1
|
Naushad S, Gaucher J, Mezdari Z, Détrait M, Belaidi E, Zhang Y, Vial G, Bouyon S, Czibik G, Pini M, Aldekwer S, Liang H, Pelloux V, Aron-Wisnewsky J, Tamisier R, Pépin JL, Derumeaux G, Sawaki D, Arnaud C. Chronic intermittent hypoxia triggers cardiac fibrosis: Role of epididymal white adipose tissue senescent remodeling? Acta Physiol (Oxf) 2024; 240:e14231. [PMID: 39263916 DOI: 10.1111/apha.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024]
Abstract
AIM Obstructive sleep apnea (OSA) is a growing health problem affecting nearly 1 billion people worldwide. The landmark feature of OSA is chronic intermittent hypoxia (CIH), accounting for multiple organ damage, including heart disease. CIH profoundly alters both visceral white adipose tissue (WAT) and heart structure and function, but little is known regarding inter-organ interaction in the context of CIH. We recently showed that visceral WAT senescence drives myocardial alterations in aged mice without CIH. Here, we aimed at investigating whether CIH induces a premature visceral WAT senescent phenotype, triggering subsequent cardiac remodeling. METHODS In a first experiment, 10-week-old C57bl6J male mice (n = 10/group) were exposed to 14 days of CIH (8 h daily, 5%-21% cyclic inspired oxygen fraction, 60 s per cycle). In a second series, mice were submitted to either epididymal WAT surgical lipectomy or sham surgery before CIH exposure. Finally, we used p53 deficient mice or Wild-type (WT) littermates, also exposed to the same CIH protocol. Epididymal WAT was assessed for fibrosis, DNA damages, oxidative stress, markers of senescence (p16, p21, and p53), and inflammation by RT-qPCR and histology, and myocardium was assessed for fibrosis and cardiomyocyte hypertrophy. RESULTS CIH-induced epididymal WAT remodeling characterized by increased fibrosis, oxidative stress, DNA damage response, inflammation, and increased expression of senescent markers. CIH-induced epididymal WAT remodeling was associated with subtle and early myocardial interstitial fibrosis. Both epididymal WAT surgical lipectomy and p53 deletion prevented CIH-induced myocardial fibrosis. CONCLUSION Short-term exposure to CIH induces epididymal WAT senescent remodeling and cardiac interstitial fibrosis, the latter being prevented by lipectomy. This finding strongly suggests visceral WAT senescence as a new target to mitigate OSA-related cardiac disorders.
Collapse
Affiliation(s)
- Suzain Naushad
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Jonathan Gaucher
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Zaineb Mezdari
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Maximin Détrait
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Elise Belaidi
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Yanyan Zhang
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Guillaume Vial
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Sophie Bouyon
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Gabor Czibik
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Maria Pini
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Sahar Aldekwer
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Hao Liang
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Véronique Pelloux
- Nutrition and Obesities, Systemic Approaches, NutriOmics, Laboratory, Sorbonne University, Paris, France
- Nutrition Department, CRNH Ile de France, AP-HP, Pitie-Salpêtrière Hospital, Paris, France
| | - Judith Aron-Wisnewsky
- Nutrition and Obesities, Systemic Approaches, NutriOmics, Laboratory, Sorbonne University, Paris, France
- Nutrition Department, CRNH Ile de France, AP-HP, Pitie-Salpêtrière Hospital, Paris, France
| | - Renaud Tamisier
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Jean-Louis Pépin
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Geneviève Derumeaux
- Université Paris Est Créteil, INSERM U955, Créteil, France
- Department of Physiology, AP-HP, Henri Mondor Hospital, FHU-SENEC, Créteil, France
| | - Daigo Sawaki
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Claire Arnaud
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| |
Collapse
|
2
|
Mao Z, Zheng P, Zhu X, Wang L, Zhang F, Liu H, Li H, Zhou L, Liu W. Obstructive sleep apnea hypopnea syndrome and vascular lesions: An update on what we currently know. Sleep Med 2024; 119:296-311. [PMID: 38723575 DOI: 10.1016/j.sleep.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is the most prevalent sleep and respiratory disorder. This syndrome can induce severe cardiovascular and cerebrovascular complications, and intermittent hypoxia is a pivotal contributor to this damage. Vascular pathology is closely associated with the impairment of target organs, marking a focal point in current research. Vascular lesions are the fundamental pathophysiological basis of multiorgan ailments and indicate a shared pathogenic mechanism among common cardiovascular and cerebrovascular conditions, suggesting their importance as a public health concern. Increasing evidence shows a strong correlation between OSAHS and vascular lesions. Previous studies predominantly focused on the pathophysiological alterations in OSAHS itself, such as intermittent hypoxia and fragmented sleep, leading to vascular disruptions. This review aims to delve deeper into the vascular lesions affected by OSAHS by examining the microscopic pathophysiological mechanisms involved. Emphasis has been placed on examining how OSAHS induces vascular lesions through disruptions in the endothelial barrier, metabolic dysregulation, cellular phenotype alterations, neuroendocrine irregularities, programmed cell death, vascular inflammation, oxidative stress and epigenetic modifications. This review examines the epidemiology and associated risk factors for OSAHS and vascular diseases and subsequently describes the existing evidence on vascular lesions induced by OSAHS in the cardiovascular, cerebrovascular, retinal, renal and reproductive systems. A detailed account of the current research on the pathophysiological mechanisms mediating vascular lesions caused by OSAHS is provided, culminating in a discussion of research advancements in therapeutic modalities to mitigate OSAHS-related vascular lesions and the implications of these treatment strategies.
Collapse
Affiliation(s)
- Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Zhu
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengqin Zhang
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
3
|
Briançon-Marjollet A, Netchitaïlo M, Fabre F, Belaidi E, Arnaud C, Borel AL, Levy P, Pépin JL, Tamisier R. Intermittent hypoxia increases lipid insulin resistance in healthy humans: A randomized crossover trial. J Sleep Res 2024:e14243. [PMID: 38866393 DOI: 10.1111/jsr.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 06/14/2024]
Abstract
Sympathetic overactivity caused by chronic intermittent hypoxia is a hallmark of obstructive sleep apnea. A high sympathetic tone elicits increases in plasma free fatty acid and insulin. Our objective was to assess the impact of 14 nights of chronic intermittent hypoxia exposure on sympathetic activity, glucose control, lipid profile and subcutaneous fat tissue remodelling in non-obese healthy humans. In this prospective, double-blinded crossover study, 12 healthy subjects were randomized, among them only nine underwent the two phases of exposures of 14 nights chronic intermittent hypoxia versus air. Sympathetic activity was measured by peroneal microneurography (muscle sympathetic nerve activity) before and after each exposure. Fasting glucose, insulin, C-peptide and free fatty acid were assessed at rest and during a multisampling oral glucose tolerance test. We assessed histological remodelling, adrenergic receptors, lipolysis and lipogenesis genes expression and functional changes of the adipose tissue. Two weeks of exposure of chronic intermittent hypoxia versus ambient air significantly increased sympathetic activity (p = 0.04). Muscle sympathetic nerve activity increased from 24.5 [18.9; 26.8] before to 21.7 [13.8; 25.7] after ambient air exposure, and from 20.6 [17.4; 23.9] before to 28.0 [24.4; 31.5] bursts per min after exposure to chronic intermittent hypoxia. After chronic intermittent hypoxia, post-oral glucose tolerance test circulating free fatty acid area under the curve increased (p = 0.05) and free fatty acid sensitivity to insulin decreased (p = 0.028). In adipocyte tissue, intermittent hypoxia increased expression of lipolysis genes (adipocyte triglyceride lipase and hormone-sensitive lipase) and lipogenesis genes (fatty acid synthase; p < 0.05). In this unique experimental setting in healthy humans, chronic intermittent hypoxia induced high sympathetic tone, lipolysis and decreased free fatty acid sensitivity to insulin. This might participate in the trajectory to systemic insulin resistance and diabetes for patients with obstructive sleep apnea.
Collapse
Affiliation(s)
| | - Marie Netchitaïlo
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- Service de physiologie respiratoire et de l'exercice, CHU Rouen Normandie, Rouen, France
| | - Fanny Fabre
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- Service anesthésie, Centre Hospitalier de Mayotte (Pôle BACS), Mamoudzou, France
| | - Elise Belaidi
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique UMR5305, Lyon, France
| | - Claire Arnaud
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
| | - Anne-Laure Borel
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- CHU Grenoble Alpes, Endocrinology, Diabetology, Nutrition, Grenoble, France
| | - Patrick Levy
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- CHU Grenoble Alpes, Clinique Universitaire de Pneumologie et Physiologie, Pole Thorax et Vaisseaux, Grenoble, France
| | - Jean-Louis Pépin
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- CHU Grenoble Alpes, Clinique Universitaire de Pneumologie et Physiologie, Pole Thorax et Vaisseaux, Grenoble, France
| | - Renaud Tamisier
- Univ. Grenoble Alpes, HP2; Inserm U1300, Grenoble, France
- CHU Grenoble Alpes, Clinique Universitaire de Pneumologie et Physiologie, Pole Thorax et Vaisseaux, Grenoble, France
| |
Collapse
|
4
|
Arnaud C, Billoir E, de Melo Junior AF, Pereira SA, O'Halloran KD, Monteiro EC. Chronic intermittent hypoxia-induced cardiovascular and renal dysfunction: from adaptation to maladaptation. J Physiol 2023; 601:5553-5577. [PMID: 37882783 DOI: 10.1113/jp284166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is the dominant pathological feature of human obstructive sleep apnoea (OSA), which is highly prevalent and associated with cardiovascular and renal diseases. CIH causes hypertension, centred on sympathetic nervous overactivity, which persists following removal of the CIH stimulus. Molecular mechanisms contributing to CIH-induced hypertension have been carefully delineated. However, there is a dearth of knowledge on the efficacy of interventions to ameliorate high blood pressure in established disease. CIH causes endothelial dysfunction, aberrant structural remodelling of vessels and accelerates atherosclerotic processes. Pro-inflammatory and pro-oxidant pathways converge on disrupted nitric oxide signalling driving vascular dysfunction. In addition, CIH has adverse effects on the myocardium, manifesting atrial fibrillation, and cardiac remodelling progressing to contractile dysfunction. Sympatho-vagal imbalance, oxidative stress, inflammation, dysregulated HIF-1α transcriptional responses and resultant pro-apoptotic ER stress, calcium dysregulation, and mitochondrial dysfunction conspire to drive myocardial injury and failure. CIH elaborates direct and indirect effects in the kidney that initially contribute to the development of hypertension and later to chronic kidney disease. CIH-induced morphological damage of the kidney is dependent on TLR4/NF-κB/NLRP3/caspase-1 inflammasome activation and associated pyroptosis. Emerging potential therapies related to the gut-kidney axis and blockade of aryl hydrocarbon receptors (AhR) are promising. Cardiorenal outcomes in response to intermittent hypoxia present along a continuum from adaptation to maladaptation and are dependent on the intensity and duration of exposure to intermittent hypoxia. This heterogeneity of OSA is relevant to therapeutic treatment options and we argue the need for better stratification of OSA phenotypes.
Collapse
Affiliation(s)
- Claire Arnaud
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | - Emma Billoir
- Université Grenoble-Alpes INSERM U1300, Laboratoire HP2, Grenoble, France
| | | | - Sofia A Pereira
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Emilia C Monteiro
- iNOVA4Health, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Li L, Li J. Dimerization of Transmembrane Proteins in Cancer Immunotherapy. MEMBRANES 2023; 13:393. [PMID: 37103820 PMCID: PMC10143916 DOI: 10.3390/membranes13040393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Transmembrane proteins (TMEMs) are integrated membrane proteins that span the entire lipid bilayer and are permanently anchored to it. TMEMs participate in various cellular processes. Some TMEMs usually exist and perform their physiological functions as dimers rather than monomers. TMEM dimerization is associated with various physiological functions, such as the regulation of enzyme activity, signal transduction, and cancer immunotherapy. In this review, we focus on the dimerization of transmembrane proteins in cancer immunotherapy. This review is divided into three parts. First, the structures and functions of several TMEMs related to tumor immunity are introduced. Second, the characteristics and functions of several typical TMEM dimerization processes are analyzed. Finally, the application of the regulation of TMEM dimerization in cancer immunotherapy is introduced.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingying Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
6
|
Meszaros M, Bikov A. Obstructive Sleep Apnoea and Lipid Metabolism: The Summary of Evidence and Future Perspectives in the Pathophysiology of OSA-Associated Dyslipidaemia. Biomedicines 2022; 10:2754. [PMID: 36359273 PMCID: PMC9687681 DOI: 10.3390/biomedicines10112754] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is associated with cardiovascular and metabolic comorbidities, including hypertension, dyslipidaemia, insulin resistance and atherosclerosis. Strong evidence suggests that OSA is associated with an altered lipid profile including elevated levels of triglyceride-rich lipoproteins and decreased levels of high-density lipoprotein (HDL). Intermittent hypoxia; sleep fragmentation; and consequential surges in the sympathetic activity, enhanced oxidative stress and systemic inflammation are the postulated mechanisms leading to metabolic alterations in OSA. Although the exact mechanisms of OSA-associated dyslipidaemia have not been fully elucidated, three main points have been found to be impaired: activated lipolysis in the adipose tissue, decreased lipid clearance from the circulation and accelerated de novo lipid synthesis. This is further complicated by the oxidisation of atherogenic lipoproteins, adipose tissue dysfunction, hormonal changes, and the reduced function of HDL particles in OSA. In this comprehensive review, we summarise and critically evaluate the current evidence about the possible mechanisms involved in OSA-associated dyslipidaemia.
Collapse
Affiliation(s)
- Martina Meszaros
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, 8091 Zurich, Switzerland
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| | - Andras Bikov
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9MT, UK
| |
Collapse
|
7
|
TLR4-SIRT3 Mechanism Modulates Mitochondrial and Redox Homeostasis and Promotes EPCs Recruitment and Survival. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1282362. [PMID: 35832490 PMCID: PMC9273456 DOI: 10.1155/2022/1282362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
The low survival rate of endothelial progenitor cells (EPCs) in vivo which are susceptible to adverse microenvironments including inflammation and oxidative stress has become one primary challenge of EPCs transplantation for regenerative therapy. Recent studies reported functional expression of toll-like receptor (TLR) 4 on EPCs and dose-dependent effects of lipopolysaccharide (LPS) on cellular oxidative stress and angiogenic properties. However, the involved mechanism has not yet been elucidated well, and the influence of TLR4 signaling on EPCs survival and function in vivo is unknown. In the present study, we observed the effects of LPS and TLR4/SIRT3 on EPCs mitochondrial permeability and intracellular mitochondrial superoxide. We employed the monocrotaline-induced pulmonary arteriolar injury model to observe the effects of TLR4/SIRT3 on the recruitment and survival of transplanted EPCs. We found the destructive effects of 10 μg/mL LPS on mitochondrial homeostasis, and cellular viability was mediated by TLR4/SIRT3 signals at least partially, and the TLR4 mediates the early-stage recruitment of transplanted EPCs in pulmonary arteriolar inflammation injury; however, SIRT3 has more contribution to the survival of incorporated EPCs and ameliorated arteriolar remodeling in lung vascular tissue. The study provides insights for the critical role of TLR4/SIRT3 in LPS-induced oxidative stress and mitochondrial disorder in EPCs in vitro and in vivo. The TLR4/SIRT3 signaling is important for EPCs resistance against inflammation and oxidative stress and may represent a new manipulating target for developing efficient cell therapy strategy.
Collapse
|
8
|
Yuvaraj J, Cameron W, Andrews J, Lin A, Nerlekar N, Nicholls SJ, Hamilton GS, Wong DTL. Coronary computed tomography angiography-based assessment of vascular inflammation in patients with obstructive sleep apnoea and coronary artery disease. Cardiovasc Diagn Ther 2022; 12:123-134. [PMID: 35282672 PMCID: PMC8898693 DOI: 10.21037/cdt-21-338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/12/2021] [Indexed: 11/08/2024]
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) is associated with increased coronary artery disease (CAD) plaque burden, but the role of vascular inflammation in this relationship is unclear. Coronary computed tomography angiography (CTA) enables surrogate assessment of systemic inflammation via subcutaneous adipose tissue attenuation (SCAT-a), and of coronary inflammation via epicardial adipose tissue volume and attenuation (EAT-v and EAT-a) and pericoronary adipose tissue attenuation (PCAT-a). We investigated whether patients with severe OSA and high plaque burden have increased vascular inflammation. METHODS Patients with overnight polysomnography within ≤12 months of coronary CTA were included. Severe OSA was classified as apnoea/hypopnoea index (AHI) >30. High plaque burden was defined as a CT-adapted Leaman score (CT-LeSc) ≥8.3. Patients with both severe OSA and high plaque burden were defined as 'Group 1', all other patients were classified as 'Group 2'. ScAT, PCAT and EAT attenuation and volume were assessed on semi-automated software. RESULTS A total of 91 patients were studied (59.3±11.1 years). Severe OSA was associated with high plaque burden (P=0.02). AHI correlated with CT-LeSc (r=0.24, P=0.023). Group 1 had lower EAT-a and PCAT-a compared to Group 2 (EAT-a: -87.6 vs. -84.0 HU, P=0.011; PCAT-a: -90.4 vs. -83.4 HU, P<0.01). However, among patients with low plaque burden, EAT-a was higher in the presence of severe OSA versus mild-moderate OSA (-80.3 vs. -84.0 HU, P=0.020). On multivariable analysis, severe OSA and high plaque burden associated with EAT-a (P<0.02), and severe OSA and high plaque burden (P<0.01) and hypertension (P<0.01) associated with PCAT-a. CONCLUSIONS EAT and PCAT attenuation are decreased in patients with severe OSA and high plaque burden, but EAT attenuation was increased in patients with severe OSA and low plaque burden. These divergent results suggest vascular inflammation may be increased in OSA independent of CAD, but larger studies are required to validate these findings.
Collapse
Affiliation(s)
- Jeremy Yuvaraj
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and MonashHeart, Monash Health, Clayton, Melbourne, VIC, Australia
- School of Clinical Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - William Cameron
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and MonashHeart, Monash Health, Clayton, Melbourne, VIC, Australia
| | - Jordan Andrews
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Andrew Lin
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and MonashHeart, Monash Health, Clayton, Melbourne, VIC, Australia
- School of Clinical Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Nitesh Nerlekar
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and MonashHeart, Monash Health, Clayton, Melbourne, VIC, Australia
- School of Clinical Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Stephen J. Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and MonashHeart, Monash Health, Clayton, Melbourne, VIC, Australia
- School of Clinical Sciences, Monash University, Clayton, Melbourne, VIC, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Garun S. Hamilton
- School of Clinical Sciences, Monash University, Clayton, Melbourne, VIC, Australia
- Department of Lung and Sleep Medicine, Monash Health, Clayton, Melbourne, VIC, Australia
| | - Dennis T. L. Wong
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University and MonashHeart, Monash Health, Clayton, Melbourne, VIC, Australia
- School of Clinical Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Chen J, Lin S, Zeng Y. An Update on Obstructive Sleep Apnea for Atherosclerosis: Mechanism, Diagnosis, and Treatment. Front Cardiovasc Med 2021; 8:647071. [PMID: 33898538 PMCID: PMC8060459 DOI: 10.3389/fcvm.2021.647071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of atherosclerosis could be influenced by intermittent hypoxia. Obstructive sleep apnea (OSA), characterized by intermittent hypoxia, is world-wide prevalence with increasing morbidity and mortality rates. Researches remain focused on the study of its mechanism and improvement of diagnosis and treatment. However, the underlying mechanism is complex, and the best practice for OSA diagnosis and treatment considering atherosclerosis and related cardiovascular diseases is still debatable. In this review, we provided an update on research in OSA in the last 5 years with regard to atherosclerosis. The processes of inflammation, oxidative stress, autonomic nervous system activation, vascular dysfunction, platelet activation, metabolite dysfunction, small molecule RNA regulation, and the cardioprotective occurrence was discussed. Additionally, improved diagnosis such as, the utilized of portable device, and treatment especially with inconsistent results in continuous positive airway pressure and mandibular advancement devices were illustrated in detail. Therefore, further fundamental and clinical research should be carried out for a better understanding the deep interaction between OSA and atherosclerosis, as well as the suggestion of newer diagnostic and treatment options.
Collapse
Affiliation(s)
- Jin Chen
- Clinical Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yiming Zeng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
10
|
Kontos A, Willoughby S, Lushington K, Martin J, Wabnitz D, Dorrian J, Kennedy D. Increased Platelet Aggregation in Children and Adolescents with Sleep-disordered Breathing. Am J Respir Crit Care Med 2020; 202:1560-1566. [PMID: 32628860 DOI: 10.1164/rccm.201911-2229oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Rationale: Sleep-disordered breathing (SDB) is associated with increased vascular resistance in children and adults. Persistent increased vascular resistance damages vascular endothelial cells-a marker of which is increased platelet activation.Objectives: This study compared whole-blood impedance platelet aggregation in children with clinically diagnosed SDB warranting adenotonsillectomy and healthy control subjects.Methods: Thirty children who had SDB warranting intervention clinically diagnosed by experienced pediatric otolaryngologists were recruited from adenotonsillectomy waitlists, and 20 healthy children from the community underwent overnight polysomnography to determine SDB severity (obstructive apnea-hypopnea index). Snoring frequency was collected from parents. In the morning, a fasting blood sample was taken, and whole-blood platelet aggregation was measured.Measurements and Main Results: Children with SDB exhibited increased platelet aggregation to TRAP (thrombin receptor-activating peptide) (children with SDB = 114.8 aggregation units [AU] vs. control subjects = 98.0 AU; P < 0.05) and COL antibody (96.7 vs. 82.2 AU; P < 0.05) and an increased trend in ADP antibody (82.3 vs. 69.2 AU; P < 0.07) but not aspirin dialuminate (82.1 vs. 79.5 AU; P > 0.05). No significant association was observed between either the obstructive apnea-hypopnea index and any aggregation parameter, but parental report of snoring was positively associated with TRAP aggregation (Kendall's τ-c = 0.23; P < 0.05).Conclusions: The finding of increased platelet aggregation is consistent with endothelial damage. This suggests that the profile of cardiovascular changes noted in adults with SDB may also occur in children with SDB.
Collapse
Affiliation(s)
- Anna Kontos
- Department of Respiratory and Sleep Medicine and.,Robinson Research Institute.,Discipline of Paediatrics, School of Medicine, and
| | - Scott Willoughby
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; and
| | - Kurt Lushington
- Robinson Research Institute.,Centre for Behaviour, Brain and Body, Justice and Society Unit, University of South Australia, Adelaide, South Australia, Australia
| | - James Martin
- Department of Respiratory and Sleep Medicine and.,Robinson Research Institute.,Discipline of Paediatrics, School of Medicine, and
| | - David Wabnitz
- Department of Otolaryngology, Head and Neck Surgery, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Jill Dorrian
- Centre for Behaviour, Brain and Body, Justice and Society Unit, University of South Australia, Adelaide, South Australia, Australia
| | - Declan Kennedy
- Department of Respiratory and Sleep Medicine and.,Robinson Research Institute.,Discipline of Paediatrics, School of Medicine, and
| |
Collapse
|
11
|
Umeda A, Miyagawa K, Mochida A, Takeda H, Takeda K, Okada Y, Gozal D. Effects of Normoxic Recovery on Intima-Media Thickness of Aorta and Pulmonary Artery Following Intermittent Hypoxia in Mice. Front Physiol 2020; 11:583735. [PMID: 33192596 PMCID: PMC7645053 DOI: 10.3389/fphys.2020.583735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Obstructive sleep apnea (OSA) patients are at risk for increased blood pressure and carotid intima-media thickness (IMT), with pulmonary hypertension and right-sided heart failure potentially developing as well. Chronic intermittent hypoxia (IH) has been used as an OSA model in animals, but its effects on vascular beds have not been evaluated using objective unbiased tools. Previously published and current experimental data in mice exposed to IH were evaluated for IMT in aorta and pulmonary artery (PA) after IH with or without normoxic recovery using software for meta-analysis, Review Manager 5. Because IMT data reports on PA were extremely scarce, atherosclerotic area percentage from lumen data was also evaluated. IH significantly increased IMT parameters in both aorta and PA as illustrated by Forest plots (P < 0.01), which also confirmed that IMT values after normoxic recovery were within the normal range in both vascular beds. One-sided scarce lower areas in Funnel Plots were seen for both aorta and PA indicating the likelihood of significant publication bias. Forest and Funnel plots, which provide unbiased assessments of published and current data, suggest that IH exposures may induce IMT thickening that may be reversed by normoxic recovery in both aorta and PA. In light of the potential likelihood of publication bias, future studies are needed to confirm or refute the findings. In conclusion, OSA may induce IMT thickening (e.g., aorta and/or PA), but the treatment (e.g., nasal continuous positive airway pressure) will likely lead to improvements in such findings.
Collapse
Affiliation(s)
- Akira Umeda
- Department of Respiratory Medicine, International University of Health and Welfare Shioya Hospital, Yaita, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Otawara, Japan
| | - Atsumi Mochida
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Otawara, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Otawara, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Japan
| | - Yasumasa Okada
- Department of Internal Medicine, National Hospital Organization Murayama Medical Center, Musashimurayama, Japan
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, MU Women's and Children's Hospital, University of Missouri, Columbia, MO, United States
| |
Collapse
|
12
|
Fitzpatrick SF, King AD, O'Donnell C, Roche HM, Ryan S. Mechanisms of intermittent hypoxia-mediated macrophage activation - potential therapeutic targets for obstructive sleep apnoea. J Sleep Res 2020; 30:e13202. [PMID: 32996666 DOI: 10.1111/jsr.13202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 01/24/2023]
Abstract
Intermittent hypoxia (IH) plays a key role in the pathogenesis of insulin resistance (IR) in obstructive sleep apnoea (OSA). IH induces a pro-inflammatory phenotype of the adipose tissue with M1 macrophage polarisation, subsequently impeding adipocyte insulin signalling, and these changes are in striking similarity to those seen in obesity. However, the detailed molecular mechanisms of IH-induced macrophage polarisation are unknown and identification of same should lead to the identification of novel therapeutic targets. In the present study, we tested the hypothesis that IH acts through similar mechanisms as obesity, activating Toll-like-receptor (TLR)4/nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) signalling pathways leading to the upregulation and secretion of the key cytokines interleukin (IL)-1β and IL-6. Bone-marrow derived macrophages (BMDMs) from lean and obese C57BL/6 male mice were exposed to a state-of-the-art in vitro model of IH. Independent of obesity, IH led to a pro-inflammatory M1 phenotype characterised by increased inducible nitric oxide synthase and IL-6 mRNA expression, robust increase in NF-κB DNA-binding activity and IL-6 secretion. Furthermore, IH significantly increased pro-IL-1β mRNA and protein expression and mature IL-1β secretion compared to control treatment. Providing mechanistic insight, pre-treatment with the TLR4 specific inhibitor, TAK-242, prevented IH-induced M1 polarisation and upregulation of IL-1β mRNA and pro-IL-1β protein expression. Moreover, IH-induced increase in IL-1β secretion was prevented in BMDMs isolated from NLRP3 knockout mice. Thus, targeting TLR4/NF-κB and NLRP3 signalling pathways may provide novel therapeutic options for metabolic complications in OSA.
Collapse
Affiliation(s)
- Susan F Fitzpatrick
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Ailbhe D King
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Cliona O'Donnell
- Pulmonary and Sleep Disorders Unit, St Vincent's University Hospital, Dublin, Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, UCD Institute of Food and Health, Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Silke Ryan
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland.,Pulmonary and Sleep Disorders Unit, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
13
|
Zou F, Su X, Pan P. Toll-Like Receptor-4-Mediated Inflammation is Involved in Intermittent Hypoxia-Induced Lung Injury. Lung 2020; 198:855-862. [PMID: 32785858 DOI: 10.1007/s00408-020-00384-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/31/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE Intermittent hypoxia (IH) is a recognized risk factor for multiple organs damage, resulting in lung injury. Its pathophysiology is still poorly understood. Toll-like receptor 4 (TLR4) signaling plays a critical role in host immune response to invading pathogen and non-infectious tissue injury. The role of TLR4-mediated inflammation in IH-induced lung injury was investigated in this study. METHODS Lean adult male TLR4-deficient (TLR4-/-) mice and their controls (C57BL/6 mice) were exposed to either IH (FiO2 6-8% for 25 s, 150 s/cycle, 8 h/day) or air (normoxic mice) for 6 weeks. Animals were sacrificed after 6-week exposure, and the lung tissues were harvested for morphological and inflammatory analyses. The expression of TLR4 and nuclear factor kappa-B (NF-κB) P65 were examined by real-time quantitative polymerase chain reaction and immunohistochemical method. Serum cytokine levels of interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) were analyzed by enzyme-linked immunosorbent assay. RESULTS IH induced morphological and inflammation changes in the lung. IH for 6 weeks induced higher expression of TLR4 (C57BL/6-N vs C57BL/6-IH, P < 0.05) and resulted in higher release of TNF-α, IL-6 (P < 0.05), and NF-κB P65 (P < 0.05). These alterations were remitted by TLR4 deletion. CONCLUSIONS TLR4-mediated inflammation plays an important role in the development of IH-induced lung injury in mice, possibly through mechanisms involving nuclear factor-κB. Targeting TLR4/NF-κB pathway could represent a further therapeutic option for sleep apnea patients.
Collapse
Affiliation(s)
- Fangfang Zou
- Department of Internal Medicine, Hunan Chest Hospital, Changsha, 410013, Hunan, People's Republic of China
| | - Xiaoli Su
- Department of Respiratory Medicine, Xiangya Hospital, Key Cite of National Clinical Research Center for Respiratory Disease, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Pinhua Pan
- Department of Respiratory Medicine, Xiangya Hospital, Key Cite of National Clinical Research Center for Respiratory Disease, Central South University, Changsha, 410008, Hunan, People's Republic of China
| |
Collapse
|
14
|
Ryan S, Arnaud C, Fitzpatrick SF, Gaucher J, Tamisier R, Pépin JL. Adipose tissue as a key player in obstructive sleep apnoea. Eur Respir Rev 2019; 28:28/152/190006. [PMID: 31243096 PMCID: PMC9488701 DOI: 10.1183/16000617.0006-2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/09/2019] [Indexed: 01/21/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is a major health concern worldwide and adversely affects multiple organs and systems. OSA is associated with obesity in >60% of cases and is independently linked with the development of numerous comorbidities including hypertension, arrhythmia, stroke, coronary heart disease and metabolic dysfunction. The complex interaction between these conditions has a significant impact on patient care and mortality. The pathophysiology of cardiometabolic complications in OSA is still incompletely understood; however, the particular form of intermittent hypoxia (IH) observed in OSA, with repetitive short cycles of desaturation and re-oxygenation, probably plays a pivotal role. There is fast growing evidence that IH mediates some of its detrimental effects through adipose tissue inflammation and dysfunction. This article aims to summarise the effects of IH on adipose tissue in experimental models in a comprehensive way. Data from well-designed controlled trials are also reported with the final goal of proposing new avenues for improving phenotyping and personalised care in OSA. Fast growing evidence strongly suggests that cardiovascular and metabolic alterations induced by intermittent hypoxia in OSA are mediated through adipose tissue inflammation and dysfunction.bit.ly/2W929Pe
Collapse
Affiliation(s)
- Silke Ryan
- School of Medicine, The Conway Institute, University College Dublin, Dublin, Ireland.,Pulmonary and Sleep Disorders Unit, St. Vincent's University Hospital, Dublin, Ireland.,Joint first authors
| | - Claire Arnaud
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France.,Joint first authors
| | - Susan F Fitzpatrick
- School of Medicine, The Conway Institute, University College Dublin, Dublin, Ireland
| | - Jonathan Gaucher
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France
| | - Renaud Tamisier
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France.,EFCR Laboratory, Grenoble Alpes University Hospital, Grenoble, France
| | - Jean-Louis Pépin
- HP2 Laboratory, INSERM U1042, Universite Grenoble Alpes, Grenoble, France .,EFCR Laboratory, Grenoble Alpes University Hospital, Grenoble, France
| |
Collapse
|
15
|
Obstructive Sleep Apnea and Inflammation: Proof of Concept Based on Two Illustrative Cytokines. Int J Mol Sci 2019; 20:ijms20030459. [PMID: 30678164 PMCID: PMC6387387 DOI: 10.3390/ijms20030459] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a markedly prevalent condition across the lifespan, particularly in overweight and obese individuals, which has been associated with an independent risk for neurocognitive, behavioral, and mood problems as well as cardiovascular and metabolic morbidities, ultimately fostering increases in overall mortality rates. In adult patients, excessive daytime sleepiness (EDS) is the most frequent symptom leading to clinical referral for evaluation and treatment, but classic EDS features are less likely to be reported in children, particularly among those with normal body-mass index. The cumulative evidence collected over the last two decades supports a conceptual framework, whereby sleep-disordered breathing in general and more particularly OSAS should be viewed as low-grade chronic inflammatory diseases. Accordingly, it is assumed that a proportion of the morbid phenotypic signature in OSAS is causally explained by underlying inflammatory processes inducing end-organ dysfunction. Here, the published links between OSAS and systemic inflammation will be critically reviewed, with special focus on the pro-inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), since these constitute classical prototypes of the large spectrum of inflammatory molecules that have been explored in OSAS patients.
Collapse
|
16
|
Summerfield M, Zhou Y, Zhou T, Wu C, Alpini G, Zhang KK, Xie L. A long-term maternal diet transition from high-fat diet to normal fat diet during pre-pregnancy avoids adipose tissue inflammation in next generation. PLoS One 2018; 13:e0209053. [PMID: 30562363 PMCID: PMC6298692 DOI: 10.1371/journal.pone.0209053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have suggested that maternal high-fat (HF) diet caused inflammation changes in adipose tissue; however, it remains unclear if maternal diet intervention before pregnancy rescues such effects in offspring. To address this question, female mice were continued on a normal-fat (NF group), or a HF diet (HF group) or transitioned from a HF diet to a NF diet at 1 (H1N group), 5 (H5N group) or 9 weeks (H9N group) prior to pregnancy. Among the three intervention groups, the H9N offspring displayed less and steady body weight gain, and maintained glucose tolerance, whereas the H1N and H5N offspring showed exacerbate these phenotypes. The H1N and H5N, but not the H9N offspring, displayed adipocyte hypertrophy associated with increased expression of genes involved in fat deposition. The H1N and H5N, but not the H9N adipose tissue, displayed increased macrophage infiltration with enhanced expression of inflammatory cytokine genes. In addition, overactivation of the NF-κB and the JNK signaling were observed in the H1N adipose tissue. Overall, our study showed that a long-term but not a short- or medium-term diet intervention before pregnancy released offspring adipose tissue inflammation induced by maternal HF diet, which adds details in our understanding how the maternal environment either promotes or discourages onset of disease in offspring. Clinically, this study is of great value for providing evidence in the design of clinical trials to evaluate the urgently required intervention strategies to minimize the intergenerational cycle of obesity.
Collapse
Affiliation(s)
- Michelle Summerfield
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, United States of America
| | - Yi Zhou
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, United States of America
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX, United States of America
| | - Chaodong Wu
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, United States of America
| | - Gianfranco Alpini
- Department of Medical Physiology, Texas A&M University College of Medicine, Temple, TX, United States of America
- Research, Central Texas Veterans Health Care System, Temple, TX, United States of America
| | - Ke K. Zhang
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, United States of America
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX, United States of America
| | - Linglin Xie
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Obstructive sleep apnoea (OSA) is recognized as a major public health burden conveying a significant risk of cardiovascular diseases (CVD) and mortality. Continuous positive airway pressure (CPAP) is the treatment of choice for the majority of patients with OSA but the benefit of CPAP on CVD is uncertain. Thus, a greater understanding of the mechanisms by which OSA leads to CVD might identify novel therapeutic approaches. Intermittent hypoxia (IH), a hallmark feature of OSA, plays a key role in the pathogenesis and experimental studies using animal and cell culture studies suggest that IH mediates CVD through activation of multiple mechanistic pathways such as sympathetic excitation, inflammation, oxidative stress or metabolic dysregulation. Recurrent arousals, intrathoracic pressure swings and concomitant obesity likely play important additive roles in this process. In this review, the available evidence of the pathophysiological mechanisms of CVD in OSA is explored with a specific emphasis on IH, recurrent arousals and intrathoracic pressure swings as the main pathophysiological triggers.
Collapse
Affiliation(s)
- Silke Ryan
- Pulmonary and Sleep Disorders Unit, St. Vincent's University Hospital, Dublin, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Chen Y, Yang XQ, Tseng BY, Tsai YH, Tseng SH, Lee CH, Yao CL. Deferoxamine preconditioning activated hypoxia-inducible factor-1α and MyD88-dependent Toll-like receptor 4 signaling in intestinal stem cells. J Pediatr Surg 2018; 53:2349-2356. [PMID: 29475626 DOI: 10.1016/j.jpedsurg.2018.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/06/2018] [Accepted: 01/30/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND/PURPOSE Toll-like receptors (TLRs) are important regulators of innate immunity, and TLR4 pathway can regulate the survival, migration, and differentiation of stem cells, including intestinal stem cells (ISCs). Deferoxamine (DFO), a hypoxia-mimic compound, can activate the proliferation of ISCs. In this study, we investigated the response of TLR4 signaling to DFO-induced hypoxia in cultured ISCs in vitro. METHODS After DFO treatment, the crypt organoid number was counted, and the expression levels of Lgr5, Hsp70, HMGB1, HIF-1α, TLR4, MyD88, TRIF, and TRAM in ISCs were examined using QPCR and Western blotting. The chemical inhibitors of different signaling molecules were then used to determine their role in DFO-induced change in ISCs. RESULTS The expression levels of Lgr5, HIF-1α, TLR4, MyD88, and TRIF in ISCs increased after DFO treatment, with peak expression of these molecules 6h after DFO treatment. In addition, DFO-induced gene expression of Lgr5 and HIF-1α was partially reversed by pretreatment with the inhibitor of TLR4 or MyD88, but not TRIF inhibitor. Inhibition of HIF-1α also resulted in partial downregulation of DFO-induced elevation of Lgr5 and TLR4. CONCLUSIONS These results demonstrated that DFO treatment activated HIF-1α and the TLR4-MyD88 signaling pathway, which might mediate the activation of ISCs.
Collapse
Affiliation(s)
- Yun Chen
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Xiang-Qin Yang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Bor-Yuan Tseng
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan
| | - Ya-Hui Tsai
- Department of Surgery, Far Eastern Memorial Hospital, Pan-Chiao, New Taipei, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan; Department of Materials and Textiles, Oriental Institute of Technology, Pan-Chiao, New Taipei, Taiwan
| | - Sheng-Hong Tseng
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Hung Lee
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li, Taoyuan, Taiwan; Department of General Surgery, Buddhist Dalin Tzu Chi Hospital, Chia-Yi, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li, Taoyuan, Taiwan.
| |
Collapse
|
19
|
Yang JJ, Wang SJ, Gao X, Wang B, Dong YT, Bai Y, Chen Y, Gong JN, Huang YQ, An DD. Toll-Like Receptor 4 (TLR-4) Pathway Promotes Pulmonary Inflammation in Chronic Intermittent Hypoxia-Induced Obstructive Sleep Apnea. Med Sci Monit 2018; 24:7152-7161. [PMID: 30293084 PMCID: PMC6190728 DOI: 10.12659/msm.910632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Studies have shown that intermittent hypoxia mimics obstructive sleep apnea in causing pulmonary inflammation, but the mechanism is not yet clear.TLR-4 is a recognized proinflammatory factor, so the purpose of this study was to assess the function of TLR-4 in pulmonary inflammation induced by chronic intermittent hypoxia simulating obstructive sleep apnea. Material/Methods Healthy male Wistar rats were divided into 3 groups (8 in each group): the normoxia control group (CG), the intermittent hypoxia group (IH), and the TLR4 antagonist TAK242 treatment group (3 mg/kg, daily), with exposure durations of 12 weeks and 16 weeks (HI). The morphological changes of lung tissue were determined with hematoxylin-eosin (HE) staining. The expressions of the TLR-4 pathway in lung tissue were tested by Western blotting and RT-PCR. The levels of IL-6 and TNF-α in serum and lung tissue were detected by enzyme-linked immunosorbent assay (ELISA). The levels of SOD and MDA in lung tissue were detected by use of SOD and MDA kits, respectively. Results After TAK242 treatment, damage to lung tissue was increased, and the expressions of TLR-4, MYD88, P65, IL-6, TNF-α, MDA, and SOD were decreased. Intermittent hypoxic exposure caused alveolar expansion, thickening of alveolar septum, and fusion of adjacent alveoli into larger cysts under intermittent hypoxia in a time-dependent manner. Compared with the CG and HI groups, the mean lining interval (MLI) become more thickened and the alveolar destruction index (DI) increased significantly in the IH group. Conclusions Chronic intermittent hypoxia causes pulmonary inflammatory response and the inflammatory pathway involved in TLR4 receptor may be one of the mechanisms that trigger lung inflammation.
Collapse
Affiliation(s)
- Jiao-Jiao Yang
- 2nd Department of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Shu-Juan Wang
- 2nd Department of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Xiaoling Gao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Bei Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Yan-Ting Dong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Yang Bai
- Jiaozuo People's Hospital, Jiaozuo, Henan, China (mainland)
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Jian-Nan Gong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Ya-Qiong Huang
- 2nd Department of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Dong-Dong An
- 2nd Department of Clinical Medicine, Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| |
Collapse
|
20
|
Zeng X, Guo R, Dong M, Zheng J, Lin H, Lu H. Contribution of TLR4 signaling in intermittent hypoxia-mediated atherosclerosis progression. J Transl Med 2018; 16:106. [PMID: 29673358 PMCID: PMC5907703 DOI: 10.1186/s12967-018-1479-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/10/2018] [Indexed: 12/05/2022] Open
Abstract
Background Intermittent hypoxia (IH), a typical character of obstructive sleep apnea (OSA), is related to atherogenesis. However, the role of IH on atherosclerosis (AS) progression and the mechanisms involved remains poorly understood. Methods In the present study, high-fat fed ApoE−/− mice were treated with recombinant shRNA-TLR4 lentivirus and exposed to IH. Atherosclerotic lesions on the en face aorta and cross-sections of aortic root were examined by Oil-Red O staining. The content of lipids and collagen of aortic root plaques were detected by Oil-Red O staining and Sirius red staining, respectively. The TLR4, NF-κB p65, α-SMA and MOMA-2 expression in aorta and IL-6 and TNF-α expression in the mice serum were also detected. Results Compared with the Sham group, the IH treated group further increased atherosclerotic plaque loads and plaque vulnerability in the aortic sinus. Along with increased TLR4 expression, enhanced NF-κB activation, inflammatory activity and aggravated dyslipidemia were observed in the IH treated group. TLR4 interference partly inhibited IH-mediated AS progression with decreased inflammation and improved cholesterol levels. Similarly, in endothelial cells, hypoxia/reoxygenation exposure has been shown to promote TLR4 expression and activation of proinflammatory TLR4/NF-κB signaling, while TLR4 interference inhibited these effects. Conclusions We found that the IH accelerated growth and vulnerability of atherosclerotic plaque, which probably acted by triggering the activation of proinflammatory TLR4/NF-κB signaling. These findings may suggest that IH is a risk factor for vulnerable plaque and provide a new insight into the treatment of OSA-induced AS progression.
Collapse
Affiliation(s)
- Xianqin Zeng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, People's Republic of China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China.,Department of Cardiology, Ji'an Municipal Center People's Hospital, Ji'an, Jiangxi, China
| | - Rong Guo
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, People's Republic of China
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China
| | - Julia Zheng
- Rutgers Robert Wood Johnson Medical School, New Jersey, New Brunswick, USA
| | - Huili Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, People's Republic of China.
| | - Huixia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, No. 107, Wen Hua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
21
|
Arnaud C, Bouyon S, Recoquillon S, Brasseur S, Lemarié E, Briançon-Marjollet A, Gonthier B, Toral M, Faury G, Martinez MC, Andriantsitohaina R, Pepin JL. Nonmuscle Myosin Light Chain Kinase: A Key Player in Intermittent Hypoxia-Induced Vascular Alterations. J Am Heart Assoc 2018; 7:JAHA.117.007893. [PMID: 29371201 PMCID: PMC5850262 DOI: 10.1161/jaha.117.007893] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Obstructive sleep apnea is characterized by repetitive pharyngeal collapses during sleep, leading to intermittent hypoxia (IH), the main contributor of obstructive sleep apnea–related cardiovascular morbidity. In patients and rodents with obstructive sleep apnea exposed to IH, vascular inflammation and remodeling, endothelial dysfunction, and circulating inflammatory markers are linked with IH severity. The nonmuscle myosin light chain kinase (nmMLCK) isoform contributes to vascular inflammation and oxidative stress in different cardiovascular and inflammatory diseases. Thus, in the present study, we hypothesized that nmMLCK plays a key role in the IH‐induced vascular dysfunctions and inflammatory remodeling. Methods and Results Twelve‐week‐old nmMLCK+/+ or nmMLCK−/− mice were exposed to 14‐day IH or normoxia. IH was associated with functional alterations characterized by an elevation of arterial blood pressure and stiffness and perturbations of NO signaling. IH caused endothelial barrier dysfunction (ie, reduced transendothelial resistance in vitro) and induced vascular oxidative stress associated with an inflammatory remodeling, characterized by an increased intima‐media thickness and an increased expression and activity of inflammatory markers, such as interferon‐γ and nuclear factor‐κB, in the vascular wall. Interestingly, nmMLCK deletion prevented all IH‐induced functional and structural alterations, including the restoration of NO signaling, correction of endothelial barrier integrity, and reduction of both oxidative stress and associated inflammatory response. Conclusions nmMLCK is a key mechanism in IH‐induced vascular oxidative stress and inflammation and both functional and structural remodeling.
Collapse
Affiliation(s)
- Claire Arnaud
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France .,Laboratoire HP2, INSERM U1042, Grenoble, France
| | - Sophie Bouyon
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France.,Laboratoire HP2, INSERM U1042, Grenoble, France
| | - Sylvain Recoquillon
- Université d'Angers Université Bretagne Loire, Angers, France.,INSERM UMR1063, Angers, France
| | - Sandrine Brasseur
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France.,Laboratoire HP2, INSERM U1042, Grenoble, France
| | - Emeline Lemarié
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France.,Laboratoire HP2, INSERM U1042, Grenoble, France
| | - Anne Briançon-Marjollet
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France.,Laboratoire HP2, INSERM U1042, Grenoble, France
| | - Brigitte Gonthier
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France.,Laboratoire HP2, INSERM U1042, Grenoble, France
| | - Marta Toral
- Université d'Angers Université Bretagne Loire, Angers, France.,INSERM UMR1063, Angers, France
| | - Gilles Faury
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France.,Laboratoire HP2, INSERM U1042, Grenoble, France
| | - M Carmen Martinez
- Université d'Angers Université Bretagne Loire, Angers, France.,INSERM UMR1063, Angers, France
| | | | - Jean-Louis Pepin
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France.,Laboratoire HP2, INSERM U1042, Grenoble, France.,Laboratoire d'Exploration Fonctionnelle Cardiovasculaire et Respiratoire, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| |
Collapse
|
22
|
Thomas A, Belaidi E, Moulin S, Horman S, van der Zon GC, Viollet B, Levy P, Bertrand L, Pepin JL, Godin-Ribuot D, Guigas B. Chronic Intermittent Hypoxia Impairs Insulin Sensitivity but Improves Whole-Body Glucose Tolerance by Activating Skeletal Muscle AMPK. Diabetes 2017; 66:2942-2951. [PMID: 28882901 DOI: 10.2337/db17-0186] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 08/30/2017] [Indexed: 11/13/2022]
Abstract
Obstructive sleep apnea syndrome is a highly prevalent disease resulting in transient respiratory arrest and chronic intermittent hypoxia (cIH). cIH is associated with insulin resistance and impaired metabolic homeostasis in rodents and humans, but the exact underlying mechanisms remain unclear. In the current study, we investigated the effects of 2 weeks of cIH (1-min cycle, fraction of inspired oxygen 21-5%, 8 h/day) on whole-body insulin sensitivity and glucose tolerance in lean mice. Although food intake and body weight were reduced compared with normoxia, cIH induced systemic insulin resistance in a hypoxia-inducible factor 1-independent manner and impaired insulin signaling in liver, white adipose tissue, and skeletal muscle. Unexpectedly, cIH improved whole-body glucose tolerance independently of changes in body weight and glucose-induced insulin response. This effect was associated with elevated phosphorylation of Thr172-AMPK and Ser237-TBC1 domain family member 1 (TBC1D1) in skeletal muscle, suggesting a tissue-specific AMPK-dependent increase in TBC1D1-driven glucose uptake. Remarkably, although food intake, body weight, and systemic insulin sensitivity were still affected, the improvement in glucose tolerance by cIH was abolished in muscle-specific AMPKα1α2-deficient mice. We conclude that cIH impairs insulin sensitivity while improving whole-body glucose tolerance by promoting specific activation of the skeletal muscle AMPK pathway.
Collapse
Affiliation(s)
- Amandine Thomas
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France
- INSERM U1042, Grenoble, France
| | - Elise Belaidi
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France
- INSERM U1042, Grenoble, France
| | - Sophie Moulin
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France
- INSERM U1042, Grenoble, France
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Gerard C van der Zon
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Benoit Viollet
- Institut Cochin, INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Patrick Levy
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France
- INSERM U1042, Grenoble, France
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Louis Pepin
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France
- INSERM U1042, Grenoble, France
| | - Diane Godin-Ribuot
- Laboratoire HP2, Université Grenoble Alpes, Grenoble, France
- INSERM U1042, Grenoble, France
| | - Bruno Guigas
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
23
|
Intermittent hypoxia-induced insulin resistance is associated with alterations in white fat distribution. Sci Rep 2017; 7:11180. [PMID: 28894286 PMCID: PMC5593960 DOI: 10.1038/s41598-017-11782-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/18/2017] [Indexed: 11/08/2022] Open
Abstract
Sleep apnea syndrome is characterized by repetitive upper airway collapses during night leading to intermittent hypoxia (IH). The latter is responsible for metabolic disturbances that rely, at least in part, on abdominal white fat inflammation. Besides qualitative alterations, we hypothesized that IH could also modify body fat distribution, a key factor for metabolic complications. C57BL6 mice exposed to IH (21-5% FiO2, 60 s cycle, 8 h/day) or air for 6 weeks were investigated for topographic fat alterations (whole-body MRI). Specific role of epididymal fat in IH-induced metabolic dysfunctions was assessed in lipectomized or sham-operated mice exposed to IH or air. Whereas total white fat volume was unchanged, IH induced epididymal adipose tissue (AT) loss with non-significant increase in subcutaneous and mesenteric fat. This was associated with impaired insulin sensitivity and secretion. Epididymal lipectomy led to increased subcutaneous fat in the perineal compartment and prevented IH-induced metabolic disturbances. IH led to reduced epididymal AT and impaired glucose regulation. This suggests that, rather than epididymal AT volume, qualitative fat alterations (i.e. inflammation) could represent the main determinant of metabolic dysfunction. This deterioration of glucose regulation was prevented in epididymal-lipectomized mice, possibly through prevention of IH-induced epididymal AT alterations and compensatory increase in subcutaneous AT.
Collapse
|
24
|
Kang HH, Kim IK, Lee HI, Joo H, Lim JU, Lee J, Lee SH, Moon HS. Chronic intermittent hypoxia induces liver fibrosis in mice with diet-induced obesity via TLR4/MyD88/MAPK/NF-kB signaling pathways. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Gozal D, Gileles-Hillel A, Cortese R, Li Y, Almendros I, Qiao Z, Khalyfa AA, Andrade J, Khalyfa A. Visceral White Adipose Tissue after Chronic Intermittent and Sustained Hypoxia in Mice. Am J Respir Cell Mol Biol 2017; 56:477-487. [PMID: 28107636 DOI: 10.1165/rcmb.2016-0243oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Angiogenesis, a process induced by hypoxia in visceral white adipose tissues (vWAT) in the context of obesity, mediates obesity-induced metabolic dysfunction and insulin resistance. Chronic intermittent hypoxia (IH) and sustained hypoxia (SH) induce body weight reductions and insulin resistance of different magnitudes, suggesting different hypoxia inducible factor (HIF)-1α-related activity. Eight-week-old male C57BL/6J mice (n = 10-12/group) were exposed to either IH, SH, or room air (RA). vWAT were analyzed for insulin sensitivity (phosphorylated (pAKT)/AKT), HIF-1α transcription using chromatin immunoprecipitation (ChIP)-sequencing, angiogenesis using immunohistochemistry, and gene expression of different fat cell markers and HIF-1α gene targets using quantitative polymerase chain reaction or microarrays. Body and vWAT weights were reduced in hypoxia (SH > IH > RA; P < 0.001), with vWAT in IH manifesting vascular rarefaction and increased proinflammatory macrophages. HIF-1α ChIP-sequencing showed markedly increased binding sites in SH-exposed vWAT both at 6 hours and at 6 weeks compared with IH, the latter also showing decreased vascular endothelial growth factor, endothelial nitric oxide synthase, P2RX5, and PAT2 expression, and insulin resistance (IH > > > SH = RA; P < 0.001). IH induces preferential whitening of vWAT, as opposed to prominent browning in SH. Unlike SH, IH elicits early HIF-1α activity that is unsustained over time and is accompanied by concurrent vascular rarefaction, inflammation, and insulin resistance. Thus, the dichotomous changes in HIF-1α transcriptional activity and brown/beige/white fat balance in IH and SH should enable exploration of mechanisms by which altered sympathetic outflow, such as that which occurs in apneic patients, results in whitening, rather than the anticipated browning of adipose tissues that occurs in SH.
Collapse
Affiliation(s)
- David Gozal
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, and
| | - Alex Gileles-Hillel
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, and
| | - Rene Cortese
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, and
| | - Yan Li
- 2 Center for Research Informatics, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - Isaac Almendros
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, and.,3 Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain; and.,4 CIBER de Enfermedades Respiratorias, Barcelona, Spain
| | - Zhuanhong Qiao
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, and
| | - Ahamed A Khalyfa
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, and
| | - Jorge Andrade
- 2 Center for Research Informatics, Biological Sciences Division, The University of Chicago, Chicago, Illinois
| | - Abdelnaby Khalyfa
- 1 Section of Pediatric Sleep Medicine, Department of Pediatrics, Pritzker School of Medicine, and
| |
Collapse
|
26
|
Balistreri CR, Ruvolo G, Lio D, Madonna R. Toll-like receptor-4 signaling pathway in aorta aging and diseases: "its double nature". J Mol Cell Cardiol 2017; 110:38-53. [PMID: 28668304 DOI: 10.1016/j.yjmcc.2017.06.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022]
Abstract
Recent advances in the field of innate immunity have revealed a complex role of innate immune signaling pathways in both tissue homeostasis and disease. Among them, the Toll-like receptor 4 (TLR-4) pathways has been linked to various pathophysiological conditions, such as cardiovascular diseases (CVDs). This has been interrogated by developing multiple laboratory tools that have shown in animal models and clinical conditions, the involvement of the TLR-4 signaling pathway in the pathophysiology of different CVDs, such as atherosclerosis, ischemic heart disease, heart failure, ischemia-reperfusion injury and aorta aneurysm. Among these, aorta aneurysm, a very complex pathological condition with uncertain etiology and fatal complications (i.e. dissection and rupture), has been associated with the occurrence of high risk cardiovascular conditions, including thrombosis and embolism. In this review, we discuss the possible role of TLR-4 signaling pathway in the development of aorta aneurysm, considering the emerging evidence from ongoing investigations. Our message is that emphasizing the role of TLR-4 signaling pathway in aorta aneurysm may serve as a starting point for future studies, leading to a better understanding of the pathophysiological basis and perhaps the effective treatment of this difficult human disease.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Giovanni Ruvolo
- Department of Cardiac Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - Domenico Lio
- Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Rosalinda Madonna
- Heart Failure Research, Texas Heart Institute, St. Luke's Episcopal Hospital, Houston, TX, United States; Department of Internal Medicine, Cardiology, The University of Texas Health Science Center at Houston, Houston, TX, United States; Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences "G. D'Annunzio" University, 66100 Chieti, Italy
| |
Collapse
|
27
|
Reduced monocyte adhesion to aortae of diabetic plasminogen activator inhibitor-1 knockout mice. Inflamm Res 2017; 66:783-792. [DOI: 10.1007/s00011-017-1057-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/12/2017] [Accepted: 05/18/2017] [Indexed: 11/25/2022] Open
|
28
|
Wang C, Ha X, Li W, Xu P, Gu Y, Wang T, Wang Y, Xie J, Zhang J. Correlation of TLR4 and KLF7 in Inflammation Induced by Obesity. Inflammation 2017; 40:42-51. [PMID: 27714571 DOI: 10.1007/s10753-016-0450-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective Recent studies have revealed a link between toll-like receptors (TLRs), Kruppel-like factors (KLFs), and the adipose tissue inflammation associated with obesity. TLR4 is associated with chronic inflammation in obesity. KLF7 is known to play an important role in the differentiation of adipocytes, but its role in visceral adipose tissue inflammation has not yet been investigated. Thus, the objective of this study was to determine the correlation of TLR4 and KLF7 in inflammation induced by obesity. Methods A total of 32 Wistar male rat subjects were fed in the center for experimental animals of Shihezi University. The rats were divided into normal control (NC) and high-fat diet (HFD) group. Surgical instruments were used to collect rats' visceral adipose tissue samples in the 10th week after HFD feeding. Ninety-five Uygur subjects between 20 and 90 years old were enrolled in the present study. The subjects were divided into two groups: the normal control group (NC, 18.0 kg/m2 ≤ BMI ≤ 23.9 kg/m2, n = 50) and the obesity group (OB, BMI ≥ 28 kg/m2, n = 45), and visceral adipose tissue was collected from the subjects. Anthropometric and clinical parameters were measured using standard procedures; biochemical indices were detected using the glucose oxidase-peroxidase method and a standardized automatic biochemistry analyzer; the plasma levels of inflammatory factors and adipocytokines were measured by enzyme-linked immunosorbent assay (ELISA); the mRNA and protein expression levels of key genes involved in the inflammatory signaling pathway were measured by real-time PCR and Western blot. Results In rats, compared with the NC group, the weight, Lee's index, waist circumference, visceral fat mass, and the plasma level of Glu, TG, FFA, and TNF-α were higher in the HFD group, while the plasma levels of LPT and APN were significantly lower in the HFD group in the 10th week. Furthermore, compared with the NC group, visceral adipose tissue's mRNA expression levels of TLR4, KLF7, and SRC were higher in the HFD group, and KLF7 was significantly positively correlated with LDL, TLR4, SRC, and IL-6 (P < 0.05). Meanwhile, in the Uygur population, the plasma levels of TG, LDL, and TNF-α in the OB group were significantly higher than those in the NC group (P < 0.05). Moreover, compared with the NC group, visceral adipose tissue's mRNA expression levels of TLR4, KLF7, and SRC were significantly higher in the OB group (P < 0.05), and KLF7 was significantly positively correlated with TC, TLR4, MYD88, SRC, and IL-6 (P < 0.05); the protein expression levels of TLR4 and KLF7 were significantly higher than those in the NC group (P < 0.05). Conclusion Higher expression of TLR4 and KLF7 may play a vital role in the process of inflammation induced by obesity in visceral adipose tissue.
Collapse
Affiliation(s)
- Cuizhe Wang
- Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Xiaodan Ha
- Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Wei Li
- Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.,Shihezi University School of Medicine in the First Affiliated Hospital Clinical Laboratory, Shihezi, Xinjiang, 832000, China
| | - Peng Xu
- Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Yajuan Gu
- Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Tingting Wang
- Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China
| | - Yan Wang
- Endocrinology Department of Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, 830001, China
| | - Jianxin Xie
- Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| | - Jun Zhang
- Shihezi University School of Medicine, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
29
|
Murphy AM, Thomas A, Crinion SJ, Kent BD, Tambuwala MM, Fabre A, Pepin JL, Roche HM, Arnaud C, Ryan S. Intermittent hypoxia in obstructive sleep apnoea mediates insulin resistance through adipose tissue inflammation. Eur Respir J 2017; 49:49/4/1601731. [PMID: 28424360 DOI: 10.1183/13993003.01731-2016] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/20/2016] [Indexed: 11/05/2022]
Abstract
Obstructive sleep apnoea (OSA) is increasingly associated with insulin resistance. The underlying pathophysiology remains unclear but intermittent hypoxia (IH)-mediated inflammation and subsequent dysfunction of the adipose tissue has been hypothesised to play a key role.We tested this hypothesis employing a comprehensive translational approach using a murine IH model of lean and diet-induced obese mice, an innovative IH system for cell cultures and a tightly controlled patient cohort.IH led to the development of insulin resistance in mice, corrected for the degree of obesity, and reduced insulin-mediated glucose uptake in 3T3-L1 adipocytes, associated with inhibition of the insulin-signalling pathway and downregulation of insulin-receptor substrate-1 mRNA. Providing mechanistic insight, IH induced a pro-inflammatory phenotype of visceral adipose tissue in mice with pro-inflammatory M1 macrophage polarisation correlating with the severity of insulin resistance. Complimentary in vitro analysis demonstrated that IH led to M1 polarisation of THP1-derived macrophages. In subjects without comorbidities (n=186), OSA was independently associated with insulin resistance. Furthermore, we found an independent correlation of OSA severity with the M1 macrophage inflammatory marker sCD163.This study provides evidence that IH induces a pro-inflammatory phenotype of the adipose tissue, which may be a crucial link between OSA and the development of insulin resistance.
Collapse
Affiliation(s)
- Aoife M Murphy
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Amandine Thomas
- Université Grenoble Alpes, HP2, Inserm, U1042, CHU de Grenoble, Laboratoire EFCR, Pôle Thorax et Vaisseaux Grenoble, Grenoble, France
| | - Sophie J Crinion
- Pulmonary and Sleep Disorders Unit, St Vincent's University Hospital, Dublin, Ireland
| | - Brian D Kent
- Pulmonary and Sleep Disorders Unit, Guy's and St Thomas' Hospital, London, UK
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, UK
| | - Aurelie Fabre
- Dept of Pathology, St Vincent's University Hospital, Dublin, Ireland.,Research Pathology Core Technology, Conway Institute, University College Dublin, Dublin, Ireland
| | - Jean-Louis Pepin
- Université Grenoble Alpes, HP2, Inserm, U1042, CHU de Grenoble, Laboratoire EFCR, Pôle Thorax et Vaisseaux Grenoble, Grenoble, France
| | - Helen M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy and Sports Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Claire Arnaud
- Université Grenoble Alpes, HP2, Inserm, U1042, CHU de Grenoble, Laboratoire EFCR, Pôle Thorax et Vaisseaux Grenoble, Grenoble, France
| | - Silke Ryan
- Pulmonary and Sleep Disorders Unit, St Vincent's University Hospital, Dublin, Ireland .,School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Loomis Z, Eigenberger P, Redinius K, Lisk C, Karoor V, Nozik-Grayck E, Ferguson SK, Hassell K, Nuss R, Stenmark K, Buehler P, Irwin DC. Hemoglobin induced cell trauma indirectly influences endothelial TLR9 activity resulting in pulmonary vascular smooth muscle cell activation. PLoS One 2017; 12:e0171219. [PMID: 28152051 PMCID: PMC5289566 DOI: 10.1371/journal.pone.0171219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/17/2017] [Indexed: 12/23/2022] Open
Abstract
It is now well established that both inherited and acquired forms of hemolytic disease can promote pulmonary vascular disease consequent of free hemoglobin (Hb) induced NO scavenging, elevations in reactive oxygen species and lipid peroxidation. It has recently been reported that oxidative stress can activate NFkB through a toll-like receptor 9 (TLR9) mediated pathway; further, TLR9 can be activated by either nuclear or mitochondrial DNA liberated by stress induced cellular trauma. We hypothesis that Hb induced lipid peroxidation and subsequent endothelial cell trauma is linked to TLR9 activation, resulting in IL-6 mediated pulmonary smooth muscle cell proliferation. We examined the effects of Hb on rat pulmonary artery endothelial and smooth muscle cells (rPAEC and rPASMC, respectively), and then utilized TLR9 and IL6 inhibitors, as well as the Hb and heme binding proteins (haptoglobin (Hp) and hemopexin (Hpx), respectively) to further elucidate the aforementioned mediators. Further, we explored the effects of Hb in vivo utilizing endothelial cell (EC) specific myeloid differentiation primary response gene-88 (MyD88) and TLR9 null mice. Our data show that oxidized Hb induces lipid peroxidation, cellular toxicity (5.5 ± 1.7 fold; p≤0.04), increased TLR9 activation (60%; p = 0.01), and up regulated IL6 expression (1.75±0.3 fold; p = 0.04) in rPAEC. Rat PASMC exhibited a more proliferative state (13 ± 1%; p = 0.01) when co-cultured with Hb activated rPAEC. These effects were attenuated with the sequestration of Hb or heme by Hp and Hpx as well as with TLR9 an IL-6 inhibition. Moreover, in both EC-MyD88 and TLR9 null mice Hb-infusion resulted in less lung IL-6 expression compared to WT cohorts. These results demonstrate that Hb-induced lipid peroxidation can initiate a modest TLR9 mediated inflammatory response, subsequently generating an activated SMC phenotype.
Collapse
Affiliation(s)
- Zoe Loomis
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Paul Eigenberger
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Katherine Redinius
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Christina Lisk
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Vijaya Karoor
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Eva Nozik-Grayck
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Scott K. Ferguson
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kathryn Hassell
- Division of Hematology and Colorado Sickle Cell Treatment and Research Center, University of Colorado-Denver School of Medicine, Aurora, Colorado, United States of America
| | - Rachelle Nuss
- Division of Hematology and Colorado Sickle Cell Treatment and Research Center, University of Colorado-Denver School of Medicine, Aurora, Colorado, United States of America
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Paul Buehler
- Division of Hematology, The Center for Biologics Evaluation and Research, United States Food and Drug Administration, Bethesda, Maryland, United States of America
| | - David C. Irwin
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
31
|
Ding J, Cui X, Liu Q. Emerging role of HMGB1 in lung diseases: friend or foe. J Cell Mol Med 2016; 21:1046-1057. [PMID: 28039939 PMCID: PMC5431121 DOI: 10.1111/jcmm.13048] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/30/2016] [Indexed: 12/11/2022] Open
Abstract
Lung diseases remain a serious problem for public health. The immune status of the body is considered to be the main influencing factor for the progression of lung diseases. HMGB1 (high‐mobility group box 1) emerges as an important molecule of the body immune network. Accumulating data have demonstrated that HMGB1 is crucially implicated in lung diseases and acts as independent biomarker and therapeutic target for related lung diseases. This review provides an overview of updated understanding of HMGB1 structure, release styles, receptors and function. Furthermore, we discuss the potential role of HMGB1 in a variety of lung diseases. Further exploration of molecular mechanisms underlying the function of HMGB1 in lung diseases will provide novel preventive and therapeutic strategies for lung diseases.
Collapse
Affiliation(s)
- Junying Ding
- Beijing Key Lab of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Research Institute of TCM, Beijing Hospital of TCM affiliated to Capital Medical University, Beijing, China
| | - Xuran Cui
- Beijing Key Lab of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Research Institute of TCM, Beijing Hospital of TCM affiliated to Capital Medical University, Beijing, China
| | - Qingquan Liu
- Beijing Key Lab of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Research Institute of TCM, Beijing Hospital of TCM affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Arnaud C, Béguin P, Lévy P, Pépin JL. Normoxic Recovery Reverses Intermittent Hypoxia-Induced Systemic and Vascular Inflammation. Chest 2016; 150:471-3. [PMID: 27502986 DOI: 10.1016/j.chest.2016.05.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 12/01/2022] Open
Affiliation(s)
- Claire Arnaud
- Université Grenoble Alpes, Grenoble, France; INSERM U1042, Grenoble, France.
| | - Pauline Béguin
- Université Grenoble Alpes, Grenoble, France; INSERM U1042, Grenoble, France
| | - Patrick Lévy
- Université Grenoble Alpes, Grenoble, France; INSERM U1042, Grenoble, France; CHU de Grenoble, Grenoble, France
| | - Jean-Louis Pépin
- Université Grenoble Alpes, Grenoble, France; INSERM U1042, Grenoble, France; CHU de Grenoble, Grenoble, France
| |
Collapse
|
33
|
Gileles-Hillel A, Kheirandish-Gozal L, Gozal D. Biological plausibility linking sleep apnoea and metabolic dysfunction. Nat Rev Endocrinol 2016; 12:290-8. [PMID: 26939978 DOI: 10.1038/nrendo.2016.22] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obstructive sleep apnoea (OSA) is a very common disorder that affects 10-25% of the general population. In the past two decades, OSA has emerged as a cardiometabolic risk factor in both paediatric and adult populations. OSA-induced metabolic perturbations include dyslipidaemia, atherogenesis, liver dysfunction and abnormal glucose metabolism. The mainstay of treatment for OSA is adenotonsillectomy in children and continuous positive airway pressure therapy in adults. Although these therapies are effective at resolving the sleep-disordered breathing component of OSA, they do not always produce beneficial effects on metabolic function. Thus, a deeper understanding of the underlying mechanisms by which OSA influences metabolic dysfunction might yield improved therapeutic approaches and outcomes. In this Review, we summarize the evidence obtained from animal models and studies of patients with OSA of potential mechanistic pathways linking the hallmarks of OSA (intermittent hypoxia and sleep fragmentation) with metabolic dysfunction. Special emphasis is given to adipose tissue dysfunction induced by sleep apnoea, which bears a striking resemblance to adipose dysfunction resulting from obesity. In addition, important gaps in current knowledge and promising lines of future investigation are identified.
Collapse
Affiliation(s)
- Alex Gileles-Hillel
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Knapp Center for Biomedical Discovery, Room 4100, 900 East 57th Street, Mailbox 4, Chicago, Illinois 60637-1470, USA
| | - Leila Kheirandish-Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Knapp Center for Biomedical Discovery, Room 4100, 900 East 57th Street, Mailbox 4, Chicago, Illinois 60637-1470, USA
| | - David Gozal
- Department of Pediatrics, Pritzker School of Medicine, Biological Sciences Division, The University of Chicago, Knapp Center for Biomedical Discovery, Room 4100, 900 East 57th Street, Mailbox 4, Chicago, Illinois 60637-1470, USA
| |
Collapse
|
34
|
Gras E, Belaidi E, Briançon-Marjollet A, Pépin JL, Arnaud C, Godin-Ribuot D. Endothelin-1 mediates intermittent hypoxia-induced inflammatory vascular remodeling through HIF-1 activation. J Appl Physiol (1985) 2015; 120:437-43. [PMID: 26679613 DOI: 10.1152/japplphysiol.00641.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/16/2015] [Indexed: 02/04/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a major risk factor for cardiovascular mortality, and apnea-induced intermittent hypoxia (IH) is known to promote various cardiovascular alterations such as vascular remodeling. However, the mechanisms that underlie IH remain incompletely investigated. We previously demonstrated that the hypoxia-inducible factor-1 (HIF-1) and endothelin-1 (ET-1) are involved in arterial hypertension and myocardial susceptibility to infarction induced by IH. Thus the objective of the present study was to investigate whether both ET-1 and HIF-1 were also involved in the vascular inflammatory remodeling induced by IH. Mice partially deficient for the Hif1α gene (HIF-1α(+/-)) and their wild-type equivalents, as well as C57BL/6J mice, treated or not with bosentan, a dual endothelin receptor antagonist, were exposed to IH or normoxia for 2 wk, 8 h/day. Splenocyte proliferative and secretory capacities, aortic nuclear factor-κB (NF-κB) and HIF-1 activities, and expression of cytokines and intima-media thickness (IMT) were measured. IH induced a systemic and aortic inflammation characterized by an increase in splenocyte proliferative and secretory capacities, aortic NF-κB activity, and cytokine expression in the aortic wall. This was accompanied by an increase in IMT. These modifications were prevented in HIF-1α(+/-) and bosentan-treated mice. The results of this study suggest that ET-1 is a major contributor to the vascular inflammatory remodeling induced by OSA-related IH, probably through HIF-1-dependent activation of NF-κB.
Collapse
Affiliation(s)
- Emmanuelle Gras
- Université Grenoble Alpes, Laboratoire HP2, Grenoble, France; INSERM, U1042, Grenoble, France; and
| | - Elise Belaidi
- Université Grenoble Alpes, Laboratoire HP2, Grenoble, France; INSERM, U1042, Grenoble, France; and
| | - Anne Briançon-Marjollet
- Université Grenoble Alpes, Laboratoire HP2, Grenoble, France; INSERM, U1042, Grenoble, France; and
| | - Jean-Louis Pépin
- Université Grenoble Alpes, Laboratoire HP2, Grenoble, France; INSERM, U1042, Grenoble, France; and CHU de Grenoble, Grenoble, France
| | - Claire Arnaud
- Université Grenoble Alpes, Laboratoire HP2, Grenoble, France; INSERM, U1042, Grenoble, France; and
| | - Diane Godin-Ribuot
- Université Grenoble Alpes, Laboratoire HP2, Grenoble, France; INSERM, U1042, Grenoble, France; and
| |
Collapse
|
35
|
Polotsky VY, Bevans-Fonti S, Grigoryev DN, Punjabi NM. Intermittent Hypoxia Alters Gene Expression in Peripheral Blood Mononuclear Cells of Healthy Volunteers. PLoS One 2015; 10:e0144725. [PMID: 26657991 PMCID: PMC4684377 DOI: 10.1371/journal.pone.0144725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/22/2015] [Indexed: 12/11/2022] Open
Abstract
Obstructive sleep apnea is associated with high cardiovascular morbidity and mortality. Intermittent hypoxia of obstructive sleep apnea is implicated in the development and progression of insulin resistance and atherosclerosis, which have been attributed to systemic inflammation. Intermittent hypoxia leads to pro-inflammatory gene up-regulation in cell culture, but the effects of intermittent hypoxia on gene expression in humans have not been elucidated. A cross-over study was performed exposing eight healthy men to intermittent hypoxia or control conditions for five hours with peripheral blood mononuclear cell isolation before and after exposures. Total RNA was isolated followed by gene microarrays and confirmatory real time reverse transcriptase PCR. Intermittent hypoxia led to greater than two fold up-regulation of the pro-inflammatory gene toll receptor 2 (TLR2), which was not increased in the control exposure. We hypothesize that up-regulation of TLR2 by intermittent hypoxia may lead to systemic inflammation, insulin resistance and atherosclerosis in patients with obstructive sleep apnea.
Collapse
Affiliation(s)
- Vsevolod Y. Polotsky
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shannon Bevans-Fonti
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dmitry N. Grigoryev
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Naresh M. Punjabi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
36
|
Sapin E, Peyron C, Roche F, Gay N, Carcenac C, Savasta M, Levy P, Dematteis M. Chronic Intermittent Hypoxia Induces Chronic Low-Grade Neuroinflammation in the Dorsal Hippocampus of Mice. Sleep 2015; 38:1537-46. [PMID: 26085297 DOI: 10.5665/sleep.5042] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Indexed: 12/21/2022] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA) induces cognitive impairment that involves intermittent hypoxia (IH). Because OSA is recognized as a low-grade systemic inflammatory disease and only some patients develop cognitive deficits, we investigated whether IH-related brain consequences shared similar pathophysiology and required additional factors such as systemic inflammation to develop. DESIGN Nine-week-old male C57BL/6J mice were exposed to 1 day, 6 or 24 w of IH (alternating 21-5% FiO2 every 30 sec, 8 h/day) or normoxia. Microglial changes were assessed in the functionally distinct dorsal (dH) and ventral (vH) regions of the hippocampus using Iba1 immunolabeling. Then the study concerned dH, as vH only tended to be lately affected. Seven proinflammatory and anti-inflammatory cytokine messenger RNA (mRNA) were assessed at all time points using semiquantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Similar mRNA analysis was performed after 6 w IH or normoxia associated for the past 3 w with repeated intraperitoneal low-dose lipopolysaccharide or saline. MEASUREMENTS AND RESULTS Chronic (6, 24 w) but not acute IH induced significant microglial changes in dH only, including increased density and morphological features of microglia priming. In dH, acute but not chronic IH increased IL-1β and RANTES/CCL5 mRNA, whereas the other cytokines remained unchanged. In contrast, chronic IH plus lipopolysaccharide increased interleukin (IL)-6 and IL10 mRNA whereas lipopolysaccharide alone did not affect these cytokines. CONCLUSION The obstructive sleep apnea component intermittent hypoxia (IH) causes low-grade neuroinflammation in the dorsal hippocampus of mice, including early but transient cytokine elevations, delayed but long-term microglial changes, and cytokine response alterations to lipopolysaccharide inflammatory challenge. These changes may contribute to IH-induced cognitive impairment and pathological brain aging.
Collapse
Affiliation(s)
- Emilie Sapin
- Université Grenoble Alpes, Grenoble, F-38042, France.,INSERM U1042, Laboratoire HP2, Grenoble, F-38042, France
| | - Christelle Peyron
- INSERM U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Team SLEEP, F-69372, France.,Université Claude Bernard Lyon 1, Lyon, F-69372, France
| | - Frédéric Roche
- CHU, Hôpital Nord, Service de Physiologie Clinique et de l'Exercice, Saint-Etienne, F-42270, France.,Université Jean Monnet, Saint-Etienne, F-42023, France
| | - Nadine Gay
- INSERM U1028, CNRS UMR 5292, Lyon Neuroscience Research Center, Team SLEEP, F-69372, France.,Université Claude Bernard Lyon 1, Lyon, F-69372, France
| | - Carole Carcenac
- Université Grenoble Alpes, Grenoble, F-38042, France.,INSERM U836, Grenoble Institut des Neurosciences, équipe 10, Grenoble, F-38042, France
| | - Marc Savasta
- Université Grenoble Alpes, Grenoble, F-38042, France.,INSERM U836, Grenoble Institut des Neurosciences, équipe 10, Grenoble, F-38042, France
| | - Patrick Levy
- Université Grenoble Alpes, Grenoble, F-38042, France.,INSERM U1042, Laboratoire HP2, Grenoble, F-38042, France.,CHU, Hôpital Michallon, Laboratoires du Sommeil et EFCR, Grenoble F-38043, France
| | - Maurice Dematteis
- Université Grenoble Alpes, Grenoble, F-38042, France.,INSERM U1042, Laboratoire HP2, Grenoble, F-38042, France.,CHU, Hôpital Michallon, Addictologie, Pôle Pluridisciplinaire de Médecine, Grenoble F-38043, France
| |
Collapse
|
37
|
Deng Y, Yuan X, Guo XL, Zhu D, Pan YY, Liu HG. Efficacy of atorvastatin on hippocampal neuronal damage caused by chronic intermittent hypoxia: Involving TLR4 and its downstream signaling pathway. Respir Physiol Neurobiol 2015. [PMID: 26200444 DOI: 10.1016/j.resp.2015.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hippocampal neuronal damage is critical for the initiation and progression of neurocognitive impairment accompanied obstructive sleep apnea syndrome (OSAS). Toll-like receptor 4 (TLR4) plays an important role in the development of several hippocampus-related neural disorders. Atorvastatin was reported beneficially regulates TLR4. Here, we examined the effects of atorvastatin on hippocampal injury caused by chronic intermittent hypoxia (CIH), the most characteristic pathophysiological change of OSAS. Mice were exposed to intermittent hypoxia with or without atorvastatin for 4 weeks. Cell damage, the expressions of TLR4 and its two downstream factors myeloid differentiation factor 88 (MYD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF), inflammatory agents (tumor necrosis factor α and interleukin 1β), and the oxidative stress (superoxide dismutase and malondialdehyde) were determined. Atorvastatin decreased the neural injury and the elevation of TLR4, MyD88, TRIF, pro-inflammatory cytokines and oxidative stress caused by CIH. Our study suggests that atorvastatin may attenuate CIH induced hippocampal neuronal damage partially via TLR4 and its downstream signaling pathway.
Collapse
Affiliation(s)
- Yan Deng
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Ave, Wuhan 430030, China
| | - Xiao Yuan
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Ave, Wuhan 430030, China
| | - Xue-ling Guo
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Ave, Wuhan 430030, China
| | - Die Zhu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Ave, Wuhan 430030, China
| | - Yue-ying Pan
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Ave, Wuhan 430030, China
| | - Hui-guo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, No.1095 Jiefang Ave, Wuhan 430030, China.
| |
Collapse
|