune infiltration, which may provide novel insights into the diagnosis and treatment of patients with OA.
Collapse
Affiliation(s)
- Zheng-Yuan Wu
- Department of Hand Plastic Surgery, The First People's Hospital of Linping District, No. 369, Linping Yingbin Road, Yuhang District, Hangzhou, 311199, Zhejiang, China
| | - Gang Du
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yi-Cai Lin
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
22
|
Huang H, Xing D, Zhang Q, Li H, Lin J, He Z, Lin J. LncRNAs as a new regulator of chronic musculoskeletal disorder. Cell Prolif 2021; 54:e13113. [PMID: 34498342 PMCID: PMC8488571 DOI: 10.1111/cpr.13113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023] Open
Abstract
Objectives In recent years, long non‐coding RNAs (lncRNAs) have been found to play a role in the occurrence, progression and prognosis of chronic musculoskeletal disorders. Design and methods Literature exploring on PubMed was conducted using the combination of keywords 'LncRNA' and each of the following: 'osteoarthritis', 'rheumatoid arthritis', 'osteoporosis', 'osteogenesis', 'osteoclastogenesis', 'gout arthritis', 'Kashin‐Beck disease', 'ankylosing spondylitis', 'cervical spondylotic myelopathy', 'intervertebral disc degeneration', 'human muscle disease' and 'muscle hypertrophy and atrophy'. For each disorder, we focused on the publications in the last five years (5/1/2016‐2021/5/1, except for Kashin‐Beck disease). Finally, we excluded publications that had been reported in reviews of various musculoskeletal disorders during the last three years. Here, we summarized the progress of research on the role of lncRNA in multiple pathological processes during musculoskeletal disorders. Results LncRNAs play a crucial role in regulating downstream gene expression and maintaining function and homeostasis of cells, especially in chondrocytes, synovial cells, osteoblasts, osteoclasts and skeletal muscle cells. Conclusions Understanding the mechanisms of lncRNAs in musculoskeletal disorders may provide promising strategies for clinical practice.
Collapse
Affiliation(s)
- Hesuyuan Huang
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Qingxi Zhang
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Hui Li
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Jianjing Lin
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Zihao He
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| | - Jianhao Lin
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, China.,Arthritis Institute, Peking University, Beijing, China
| |
Collapse
|
23
|
Wang Z, Zhang W, Li S, Chen D, Wang L, Xu B, Li J. Multiple time-point assessment of lncRNA MEG3 shows potential to monitor treatment efficacy in rheumatoid arthritis patients. Biomark Med 2021; 15:1261-1270. [PMID: 34488430 DOI: 10.2217/bmm-2021-0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: This study explored the clinical role of lncRNA MEG3 in rheumatoid arthritis (RA) management. Materials & methods: Totally, 191 active RA patients were enrolled, and their lncRNA MEG3 expressions in peripheral blood monoclonal cells were detected. Results: LncRNA MEG3 expression was downregulated, and it negatively correlated with lesion joints, inflammation and disease activity in RA patients. Moreover, lncRNA MEG3 expression was increased during treatment; meanwhile its increment correlated with treatment response and remission. Conclusion: LncRNA MEG3 may serve as a potential biomarker for monitoring treatment efficacy in RA management.
Collapse
Affiliation(s)
- Zehui Wang
- Laboratory Division, HanDan Central Hospital, Handan, 056002, China
| | - Weiyong Zhang
- Imaging CT/MRI Room, HanDan Central Hospital, Handan, 056002, China
| | - Shouxia Li
- Laboratory Division, HanDan Central Hospital, Handan, 056002, China
| | - Dingli Chen
- Laboratory Division, HanDan Central Hospital, Handan, 056002, China
| | - Lei Wang
- Laboratory Division, HanDan Central Hospital, Handan, 056002, China
| | - Baoyuan Xu
- Hospital Office, HanDan Central Hospital, Handan, 056002, China
| | - Juntao Li
- Hospital Office, HanDan Central Hospital, Handan, 056002, China
| |
Collapse
|
24
|
Zhu X, Pan H, Liu L. Long noncoding RNA network: Novel insight into hepatocellular carcinoma metastasis (Review). Int J Mol Med 2021; 48:134. [PMID: 34013360 PMCID: PMC8148093 DOI: 10.3892/ijmm.2021.4967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common, aggressive malignancies with poor prognosis and high mortality. Although great progress has been made in recent decades, overall survival of HCC patients remains unsatisfactory due to high recurrence and metastasis. Accordingly, understanding and clarifying the underlying molecular mechanisms of metastasis has become increasingly important. Recently, accumulated reports have supported that long noncoding RNAs (lncRNAs) are dysregulated in HCC and are involved in various pivotal biological processes, including metastasis. The aim of this review was to investigate the dysregulation of lncRNAs in HCC and their function as oncogenes or tumour suppressors. Furthermore, reciprocal regulatory networks between lncRNAs and various molecules that were identified in HCC metastasis, including regulating epithelial-mesenchymal transition (EMT), controlling metastasis-associated genes, and regulating tumour angiogenesis were examined. Numerous reports and information on lncRNAs may help identify lncRNAs that are potential novel diagnostic markers, prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Xiuming Zhu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lili Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
25
|
Wang J, Sun Y, Liu J, Yang B, Wang T, Zhang Z, Jiang X, Guo Y, Zhang Y. Roles of long non‑coding RNA in osteoarthritis (Review). Int J Mol Med 2021; 48:133. [PMID: 34013375 PMCID: PMC8148092 DOI: 10.3892/ijmm.2021.4966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/05/2021] [Indexed: 02/01/2023] Open
Abstract
Osteoarthritis (OA) is a chronic bone and joint disease characterized by articular cartilage degeneration and joint inflammation and is the most common form of arthritis. The clinical manifestations of OA are chronic pain and joint activity disorder, which severely affect the patient quality of life. Long non-coding RNA (lncRNA) is a class of RNA molecules >200 nucleotides long that are expressed in animals, plants, yeast, prokaryotes and viruses. lncRNA molecules lack an open reading frame and are not translated into protein. The present review collated the results of recent studies on the role of lncRNA in the pathogenesis of OA to provide information for the prevention, diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yanshan Sun
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Jianyong Liu
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Bo Yang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Tengyun Wang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Zhen Zhang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Xin Jiang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yongzhi Guo
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Yangyang Zhang
- Department of Joint Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
26
|
Guo B, Zhu X, Li X, Yuan CF. The Roles of LncRNAs in Osteogenesis, Adipogenesis and Osteoporosis. Curr Pharm Des 2021; 27:91-104. [PMID: 32634074 DOI: 10.2174/1381612826666200707130246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoporosis (OP) is the most common bone disease, which is listed by the World Health Organization (WHO) as the third major threat to life and health among the elderly. The etiology of OP is multifactorial, and its potential regulatory mechanism remains unclear. Long non-coding RNAs (LncRNAs) are the non-coding RNAs that are over 200 bases in the chain length. Increasing evidence indicates that LncRNAs are the important regulators of osteogenic and adipogenic differentiation, and the occurrence of OP is greatly related to the dysregulation of the bone marrow mesenchymal stem cells (BMSCs) differentiation lineage. Meanwhile, LncRNAs affect the occurrence and development of OP by regulating OP-related biological processes. METHODS In the review, we summarized and analyzed the latest findings of LncRNAs in the pathogenesis, diagnosis and related biological processes of OP. Relevant studies published in the last five years were retrieved and selected from the PubMed database using the keywords of LncRNA and OP. RESULTS/CONCLUSION The present study aimed to examine the underlying mechanisms and biological roles of LncRNAs in OP, as well as osteogenic and adipogenic differentiation. Our results contributed to providing new clues for the epigenetic regulation of OP, making LncRNAs the new targets for OP therapy.
Collapse
Affiliation(s)
- Bo Guo
- China Three Gorges University, RenHe Hospital, Yichang, China
| | - Xiaokang Zhu
- China Three Gorges University, RenHe Hospital, Yichang, China
| | - Xinzhi Li
- China Three Gorges University, RenHe Hospital, Yichang, China
| | - C F Yuan
- Department of Biochemistry, China Three Gorges University, Yichang, China
| |
Collapse
|
27
|
Chen L, Xu J, Lv S, Zhao Y, Sun D, Zheng Y, Li X, Zhang L, Chi G, Li Y. Overexpression of long non-coding RNA AP001505.9 inhibits human hyaline chondrocyte dedifferentiation. Aging (Albany NY) 2021; 13:11433-11454. [PMID: 33839696 PMCID: PMC8109079 DOI: 10.18632/aging.202833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/18/2021] [Indexed: 12/21/2022]
Abstract
Autologous chondrocyte implantation (ACI) is an effective method for treating chronic articular cartilage injury and degeneration; however, it requires large numbers of hyaline chondrocytes, and human hyaline chondrocytes often undergo dedifferentiation in vitro. Moreover, although long non-coding RNAs (lncRNAs) regulate gene expression in many pathological and physiological processes, their role in human hyaline chondrocyte dedifferentiation remains unclear. Here, we examined lncRNA and mRNA expression profiles in human hyaline chondrocyte dedifferentiation using microarray analysis. Among the many lncRNAs and mRNAs that showed differential expression, lncRNA AP001505.9 (ENST00000569966) was significantly downregulated in chondrocytes after dedifferentiation. We next performed gene ontology, pathway, and CNC (coding-non-coding gene co-expression) analyses to investigate potential regulatory mechanisms for AP001505.9. Pellet cultures were then used to redifferentiate dedifferentiated chondrocytes, and AP001505.9 expression was upregulated after redifferentiation. Finally, both in vitro and in vivo experiments demonstrated that AP001505.9 overexpression inhibited dedifferentiation of chondrocytes. This study characterizes lncRNA expression profiles in human hyaline chondrocyte dedifferentiation, thereby identifying new potential mechanisms of chondrocyte dedifferentiation worthy of further investigation.
Collapse
Affiliation(s)
- Lin Chen
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.,Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yan Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.,Department of Operating Room, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Dongjie Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xianglan Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.,Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lihong Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
28
|
Huang Y, Chen D, Yan Z, Zhan J, Xue X, Pan X, Yu H. LncRNA MEG3 Protects Chondrocytes From IL-1β-Induced Inflammation via Regulating miR-9-5p/KLF4 Axis. Front Physiol 2021; 12:617654. [PMID: 33776787 PMCID: PMC7991831 DOI: 10.3389/fphys.2021.617654] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/02/2021] [Indexed: 01/06/2023] Open
Abstract
Background Osteoarthritis (OA) is a chronic degenerative disease of the joints characterized by articular cartilage damage, subchondral bone remodeling, osteophyte formation, and inflammatory changes. This work aims to investigate the protective role of long non-coding RNA (lncRNA) maternally expressed 3 (MEG3) against the apoptosis of chondrocytes. Methods Chondrocyte cell lines, CHON-001, and ATDC5 were treated with different doses of interleukin-1β (IL-1β) to mimic the inflammatory response during OA pathogenesis. Quantitative real-time polymerase chain reaction was performed to measure MEG3, miR-9-5p, and Krüppel-like factor 4 (KLF4) mRNA expression levels. MEG3 and KLF4 overexpression plasmids, MEG3 shRNA, miR-9-5p mimics, and miR-9-5p inhibitors were transfected into the cells. Cell counting kit-8, wound healing assay, and flow cytometry were conducted to determine cell viability, migration, and apoptotic rate. Dual-luciferase reporter assay was adopted to verify the targeting relationships among MEG3, miR-9-5p, and KLF4. Western blot was used to detect KLF4 protein expression. Enzyme-linked immunosorbent assay was employed to measure the levels of inflammatory factors. Results MEG3 expression in chondrocytes was down-regulated by the stimulation of IL-1β, and MEG3 negatively regulated miR-9-5p expression but positively regulated KLF4 expression. MEG3 overexpression strengthened the viability and migration of CHON-001 and ATDC5 cells but restrained the apoptosis and inflammatory response, while MEG3 knockdown had opposite effects. miR-9-5p inhibition or KLF4 overexpression could counteract the effects of MEG3 knockdown on chondrocytes. Besides that, MEG3 was proved to be a molecular sponge for miR-9-5p, and KLF4 was verified as the target of miR-9-5p. Conclusion MEG3 can promote chondrocyte proliferation and migration and inhibit apoptosis and inflammation by sponging miR-9-5p to induce KLF4 expression, which provides a promising therapy target for OA treatment.
Collapse
Affiliation(s)
- Yijiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Daosen Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Zijian Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Jingdi Zhan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Xinghe Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Xiaoyun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| | - Huachen Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China
| |
Collapse
|
29
|
Wang X, Li X, Wang Z. lncRNA MEG3 inhibits pituitary tumor development by participating in cell proliferation, apoptosis and EMT processes. Oncol Rep 2021; 45:40. [PMID: 33649837 PMCID: PMC7934213 DOI: 10.3892/or.2021.7991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
Pituitary tumors do not pose a threat to life but can cause visual disturbances and serious clinical syndromes, such as infertility and metabolic syndrome. Therefore, screening of key genes involved in the occurrence and development of pituitary tumors can provide new targets for the treatment of pituitary tumors. The aim of the present study was to investigate the molecular mechanism of long non‑coding (lnc.) RNA maternally expressed 3 (MEG3) in cell proliferation, apoptosis and epithelial‑mesenchymal transition (EMT) processes of pituitary tumor. Tissue samples were obtained from 34 patients who underwent surgical treatment of pituitary tumors. Pituitary tumor cells (GH3 and MMQ) were transfected with pcDNA3.1(+)‑MEG3, short hairpin (sh)MEG3, microRNA (miR)‑23‑3p inhibitor or their controls using Lipofectamine® 2000. Reverse transcription‑quantitative PCR and western blot analyses were used to detect the levels of MEG3, miR‑23b‑3p and FOXO4, as well as proliferation‑, apoptosis‑ and EMT‑associated genes and proteins. Cell Counting Kit‑8 and flow cytometry assays were performed to detect proliferation and apoptosis, and Transwell assay was undertaken to assess invasion and migration. Luciferase reporter and RNA pulldown assays were performed to verify the binding between lncRNA MEG3, miR‑23b‑3p and FOXO4. Pearson's correlation analysis was used to analyze the correlation between expression levels of MEG3, miR‑23b‑3p and FOXO4. lncRNA MEG3 was expressed at lower levels in pituitary tumor tissues and cells. Overexpression of lncRNA MEG3 inhibited proliferation, invasion and migration and accelerated apoptosis of pituitary tumor cells. lncRNA MEG3 negatively regulated miR‑23b‑3p expression levels, while miR‑23b‑3p negatively regulated FOXO4 expression levels. Overexpression of lncRNA MEG3 inhibited the EMT process in pituitary tumor cells. miR‑23‑3p inhibitor rescued the effect of shMEG3 on proliferation, invasion, migration, apoptosis and the EMT process in pituitary tumor cells. lncRNA MEG3 inhibited pituitary tumor development by participating in cell proliferation, apoptosis and the EMT process, which may present a novel target for pituitary tumor treatment.
Collapse
Affiliation(s)
- Xuejian Wang
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, Soochow University, Soochow, Jiangsu 225000, P.R. China
| | - Xiangdong Li
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, Soochow University, Soochow, Jiangsu 225000, P.R. China
| | - Zhifeng Wang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University, Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
30
|
Zhou L, Gu M, Ma X, Wen L, Zhang B, Lin Y, Pan J. Long non-coding RNA PCAT-1 regulates apoptosis of chondrocytes in osteoarthritis by sponging miR-27b-3p. J Bone Miner Metab 2021; 39:139-147. [PMID: 32770398 DOI: 10.1007/s00774-020-01128-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a non-inflammatory degenerative disease, with progressive damages on the articular cartilages. In recent years, researchers have paid many efforts in the diagnostics and treatments of OA. However, no effective therapeutic method has been revealed to help inhibit the development of OA. Herein, we studied the roles and associations of PCAT-1 and miR-27-3p in the pathogenesis OA. METHODS OA articular cartilages and healthy articular cartilages were isolated for investigation. The chondrocytes were isolated from articular cartilage samples. QRT-PCR and western blotting were used for the detection of expression of genes and proteins. cell Titer 96® AQueous one proliferation kit was applied for detect cell viability of Chondrocytes transfected with negative control vector, pcDNA3.1 PCAT-1 plasmid or siRNA against PCAT-1. RNA pull-down assays and Luciferase reporter assay were used to confirm the connection. SPSS 17.0 was employed for statistical analysis. RESULTS We found that the expressions of PCAT-1 were up-regulated in OA chondrocytes compared with normal chondrocytes. si-PCAT-1 suppressed apoptotic OA chondrocytes. Over-expression of PCAT-1 enhanced the apoptosis of normal chondrocytes. In addition, the online database and luciferase assay confirmed that PCAT-1 could directly target miR-27b-3p. PCAT-1 could promote the apoptosis of OA and normal chondrocytes through binding with miR-27b-3p. CONCLUSIONS Based on the comparisons and analysis, we could conclude that lncRNA PCAT-1 regulated the apoptosis of chondrocytes through sponging miR-27b-3p in OA. PCAT-1 has potential values to act as a new therapeutic target for OA patients.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongren Tiyuchang Nanlu, Chaoyang, Beijing, 100020, China
- Joint Laboratory for Translational Medicine Research, Beijing Institute of Genomics, Chinese Academy of Sciences & Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Mingliang Gu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liang Wen
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongren Tiyuchang Nanlu, Chaoyang, Beijing, 100020, China
| | - Bo Zhang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongren Tiyuchang Nanlu, Chaoyang, Beijing, 100020, China
| | - Yuan Lin
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongren Tiyuchang Nanlu, Chaoyang, Beijing, 100020, China
| | - Jiang Pan
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongren Tiyuchang Nanlu, Chaoyang, Beijing, 100020, China.
| |
Collapse
|
31
|
Abstract
Osteoarthritis (OA), one of the most common motor system disorders, is a degenerative disease involving progressive joint destruction caused by a variety of factors. At present, OA has become the fourth most common cause of disability in the world. However, the pathogenesis of OA is complex and has not yet been clarified. Long non-coding RNA (lncRNA) refers to a group of RNAs more than 200 nucleotides in length with limited protein-coding potential, which have a wide range of biological functions including regulating transcriptional patterns and protein activity, as well as binding to form endogenous small interference RNAs (siRNAs) and natural microRNA (miRNA) molecular sponges. In recent years, a large number of lncRNAs have been found to be differentially expressed in a variety of pathological processes of OA, including extracellular matrix (ECM) degradation, synovial inflammation, chondrocyte apoptosis, and angiogenesis. Obviously, lncRNAs play important roles in regulating gene expression, maintaining the phenotype of cartilage and synovial cells, and the stability of the intra-articular environment. This article reviews the results of the latest research into the role of lncRNAs in a variety of pathological processes of OA, in order to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article: Bone Joint Res 2021;10(2):122-133.
Collapse
Affiliation(s)
- Chao Peng He
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China
| | - Xin Chen Jiang
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China
| | - Cheng Chen
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China
| | - Hai Bin Zhang
- Department of Orthopedics, The Xiangya Hospital of Central South University Changsha, Hunan, China
| | - Wen Dong Cao
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China
| | - Qi Wu
- Department of Orthopedics, The Second Affiliated Hospital, Hunan Normal University, Hunan, China
| | - Chi Ma
- Department of Orthopedics, The First Affiliated Hospital (People’s Hospital of Xiangxi Autonomous Prefecture), Jishou University, Jishou, China
| |
Collapse
|
32
|
Liu M, Chen L, Wu J, Lin Z, Huang S. Long noncoding RNA MEG3 expressed in human dental pulp regulates LPS-Induced inflammation and odontogenic differentiation in pulpitis. Exp Cell Res 2021; 400:112495. [PMID: 33524362 DOI: 10.1016/j.yexcr.2021.112495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/16/2021] [Indexed: 12/19/2022]
Abstract
Pulpitis refers to inflammation of the inner pulp by invading microbes, and tissue repair occurs due to odontogenic differentiation of human dental pulp cells (hDPCs) with multidifferentiation potential. Long noncoding RNAs (lncRNAs) can modulate numerous pathological and biological processes; however, the role of lncRNAs in the inflammation and regeneration of the dentin-pulp complex in pulpitis is unclear. Here, we performed high-throughput sequencing to identify differentially expressed lncRNAs between human normal and inflamed pulp and concluded that lncMEG3 (lncRNA maternally expressed gene 3, MEG3) was significantly upregulated in both inflamed pulp and LPS-treated hDPCs. MEG3 expression in the pulp tissue was detected using the RNAscope® technique. RNA pulldown assays identified the MEG3-interacting proteins and the potential mechanisms. With MEG3 knockdown, we investigated the role of MEG3 in the secretion of inflammatory cytokines in LPS-treated hDPCs and odontogenic differentiation of hDPCs. MEG3 downregulation inhibited the secretion of TNF-α, IL-1β and IL-6 in LPS-treated hDPCs, and the p38/MAPK signaling pathway may be related to this effect. MEG3 knockdown promoted odontogenic differentiation of hDPCs by regulating the Wnt/β-catenin signaling pathway. Our study suggested that MEG3 has a negative effect on inflammation and regeneration of the dentin-pulp complex in pulpitis.
Collapse
Affiliation(s)
- Minxia Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, China.
| | - Lingling Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, China.
| | - Jinyan Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, China.
| | - Zhengmei Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, China.
| | - Shuheng Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56, Lingyuan West Road, Guangzhou, 510055, China.
| |
Collapse
|
33
|
Meng J, Ding T, Chen Y, Long T, Xu Q, Lian W, Liu W. LncRNA-Meg3 promotes Nlrp3-mediated microglial inflammation by targeting miR-7a-5p. Int Immunopharmacol 2021; 90:107141. [PMID: 33189612 DOI: 10.1016/j.intimp.2020.107141] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Recent studies have identified neuroinflammation as a significant contributor to the pathological process of traumatic brain injury (TBI) and as a potentially effective target for treatment. LncRNA maternally expressed gene 3 (Meg3) has further been observed to play a critical role in diverse biological processes, including microglial activation and the inflammatory response. However, its target gene and associated signaling pathway require further elucidation. This study found that lipopolysaccharide + ATP upregulated Meg3, promoted microglia activation, Nlrp3/caspase1 activation and inflammation, and markedly reduced miR-7a-5p. Overexpression of miR-7a-5p attenuated Meg3-induced microglial activation, but not Meg3 expression. Bioinformatic analysis and dual-luciferase assays indicated that Meg3 was a direct target of miR-7a-5p that negatively regulates miR-7a-5p expression. Further, we showed that Meg3 acted as a competing endogenous RNA for miR-7a-5p and induced microglial inflammation by regulating nod-like receptor protein 3 (Nlrp3) expression. Our study thus demonstrates Meg3 regulates microglia inflammation by targeting the miR-7a-5p /Nlrp3 pathway.
Collapse
Affiliation(s)
- Jiao Meng
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ting Ding
- Department of Anesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing 100034, China
| | - Yuhua Chen
- Department of Neurosurgery, Bijie First People's Hospital, Bijie 551700, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie First People's Hospital, Bijie 551700, China
| | - Quanhua Xu
- Department of Neurosurgery, Bijie First People's Hospital, Bijie 551700, China
| | - Wenqing Lian
- Departmentof Critical Care Medicine, Peking University First Hospital, Beijing 100034, China
| | - Wei Liu
- Department of Neurosurgery, Bijie First People's Hospital, Bijie 551700, China.
| |
Collapse
|
34
|
Li D, Yang C, Yin C, Zhao F, Chen Z, Tian Y, Dang K, Jiang S, Zhang W, Zhang G, Qian A. LncRNA, Important Player in Bone Development and Disease. Endocr Metab Immune Disord Drug Targets 2020; 20:50-66. [PMID: 31483238 DOI: 10.2174/1871530319666190904161707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bone is an important tissue and its normal function requires tight coordination of transcriptional networks and signaling pathways, and many of these networks/ pathways are dysregulated in pathological conditions affecting cartilage and bones. Long non-coding RNA (lncRNA) refers to a class of RNAs with a length of more than 200 nucleotides, lack of protein-coding potential, and exhibiting a wide range of biological functions. Although studies on lcnRNAs are still in their infancy, they have emerged as critical players in bone biology and bone diseases. The functions and exact mechanism of bone-related lncRNAs have not been fully classified yet. OBJECTIVE The objective of this article is to summarize the current literature on lncRNAs on the basis of their role in bone biology and diseases, focusing on their emerging molecular mechanism, pathological implications and therapeutic potential. DISCUSSION A number of lncRNAs have been identified and shown to play important roles in multiple bone cells and bone disease. The function and mechanism of bone-related lncRNA remain to be elucidated. CONCLUSION At present, majority of knowledge is limited to cellular levels and less is known on how lncRNAs could potentially control the development and homeostasis of bone. In the present review, we highlight some lncRNAs in the field of bone biology and bone disease. We also delineate some lncRNAs that might have deep impacts on understanding bone diseases and providing new therapeutic strategies to treat these diseases.
Collapse
Affiliation(s)
- Dijie Li
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chaofei Yang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chong Yin
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Fan Zhao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ye Tian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Kai Dang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shanfeng Jiang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wenjuan Zhang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
35
|
He L, Li Y, Wang G, Li C. [Regulation of long non-coding RNA in cartilage injury of osteoarthritis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1486-1491. [PMID: 33191711 DOI: 10.7507/1002-1892.202002109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To summarize the regulatory effect of long non-coding RNA (lncRNA) on osteoarthritis (OA) cartilage injury. Methods The molecular functions and mechanisms of lncRNA were introduced and its regulatory effects on the pathological processes of OA were elaborated by referring to the relevant literature at domestic and abroad in recent years. Results The pathological characteristics of OA are degeneration of articular cartilage and inflammation of synovial tissue, but its etiology and pathological mechanism have not been clarified. lncRNA is a kind of heterogeneous non-coding RNA, which plays a regulatory role in many inflammation-related diseases and exerts a wide range of biological functions. lncRNA is a regulator involved in the pathogenesis of OA, and is abnormally expressed in OA cartilage, leading to the degeneration of the extracellular matrix of cartilage. Conclusion At present, there have been preliminary studies on the pathological effects of lncRNA in regulating OA and the biological functions of chondrocytes. However, the pathogenesis of lncRNA and its regulatory network in OA and the way in which it regulates inflammatory pathways are still unclear, and further exploration is needed.
Collapse
Affiliation(s)
- Lu He
- Kunming Medical University, Kunming Yunnan, 650000, P.R.China;Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, 650000, P.R.China
| | - Yanlin Li
- Kunming Medical University, Kunming Yunnan, 650000, P.R.China;Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, 650000, P.R.China
| | - Guoliang Wang
- Kunming Medical University, Kunming Yunnan, 650000, P.R.China;Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, 650000, P.R.China
| | - Canzhang Li
- Kunming Medical University, Kunming Yunnan, 650000, P.R.China;Department of Sports Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Yunnan, 650000, P.R.China
| |
Collapse
|
36
|
Wu Y, Lu X, Shen B, Zeng Y. The Therapeutic Potential and Role of miRNA, lncRNA, and circRNA in Osteoarthritis. Curr Gene Ther 2020; 19:255-263. [PMID: 31333128 DOI: 10.2174/1566523219666190716092203] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/10/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a disease characterized by progressive degeneration, joint hyperplasia, narrowing of joint spaces, and extracellular matrix metabolism. Recent studies have shown that the pathogenesis of OA may be related to non-coding RNA, and its pathological mechanism may be an effective way to reduce OA. OBJECTIVE The purpose of this review was to investigate the recent progress of miRNA, long noncoding RNA (lncRNA) and circular RNA (circRNA) in gene therapy of OA, discussing the effects of this RNA on gene expression, inflammatory reaction, apoptosis and extracellular matrix in OA. METHODS The following electronic databases were searched, including PubMed, EMBASE, Web of Science, and the Cochrane Library, for published studies involving the miRNA, lncRNA, and circRNA in OA. The outcomes included the gene expression, inflammatory reaction, apoptosis, and extracellular matrix. RESULTS AND DISCUSSION With the development of technology, miRNA, lncRNA, and circRNA have been found in many diseases. More importantly, recent studies have found that RNA interacts with RNA-binding proteins to regulate gene transcription and protein translation, and is involved in various pathological processes of OA, thus becoming a potential therapy for OA. CONCLUSION In this paper, we briefly introduced the role of miRNA, lncRNA, and circRNA in the occurrence and development of OA and as a new target for gene therapy.
Collapse
Affiliation(s)
- Yuangang Wu
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xiaoxi Lu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Shen
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yi Zeng
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, 610041, China
| |
Collapse
|
37
|
Wang CL, Zuo B, Li D, Zhu JF, Xiao F, Zhang XL, Chen XD. The long noncoding RNA H19 attenuates force-driven cartilage degeneration via miR-483-5p/Dusp5. Biochem Biophys Res Commun 2020; 529:210-217. [PMID: 32703413 DOI: 10.1016/j.bbrc.2020.05.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/25/2020] [Indexed: 02/04/2023]
Abstract
Developmental dysplasia of the hip (DDH) is a common hip disease characterized by abnormal development of the acetabulum and femoral head. In most cases, DDH ultimately leads to osteoarthritis. Anomalous biomechanical force plays an important role in cartilage degeneration in DDH. However, in addition to mechanical wear, the underlying molecular mechanisms in cartilage degeneration in DDH remain unclear. This study analyzed the effect of long noncoding RNA (lncRNA)-H19 on DDH cartilage degradation. To elucidate the specific role of lncRNA H19, we established an intermittent cyclic mechanical stress (ICMS) cell force model to simulate abnormal biomechanical environment in vitro. Then, the roles of lncRNA-H19 were also determined in vivo by establishing a model of swaddling DDH. We observed that patients with DDH possessed low levels of lncRNA-H19, COL2A1, and Aggrecan but high levels of MMP3 and Adamts5. The same results were also obtained in a DDH rat model. Furthermore, the data suggested that ICMS promoted cartilage degeneration and caused reorientation of the cytoskeleton, and lncRNA H19 helped inhibit cartilage degeneration. Bioinformatics analysis and lncRNA sequencing were performed, and luciferase assays showed that lncRNA H19 and Dusp5 are both direct targets of miR-483-5p. Moreover, Dups5 plays a negative role in ICMS-induced cartilage degradation by activating the Erk and p38 pathways. In vivo, lncRNA H19 had protective effects on the swaddling DDH model. These findings indicate that lncRNA-H19 played a positive role in cartilage degradation in DDH through the lncRNA H19/miR-483-5p/Dusp5 axis.
Collapse
Affiliation(s)
- Cheng-Long Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine (SJTUSM), China
| | - Bin Zuo
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine (SJTUSM), China
| | - De Li
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine (SJTUSM), China
| | - Jun-Feng Zhu
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine (SJTUSM), China
| | - Fei Xiao
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine (SJTUSM), China
| | - Xiao-Ling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine (SJTUSM), China.
| | - Xiao-Dong Chen
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine (SJTUSM), China.
| |
Collapse
|
38
|
Wang H, Li J, Cheng Y, Yao J. Association of Long-Chain Noncoding RNA H19 and MEG3 Gene Polymorphisms and Their Interaction with Risk of Osteoarthritis in a Chinese Han Population. Genet Test Mol Biomarkers 2020; 24:328-337. [PMID: 32364812 DOI: 10.1089/gtmb.2019.0230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Huang Wang
- Department of Orthopedics, Hangzhou Dingqiao Hospital (Hangzhou Hospital of Traditional Chinese Medicine, Dingqiao District), Hangzhou, China
| | - Jian Li
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Ye Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Yao
- Department of Orthopedics, Hangzhou Dingqiao Hospital (Hangzhou Hospital of Traditional Chinese Medicine, Dingqiao District), Hangzhou, China
| |
Collapse
|
39
|
Sun H, Peng G, Wu H, Liu M, Mao G, Ning X, Yang H, Deng J. Long non-coding RNA MEG3 is involved in osteogenic differentiation and bone diseases (Review). Biomed Rep 2020; 13:15-21. [PMID: 32494359 PMCID: PMC7257936 DOI: 10.3892/br.2020.1305] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Osteogenic differentiation originating from mesenchymal stem cells (MSCs) requires tight co-ordination of transcriptional factors, signaling pathways and biomechanical cues. Dysregulation of such reciprocal networks may influence the proliferation and apoptosis of MSCs and osteoblasts, thereby impairing bone metabolism and homeostasis. An increasing number of studies have shown that long non-coding (lnc)RNAs are involved in osteogenic differentiation and thus serve an important role in the initiation, development, and progression of bone diseases such as tumors, osteoarthritis and osteoporosis. It has been reported that the lncRNA, maternally expressed gene 3 (MEG3), regulates osteogenic differentiation of multiple MSCs and also acts as a critical mediator in the development of bone formation and associated diseases. In the present review, the proposed mechanisms underlying the roles of MEG3 in osteogenic differentiation and its potential effects on bone diseases are discussed. These discussions may help elucidate the roles of MEG3 in osteogenic differentiation and highlight potential biomarkers and therapeutic targets for the treatment of bone diseases.
Collapse
Affiliation(s)
- Hong Sun
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Guoxuan Peng
- Department of Emergency Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hongbin Wu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Miao Liu
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Guping Mao
- Department of Joint Surgery, Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xu Ning
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hua Yang
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jin Deng
- Department of Emergency Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
40
|
Song W, Xie J, Li J, Bao C, Xiao Y. The Emerging Roles of Long Noncoding RNAs in Bone Homeostasis and Their Potential Application in Bone-Related Diseases. DNA Cell Biol 2020; 39:926-937. [PMID: 32352840 DOI: 10.1089/dna.2020.5391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Increasing evidence has announced the emerging roles of long noncoding RNAs (lncRNAs) in modulating bone homeostasis due to their potential regulating effects on bone-related cells' proliferation, migration, differentiation and apoptosis. Thus, lncRNAs have been considered as a promising gene tool to facilitate the bone regeneration process and then to predict and cure bone-related diseases such as osteosarcoma, osteoporosis, and osteoarthritis. In this review, we first enumerated several kinds of dysregulated lncRNAs and concisely summarized their regulating role in bone formation as well as resorption process. The related mechanisms were also discussed, respectively. Then, the positive or negative behavior of these lncRNAs in bone-related diseases was elucidated. This review provides an in-depth sight about the lncRNA's clinical values and limitations, which is conducive to explore new gene targets and further establish new therapeutic strategies for bone-related disease.
Collapse
Affiliation(s)
- Wei Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahui Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingya Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Abbasifard M, Kamiab Z, Bagheri-Hosseinabadi Z, Sadeghi I. The role and function of long non-coding RNAs in osteoarthritis. Exp Mol Pathol 2020; 114:104407. [PMID: 32088191 DOI: 10.1016/j.yexmp.2020.104407] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/03/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
Osteoarthiritis (OA) is the most prevalent disease of articulating joints in human that frequently results in joint pain, movement limitations, inflammation, and progressive degradation of articular cartilage. The etiology of OA is not completely clear and there is no full treatment for this disease. Molecular investigations have revealed the involvement of non-coding RNAs such as Long non-coding RNAs (lncRNAs) in OA pathogenesis. LncRNAs play roles in multiple cellular and biological processes. Moreover, numerous lncRNAs are differentially expressed in human OA cartilage. In this review, we underlie the increasing evidence for the critical role of lncRNAs in OA pathogenesis reviewing the latest researches.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Kamiab
- Department of Family Medicine, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Clinical Research Development Unit, Ali Ibn Abi Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Iman Sadeghi
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona, E-08003 Catalonia, Spain; CEINGE-biotecnologie avanzate, Naples, Italy.
| |
Collapse
|
42
|
Ni S, Xu C, Zhuang C, Zhao G, Li C, Wang Y, Qin X. LncRNA LUADT1 regulates miR-34a/SIRT1 to participate in chondrocyte apoptosis. J Cell Biochem 2020; 122:1003-1008. [PMID: 32030826 DOI: 10.1002/jcb.29637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
It is known that miR-34a can promote the apoptosis of chondrocytes, which directly contribute to osteoarthritis (OA). Through bioinformatics analysis, we found that long noncoding RNA LUADT1 may interact with miR-34a. We, therefore, further investigate the interactions between them in osteoarthritis. We found that LUADT1 was downregulated, while miR-34a was upregulated in OA synovial fluid. Correlation analysis revealed no significant correlation between them. Overexpression experiment also revealed no significant effects of LUADT1 and miR-34a on the expression of each other. However, the dual-luciferase assay showed that LUADT1 and miR-34a can directly interact with each other. Moreover, LUADT1 overexpression led to the upregulation of SIRT1, which is a downstream target of miR-34a. Cell apoptosis showed that LUADT1 and SIRT1 overexpression led to decreased, while miR-34a led to increased apoptotic rates of chondrocytes. Therefore, LUADT1 regulates miR-34a/SIRT1 to participate in chondrocyte apoptosis.
Collapse
Affiliation(s)
- Su Ni
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chao Xu
- Department of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangning, China
| | - Chao Zhuang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Gongyin Zhao
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chenkai Li
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yuji Wang
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xihu Qin
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
43
|
Xu D, Liu T, He L, Han D, Ma Y, Du J. LncRNA MEG3 inhibits HMEC-1 cells growth, migration and tube formation via sponging miR-147. Biol Chem 2020; 401:601-615. [PMID: 31863691 DOI: 10.1515/hsz-2019-0230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022]
Abstract
Abstract
Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been identified as a regulatory molecule in angiogenesis. The goal of this study was to illustrate how MEG3 affects the angiogenesis of vascular endothelial cells. Expression of MEG3, miR-147 and intracellular cell adhesion molecule-1 (ICAM-1) in human microvascular endothelial cell line (HMEC-1) was altered by transfection, then cell viability, apoptosis, migration, tube formation, as well as the correlation among MEG3, miR-147 and ICAM-1 were explored. MEG3 was down-regulated during tube formation of HMEC-1 cells. MEG3 expression suppressed cells viability, migration and tube formation, while it induced apoptosis. MEG3 could bind with miR-147 and repress miR-147 expression. MiR-147 induced ICAM-1 expression, and contained ICAM-1 target sequences. The anti-atherogenic actions of MEG3 were inhibited by miR-147, and the anti-atherogenic actions of miR-147 suppression were also inhibited when ICAM-1 was overexpressed. Further, ICAM-1 overexpression showed activated roles in Wnt/β-catenin and Jak/Stat signaling pathways. In low-density lipoprotein receptor (Ldlr)−/− mice, MEG3 overexpression reduced CD68+, CD3+ and ICAM-1 areas in lesions and increased collagen content. MEG3 inhibited HMEC-1 cell growth, migration and tube formation. The anti-atherogenic actions of MEG3 might be mediated via sponging miR-147, and thereby repressing the expression of ICAM-1.
Collapse
Affiliation(s)
- Dejun Xu
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun130033, China
| | - Tianji Liu
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun130033, China
| | - Liu He
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun130033, China
| | - Dongmei Han
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun130033, China
| | - Ying Ma
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun130033, China
| | - Jianshi Du
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun130033, China
| |
Collapse
|
44
|
Jiang S, Liu Y, Xu B, Zhang Y, Yang M. Noncoding RNAs: New regulatory code in chondrocyte apoptosis and autophagy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1584. [PMID: 31925936 DOI: 10.1002/wrna.1584] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/13/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a bone and joint disease characterized by progressive cartilage degradation. In the face of global trends of population aging, OA is expected to become the fourth most common disabling disease by 2020. Nevertheless, the detailed pathogenesis of OA has not yet been elucidated. Noncoding RNAs (ncRNAs), including long noncoding RNAs, microRNAs, and circular RNAs, do not encode proteins but have recently emerged as important regulators of apoptosis and autophagy of chondrocytes, thereby highlighting a potential role in chondrocyte injury leading to OA onset and progression. We here review recent findings on these regulatory roles of ncRNAs to provide new directions for research on the pathogenesis of OA and offer new therapeutic targets for prevention and treatment. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Siyu Jiang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Medical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, China.,Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Bilian Xu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Yan Zhang
- Operating Room, Tianjin Binhai New Area Tanggu Obstetrics and Gynecology Hospital, Tianjin, China
| | - Min Yang
- Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, China
| |
Collapse
|
45
|
Gao Y, Zhao H, Li Y. LncRNA MCM3AP-AS1 regulates miR-142-3p/HMGB1 to promote LPS-induced chondrocyte apoptosis. BMC Musculoskelet Disord 2019; 20:605. [PMID: 31836002 PMCID: PMC6911297 DOI: 10.1186/s12891-019-2967-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/22/2019] [Indexed: 11/16/2022] Open
Abstract
Abstract Background The role of long non-coding RNA (lncRNA) Minichromosome Maintenance Complex Component 3 Associated Protein (MCM3AP) Antisense RNA 1 (MCM3AP-AS1) has been analyzed in liver cancer. But its role in osteoarthritis (OA) is unknown. Through bioinformatics analysis, we predicted that MCM3AP-AS1 may interact with miR-142-3p, which is a major player in OA. This study aimed to investigate the roles of MCM3AP-AS1 in OA and to explore its interactions with microRNA miR-142-3p. Methods Differential expressions of MCM3AP-AS1 in OA patients and healthy participants were analyzed by performing quantitative PCR (qPCR). To analyze the relationship between MCM3AP-AS1 and miR-142-3p, human chondrocytes were transfected with MCM3AP-AS1 over-expression vector and miR-142-3p mimic. MCM3AP-AS1, miR-142-3p and high mobility group protein B1 (HMGB1) mRNA expression levels were measured by qPCR. Results We found that MCM3AP-AS1 was up-regulated in OA. Bioinformatics analysis showed that MCM3AP-AS1 may interact with miR-142-3p, which can inhibit the apoptosis of chondrocytes. In addition, over-expression of MCM3AP-AS1 and miR-142-3p failed to affect the expression of each other. Instead, MCM3AP-AS1 over-expression led to up-regulated expressions of HMGB1, which is a target of miR-142-3p. Lipopolysaccharide (LPS) treatment led to the up-regulated expressions of MCM3AP-AS1 in chondrocytes. In cell apoptosis assay, MCM3AP-AS1 and HMGB1 over-expression led to increased apoptotic rate of chondrocytes. MiR-142-3p over-expression played an opposite role and attenuated the effects of MCM3AP-AS1 over-expression. Conclusions MCM3AP-AS1 may regulate miR-142-3p/HMGB1 to promote LPS-induced chondrocyte apoptosis.
Collapse
Affiliation(s)
- Yanjun Gao
- First Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Liaoning Province, Shenyang City, 110032, PR, China.
| | - Hongyu Zhao
- Comprehensive surgical, Shenyang Orthopedic Hospital, Liaoning Province, Shenyang City, 110044, PR, China
| | - Yang Li
- Department of Orthopedics, The First People's Hospital of Shenyang, Liaoning Province, Shenyang City, 110044, PR, China
| |
Collapse
|
46
|
lncRNAs: function and mechanism in cartilage development, degeneration, and regeneration. Stem Cell Res Ther 2019; 10:344. [PMID: 31753016 PMCID: PMC6873685 DOI: 10.1186/s13287-019-1458-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/17/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023] Open
Abstract
With the increasing incidence of cartilage-related diseases such as osteoarthritis (OA) and intervertebral disc degeneration (IDD), heavier financial and social burdens need to be faced. Unfortunately, there is no satisfactory clinical method to target the pathophysiology of cartilage-related diseases. Many gene expressions, signaling pathways, and biomechanical dysregulations were involved in cartilage development, degeneration, and regeneration. However, the underlying mechanism was not clearly understood. Recently, lots of long non-coding RNAs (lncRNAs) were identified in the biological processes, including cartilage development, degeneration, and regeneration. It is clear that lncRNAs were important in regulating gene expression and maintaining chondrocyte phenotypes and homeostasis. In this review, we summarize the recent researches studying lncRNAs’ expression and function in cartilage development, degeneration, and regeneration and illustrate the potential mechanism of how they act in the pathologic process. With continued efforts, regulating lncRNA expression in the cartilage regeneration may be a promising biological treatment approach.
Collapse
|
47
|
Tang S, Han J, Jiao H, Si J, Liu Y, Wang J. Long noncoding RNA MEG3 deteriorates inflammatory damage by downregulating microRNA-101a. J Cell Biochem 2019; 121:1801-1810. [PMID: 31633219 DOI: 10.1002/jcb.29415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
Valvulopathy is a familiar heart disease, which fearfully harms the health of the body. We studied the effects and mechanism of long noncoding RNA maternally expressed gene 3 (lncMEG3) on MVICs cell in inflammatory damage. Cell Counting Kit-8 and flow cytometry were respectively used to detect the effect of tumor necrosis factor α (TNF-α), MEG3 and microRNA (miR)-101a on cell viability and apoptosis. Moreover, MEG3 and miR-101a expression were changed by cell transfection and investigated by reverse transcription-quantitative polymerase chain reaction. Furthermore, Western blot was used to investigate the levels of Bax, pro-caspase-3, cleaved-caspase-3, pro-caspase-9, cleaved-caspase-9, interleukin (IL)-1β, IL-6 and related-proteins of cell pathways. Otherwise, the levels of IL-1β and IL-6 were also investigated by enzyme-linked immunosorbent assay kit. Reactive oxygen species (ROS) was examined by ROS assay. We found TNF-α caused inflammatory damage and upregulated MEG3. MEG3 was overexpressed and silenced in cells. Besides, MEG3 deteriorated inflammatory damage. Furthermore, MEG3 negatively regulated miR-101a and miR-101a mimic could reverse the effect of pc-MEG3. Besides, MEG3 enhanced the JNK and NF-κB pathways by downregulating miR-101a. In conclusion, MEG3 deteriorated cell inflammatory damage by downregulating miR-101a via JNK and NF-κB pathways.
Collapse
Affiliation(s)
- Shouyi Tang
- Department of Cardiology, Heze Municipal Hospital, Heze, Shandong, China
| | - Junxia Han
- Department of Cardiology, Heze Municipal Hospital, Heze, Shandong, China
| | - Hui Jiao
- Department of Cardiology, Heze Municipal Hospital, Heze, Shandong, China
| | - Jingna Si
- Department of Cardiovascular Surgery, Heze Municipal Hospital, Heze, Shandong, China
| | - Yingying Liu
- Department of Cardiology, Heze Municipal Hospital, Heze, Shandong, China
| | - Jinlong Wang
- Department of Cardiology, Heze Municipal Hospital, Heze, Shandong, China
| |
Collapse
|
48
|
Islam R, Lai C. A Brief Overview of lncRNAs in Endothelial Dysfunction-Associated Diseases: From Discovery to Characterization. EPIGENOMES 2019; 3:epigenomes3030020. [PMID: 34968230 PMCID: PMC8594677 DOI: 10.3390/epigenomes3030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a novel class of regulatory RNA molecules and they are involved in many biological processes and disease developments. Several unique features of lncRNAs have been identified, such as tissue-and/or cell-specific expression pattern, which suggest that they could be potential candidates for therapeutic and diagnostic applications. More recently, the scope of lncRNA studies has been extended to endothelial biology research. Many of lncRNAs were found to be critically involved in the regulation of endothelial function and its associated disease progression. An improved understanding of endothelial biology can thus facilitate the discovery of novel biomarkers and therapeutic targets for endothelial dysfunction-associated diseases, such as abnormal angiogenesis, hypertension, diabetes, and atherosclerosis. Nevertheless, the underlying mechanism of lncRNA remains undefined in previous published studies. Therefore, in this review, we aimed to discuss the current methodologies for discovering and investigating the functions of lncRNAs and, in particular, to address the functions of selected lncRNAs in endothelial dysfunction-associated diseases.
Collapse
Affiliation(s)
- Rashidul Islam
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, China;
| | - Christopher Lai
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
- Correspondence: ; Tel.: +65-6592-1045
| |
Collapse
|
49
|
Razmara E, Bitaraf A, Yousefi H, Nguyen TH, Garshasbi M, Cho WCS, Babashah S. Non-Coding RNAs in Cartilage Development: An Updated Review. Int J Mol Sci 2019; 20:E4475. [PMID: 31514268 PMCID: PMC6769748 DOI: 10.3390/ijms20184475] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
In the development of the skeleton, the long bones are arising from the process of endochondral ossification (EO) in which cartilage is replaced by bone. This complex process is regulated by various factors including genetic, epigenetic, and environmental elements. It is recognized that DNA methylation, higher-order chromatin structure, and post-translational modifications of histones regulate the EO. With emerging understanding, non-coding RNAs (ncRNAs) have been identified as another mode of EO regulation, which is consist of microRNAs (miRNAs or miRs) and long non-coding RNAs (lncRNAs). There is expanding experimental evidence to unlock the role of ncRNAs in the differentiation of cartilage cells, as well as the pathogenesis of several skeletal disorders including osteoarthritis. Cutting-edge technologies such as epigenome-wide association studies have been employed to reveal disease-specific patterns regarding ncRNAs. This opens a new avenue of our understanding of skeletal cell biology, and may also identify potential epigenetic-based biomarkers. In this review, we provide an updated overview of recent advances in the role of ncRNAs especially focus on miRNA and lncRNA in the development of bone from cartilage, as well as their roles in skeletal pathophysiology.
Collapse
Affiliation(s)
- Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Tina H Nguyen
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA 70112, USA
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-111, Iran.
| |
Collapse
|
50
|
Zhang H, Chen C, Cui Y, Li Y, Wang Z, Mao X, Dou P, Li Y, Ma C. lnc-SAMD14-4 can regulate expression of the COL1A1 and COL1A2 in human chondrocytes. PeerJ 2019; 7:e7491. [PMID: 31534838 PMCID: PMC6727836 DOI: 10.7717/peerj.7491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2019] [Indexed: 01/21/2023] Open
Abstract
Osteoarthritis (OA) is the most common motor system disease in aging people, characterized by matrix degradation, chondrocyte death, and osteophyte formation. OA etiology is unclear, but long noncoding RNAs (lncRNAs) that participate in numerous pathological and physiological processes may be key regulators in the onset and development of OA. Because profiling of lncRNAs and their biological function in OA is not understood, we measured lncRNA and mRNA expression profiles using high-throughput microarray to study human knee OA. We identified 2,042 lncRNAs and 2,011 mRNAs that were significantly differentially expressed in OA compared to non-OA tissue (>2.0- or < - 2.0-fold change; p < 0.5), including 1,137 lncRNAs that were upregulated and 905 lncRNAs that were downregulated. Also, 1,386 mRNA were upregulated and 625 mRNAs were downregulated. QPCR was used to validate chip results. Gene Ontology analysis and the Kyoto Encyclopedia of Genes and Genomes was used to study the biological function enrichment of differentially expressed mRNA. Additionally, coding-non-coding gene co-expression (CNC) network construction was performed to explore the relevance of dysregulated lncRNAs and mRNAs. Finally, the gain/loss of function experiments of lnc-SAMD14-4 was implemented in IL-1β-treated human chondrocytes. In general, this study provides a preliminary database for further exploring lncRNA-related mechnisms in OA.
Collapse
Affiliation(s)
- Haibin Zhang
- Department of Orthopedics, The NO.921 Hospital of the People’s Liberation Army Joint Support Force, The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Cheng Chen
- Department of Orthopedics, The NO.921 Hospital of the People’s Liberation Army Joint Support Force, The Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Yinghong Cui
- Department of Pharmaceutical Sciences, Hunan Normal University, changsha, Hunan, China
| | - Yuqing Li
- Department of Orthopedics, Changsha central hospital, Changsha, Hunan, China
| | - Zhaojun Wang
- Department of Traumatology, Shanxi Fenyang Hospital, The Fenyang Hospital of Shanxi Medical University, Fenyang, Shanxi, China
| | - Xinzhan Mao
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yihan Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chi Ma
- Department of Orthopedics, People’s Hospital of Xiangxi Autonomous Prefecture, Jishou, Hunan, China
| |
Collapse
|