1
|
Vijayakumar A, Kim JH. Ginseng and ginsenosides on cardiovascular and pulmonary diseases; Pharmacological potentials for the coronavirus (COVID-19). J Ginseng Res 2024; 48:113-121. [PMID: 38465214 PMCID: PMC10920003 DOI: 10.1016/j.jgr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 03/12/2024] Open
Abstract
Since its outbreak in late 2019, the Coronavirus disease 2019 (COVID-19) pandemic has profoundly caused global morbidity and deaths. The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has major complications in cardiovascular and pulmonary system. The increased rate of mortality is due to delayed detection of certain biomarkers that are crucial in the development of disease. Furthermore, certain proteins and enzymes in cellular signaling pathways play an important role in replication of SARS-CoV-2. Most cases are mild to moderate symptoms, however severe cases of COVID-19 leads to death. Detecting the level of biomarkers such as C-reactive protein, cardiac troponin, creatine kinase, creatine kinase-MB, procalcitonin and Matrix metalloproteinases helps in early detection of the severity of disease. Similarly, through downregulating Renin-angiotensin system, interleukin, Mitogen-activated protein kinases and Phosphoinositide 3-kinases pathways, COVID-19 can be effectively controlled and mortality could be prevented. Ginseng and ginsenosides possess therapeutic potential in cardiac and pulmonary complications, there are several studies performed in which they have suppressed these biomarkers and downregulated the pathways, thereby inhibiting the further spread of disease. Supplementation with ginseng or ginsenoside could act on multiple pathways to reduce the level of biomarkers significantly and alleviate cardiac and pulmonary damage. Therefore, this review summarizes the potential of ginseng extract and ginsenosides in controlling the cardiovascular and pulmonary diseases by COVID-19.
Collapse
Affiliation(s)
- Ajay Vijayakumar
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-city, Republic of Korea
| |
Collapse
|
2
|
Alam MZ. A review on plant-based remedies for the treatment of multiple sclerosis. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:775-789. [PMID: 36963654 DOI: 10.1016/j.pharma.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease of central nervous system, which is degenerative in nature usually appears between 20-40years of age. The exact cause of MS is still not clearly known. Loss of myelin sheath and axonal damage are the main features of MS that causes induction of inflammatory process and blocks free conduction of impulses. Till date FDA has approved 18 drugs to treat or modify MS symptoms. These medicines are disease-modifying in nature directed to prevent relapses or slow down the progression of disease. The use of the synthetic drug over an extended period causes undesirable effects that prompt us to look at Mother Nature. Complementary and alternative medicine involves the use of medicinal plants as an alternative to the existing modern medical treatment. However, modern drugs cannot be replaced completely with medicinal plants, but the two types of drugs can be used harmoniously with later one can be added as an adjuvant to the existing treatment. These medicinal plants have the potential to prevent progression and improve the symptoms of MS. Various plants such like Nigella sativa, ginger, saffron, pomegranate, curcumin, resveratrol, ginsenoside have been tested as therapeutics for many neurodegenerative diseases. The purpose of this write-up is to make information available about medicinal plants in their potential to treat or modify the symptoms of MS. Chronically ill patients tend to seek medicinal plants as they are easily available and there is a general perception about these medicines of having fewer undesirable effects.
Collapse
Affiliation(s)
- Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
3
|
Zheng Y, Xu P, Pan C, Wang Y, Liu Z, Chen Y, Chen C, Fu S, Xue K, Zhou Q, Liu K. Production and Biological Effects of Extracellular Vesicles from Adipose-Derived Stem Cells Were Markedly Increased by Low-Intensity Ultrasound Stimulation for Promoting Diabetic Wound Healing. Stem Cell Rev Rep 2022; 19:784-806. [PMID: 36562958 DOI: 10.1007/s12015-022-10487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
Diabetic wound treatment has posed a significant challenge in clinical practice. As a kind of cell-derived nanoparticles, extracellular vesicles produced by adipose-derived stem cells (ADSC-EVs) have been reported to be potential agents for diabetic wound treatment. However, ADSC-EV yield is insufficient to meet the demands of clinical therapy. In this study, a novel method involving the use of low-intensity ultrasound stimulation on ADSCs is developed to promote EV secretion for clinical use. A proper low-intensity ultrasound stimulation parameter which significantly increases ADSC-EV quantity has been found. In addition, EVs secreted by ADSCs following low-intensity ultrasound stimulation (US-EVs) are enriched in wound healing-related miRNAs. Moreover, US-EVs promote the biological functions of fibroblasts, keratinocytes, and endothelial cells in vitro, and promote diabetic wound healing in db/db mice in vivo through re-epithelialization, collagen production, cell proliferation, keratinocyte differentiation and migration, and angiogenesis. This study proposes low-intensity ultrasound stimulation as a new method for promoting significant EV secretion by ADSCs and for improving the diabetic wound-healing potential of EVs, which will meet the clinical needs for these nanoparticles. The production of extracellular vesicles of adipose-derived stem cells is obviously promoted by a low-intensity ultrasound stimulation method, and the biological effects of promoting diabetic wound healing were markedly increased in vitro and in vivo.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China.
| | - Chuqiao Pan
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Yikai Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Zibo Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Yahong Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Chuhsin Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Shibo Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, 200011, Shanghai, China.
| |
Collapse
|
4
|
El-Bassouny DR, Omar NM, Khalaf HA, Al-Salam RAA. Role of nuclear factor-kappa B in bleomycin induced pulmonary fibrosis and the probable alleviating role of ginsenoside: histological, immunohistochemical, and biochemical study. Anat Cell Biol 2021; 54:448-464. [PMID: 34936986 PMCID: PMC8693141 DOI: 10.5115/acb.21.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/17/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Bleomycin (BLM) is one of anti-cancerous drugs. One of its limitation is the development of pulmonary fibrosis during therapy So, we proposed to examine the outcome of BLM take on the light and electron microscopic design of rat lung. Along with, assessment the probable protecting role of ginsenoside on BLM induced pulmonary changes. In this study, thirty adult male albino rats were comprised and were classified to four clusters; Negative & positive control group, BLM treated group and BLM& ginsenoside treated group. The lung was treated for histological and immunohistochemical (anti-p65) studies. Light microscopic examination of H&E stained sections of BLM treated group showed huge distortion of the lung building. Mallory trichrome stain of this group showed evident deposition of collagen fibers in the markedly thickened interalveolar septa and around intrapulmonary bronchi, bronchioles and blood vessels. Moreover, strong positive staining for nuclear factor (NF)-κB in the wall of bronchiole as well as the thickened interalveolar septa were observed. Ultrastructural inspection of lung of this group revealed muddled lung planning. Marked improvement of the lung structure and marked reduction in NF-κB immunoexpression was appeared in BLM and ginsenoside treated group. So, we concluded that co-administration of ginsenoside with BLM significantly enhanced the histological and morphometric image of the lung.
Collapse
Affiliation(s)
- Dalia Refaat El-Bassouny
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, El Mansoura, Egypt
| | - Nesreen Mostafa Omar
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, El Mansoura, Egypt
| | - Hanaa Attia Khalaf
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, El Mansoura, Egypt
| | - Reem Ahmad Abd Al-Salam
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, El Mansoura, Egypt
| |
Collapse
|
5
|
Choi SH, Won KJ, Lee R, Cho HS, Hwang SH, Nah SY. Wound Healing Effect of Gintonin Involves Lysophosphatidic Acid Receptor/Vascular Endothelial Growth Factor Signaling Pathway in Keratinocytes. Int J Mol Sci 2021; 22:10155. [PMID: 34576317 PMCID: PMC8467330 DOI: 10.3390/ijms221810155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
Gintonin, a novel compound of ginseng, is a ligand of the lysophosphatidic acid (LPA) receptor. The in vitro and in vivo skin wound healing effects of gintonin remain unknown. Therefore, the objective of this study was to investigate the effects of gintonin on wound healing-linked responses, especially migration and proliferation, in skin keratinocytes HaCaT. In this study, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, Boyden chamber migration assay, scratch wound healing assay, and Western blot assay were performed. A tail wound mouse model was used for the in vivo test. Gintonin increased proliferation, migration, and scratch closure in HaCaT cells. It also increased the release of vascular endothelial growth factor (VEGF) in HaCaT cells. However, these increases, induced by gintonin, were markedly blocked by treatment with Ki16425, an LPA inhibitor, PD98059, an ERK inhibitor, 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester), a calcium chelator, and U73122, a PLC inhibitor. The VEGF receptor inhibitor axitinib also attenuated gintonin-enhanced HaCaT cell proliferation. Gintonin increased the phosphorylation of AKT and ERK1/2 in HaCaT cells. In addition, gintonin improved tail wound healing in mice. These results indicate that gintonin may promote wound healing through LPA receptor activation and/or VEGF release-mediated downstream signaling pathways. Thus, gintonin could be a beneficial substance to facilitate skin wound healing.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| | - Kyung-Jong Won
- Department of Physiology and Medical Science, School of Medicine, Konkuk University, Seoul 05029, Korea;
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| | - Han-Sung Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (R.L.); (H.-S.C.)
| |
Collapse
|
6
|
Li J, Huang Q, Chen J, Qi H, Liu J, Chen Z, Zhao D, Wang Z, Li X. Neuroprotective Potentials of Panax Ginseng Against Alzheimer's Disease: A Review of Preclinical and Clinical Evidences. Front Pharmacol 2021; 12:688490. [PMID: 34149431 PMCID: PMC8206566 DOI: 10.3389/fphar.2021.688490] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is a major health concern in the increasingly aged population worldwide. Currently, no clinically effective drug can halt the progression of AD. Panax ginseng C.A. Mey. is a well-known medicinal plant that contains ginsenosides, gintonin, and other components and has neuroprotective effects against a series of pathological cascades in AD, including beta-amyloid formation, neuroinflammation, oxidative stress, and mitochondrial dysfunction. In this review, we summarize the effects and mechanisms of these major components and formulas containing P. ginseng in neuronal cells and animal models. Moreover, clinical findings regarding the prevention and treatment of AD with P. ginseng or its formulas are discussed. This review can provide new insights into the possible use of ginseng in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
Jang M, Choi SH, Choi JH, Oh J, Lee RM, Lee NE, Cho YJ, Rhim H, Kim HC, Cho IH, Nah SY. Ginseng gintonin attenuates the disruptions of brain microvascular permeability and microvascular endothelium junctional proteins in an APPswe/PSEN-1 double-transgenic mouse model of Αlzheimer's disease. Exp Ther Med 2021; 21:310. [PMID: 33717253 PMCID: PMC7885069 DOI: 10.3892/etm.2021.9741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/30/2020] [Indexed: 11/06/2022] Open
Abstract
It has been previously indicated that gintonin, which is a novel exogenous ginseng-derived lysophosphatidic acid (LPA) receptor ligand, restores memory dysfunctions in an APPswe/PSEN-1 double-transgenic mouse model of Alzheimer's disease (AD Tg mice) by attenuating β-amyloid plaque deposition, recovering cholinergic dysfunctions and upregulating hippocampal neurogenesis in the cortex and hippocampus. Although β-amyloid plaque depositions in AD is accompanied with disruptions of brain microvessels, including the brain-blood barrier (BBB), it is unknown whether gintonin exerts protective effects on brain microvascular dysfunctions in AD Tg mice. In the present study, the effects of gintonin-enriched fraction (GEF) on the changes in β-amyloid plaque depositions, brain permeability of Evans blue, and microvascular junctional proteins were investigated in AD Tg mice. Long-term oral administration of GEF reduced β-amyloid plaque depositions in the cortex and hippocampus of AD Tg mice. GEF treatment also reduced the permeability of Evans blue through BBB and decreased immunoreactivity of platelet endothelial cell adhesion molecule-1 (a marker of BBB disruption) in the cortex and hippocampus of AD Tg mice in a dose-dependent manner. However, GEF elevated the protein expression of occludin, claudin-5 and zonula occludens-1, which are tight-junction proteins. The present results demonstrated that long-term oral GEF treatment not only attenuates β-amyloid plaque depositions in the brain but also exhibits protective effects against microvascular disruptions in AD Tg mice. Finally, GEF exhibits anti-AD effects through attenuation of β-amyloid plaque depositions and protection against brain microvascular damage in an AD animal model.
Collapse
Affiliation(s)
- Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinhee Oh
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ra Mi Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Eun Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeon-Jin Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Brain Korea 21 Plus Program and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Ulmus parvifolia Jacq. Exhibits Antiobesity Properties and Potentially Induces Browning of White Adipose Tissue. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9358563. [PMID: 33425000 PMCID: PMC7773463 DOI: 10.1155/2020/9358563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022]
Abstract
The bark of Ulmus parvifolia Jacq. (UP) was traditionally used as a diuretic and to treat intestinal inflammation. With modern evidence of the correlation of diuretics, gut inflammation, and obesity, our study has shown the antiobesity effects of the bark of UP. UP treatment reduced lipid production and adipogenic genes in vitro. In vivo studies revealed that UP 100 mg/kg and UP 300 mg/kg treatment significantly reduced mouse weight without reducing food intake, indicating increased energy expenditure. UP significantly reduced the weight of epididymal and subcutaneous adipose tissue and decreased liver weight. Histological analysis revealed improvement in the progression of nonalcoholic fatty liver disease and epididymal white adipose tissue hypertrophy induced by a HFD. Real-Time PCR of epididymal adipose tissue revealed significant increases of uncoupling protein-1 (UCP-1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression after UP 300 mg/kg treatments. Phosphorylation of AMP-activated protein α (AMPKα) was increased, while phosphorylation of Acetyl-CoA Carboxylase (ACC) was reduced. Our findings reveal the ability of UP to reduce the occurrence of obesity through increased browning of white adipose tissue via increased AMPKα, PPARγ, PGC-1α, and UCP-1 expression.
Collapse
|
9
|
Kim M, Sur B, Villa T, Nah SY, Oh S. Inhibitory activity of gintonin on inflammation in human IL-1β-stimulated fibroblast-like synoviocytes and collagen-induced arthritis in mice. J Ginseng Res 2020; 45:510-518. [PMID: 34295211 PMCID: PMC8282534 DOI: 10.1016/j.jgr.2020.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 11/24/2022] Open
Abstract
Background Gintonin is a newly derived glycolipoprotein from the roots of ginseng. The purpose of this study is to investigate the anti-arthritic efficacy of Gintonin on various proteases and inflammatory mediators that have an important role in arthritis. Methods Fibroblast-like synoviocytes (FLS) were treated with Gintonin and stimulated with interleukin (IL)-1β 1 hour later. The antioxidant effect of Gintonin was measured using MitoSOX and H2DCFDA experiments. The anti-arthritic efficacy of Gintonin was examined by analyzing the expression levels of inflammatory mediators using RT-PCR, western blot, and ELISA. The phosphorylation of mitogen-activated protein kinase (MAPK) pathways and translocation of nuclear factor kappa B (NF-κB)/p65 into the nucleus were also analyzed using western blot, ELISA, and immunocytochemistry. Collagen-induced arthritis (CIA) mice model was used. Mice were orally administered with Gintonin (25, 50, and 100 mg/kg) every 2 days for 45 days. The body weight, arthritis score, squeaking score, and paw volume were measured as the behavioral parameters. After sacrifice, H&E and safranin-O staining were performed for histological analysis. Results Gintonin significantly inhibited the expression of inflammatory intermediates. Gintonin prevented NF-κB/p65 from moving into the nucleus through the JNK and ERK MAPK phosphorylation in FLS cells. Moreover, Gintonin suppressed the symptoms of arthritis in the CIA mice model. Conclusion As a result, the antioxidant and anti-inflammatory effects of Gintonin were demonstrated, and ultimately the anti-arthritic effect was proved. Collectively, Gintonin has a great potential as a therapeutic agent for arthritis treatment.
Collapse
Affiliation(s)
- Mijin Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Bongjun Sur
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Thea Villa
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Seung Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Biological evidence of gintonin efficacy in memory disorders. Pharmacol Res 2020; 163:105221. [PMID: 33007419 DOI: 10.1016/j.phrs.2020.105221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Gintonin is a novel glycolipoprotein, which has been abundantly found in the root of Korean ginseng. It holds lysophosphatidic acids (LPAs), primarily identified LPA C18:2, and is an exogenous agonist of LPA receptors (LPARs). Gintonin maintains blood-brain barrier integrity, and it has recently been studied in several models of neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Gintonin demonstrated neuroprotective activity by providing action against neuroinflammation-, apoptosis- and oxidative stress-mediated neurodegeneration. Gintonin showed an emerging role as a modulator of synaptic transmission and neurogenesis and also potentially regulated autophagy in primary cortical astrocytes. It also ameliorated the toxic agent-induced and genetic models of cognitive deficits in experimental NDDs. As a novel agonist of LPARs, gintonin regulated several G protein-coupled receptors (GPCRs) including GPR40 and GPR55. However, further study needs to be investigated to understand the underlying mechanism of action of gintonin in memory disorders.
Collapse
|
11
|
Chei S, Song JH, Oh HJ, Lee K, Jin H, Choi SH, Nah SY, Lee BY. Gintonin-Enriched Fraction Suppresses Heat Stress-Induced Inflammation Through LPA Receptor. Molecules 2020; 25:molecules25051019. [PMID: 32106493 PMCID: PMC7179209 DOI: 10.3390/molecules25051019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/12/2023] Open
Abstract
Heat stress can be caused by various environmental factors. When exposed to heat stress, oxidative stress and inflammatory reaction occur due to an increase of reactive oxygen species (ROS) in the body. In particular, inflammatory responses induced by heat stress are common in muscle cells, which are the most exposed to heat stress and directly affected. Gintonin-Enriched Fraction (GEF) is a non-saponin component of ginseng, a glycolipoprotein. It is known that it has excellent neuroprotective effects, therefore, we aimed to confirm the protective effect against heat stress by using GEF. C2C12 cells were exposed to high temperature stress for 1, 12 and 15 h, and the expression of signals was analyzed over time. Changes in the expression of the factors that were observed under heat stress were confirmed at the protein level. Exposure to heat stress increases phosphorylation of p38 and extracellular signal-regulated kinase (ERK) and increases expression of inflammatory factors such as NLRP3 inflammasome through lysophosphatidic acid (LPA) receptor. Activated inflammatory signals also increase the secretion of inflammatory cytokines such as interleukin 6 (IL-6) and interleukin 18 (IL-18). Also, expression of glutathione reductase (GR) and catalase related to oxidative stress is increased. However, it was confirmed that the changes due to the heat stress were suppressed by the GEF treatment. Therefore, we suggest that GEF helps to protect heat stress in muscle cell and prevent tissue damage by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Sungwoo Chei
- Department of Biomedical Sciences, CHA University, Seongnam-si 13488, Gyeonggi-do, Korea; (S.C.); (J.-H.S.); (H.-J.O.); (K.L.); (H.J.)
| | - Ji-Hyeon Song
- Department of Biomedical Sciences, CHA University, Seongnam-si 13488, Gyeonggi-do, Korea; (S.C.); (J.-H.S.); (H.-J.O.); (K.L.); (H.J.)
| | - Hyun-Ji Oh
- Department of Biomedical Sciences, CHA University, Seongnam-si 13488, Gyeonggi-do, Korea; (S.C.); (J.-H.S.); (H.-J.O.); (K.L.); (H.J.)
| | - Kippeum Lee
- Department of Biomedical Sciences, CHA University, Seongnam-si 13488, Gyeonggi-do, Korea; (S.C.); (J.-H.S.); (H.-J.O.); (K.L.); (H.J.)
| | - Heegu Jin
- Department of Biomedical Sciences, CHA University, Seongnam-si 13488, Gyeonggi-do, Korea; (S.C.); (J.-H.S.); (H.-J.O.); (K.L.); (H.J.)
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (S.-Y.N.)
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (S.-H.C.); (S.-Y.N.)
| | - Boo-Yong Lee
- Department of Biomedical Sciences, CHA University, Seongnam-si 13488, Gyeonggi-do, Korea; (S.C.); (J.-H.S.); (H.-J.O.); (K.L.); (H.J.)
- Correspondence: ; Tel.: +82-31-881-7155
| |
Collapse
|
12
|
Irfan M, Kim M, Rhee MH. Anti-platelet role of Korean ginseng and ginsenosides in cardiovascular diseases. J Ginseng Res 2020; 44:24-32. [PMID: 32095094 PMCID: PMC7033355 DOI: 10.1016/j.jgr.2019.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular diseases prevail among modern societies and underdeveloped countries, and a high mortality rate has also been reported by the World Health Organization affecting millions of people worldwide. Hyperactive platelets are the major culprits in thrombotic disorders. A group of drugs is available to deal with such platelet-related disorders; however, sometimes, side effects and complications caused by these drugs outweigh their benefits. Ginseng and its nutraceuticals have been reported to reduce the impact of thrombotic conditions and improve cardiovascular health by antiplatelet mechanisms. This review provides (1) a comprehensive insight into the available pharmacological options from ginseng and ginsenosides (saponin and nonsaponin fractions) for platelet-originated cardiovascular disorders; (2) a discussion on the impact of specific functional groups on the modulation of platelet functions and how structural modifications among ginsenosides affect platelet activation, which may further provide a basis for drug design, optimization, and the development of ginsenoside scaffolds as pharmacological antiplatelet agents; (3) an insight into the synergistic effects of ginsenosides on platelet functions; and (4) a perspective on future research and the development of ginseng and ginsenosides as super nutraceuticals.
Collapse
Key Words
- AA, arachidonic acid
- AC, adenylyl cyclase
- ADP, adenosine diphosphate
- ASA, acetylsalicylic acid
- ATP, adenosine triphosphate
- Akt, protein kinase B
- Antiplatelet
- COX, cyclooxygenase
- CRP, collagen-related peptide
- CSF, crude saponin fraction
- ERK, extracellular signal–regulated kinase
- GPVI, glycoprotein VI
- Ginsenosides
- IC50, half maximal (50%) inhibitory concentration
- IP3, inositol-1,4,5-triphosphate
- JNK, c-Jun N-terminal kinase
- MAPK, mitogen-activated protein kinase
- MKK4, mitogen-activated protein kinase kinase 4
- MLC, myosin light chain
- Nutraceutical
- PAF, platelet-activating factor
- PAR, proteinase-activated receptor
- PI3K, phosphatidylinositol 3-kinase
- PKA, protein kinase A
- PKC, protein kinase C
- PKG, protein kinase G
- PLA2, phospholipase A2
- PLCγ2, phospholipase C gamma-2
- PPD, protopanaxadiol
- PPT, protopanaxatriol
- PT, prothrombin time
- ROCK, Rho-associated protein kinase
- SFK, Src family kinase
- Structural modification
- Syk, spleen tyrosine kinase
- Synergism
- TS, total saponin
- TxA2, thromboxane A2
- TxAS, thromboxane-A synthase
- TxB2, thromboxane B2
- TxR, thromboxane receptor
- VASP, vasodilator-stimulated phosphoprotein
- [Ca2+]i, intracellular calcium ion
- aPTT, activated partial thromboplastin time
- cAMP, cyclic adenosine monophosphate
- cPLA2α, cytosolic phospholipase A2α
- vWF, von Willebrand factor
Collapse
Affiliation(s)
| | | | - Man Hee Rhee
- Laboratory of Veterinary Physiology and Cell Signaling, Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
13
|
Gintonin Administration is Safe and Potentially Beneficial in Cognitively Impaired Elderly. Alzheimer Dis Assoc Disord 2019; 32:85-87. [PMID: 29028648 DOI: 10.1097/wad.0000000000000213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Gintonin, a ginseng-derived ingredient, as a novel therapeutic strategy for Huntington's disease: Activation of the Nrf2 pathway through lysophosphatidic acid receptors. Brain Behav Immun 2019; 80:146-162. [PMID: 30853569 DOI: 10.1016/j.bbi.2019.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Gintonin (GT), a ginseng-derived lysophosphatidic acid receptor ligand, regulates various cellular effects and represses inflammation. However, little is known about the potential value of GT regarding inflammation in the neurodegenerative diseases, such as Huntington's disease (HD). In this study, we investigated whether GT could ameliorate the neurological impairment and striatal toxicity in cellular or animal model of HD. Pre-, co-, and onset-treatment with GT (25, 50, or 100 mg/kg/day, p.o.) alleviated the severity of neurological impairment and lethality following 3-nitropropionic acid (3-NPA). Pretreatment with GT also attenuated mitochondrial dysfunction i.e. succinate dehydrogenase and MitoSOX activities, apoptosis, microglial activation, and mRNA expression of inflammatory mediators i.e. IL-1β, IL-6, TNF-α, COX-2, and iNOS in the striatum after 3-NPA-intoxication. Its action mechanism was associated with lysophosphatidic acid receptors (LPARs) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway activations and the inhibition of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) signaling pathways. These beneficial effects of GT were neutralized by pre-inhibiting LPARs with Ki16425 (a LPAR1/3 antagonist). Interestingly, GT reduced cell death and mutant huntingtin (HTT) aggregates in STHdh cells. It also mitigated neurological impairment in mice with adeno-associated viral (AAV) vector serotype DJ-mediated overexpression of N171-82Q-mutant HTT in the striatum. Taken together, our findings firstly suggested that GT has beneficial effects with a wide therapeutic time-window in 3-NPA-induced striatal toxicity by antioxidant and anti-inflammatory activities through LPA. In addition, GT exerts neuroprotective effects in STHdh cells and AAV vector-infected model of HD. Thus GT might be an innovative therapeutic candidate to treat HD-like syndromes.
Collapse
|
15
|
Lee YY, Saba E, Irfan M, Kim M, Chan JYL, Jeon BS, Choi SK, Rhee MH. The anti-inflammatory and anti-nociceptive effects of Korean black ginseng. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:169-181. [PMID: 30668366 DOI: 10.1016/j.phymed.2018.09.186] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/25/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Different processing conditions alter the ginseng bioactive compounds, promoting or reducing its anti-inflammatory effects. We compared black ginseng (BG) - that have been steamed 5 times - with red ginseng (RG). HYPOTHESIS/ PURPOSE To compare the anti-inflammatory activities and the anti-nociceptive properties of RG and BG. METHODS Nitric Oxide (NO) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay, quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR), western blot, xylene-induced ear edema, carrageenan-induced paw edema RESULTS: The ginsenoside contents were confirmed using high-performance liquid chromatography (HPLC) and has been altered through increased processing. The highest concentration of these extracts inhibited NO production to near-basal levels in lipopolysaccharide (LPS)-stimulated RAW 264.7 without exhibiting cytotoxicity. Pro-inflammatory cytokine expression at the mRNA level was investigated using qRT-PCR. Comparatively, BG exhibited better inhibition of pro-inflammatory mediators, iNOS and COX-2 and pro-inflammatory cytokines, IL-1β, IL-6 and TNF-α. Protein expression was determined using western blot analysis and BG exhibited stronger inhibition. Xylene-induced ear edema model in mice and carrageenan-induced paw edema in rats were carried out and tested with the effects of ginseng as well as dexamethasone and indomethacin - commonly used drugs. BG is a more potent anti-inflammatory agent, possesses anti-nociceptive properties, and has a strong potency comparable to the NSAIDs. CONCLUSION BG has more potent anti-inflammatory and anti-nociceptive effects due to the change in ginsenoside component with increased processing.
Collapse
Key Words
- Abbreviations: TLR, Toll-like receptor
- Anti-inflammation
- Anti-nociceptive
- Black ginseng
- COX-2, Cyclooxygenase-2
- Carrageenan-induced paw edema
- ERK, extracellular-signal-regulated kinases
- FBS, Fetal bovine serum
- I(max), Maximal inhibition
- IKK, inhibitor of kappa B kinase
- IL, Interleukin
- IκB/α, inhibitor kappa B-alpha
- JNK, c-Jun N-terminal kinases
- LPS, Lipopolysaccharides
- MAPK, mitogen-activated protein kinases
- NF-κB, Nuclear factor Kappa-B
- NO, Nitric oxide
- Panax ginseng
- TLR, Toll-like receptors
- TNF-α, Tumor necrotic factor alpha
- TRPV-1, transient receptor potential vanilloid 1
- Xylene-induced ear edema
- iNOS, inducible NO synthase
Collapse
Affiliation(s)
- Yuan Yee Lee
- Laboratory of Cell Signaling and Physiology, Department of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Evelyn Saba
- Laboratory of Cell Signaling and Physiology, Department of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Muhammad Irfan
- Laboratory of Cell Signaling and Physiology, Department of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Minki Kim
- Laboratory of Cell Signaling and Physiology, Department of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Jireh Yi-Le Chan
- Department of Finance, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Byeong Seon Jeon
- Research Institute, Daedong Korea Ginseng Co., Geumsan-gun, Chungnam, South Korea
| | - Sung Keun Choi
- Research Institute, Daedong Korea Ginseng Co., Geumsan-gun, Chungnam, South Korea
| | - Man Hee Rhee
- Laboratory of Cell Signaling and Physiology, Department of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea.; Cardiovascular Research Institute, Kyungpook National University, South Korea..
| |
Collapse
|
16
|
Saba E, Jeong D, Irfan M, Lee YY, Park SJ, Park CK, Rhee MH. Anti-Inflammatory Activity of Rg3-Enriched Korean Red Ginseng Extract in Murine Model of Sepsis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:6874692. [PMID: 30405742 PMCID: PMC6201491 DOI: 10.1155/2018/6874692] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/17/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022]
Abstract
Ginseng has therapeutic effects on various bodily disorders ranging from minor inflammation to major cardiovascular diseases. In our study, we explored the anti-inflammatory effects of Rg3-enriched red ginseng extract (Rg3-RGE), a ginsenoside belonging to the panaxadiol group. We employed nitric oxide assay (NO) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), western blot, and hematoxylin and eosin staining (H&E) to elucidate the anti-inflammatory activity of Rg3-RGE. Rg3-RGE potently suppressed NO production in the murine macrophage cell line, RAW 264.7 cells, without any cytotoxicity across dosages. Additionally, it inhibited the mRNA expression of proinflammatory mediators and cytokines like iNOS, COX-2, IL-1β, IL-6, and TNF-α. Moreover it also inhibited the levels of malondialdehyde levels in serum of septic shock mice. Immunoblot analysis showed that Rg3-RGE induced anti-inflammatory signal transduction via the NF-κB and MAPK pathways. A remarkable attenuation of inflammation by oral treatment with Rg3-RGE in mice was observed in the survival study. The in vivo study using a septic shock mouse model also showed similar results as the in vitro study. Our findings suggest that Rg3-RGE can potentially be a potent anti-inflammatory agent that likely mediates its anti-inflammatory effects via the NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Evelyn Saba
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dahye Jeong
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Irfan
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yuan Yee Lee
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Joon Park
- Laboratory of Histology, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chae-Kyu Park
- R&D Headquarters, Korean Ginseng cooperation, Daejeon 34520, Republic of Korea
| | - Man Hee Rhee
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
17
|
Kim HJ, Jung SW, Kim SY, Cho IH, Kim HC, Rhim H, Kim M, Nah SY. Panax ginseng as an adjuvant treatment for Alzheimer's disease. J Ginseng Res 2018; 42:401-411. [PMID: 30337800 PMCID: PMC6190533 DOI: 10.1016/j.jgr.2017.12.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 11/29/2017] [Accepted: 12/12/2017] [Indexed: 01/22/2023] Open
Abstract
Longevity in medicine can be defined as a long life without mental or physical deficits. This can be prevented by Alzheimer's disease (AD). Current conventional AD treatments only alleviate the symptoms without reversing AD progression. Recent studies demonstrated that Panax ginseng extract improves AD symptoms in patients with AD, and the two main components of ginseng might contribute to AD amelioration. Ginsenosides show various AD-related neuroprotective effects. Gintonin is a newly identified ginseng constituent that contains lysophosphatidic acids and attenuates AD-related brain neuropathies. Ginsenosides decrease amyloid β-protein (Aβ) formation by inhibiting β- and γ-secretase activity or by activating the nonamyloidogenic pathway, inhibit acetylcholinesterase activity and Aβ-induced neurotoxicity, and decrease Aβ-induced production of reactive oxygen species and neuroinflammatory reactions. Oral administration of ginsenosides increases the expression levels of enzymes involved in acetylcholine synthesis in the brain and alleviates Aβ-induced cholinergic deficits in AD models. Similarly, gintonin inhibits Aβ-induced neurotoxicity and activates the nonamyloidogenic pathway to reduce Aβ formation and to increase acetylcholine and choline acetyltransferase expression in the brain through lysophosphatidic acid receptors. Oral administration of gintonin attenuates brain amyloid plaque deposits, boosting hippocampal cholinergic systems and neurogenesis, thereby ameliorating learning and memory impairments. It also improves cognitive functions in patients with AD. Ginsenosides and gintonin attenuate AD-related neuropathology through multiple routes. This review focuses research demonstrating that ginseng constituents could be a candidate as an adjuvant for AD treatment. However, clinical investigations including efficacy and tolerability analyses may be necessary for the clinical acceptance of ginseng components in combination with conventional AD drugs.
Collapse
Key Words
- AChE, acetylcholinesterase
- AD, Alzheimer's disease
- APP, amyloid precursor protein
- Adjuvant
- Alzheimer's disease
- Aβ, amyloid β-protein
- BDNF, brain-derived neurotrophic factor
- EGF, Epidermal growth factor
- GLP151, ginseng major latex-like protein 151
- Ginsenoside
- Gintonin
- LPA, Lysophosphatidic acid
- NGF, nerve growth factor
- NMDA, n-methyl-d-aspartic acid
- PI3K, phosphoinositide-3 kinase
- PPARγ, peroxisome proliferator-activated receptor-γ
- Panax ginseng
- ROS, reactive oxygen species
- sAPPα, soluble amyloid precursor protein α
Collapse
Affiliation(s)
- Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seok-Won Jung
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seog-Young Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine and Institute of Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and toxicology program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Manho Kim
- Department of Neurology, Neuroscience Research Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Irfan M, Jeong D, Saba E, Kwon HW, Shin JH, Jeon BR, Kim S, Kim SD, Lee DH, Nah SY, Rhee MH. Gintonin modulates platelet function and inhibits thrombus formation via impaired glycoprotein VI signaling. Platelets 2018; 30:589-598. [PMID: 29870296 DOI: 10.1080/09537104.2018.1479033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Panax ginseng (P. ginseng), one of the most valuable medicinal plants, is known for its healing and immunobooster properties and has been widely used in folk medicine against cardiovascular diseases, including stroke and heart attack. In this study, we explored the anti-platelet activity of gintonin (a recently discovered non-saponin fraction of ginseng) against agonist-induced platelet activation. In vitro effects of gintonin on agonist-induced human and rat platelet aggregation, granule secretion, integrin αIIbβ3 activation, and intracellular calcium ion ([Ca2+]i) mobilization were examined. Western blot analysis and immunoprecipitation techniques were used to estimate the expression of mitogen-activated protein kinases (MAPKs) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and interaction of glycoprotein VI (GPVI) signaling pathway molecules such as Src family kinases (SFK), tyrosine kinase Syk, and PLCγ2. In vivo effects were studied using acute pulmonary thromboembolism model in mice. Gintonin remarkably inhibited collagen-induced platelet aggregation and suppressed granule secretion, [Ca2+]i mobilization, and fibrinogen binding to integrin αIIbβ3 in a dose-dependent manner and clot retraction. Gintonin attenuated the activation of MAPK molecules and PI3K/Akt pathway. It also inhibited SFK, Syk, and PLCγ2 activation and protected mice from thrombosis. Gintonin inhibited agonist-induced platelet activation and thrombus formation through impairment in GPVI signaling molecules, including activation of SFK, Syk, PLCγ2, MAPK, and PI3K/Akt; suggesting its therapeutic potential against platelet related CVD.
Collapse
Affiliation(s)
- Muhammad Irfan
- a Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine , Kyungpook National University , Daegu , Republic of Korea
| | - Dahye Jeong
- a Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine , Kyungpook National University , Daegu , Republic of Korea
| | - Evelyn Saba
- a Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine , Kyungpook National University , Daegu , Republic of Korea
| | - Hyuk-Woo Kwon
- b Department of Biomedical Laboratory Science , Far East University , Eumseong , Korea
| | - Jung-Hae Shin
- c Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering , Inje University , Gyungnam , Korea
| | - Bo-Ra Jeon
- a Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine , Kyungpook National University , Daegu , Republic of Korea
| | - Suk Kim
- d Institute of Animal Medicine, College of Veterinary Medicine , Gyeongsang National University , Jinju , Republic of Korea
| | - Sung-Dae Kim
- a Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine , Kyungpook National University , Daegu , Republic of Korea
| | - Dong-Ha Lee
- e Department of Biomedical Laboratory Science , Korea Nazarene University , Cheonan, Chungnam , Republic of Korea.,f Molecular Diagnostics Research Institute , Namseoul University , Cheonan, Chungnam , Republic of Korea
| | - Seung-Yeol Nah
- g Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine , Konkuk University , Seoul , Republic of Korea
| | - Man Hee Rhee
- a Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine , Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
19
|
Choi JH, Jang M, Oh S, Nah SY, Cho IH. Multi-Target Protective Effects of Gintonin in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Mediated Model of Parkinson's Disease via Lysophosphatidic Acid Receptors. Front Pharmacol 2018; 9:515. [PMID: 29875659 PMCID: PMC5974039 DOI: 10.3389/fphar.2018.00515] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
Gintonin is a ginseng-derived lysophosphatidic acid receptor (LPAR) ligand. Although previous in vitro and in vivo studies demonstrated the therapeutic role of gintonin against Alzheimer's disease, the neuroprotective effects of gintonin in Parkinson's disease (PD) are still unknown. We investigated whether gintonin (50 and 100 mg/kg/day, p.o., daily for 12 days) had neuroprotective activities against neurotoxicity in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. Pre-administration of 100 mg/kg gintonin displayed significantly ameliorating effects in neurological disorders (motor and welfare) as measuring using pole, rotarod, and nest building tests, and in the survival rate. These effects were associated to the reduction of the loss of tyrosine hydroxylase-positive neurons, microglial activation, activation of inflammatory mediators (interleukin-6, tumor necrosis factor, and cyclooxygenase-2), and alteration of blood-brain barrier (BBB) integrity in the substantia nigra pars compacta and/or striatum following MPTP injection. The benefits of gintonin treatment against MPTP also included the activation of the nuclear factor erythroid 2-related factor 2 pathways and the inhibition of phosphorylation of the mitogen-activated protein kinases and nuclear factor-kappa B signaling pathways. Interestingly, these neuroprotective effects of gintonin were blocked by LPAR1/3 antagonist, Ki16425. Overall, the present study shows that gintonin attenuates MPTP-induced neurotoxicity via multiple targets. Gintonin combats neuronal death, and acts as an anti-inflammatory and an anti-oxidant agent. It maintains BBB integrity. LPA receptors play a key role in gintonin-mediated anti-PD mechanisms. Finally, gintonin is a key agent for prevention and/or treatment of PD.
Collapse
Affiliation(s)
- Jong Hee Choi
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seikwan Oh
- Department of Neuroscience and Tissue Injury Defense Research Center, School of Medicine, Ewha Womans University, Seoul, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, South Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine and Brain Korea 21 Plus Program, Graduate School, Kyung Hee University, Seoul, South Korea
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
20
|
Jakaria M, Kim J, Karthivashan G, Park SY, Ganesan P, Choi DK. Emerging signals modulating potential of ginseng and its active compounds focusing on neurodegenerative diseases. J Ginseng Res 2018; 43:163-171. [PMID: 30976157 PMCID: PMC6437449 DOI: 10.1016/j.jgr.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 02/08/2023] Open
Abstract
Common features of neurodegenerative diseases (NDDs) include progressive dysfunctions and neuronal injuries leading to deterioration in normal brain functions. At present, ginseng is one of the most frequently used natural products. Its use has a long history as a cure for various diseases because its extracts and active compounds exhibit several pharmacological properties against several disorders. However, the pathophysiology of NDDs is not fully clear, but researchers have found that various ion channels and specific signaling pathways might have contributed to the disease pathogenesis. Apart from the different pharmacological potentials, ginseng and its active compounds modulate various ion channels and specific molecular signaling pathways related to the nervous system. Here, we discuss the signal modulating potential of ginseng and its active compounds mainly focusing on those relevant to NDDs.
Collapse
Affiliation(s)
- Md Jakaria
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Joonsoo Kim
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Govindarajan Karthivashan
- Research Institute of Inflammatory Disease, and Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea
| | - Shin-Young Park
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea
| | - Palanivel Ganesan
- Research Institute of Inflammatory Disease, and Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.,Nanotechnology Research Center, Konkuk University, Chungju, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, Republic of Korea.,Research Institute of Inflammatory Disease, and Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea.,Nanotechnology Research Center, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
21
|
MicroRNA-93-5p may participate in the formation of morphine tolerance in bone cancer pain mouse model by targeting Smad5. Oncotarget 2018; 7:52104-52114. [PMID: 27438143 PMCID: PMC5239538 DOI: 10.18632/oncotarget.10524] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/30/2016] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE In this study, we aim to find out the role of microRNA-93-5p (miR-93) and Smad5 in morphine tolerance in mouse models of bone cancer pain (BCP). RESULTS At 7 days after injection of morphine, the PMWT showed no significant difference between the morphine model group and the saline model group (P < 0.05), suggesting that morphine tolerance had formed in the morphine model group. The morphine model group had higher miR-93 expression and lower Smad5 mRNA expression than the saline model group. Smad5 is a downstream target gene of miR-93. At 7, 9 and 14 days after injection of lentiviruses, the L/anti-miR-93 group had the lowest PMWTs, while the Smad5 shRNA group presented the highest PMWTs among these five groups (all P < 0.05). METHODS We built mouse models of BCP and morphine tolerance and recorded 50% PMWT. After 6 days of modeling, we set saline control group, morphine control, saline model group and morphine model group (morphine tolerance emerged). We performed luciferase reporter gene assay to verify the relation between miR-93 and Smad5. After lentivirus transfection, the mice with morphine tolerance were assigned into L/anti-miR-93 group, Smad5 shRNA group, L/anti-miR-93 + Smad5 shRNA group, blank group and PBS control group. RT-qPCR, Western Blot assay and immumohistochemical staining were performed to observe the changes of miR-93 and Smad5. CONCLUSION Up-regulation of miR-93 may contribute to the progression of morphine tolerance by targeting Smad5 in mouse model of BCP.
Collapse
|
22
|
Ali I, Manzoor Z, Koo JE, Kim JE, Byeon SH, Yoo ES, Kang HK, Hyun JW, Lee NH, Koh YS. 3-Hydroxy-4,7-megastigmadien-9-one, isolated from Ulva pertusa, attenuates TLR9-mediated inflammatory response by down-regulating mitogen-activated protein kinase and NF-κB pathways. PHARMACEUTICAL BIOLOGY 2017; 55:435-440. [PMID: 27937044 PMCID: PMC6130523 DOI: 10.1080/13880209.2016.1246574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CONTEXT Seaweeds are rich in bioactive compounds in the form of vitamins, phycobilins, polyphenols, carotenoids, phycocyanins and polysaccharides; many of these are known to have advantageous applications in human health. 3-Hydroxy-4,7-megastigmadien-9-one (comp) was isolated from Ulva pertusa (U. pertusa) Kjellman (Ulvaceae), which is a familiar edible green seaweed. OBJECTIVE This study evaluates the anti-inflammatory activity of comp in CpG DNA-stimulated bone marrow-derived dendritic cells (BMDCs). MATERIALS AND METHODS For evaluating the effect of comp on cytokines production, BMDCs were treated with doses of comp (0, 0.5, 1, 2, 5, 10, 25 and 50 μM) for 1 h before stimulation with CpG DNA (1 μM). Cytokine production was measured by ELISA. Western blotting was conducted for evaluating effect of comp (50 μM) on MAPKs and NF-κB pathways. Luciferase reporter gene assay was conducted for effect of comp (0, 5, 10 and 25 μM) on transcriptional activity of AP-1 and NF-κB. RESULTS Comp exhibited strong inhibition of interleukin (IL)-12 p40, IL-6 and TNF-α cytokine production with IC50 values of 6.02 ± 0.35, 27.14 ± 0.73, and 7.56 ± 0.21 μM, respectively. It blocked MAPKs and NF-κB pathways by inhibiting the phosphorylation of ERK1/2, JNK1/2, p38 and IκBα. In addition, it strongly inhibited the transcriptional activity of AP-1 and NF-κB with IC50 values of 8.74 ± 0.31 and 12.08 ± 0.24 μM, respectively. DISCUSSION AND CONCLUSION Taken together, these data suggest that comp has a significant anti-inflammatory property and warrants further studies concerning the potential of comp for medicinal use.
Collapse
Affiliation(s)
- Irshad Ali
- School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, South Korea
- Institute of Medical Science, Jeju National University, Jeju, South Korea
| | - Zahid Manzoor
- School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, South Korea
- Institute of Medical Science, Jeju National University, Jeju, South Korea
| | - Jung-Eun Koo
- School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, South Korea
- Institute of Medical Science, Jeju National University, Jeju, South Korea
| | - Jung-Eun Kim
- Department of Chemistry and Cosmetics, College of Natural Sciences, Jeju National University, Jeju, South Korea
| | - Sang-Hee Byeon
- Department of Chemistry and Cosmetics, College of Natural Sciences, Jeju National University, Jeju, South Korea
| | - Eun-Sook Yoo
- School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, South Korea
- Institute of Medical Science, Jeju National University, Jeju, South Korea
| | - Hee-Kyoung Kang
- School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, South Korea
- Institute of Medical Science, Jeju National University, Jeju, South Korea
| | - Jin-Won Hyun
- School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, South Korea
- Institute of Medical Science, Jeju National University, Jeju, South Korea
| | - Nam-Ho Lee
- Department of Chemistry and Cosmetics, College of Natural Sciences, Jeju National University, Jeju, South Korea
| | - Young-Sang Koh
- School of Medicine and Brain Korea 21 PLUS Program, Jeju National University, Jeju, South Korea
- Institute of Medical Science, Jeju National University, Jeju, South Korea
- CONTACT Young-Sang KohDepartment of Microbiology and Immunology, Jeju National University School of Medicine, 102 Jejudaehakno, Jeju63243, South Korea
| |
Collapse
|
23
|
Anti-Inflammatory Activity of Crude Venom Isolated from Parasitoid Wasp, Bracon hebetor Say. Mediators Inflamm 2017; 2017:6978194. [PMID: 29213193 PMCID: PMC5682083 DOI: 10.1155/2017/6978194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/26/2017] [Accepted: 08/29/2017] [Indexed: 02/04/2023] Open
Abstract
Pest control in the agricultural fields, a major concern globally, is currently achieved through chemical or biological methods. Chemical methods, which leave toxic residue in the produce, are less preferred than biological methods. Venoms injected by stings of various wasps that kill the pest is considered as the examples of the biological method. Although several studies have investigated the biological control of pests through these venoms, very few studies have reported the effects of these venoms on mammalian cells. Bracon hebetor, an ectoparasitoid of the order Hymenoptera, is having a paramount importance in parasitizing various lepidopterous larvae including Plodia interpunctella also called as Indianmeal moth (IMM). Since it is biologically controlled by B. hebetor venom, therefore in our study, herein for the first time, we report the anti-inflammatory activities of the venom from B. hebetor (BHV). We developed a septic shock mice model for in vivo anti-inflammatory studies and RAW 264.7 cells for in vitro studies. Our results clearly demonstrate that BHV can dose dependently abrogate the nitric oxide (NO) production and suppress the levels of proinflammatory mediators and cytokines without posing any cytotoxicity via the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways.
Collapse
|
24
|
Han HM, Ko S, Cheong MJ, Bang JK, Seo CH, Luchian T, Park Y. Myxinidin2 and myxinidin3 suppress inflammatory responses through STAT3 and MAPKs to promote wound healing. Oncotarget 2017; 8:87582-87597. [PMID: 29152103 PMCID: PMC5675655 DOI: 10.18632/oncotarget.20908] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/27/2017] [Indexed: 02/07/2023] Open
Abstract
Skin wounds are continuously exposed to bacteria and can easily become infected. Infected wounds require antibiotic treatment, and infections caused by drug-resistant bacteria are an important public health problem. Antimicrobial peptides have broad-spectrum antibacterial activity, induce little or no drug resistance and may be suitable for treating skin infections caused by drug-resistant bacteria. We previously reported the design and function of myxinidin and myxinidin analogues. Here we showed that myxinidin2 and myxinidin3 exhibit antimicrobial and anti-biofilm activities against antibiotic-resistant Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa in high salt environments and in gelatin. Moreover, these peptides facilitated infected wound healing by decreasing inflammation through suppression of IL-6, IL-8, and TNF-α and regulation of downstream mediators such as STAT3, p38, JNK, and EGFR. In a mouse skin wound model infected with antibiotic-resistant bacteria, myxinidin2 and myxinidin3 eliminated the infection and enhanced wound healing. We therefore propose the use of these peptides for treating infected wounds and burns.
Collapse
Affiliation(s)
- Hyo Mi Han
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - Sujin Ko
- Department of Biomedical Science, Chosun University, Gwangju, Korea
| | - Min-Ju Cheong
- Department of Life Science, Chosun University, Gwangju, Korea
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Korea
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju, Korea
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju, Korea.,Research Center for Proteinaceous Materials, Chosun University, Gwangju, Korea
| |
Collapse
|
25
|
Wen J, Zhao YK, Liu Y, Zhao JF. MicroRNA-34a inhibits tumor invasion and metastasis in osteosarcoma partly by effecting C-IAP2 and Bcl-2. Tumour Biol 2017. [PMID: 28635396 DOI: 10.1177/1010428317705761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is a common primary malignant bone tumor that occurs mainly in children and adolescents. Recent evidence has demonstrated that miR-34a is involved in the invasion and metastasis of osteosarcoma. This study aims to explore the effect of biological behavior of miR-34a on osteosarcoma. First, we collect osteosarcoma and adjacent specimens, and the relative expression of miR-34a and C-IAP2 messenger RNA was quantitated by real-time polymerase chain reaction. Furthermore, miR-34a stimulant is synthesized and transfected onto osteosarcoma MG-63 cells. The effect of overexpression of miR-34a on osteosarcoma was detected by colony-forming assay, Annexin V-fluorescein isothiocyanate Apoptosis Detection Kit I, Transwell assay, and animal experiment in vivo. Finally, the relative levels of C-IAP2 and Bcl-2 protein were checked by western blot, and the activity of caspase-3 and caspase-9 was tested by spectrophotometry assay. In conclusion, miR-34a was downregulated in osteosarcoma cells. And the expression of C-IAP2 and Bcl-2 protein was drastically inhibited, and the activities of caspase-3 and caspase-9 were significantly increased after transfecting miR-34a onto osteosarcoma MG-63 cells. And the overexpression of miR-34a can inhibit cell invasion and metastasis, promote cell apoptosis, and arrest cells in G0/G1 period. And the animal experiment in vivo demonstrated that the overexpression of miR-34a could significantly inhibit the growth of osteosarcoma in animal skin. Taken together, we indicated that miR-34a can inhibit tumor invasion and metastasis in osteosarcoma, and its mechanism may be partly related to downregulating the expression of C-IAP2 and Bcl-2 protein directly or indirectly.
Collapse
Affiliation(s)
- Jie Wen
- 1 Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- 2 Department of Orthopedics, Inner mongolia Baogang Hospital, The Third Affiliated Hospital of Inner Mongolia Medical College, Baotou, China
| | - Yan-Kun Zhao
- 3 Department of Orthopedics, Jiu-yuan District Hospital, Baotou, China
| | - Yan Liu
- 2 Department of Orthopedics, Inner mongolia Baogang Hospital, The Third Affiliated Hospital of Inner Mongolia Medical College, Baotou, China
| | - Jin-Feng Zhao
- 1 Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Korean Red Ginseng mitigates spinal demyelination in a model of acute multiple sclerosis by downregulating p38 mitogen-activated protein kinase and nuclear factor-κB signaling pathways. J Ginseng Res 2017; 42:436-446. [PMID: 30337803 PMCID: PMC6187097 DOI: 10.1016/j.jgr.2017.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/12/2017] [Accepted: 04/26/2017] [Indexed: 01/08/2023] Open
Abstract
Background The potential therapeutic values of Korean Red Ginseng extract (KRGE) in autoimmune disorders of nervous system have not been fully investigated. Methods We used an acute experimental autoimmune encephalomyelitis animal model of multiple sclerosis and determined the effects and mechanism of KRGE on spinal myelination. Results Pretreatment with KRGE (100 mg/kg, orally) for 10 days before immunization with myelin basic protein (MBP)68-82 peptide exerted a protective effect against demyelination in the spinal cord, with inhibited recruitment and activation of immune cells including microglia, decreased mRNA expression of detrimental inflammatory mediators (interleukin-6, interferon-γ, and cyclooxygenase-2), but increased mRNA expression of protective inflammatory mediators (insulin-like growth factor β1, transforming growth factor β, and vascular endothelial growth factor-1). These results were associated with significant downregulation of p38 mitogen-activated protein kinase and nuclear factor-κB signaling pathways in microglia/macrophages, T cells, and astrocytes. Conclusion Our findings suggest that KRGE alleviates spinal demyelination in acute experimental autoimmune encephalomyelitis through inhibiting the activation of the p38 mitogen-activated protein kinase/nuclear factor-κB signaling pathway. Therefore, KRGE might be used as a new therapeutic for autoimmune disorders such as multiple sclerosis, although further investigation is needed.
Collapse
|
27
|
Park HJ, Song M. Leaves of Raphanus sativus L. Shows Anti-Inflammatory Activity in LPS-Stimulated Macrophages via Suppression of COX-2 and iNOS Expression. Prev Nutr Food Sci 2017; 22:50-55. [PMID: 28401088 PMCID: PMC5383142 DOI: 10.3746/pnf.2017.22.1.50] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/10/2017] [Indexed: 01/28/2023] Open
Abstract
Raphanus sativus L. (RS) is a cruciferous vegetable that is widely consumed in Korea. The anticancer activity of leaves of RS (RSL) extract has been investigated; however, no studies focused on its anti-inflammatory effects. Therefore, the aim of the current study was to evaluate the anti-inflammatory effects of RSL extract. In brief, RSL powder was fractionated into n-hexane, chloroform, ethyl acetate, n-butanol, and water-soluble fractions. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were treated with each fraction for initial screening. It was found that the chloroform fraction significantly inhibited nitric oxide release in LPS-stimulated RAW264.7 cells with a half maximal inhibitory concentration value of 196 μg/mL. In addition, the mRNA and protein expression levels of inducible nitric oxide synthase, measured using reverse transcriptase-polymerase chain reaction and western blotting, respectively, were reduced in a concentration-dependent manner. Moreover, the inflammatory cyclooxygenase-2 enzyme expression decreased. Furthermore, the expression of nuclear factor-kappa B (NF-κB), the key regulator of the transcriptional activation of the inflammatory cytokine genes, was reduced by the RSL chloroform fraction. Therefore, the results of our study suggest that RSL exhibits anti-inflammatory effects in LPS-stimulated macrophages via NF-κB inactivation.
Collapse
Affiliation(s)
- Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi 13120, Korea
| | - Minjung Song
- Department of Food Biotechnology, Division of Bioindustry, College of Medical and Life Sciences, Silla University, Busan 46958, Korea
| |
Collapse
|
28
|
MicroRNA-93 alleviates neuropathic pain through targeting signal transducer and activator of transcription 3. Int Immunopharmacol 2017; 46:156-162. [PMID: 28284149 DOI: 10.1016/j.intimp.2017.01.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/16/2016] [Accepted: 01/20/2017] [Indexed: 12/21/2022]
Abstract
Emerging evidence suggests that microRNAs (miRNAs) play a critical role in the pathogenesis of neuropathic pain. However, the exact role of miRNAs in regulating neuropathic pain remains largely unknown. In this study, we aimed to investigate the potential role of miR-93 in a rat model of neuropathic pain induced by chronic constriction sciatic nerve injury (CCI). We found a significant decrease of miR-93 in the spinal cord of CCI rats compared with sham rats. Overexpression of miR-93 significantly alleviated neuropathic pain development and reduced inflammatory cytokine expression, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 in CCI rats. By bioinformatic analysis and dual-luciferase reporter assay, we found that miR-93 directly targeted the 3'-untranslated region (UTR) of signal transducer and activator of transcription 3 (STAT3), an important regulator of inflammation. Overexpression of miR-93 markedly suppressed the expression of STAT3 in vitro and in vivo. Furthermore, overexpression of STAT3 significantly reversed the miR-93 overexpression-induced suppressive effects on neuropathic pain development and neuroinflammation. Taken together, our study suggests that miR-93 inhibits neuropathic pain development of CCI rats possibly through inhibiting STAT3-mediated neuroinflammation. Our findings indicate that miR-93 may serve as a novel therapeutic target for neuropathic pain intervention.
Collapse
|
29
|
IFN- τ Displays Anti-Inflammatory Effects on Staphylococcus aureus Endometritis via Inhibiting the Activation of the NF- κB and MAPK Pathways in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2350482. [PMID: 28331850 PMCID: PMC5346370 DOI: 10.1155/2017/2350482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/22/2016] [Accepted: 01/12/2017] [Indexed: 01/12/2023]
Abstract
The aim of the present study was to determine the anti-inflammatory effect of IFN-τ on endometritis using a mouse model of S. aureus-induced endometritis and to elucidate the mechanism of action underlying these effects. In the present study, the effect of IFN-τ on S. aureus growth was monitored by turbidimeter at 600 nm. IFN-τ did not affect S. aureus growth. The histopathological changes indicated that IFN-τ had a protective effect on uterus tissues with S. aureus infection. The ELISA and qPCR results showed the production of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 was decreased with IFN-τ treatment. In contrast, the level of the anti-inflammatory cytokine IL-10 was increased. We further studied the signaling pathway associated with these observations, and the qPCR results showed that the expression of TLR2 was repressed by IFN-τ. Furthermore, the western blotting results showed the phosphorylation of IκB, NF-κB p65, and MAPKs (p38, JNK, and ERK) was inhibited by IFN-τ treatment. The results suggested that IFN-τ may be a potential drug for the treatment of uterine infection due to S. aureus or other infectious inflammatory diseases.
Collapse
|
30
|
Lee BH, Kim HK, Jang M, Kim HJ, Choi SH, Hwang SH, Kim HC, Rhim H, Cho IH, Nah SY. Effects of Gintonin-Enriched Fraction in an Atopic Dermatitis Animal Model: Involvement of Autotaxin Regulation. Biol Pharm Bull 2017; 40:1063-1070. [DOI: 10.1248/bpb.b17-00124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University
| | - Ho-Kyoung Kim
- Mibyeong Research Center, Korea Institute of Oriental Medicine
| | - Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University
| |
Collapse
|
31
|
Lim TG, Jang M, Cho CW, Hong HD, Kim KT, Lee SY, Jung SK, Rhee YK. White ginseng extract induces immunomodulatory effects via the MKK4-JNK pathway. Food Sci Biotechnol 2016; 25:1737-1744. [PMID: 30263469 DOI: 10.1007/s10068-016-0265-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 01/17/2023] Open
Abstract
Panax ginseng Meyer (white ginseng) is a popular functional food and its biological effects on the human body have been noted for hundreds of years. In the present study, the underlying mechanisms responsible for the immunomodulatory effects of white ginseng extract (WGE) were investigated. WGE increased NO production via upregulation of iNOS expression levels. Mouse cytokine array results also revealed that the expression of 13 cytokines was elevated by WGE treatment in IFN-γ-primed macrophage cells. Although both MKK4-JNK and MEK-ERK signaling pathways were activated after treatment with WGE, only the MKK4-JNK signaling pathway appears to have any significant immunomodulatory significance. Oral administration of WGE for 28 days recovered cyclophosphamide (CY)-induced suppression of the immune system in mice via the MKK4-JNK pathway. Taken together, these findings suggest that the MKK4-JNK signaling pathway is a crucial mechanism of WGE-induced immunomodulation.
Collapse
Affiliation(s)
- Tae-Gyu Lim
- Korea Food Research Institute, Seongnam, Gyoonggi, 13539 Korea
| | - Mi Jang
- Korea Food Research Institute, Seongnam, Gyoonggi, 13539 Korea
| | - Chang-Won Cho
- Korea Food Research Institute, Seongnam, Gyoonggi, 13539 Korea
| | - Hee-Do Hong
- Korea Food Research Institute, Seongnam, Gyoonggi, 13539 Korea
| | - Kyung-Tack Kim
- Korea Food Research Institute, Seongnam, Gyoonggi, 13539 Korea
| | - Sung-Young Lee
- 2The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Sung Keun Jung
- Korea Food Research Institute, Seongnam, Gyoonggi, 13539 Korea
| | | |
Collapse
|
32
|
Lee BH, Choi SH, Kim HJ, Jung SW, Kim HK, Nah SY. Plant Lysophosphatidic Acids: A Rich Source for Bioactive Lysophosphatidic Acids and Their Pharmacological Applications. Biol Pharm Bull 2016; 39:156-62. [PMID: 26830477 DOI: 10.1248/bpb.b15-00575] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lysophosphatidic acid (1-acyl-2-lyso-sn-glycero-3-phosphatidic acid; LPA) is a simple and minor phospholipid in plants. Plant LPAs are merely metabolic intermediates in de novo lipid synthesis in plant cell membranes or for glycerophospholipid storage. The production and metabolisms of LPAs in animals are also well characterized and LPAs have diverse cellular effects in animal systems; i.e., from brain development to wound healing through the activation of G protein-coupled LPA receptors. Recent studies show that various foodstuffs such as soybean, cabbage and seeds such as sesame and sunflower contain bioactive LPAs. Some LPAs are produced from phosphatidic acid during the digestion of foodstuff. In addition, herbal medicines such as corydalis tuber, and especially ginseng, contain large amounts of LPAs compared to foodstuffs. Herbal LPAs bind to cell surface LPA receptors in animal cells and exert their biological effects. Herbal LPAs elicit [Ca(2+)]i transient and are coupled to various Ca(2+)-dependent ion channels and receptor regulations via the activation of LPA receptors. They also showed beneficial effects of in vitro wound healing, in vivo anti-gastric ulcer, anti-Alzheimer's disease, autotaxin inhibition and anti-metastasis activity. Thus, herbal LPAs can be useful agents for human health. Humans can utilize exogenous plant-derived LPAs for preventive or therapeutic purposes if plant-derived LPAs are developed as functional foods or natural medicine targeting LPA receptors. This brief review article introduces the known rich sources of herbal LPAs and herbal LPA binding protein, describes their biological effects, and further addresses possible clinical applications.
Collapse
Affiliation(s)
- Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology,
College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University
| | | | | | | | | | | |
Collapse
|
33
|
Lee HL, Kang KS. Protection Effect of Punicalagin Isolated from Pomegranate on Inflammation and Ethanol-induced Gastric Mucosal Injury. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hye Lim Lee
- College of Korean Medicine; Gachon University; Seongnam 13120 Korea
| | - Ki Sung Kang
- College of Korean Medicine; Gachon University; Seongnam 13120 Korea
| |
Collapse
|
34
|
Saba E, Jeong DH, Roh SS, Kim SH, Kim SD, Kim HK, Rhee MH. Black ginseng-enriched Chong-Myung-Tang extracts improve spatial learning behavior in rats and elicit anti-inflammatory effects in vitro. J Ginseng Res 2016; 41:151-158. [PMID: 28413319 PMCID: PMC5386102 DOI: 10.1016/j.jgr.2016.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/22/2016] [Indexed: 12/28/2022] Open
Abstract
Background Chong-Myung-Tang (CMT) extract is widely used in Korea as a traditional herbal tonic for increasing memory capacity in high-school students and also for numerous body ailments since centuries. The use of CMT to improve the learning capacity has been attributed to various plant constituents, especially black ginseng, in it. Therefore, in this study, we have first investigated whether black ginseng-enriched CMT extracts affected spatial learning using the Morris water maze (MWM) test. Their molecular mechanism of action underlying improvement of learning and memory was examined in vitro. Methods We used two types of black ginseng-enriched CMT extracts, designated as CM-1 and CM-2, and evaluated their efficacy in the MWM test for spatial learning behavior and their anti-inflammatory effects in BV2 microglial cells. Results Our results show that both black ginseng-enriched CMT extracts improved the learning behavior in scopolamine-induced impairment in the water maze test. Moreover, these extracts also inhibited nitric oxide production in BV2 cells, with significant suppression of expression of proinflammatory cytokines, especially inducible nitric oxide synthase, cyclooxygenase-2, and interleukin-1β. The protein expression of mitogen-activated protein kinase and nuclear factor-κB pathway factors was also diminished by black ginseng-enriched CMT extracts, indicating that it not only improves the memory impairment, but also acts a potent anti-inflammatory agent for neuroinflammatory diseases. Conclusion Our research for the first time provides the scientific evidence that consumption of black ginseng-enriched CMT extract as a brain tonic improves memory impairment. Thus, our study results can be taken as a reference for future neurobehavioral studies.
Collapse
Affiliation(s)
- Evelyn Saba
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Da-Hye Jeong
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Seong-Soo Roh
- College of Korean Medicine, Daegu Haany University, Daegu, Korea
| | - Seung-Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon, Korea
| | - Sung-Dae Kim
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Hyun-Kyoung Kim
- Department of Food Science and Engineering, Seowon University, Chungbuk, Korea
| | - Man-Hee Rhee
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|