1
|
Amontree M, Nelson M, Stefansson L, Pak D, Maguire-Zeiss K, Turner RS, Conant K. Resveratrol differentially affects MMP-9 release from neurons and glia; implications for therapeutic efficacy. J Neurochem 2024; 168:1895-1908. [PMID: 38163875 DOI: 10.1111/jnc.16031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Resveratrol, a naturally occurring polyphenol that activates sirtuin 1 (SIRT1), has been shown to reduce overall levels of matrix metalloprotease-9 (MMP-9) in cerebrospinal fluid (CSF) samples from patients with Alzheimer's dementia (AD). Depending on the site of release, however, MMP-9 has the potential to improve or impair cognition. In particular, its release from microglia or pericytes proximal to the blood brain barrier can damage the basement membrane, while neuronal activity-dependent release of this protease from glutamatergic neurons can instead promote dendritic spine expansion and long-term potentiation of synaptic plasticity. In the present study, we test the hypothesis that resveratrol reduces overall MMP-9 levels in CSF samples from patients with APOE4, an allele associated with increased glial inflammation. We also examine the possibility that resveratrol reduces inflammation-associated MMP release from cultured glia but spares neuronal activity-dependent release from cultured cortical neurons. We observe that resveratrol decreases overall levels of MMP-2 and MMP-9 in CSF samples from AD patients. Resveratrol also reduces CSF levels of tissue inhibitor of metalloproteinases-1 (TIMP-1), glial-derived protein that restricts long-term potentiation of synaptic transmission, in individuals homozygous for APOE4. Consistent with these results, we observe that resveratrol reduces basal and lipopolysaccharide (LPS)-stimulated MMP and TIMP-1 release from cultured microglia and astrocytes. In contrast, however, resveratrol does not inhibit release of MMP-9 from cortical neurons. Overall, these results are consistent with the possibility that while resveratrol reduces potentially maladaptive MMP and TIMP-1 release from activated glia, neuroplasticity-promoting MMP release from neurons is spared. In contrast, resveratrol reduces release of neurocan and brevican, extracellular matrix components that restrict neuroplasticity, from both neurons and glia. These data underscore the diversity of resveratrol's actions with respect to affected cell types and molecular targets and also suggest that further studies may be warranted to determine if its effects on glial MMP release could make it a useful adjunct for AD- and/or anti-amyloid therapy-related damage to the blood brain barrier.
Collapse
Affiliation(s)
- Matthew Amontree
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Matthew Nelson
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Lara Stefansson
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Daniel Pak
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Kathleen Maguire-Zeiss
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - R Scott Turner
- Department of Neurology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
2
|
Mishra S, Grewal J, Wal P, Bhivshet GU, Tripathi AK, Walia V. Therapeutic potential of vasopressin in the treatment of neurological disorders. Peptides 2024; 174:171166. [PMID: 38309582 DOI: 10.1016/j.peptides.2024.171166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Vasopressin (VP) is a nonapeptide made of nine amino acids synthesized by the hypothalamus and released by the pituitary gland. VP acts as a neurohormone, neuropeptide and neuromodulator and plays an important role in the regulation of water balance, osmolarity, blood pressure, body temperature, stress response, emotional challenges, etc. Traditionally VP is known to regulate the osmolarity and tonicity. VP and its receptors are widely expressed in the various region of the brain including cortex, hippocampus, basal forebrain, amygdala, etc. VP has been shown to modulate the behavior, stress response, circadian rhythm, cerebral blood flow, learning and memory, etc. The potential role of VP in the regulation of these neurological functions have suggested the therapeutic importance of VP and its analogues in the management of neurological disorders. Further, different VP analogues have been developed across the world with different pharmacotherapeutic potential. In the present work authors highlighted the therapeutic potential of VP and its analogues in the treatment and management of various neurological disorders.
Collapse
Affiliation(s)
- Shweta Mishra
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Jyoti Grewal
- Maharisi Markandeshwar University, Sadopur, India
| | - Pranay Wal
- Pranveer Singh Institute of Pharmacy, Kanpur, India
| | | | | | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, India.
| |
Collapse
|
3
|
Fang M, Liu W, Tuo J, Liu M, Li F, Zhang L, Yu C, Xu Z. Advances in understanding the pathogenesis of post-traumatic epilepsy: a literature review. Front Neurol 2023; 14:1141434. [PMID: 37638179 PMCID: PMC10449544 DOI: 10.3389/fneur.2023.1141434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Severe head trauma can lead to seizures. Persistent epileptic seizures and their progression are associated with the severity of trauma. Although case reports have revealed that early use of anti-seizure drugs after trauma can prevent epilepsy, clinical case-control studies have failed to confirm this phenomenon. To date, many brain trauma models have been used to study the correlation between post-traumatic seizures and related changes in neural circuit function. According to these studies, neuronal and glial responses are activated immediately after brain trauma, usually leading to significant cell loss in injured brain regions. Over time, long-term changes in neural circuit tissues, especially in the neocortex and hippocampus, lead to an imbalance between excitatory and inhibitory neurotransmission and an increased risk of spontaneous seizures. These changes include alterations in inhibitory interneurons and the formation of new, over-recurrent excitatory synaptic connections. In this study, we review the progress of research related to post-traumatic epilepsy to better understand the mechanisms underlying the initiation and development of post-traumatic seizures and to provide theoretical references for the clinical treatment of post-traumatic seizures.
Collapse
Affiliation(s)
- Mingzhu Fang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Sichuan Provincial People’s Hospital Medical Group Chuantou Xichang Hospital, Xichang, China
| | - Wanyu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Mei Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Fangjing Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lijia Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Xin W, Pan Y, Wei W, Tatenhorst L, Graf I, Popa-Wagner A, Gerner ST, Huber S, Kilic E, Hermann DM, Bähr M, Huttner HB, Doeppner TR. Preconditioned extracellular vesicles from hypoxic microglia reduce poststroke AQP4 depolarization, disturbed cerebrospinal fluid flow, astrogliosis, and neuroinflammation. Theranostics 2023; 13:4197-4216. [PMID: 37554272 PMCID: PMC10405850 DOI: 10.7150/thno.84059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/06/2023] [Indexed: 08/10/2023] Open
Abstract
Background: Stroke stimulates reactive astrogliosis, aquaporin 4 (AQP4) depolarization and neuroinflammation. Preconditioned extracellular vesicles (EVs) from microglia exposed to hypoxia, in turn, reduce poststroke brain injury. Nevertheless, the underlying mechanisms of such effects are elusive, especially with regards to inflammation, AQP4 polarization, and cerebrospinal fluid (CSF) flow. Methods: Primary microglia and astrocytes were exposed to oxygen-glucose deprivation (OGD) injury. For analyzing the role of AQP4 expression patterns under hypoxic conditions, a co-culture model of astrocytes and microglia was established. Further studies applied a stroke model, where some mice also received an intracisternal tracer infusion of rhodamine B. As such, these in vivo studies involved the analysis of AQP4 polarization, CSF flow, astrogliosis, and neuroinflammation as well as ischemia-induced brain injury. Results: Preconditioned EVs decreased periinfarct AQP4 depolarization, brain edema, astrogliosis, and inflammation in stroke mice. Likewise, EVs promoted postischemic CSF flow and cerebral blood perfusion, and neurological recovery. Under in vitro conditions, hypoxia stimulated M2 microglia polarization, whereas EVs augmented M2 microglia polarization and repressed M1 microglia polarization even further. In line with this, astrocytes displayed upregulated AQP4 clustering and proinflammatory cytokine levels when exposed to OGD, which was reversed by preconditioned EVs. Reduced AQP4 depolarization due to EVs, however, was not a consequence of unspecific inflammatory regulation, since LPS-induced inflammation in co-culture models of astrocytes and microglia did not result in altered AQP4 expression patterns in astrocytes. Conclusions: These findings show that hypoxic microglia may participate in protecting against stroke-induced brain damage by regulating poststroke inflammation, astrogliosis, AQP4 depolarization, and CSF flow due to EV release.
Collapse
Affiliation(s)
- Wenqiang Xin
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Yongli Pan
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Wei Wei
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Irina Graf
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Aurel Popa-Wagner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan T Gerner
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Sabine Huber
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Ertugrul Kilic
- Department of Physiology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mathias Bähr
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Hagen B Huttner
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
- Department of Anatomy and Cell Biology, Medical University of Varna, Varna, Bulgaria
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
- Research Institute for Health Sciences and Technologies (SABITA), Medipol University, Istanbul, Turkey
| |
Collapse
|
5
|
Soden PA, Henderson AR, Lee E. A Microfluidic Model of AQP4 Polarization Dynamics and Fluid Transport in the Healthy and Inflamed Human Brain: The First Step Towards Glymphatics-on-a-Chip. Adv Biol (Weinh) 2022; 6:e2200027. [PMID: 35922370 PMCID: PMC9771879 DOI: 10.1002/adbi.202200027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/01/2022] [Indexed: 01/28/2023]
Abstract
Dysfunction of the aquaporin-4 (AQP4)-dependent glymphatic waste clearance pathway has recently been implicated in the pathogenesis of several neurodegenerative diseases. However, it is difficult to unravel the causative relationship between glymphatic dysfunction, AQP4 depolarization, protein aggregation, and inflammation in neurodegeneration using animal models alone. There is currently a clear, unmet need for in vitro models of the brain's waterscape, and the first steps towards a bona fide "glymphatics-on-a-chip" are taken in the present study. It is demonstrated that chronic exposure to lipopolysaccharide (LPS), amyloid-β(1-42) oligomers, and an AQP4 inhibitor impairs the drainage of fluid and amyloid-β(1-40) tracer in a gliovascular unit (GVU)-on-a-chip model containing human astrocytes and brain microvascular endothelial cells. The LPS-induced drainage impairment is partially retained following cell lysis, indicating that neuroinflammation induces parallel changes in cell-dependent and matrisome-dependent fluid transport pathways in GVU-on-a-chip. Additionally, AQP4 depolarization is observed following LPS treatment, suggesting that LPS-induced drainage impairments on-chip may be driven in part by changes in AQP4-dependent fluid dynamics.
Collapse
Affiliation(s)
- Paul A Soden
- College of Human Ecology, Cornell University, Ithaca, NY, 14853, USA
| | - Aria R Henderson
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
6
|
Shi Y, Fan X, Li G, Zhong D, Zhang X. Association of Serum Dystroglycan, MMP-2/9 and AQP-4 with Haematoma Expansion in Patients with Intracerebral Haemorrhage. Neuropsychiatr Dis Treat 2021; 17:11-18. [PMID: 33442252 PMCID: PMC7797333 DOI: 10.2147/ndt.s283016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/23/2020] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE The purpose of this study was to explore association of serum dystroglycan (DG), matrix metalloproteinase-2/matrix metalloproteinase-9 (MMP-2/9), and aquaporin-4 (AQP-4) expression and haematoma expansion in patients with intracerebral haemorrhage (ICH), which are proteins involved in maintaining the integrity of the blood-brain barrier. METHODS We included patients older than 18 years old with ICH who had undergone baseline CT within 6 hours after intracerebral haemorrhage symptom onset in our hospital between April 2018 and December 2018. Two readers independently assessed haematoma volume and other imaging information upon admission and again within 24 hours. All patients underwent 5 mL of venous blood collection 6 and 24 hours after admission. Serum expression levels of dystroglycan, matrix metalloproteinase-2/matrix metalloproteinase-9 and aquaporin-4 were determined by quantitative enzyme-linked immunosorbent assay (ELISA). Repeated analysis of variance was used to determine whether expression of the four proteins in patients with cerebral haemorrhage changed within 24 hours and whether there were differences between the haematoma enlargement and non-haematoma enlargement groups over time. Univariate and multivariate logistic regression analyses were used to compare the correlation among expression of the four proteins, clinical characteristics of patients and haematoma enlargement. RESULTS Expression levels of serum matrix metalloproteinase-2/matrix metalloproteinases-9 and aquaporin-4 gradually increased within 24 hours in patients with cerebral haemorrhage (P<0.001), while expression levels of dystroglycan gradually decreased (P<0.01). Expression of serum matrix metalloproteinases-9 6 hours after onset was independently correlated with the expansion of cerebral haemorrhage. The ROC curve (AUC=0.778, 95% Cl: 0.661-0.894, P<0.001) exhibited high sensitivity (0.900) and low specificity (0.642). CONCLUSION These data support that expression of MMP-9 in peripheral blood is independently correlated with the enlargement of haematoma in patients with intracerebral haemorrhage 6 hours after onset and can be used as an independent predictor of haematoma enlargement in patients with intracerebral haemorrhage. However, although the expression of MMP-2, AQP-4 and DG exhibited some changes within 6 and 24 hours after onset, they were not independently correlated with early haematoma enlargement in patients with intracerebral haemorrhage. Further multi-time point exploration and expansion of the sample size is necessary in future studies.
Collapse
Affiliation(s)
- Yue Shi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Xuehui Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Xin Zhang
- Department of Neurology, Liuzhou People's Hospital, Liuzhou, Guangxi, 545006, People's Republic of China
| |
Collapse
|
7
|
Lőrincz D, Kálmán M. No rapid and demarcating astroglial reaction to stab wounds in Agama and Gecko lizards and the caiman Paleosuchus - it is confined to birds and mammals. Histol Histopathol 2020; 35:1455-1471. [PMID: 33107974 DOI: 10.14670/hh-18-273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study proves that rapid and demarcating astroglial reactions are confined to birds and mammals. To understand the function of post-lesion astroglial reaction, the phylogenetical aspects are also to be investigated. Considering the regenerative capabilities, reptiles represent an intermediate position between the brain regeneration-permissive fishes and amphibians and the almost non-permissive birds and mammals. Damage is followed by a rapid astroglial reaction in the mammalian and avian brain, which is held as an impediment of regeneration. In other vertebrates the reactions were usually observed following long survival periods together with signs of regeneration, therefore they can be regarded as concomitant phenomena of regeneration. The present study applies short post-lesion periods comparable to those seen in mammals and birds for astroglial reactions. Two species of lizards were used: gecko (leopard gecko, Eublepharis macularius, Blyth, 1854) and agama (bearded dragon, Pogona vitticeps, Ahl, 1926). The gecko brain is rich in GFAP whereas the agama brain is quite poor in this. Crocodilia, the closest extant relatives of birds were represented in this study by Cuvier's dwarf caiman (Paleosuchus palpebrosus, Cuvier, 1807). The post-lesion astroglial reactions of crocodilians have never been investigated. The injuries were stab wounds in the telencephalon. The survival periods lasted 3, 7, 10 or 14 days. Immunoperoxidase reactions were performed applying anti-GFAP, anti-vimentin and anti-nestin reagents. No rapid and demarcating astroglial reaction resembling that of mammalian or avian brains was found. Alterations of the perivascular immunoreactivities of laminin and β-dystroglycan as indicators of glio-vascular decoupling proved that the lesions were effective on astroglia. The capability of rapid and demarcating astroglial reaction seems to be confined to mammals and birds and to appear by separate, parallel evolution in them.
Collapse
Affiliation(s)
- Dávid Lőrincz
- University of Veterinary Medicine, Faculty of Veterinary Science, Budapest, Hungary.,The University of Newcastle, School of Biomedical Sciences and Pharmacy, Newcastle, NSW, Australia
| | - Mihály Kálmán
- Semmelweis University, Department of Anatomy, Histology and Embryology, Budapest, Hungary.
| |
Collapse
|
8
|
Montgomery MK, Kim SH, Dovas A, Zhao HT, Goldberg AR, Xu W, Yagielski AJ, Cambareri MK, Patel KB, Mela A, Humala N, Thibodeaux DN, Shaik MA, Ma Y, Grinband J, Chow DS, Schevon C, Canoll P, Hillman EMC. Glioma-Induced Alterations in Neuronal Activity and Neurovascular Coupling during Disease Progression. Cell Rep 2020; 31:107500. [PMID: 32294436 PMCID: PMC7443283 DOI: 10.1016/j.celrep.2020.03.064] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/10/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Diffusely infiltrating gliomas are known to cause alterations in cortical function, vascular disruption, and seizures. These neurological complications present major clinical challenges, yet their underlying mechanisms and causal relationships to disease progression are poorly characterized. Here, we follow glioma progression in awake Thy1-GCaMP6f mice using in vivo wide-field optical mapping to monitor alterations in both neuronal activity and functional hemodynamics. The bilateral synchrony of spontaneous neuronal activity gradually decreases in glioma-infiltrated cortical regions, while neurovascular coupling becomes progressively disrupted compared to uninvolved cortex. Over time, mice develop diverse patterns of high amplitude discharges and eventually generalized seizures that appear to originate at the tumors' infiltrative margins. Interictal and seizure events exhibit positive neurovascular coupling in uninfiltrated cortex; however, glioma-infiltrated regions exhibit disrupted hemodynamic responses driving seizure-evoked hypoxia. These results reveal a landscape of complex physiological interactions occurring during glioma progression and present new opportunities for exploring novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mary Katherine Montgomery
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Sharon H Kim
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hanzhi T Zhao
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Alexander R Goldberg
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Weihao Xu
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Alexis J Yagielski
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Morgan K Cambareri
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Kripa B Patel
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nelson Humala
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David N Thibodeaux
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Mohammed A Shaik
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Ying Ma
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA
| | - Jack Grinband
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniel S Chow
- Department of Radiological Sciences, University of California, Irvine, Orange, CA 92868, USA
| | - Catherine Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Irving Cancer Research Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Zuckerman Mind Brain Behavior Institute, Departments of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
9
|
Zusman BE, Kochanek PM, Jha RM. Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy. Curr Treat Options Neurol 2020; 22:9. [PMID: 34177248 PMCID: PMC8223756 DOI: 10.1007/s11940-020-0614-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The purposes of this narrative review are to (1) summarize a contemporary view of cerebral edema pathophysiology, (2) present a synopsis of current management strategies in the context of their historical roots (many of which date back multiple centuries), and (3) discuss contributions of key molecular pathways to overlapping edema endophenotypes. This may facilitate identification of important therapeutic targets. RECENT FINDINGS Cerebral edema and resultant intracranial hypertension are major contributors to morbidity and mortality following traumatic brain injury. Although Starling forces are physical drivers of edema based on differences in intravascular vs extracellular hydrostatic and oncotic pressures, the molecular pathophysiology underlying cerebral edema is complex and remains incompletely understood. Current management protocols are guided by intracranial pressure measurements, an imperfect proxy for cerebral edema. These include decompressive craniectomy, external ventricular drainage, hyperosmolar therapy, hypothermia, and sedation. Results of contemporary clinical trials assessing these treatments are summarized, with an emphasis on the gap between intermediate measures of edema and meaningful clinical outcomes. This is followed by a brief statement summarizing the most recent guidelines from the Brain Trauma Foundation (4th edition). While many molecular mechanisms and networks contributing to cerebral edema after TBI are still being elucidated, we highlight some promising molecular mechanism-based targets based on recent research including SUR1-TRPM4, NKCC1, AQP4, and AVP1. SUMMARY This review outlines the origins of our understanding of cerebral edema, chronicles the history behind many current treatment approaches, and discusses promising molecular mechanism-based targeted treatments.
Collapse
Affiliation(s)
- Benjamin E. Zusman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Ruchira M. Jha
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Zhang G, Ma P, Wan S, Xu J, Yang M, Qiu G, Zhuo F, Xu S, Huo J, Ju Y, Liu H. Dystroglycan is involved in the activation of ERK pathway inducing the change of AQP4 expression in scratch-injured astrocytes. Brain Res 2019; 1721:146347. [DOI: 10.1016/j.brainres.2019.146347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 07/21/2019] [Indexed: 01/28/2023]
|
11
|
Jha RM, Kochanek PM. A Precision Medicine Approach to Cerebral Edema and Intracranial Hypertension after Severe Traumatic Brain Injury: Quo Vadis? Curr Neurol Neurosci Rep 2018; 18:105. [PMID: 30406315 PMCID: PMC6589108 DOI: 10.1007/s11910-018-0912-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Standard clinical protocols for treating cerebral edema and intracranial hypertension after severe TBI have remained remarkably similar over decades. Cerebral edema and intracranial hypertension are treated interchangeably when in fact intracranial pressure (ICP) is a proxy for cerebral edema but also other processes such as extent of mass lesions, hydrocephalus, or cerebral blood volume. A complex interplay of multiple molecular mechanisms results in cerebral edema after severe TBI, and these are not measured or targeted by current clinically available tools. Addressing these underpinnings may be key to preventing or treating cerebral edema and improving outcome after severe TBI. RECENT FINDINGS This review begins by outlining basic principles underlying the relationship between edema and ICP including the Monro-Kellie doctrine and concepts of intracranial compliance/elastance. There is a subsequent brief discussion of current guidelines for ICP monitoring/management. We then focus most of the review on an evolving precision medicine approach towards cerebral edema and intracranial hypertension after TBI. Personalization of invasive neuromonitoring parameters including ICP waveform analysis, pulse amplitude, pressure reactivity, and longitudinal trajectories are presented. This is followed by a discussion of cerebral edema subtypes (continuum of ionic/cytotoxic/vasogenic edema and progressive secondary hemorrhage). Mechanisms of potential molecular contributors to cerebral edema after TBI are reviewed. For each target, we present findings from preclinical models, and evaluate their clinical utility as biomarkers and therapeutic targets for cerebral edema reduction. This selection represents promising candidates with evidence from different research groups, overlap/inter-relatedness with other pathways, and clinical/translational potential. We outline an evolving precision medicine and translational approach towards cerebral edema and intracranial hypertension after severe TBI.
Collapse
Affiliation(s)
- Ruchira M Jha
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA.
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA.
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Patrick M Kochanek
- Department of Critical Care Medicine, Room 646A, Scaife Hall, 3550 Terrace Street, Pittsburgh, 15261, PA, USA
- Safar Center for Resuscitation Research John G. Rangos Research Center, 6th Floor; 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Clinical and Translational Science Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC Children's Hospital of Pittsburgh John G. Rangos Research Center, 6th Floor 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
| |
Collapse
|
12
|
Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 2018; 145:230-246. [PMID: 30086289 DOI: 10.1016/j.neuropharm.2018.08.004] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
Cerebral edema (CE) and resultant intracranial hypertension are associated with unfavorable prognosis in traumatic brain injury (TBI). CE is a leading cause of in-hospital mortality, occurring in >60% of patients with mass lesions, and ∼15% of those with normal initial computed tomography scans. After treatment of mass lesions in severe TBI, an important focus of acute neurocritical care is evaluating and managing the secondary injury process of CE and resultant intracranial hypertension. This review focuses on a contemporary understanding of various pathophysiologic pathways contributing to CE, with a subsequent description of potential targeted therapies. There is a discussion of identified cellular/cytotoxic contributors to CE, as well as mechanisms that influence blood-brain-barrier (BBB) disruption/vasogenic edema, with the caveat that this distinction may be somewhat artificial since molecular processes contributing to these pathways are interrelated. While an exhaustive discussion of all pathways with putative contributions to CE is beyond the scope of this review, the roles of some key contributors are highlighted, and references are provided for further details. Potential future molecular targets for treating CE are presented based on pathophysiologic mechanisms. We thus aim to provide a translational synopsis of present and future strategies targeting CE after TBI in the context of a paradigm shift towards precision medicine. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
|
13
|
Eidsvaag VA, Enger R, Hansson HA, Eide PK, Nagelhus EA. Human and mouse cortical astrocytes differ in aquaporin-4 polarization toward microvessels. Glia 2017; 65:964-973. [PMID: 28317216 PMCID: PMC5413834 DOI: 10.1002/glia.23138] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 12/02/2022]
Abstract
Aquaporin‐4 (AQP4), the predominant water channel in the brain, is expressed in astrocytes and ependymal cells. In rodents AQP4 is highly polarized to perivascular astrocytic endfeet and loss of AQP4 polarization is associated with disease. The present study was undertaken to compare the expression pattern of AQP4 in human and mouse cortical astrocytes. Cortical tissue specimens were sampled from 11 individuals undergoing neurosurgery wherein brain tissue was removed as part of the procedure, and compared with cortical tissue from 5 adult wild‐type mice processed similarly. The tissue samples were immersion‐fixed and prepared for AQP4 immunogold electron microscopy, allowing quantitative assessment of AQP4's subcellular distribution. In mouse we found that AQP4 water channels were prominently clustered around vessels, being 5 to 10‐fold more abundant in astrocytic endfoot membranes facing the capillary endothelium than in parenchymal astrocytic membranes. In contrast, AQP4 was markedly less polarized in human astrocytes, being only two to three‐fold enriched in astrocytic endfoot membranes adjacent to capillaries. The lower degree of AQP4 polarization in human subjects (1/3 of that in mice) was mainly due to higher AQP4 expression in parenchymal astrocytic membranes. We conclude that there are hitherto unrecognized species differences in AQP4 polarization toward microvessels in the cerebral cortex.
Collapse
Affiliation(s)
- Vigdis Andersen Eidsvaag
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, 0027, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
| | - Rune Enger
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.,Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, 0027, Norway
| | - Hans-Arne Hansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, 0027, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Erlend A Nagelhus
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway.,Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, 0027, Norway
| |
Collapse
|
14
|
Hubbard JA, Szu JI, Binder DK. The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res Bull 2017; 136:118-129. [PMID: 28274814 DOI: 10.1016/j.brainresbull.2017.02.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/25/2022]
Abstract
Since the discovery of aquaporins, it has become clear that the various mammalian aquaporins play critical physiological roles in water and ion balance in multiple tissues. Aquaporin-4 (AQP4), the principal aquaporin expressed in the central nervous system (CNS, brain and spinal cord), has been shown to mediate CNS water homeostasis. In this review, we summarize new and exciting studies indicating that AQP4 also plays critical and unanticipated roles in synaptic plasticity and memory formation. Next, we consider the role of AQP4 in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), neuromyelitis optica (NMO), epilepsy, traumatic brain injury (TBI), and stroke. Each of these conditions involves changes in AQP4 expression and/or distribution that may be functionally relevant to disease physiology. Insofar as AQP4 is exclusively expressed on astrocytes, these data provide new evidence of "astrocytopathy" in the etiology of diverse neurological diseases.
Collapse
Affiliation(s)
- Jacqueline A Hubbard
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Jenny I Szu
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States.
| |
Collapse
|
15
|
Morrison HW, Filosa JA. Sex differences in astrocyte and microglia responses immediately following middle cerebral artery occlusion in adult mice. Neuroscience 2016; 339:85-99. [PMID: 27717807 PMCID: PMC5118180 DOI: 10.1016/j.neuroscience.2016.09.047] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 09/19/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022]
Abstract
Epidemiological studies report that infarct size is decreased and stroke outcomes are improved in young females when compared to males. However, mechanistic insight is lacking. We posit that sex-specific differences in glial cell functions occurring immediately after ischemic stroke are a source of dichotomous outcomes. In this study we assessed astrocyte Ca2+ dynamics, aquaporin 4 (AQP4) polarity, S100β expression pattern, as well as, microglia morphology and phagocytic marker CD11b in male and female mice following 60min of middle cerebral artery (MCA) occlusion. We reveal sex differences in the frequency of intracellular astrocyte Ca2+ elevations (F(1,86)=8.19, P=0.005) and microglia volume (F(1,40)=12.47, P=0.009) immediately following MCA occlusion in acute brain slices. Measured in fixed tissue, AQP4 polarity was disrupted (F(5,86)=3.30, P=0.009) and the area of non-S100β immunoreactivity increased in ipsilateral brain regions after 60min of MCA occlusion (F(5,86)=4.72, P=0.007). However, astrocyte changes were robust in male mice when compared to females. Additional sex differences were discovered regarding microglia phagocytic receptor CD11b. In sham mice, constitutively high CD11b immunofluorescence was observed in females when compared to males (P=0.03). When compared to sham, only male mice exhibited an increase in CD11b immunoreactivity after MCA occlusion (P=0.006). We posit that a sex difference in the presence of constitutive CD11b has a role in determining male and female microglia phagocytic responses to ischemia. Taken together, these findings are critical to understanding potential sex differences in glial physiology as well as stroke pathobiology which are foundational for the development of future sex-specific stroke therapies.
Collapse
Affiliation(s)
- Helena W Morrison
- Augusta University, 1120 15th Street, Augusta, GA 30912, United States.
| | - Jessica A Filosa
- Augusta University, 1120 15th Street, Augusta, GA 30912, United States.
| |
Collapse
|