1
|
Chen J, Zhu T, Yang J, Shen M, Wang D, Gu B, Xu J, Zhang M, Hao X, Tang Z, Tong J, Du Y, Zhang B, Li H, Xu M. Geniposide Protects Against Myocardial Infarction Injury via the Restoration in Gut Microbiota and Gut-Brain Axis. J Cell Mol Med 2025; 29:e70406. [PMID: 39910683 PMCID: PMC11798748 DOI: 10.1111/jcmm.70406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Improving gut dysbiosis and impaired gut-brain axis has been a potent therapeutic strategy for treating myocardial infarction (MI). Geniposide (GEN), a traditional Chinese medicine extract, has demonstrated substantial cardioprotective properties post-MI. Nevertheless, the effect of GEN on gut microbial, gut-brain communication, and its potential mechanism remains unclear. In this study, we initially found that GEN significantly alleviated MI-induced cardiac dysfunction from echocardiographic data and decreased myocardial fibrosis, inflammation, apoptosis and hypertrophy post-MI. Additionally, we investigated the effects of GEN on gut pathology, and observed that GEN led to a remarkable change in gut microbiota as evidenced by altering β-diversity and short-chain fatty acids (SCFAs) levels, and alleviated intestinal damage indicated by reduced inflammation and barrier permeability post-MI. Finally, our investigation into brain pathology revealed that GEN induced a remarkable inhibition in PVN inflammation and sympathetic activity following MI. Collectively, these findings imply that the cardioprotective effects of GEN against MI were mediated possibly via an improvement in the impaired gut-brain axis. Mechanically, GEN-induced increase of microbiota-derived SCFAs might be the critical factor linking gut microbiota and reduced neuroinflammation with PVN, which leads to the suppression of sympathetic activation, therefore protecting the myocardium against MI-induced damage.
Collapse
Affiliation(s)
- Jie Chen
- The Affiliated Xi'an International Medical Center HospitalNorthwest UniversityXi'anShaanxiChina
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Tong Zhu
- The Affiliated Xi'an International Medical Center HospitalNorthwest UniversityXi'anShaanxiChina
| | - Jinbao Yang
- The Affiliated Xi'an International Medical Center HospitalNorthwest UniversityXi'anShaanxiChina
| | - Mengqing Shen
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Danmei Wang
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Boyuan Gu
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Jin Xu
- The Affiliated Xi'an International Medical Center HospitalNorthwest UniversityXi'anShaanxiChina
| | - Mingxia Zhang
- The Affiliated Xi'an International Medical Center HospitalNorthwest UniversityXi'anShaanxiChina
| | - Xiuli Hao
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Zheng Tang
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Jie Tong
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Yan Du
- Department of NephrologyThe First Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiChina
| | - Bao Zhang
- College of Forensic MedicineXi'an Jiaotong University Health Science CenterXi'anShaanxiChina
| | - Hongbao Li
- Department of Physiology and PathophysiologyXi'an Jiaotong University School of Basic Medical SciencesXi'anChina
| | - MengLu Xu
- Department of NephrologyThe First Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiChina
| |
Collapse
|
2
|
Zwanenburg F, Bos TA, Ten Harkel ADJ, Haak MC, Hahurij ND, Poelmann RE, van Munsteren CJ, Wisse LJ, Blom NA, DeRuiter MC, Jongbloed MRM. Development of autonomic innervation at the venous pole of the heart: bridging the gap from mice to human. J Transl Med 2025; 23:73. [PMID: 39815264 PMCID: PMC11734484 DOI: 10.1186/s12967-024-06049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Prenatal development of autonomic innervation of sinus venosus-related structures might be related to atrial arrhythmias later in life. Most of the pioneering studies providing embryological background are conducted in animal models. To date, a detailed comparison with the human cardiac autonomic nervous system (cANS) is lacking. The aim of this study was to compare the morphological and functional development of the cANS between mouse and human, specifically aimed at the venous pole. METHODS Wildtype mouse embryos (E9.5-E18.5) and healthy human fetuses (6-38 weeks gestational age (WGA)) were studied at sequential stages to obtain a comparative developmental series. Cardiac autonomic function was assessed through heart rate variability (HRV) analysis using ultrasound. Morphological assessment of the venous pole was performed using immunohistochemical stainings for neural crest cells and autonomic nerve markers. RESULTS Murine cANS function did not definitively establish in utero as HRV parameters depicted no trend prior to birth. In contrast, human HRV parameters greatly increased from 20 to 30 WGA, indicating that human cANS function is established prenatally around 20 WGA and matures thereafter. Morphologically, cANS development followed a similar sequence with neural crest-derived nerves entering the venous pole in proximity to the developing pulmonary vein in both species. However, the timing of differentiation into sympathetic or parasympathetic phenotype was markedly distinct, as human autonomic markers emerged relatively later when related to major cardiogenesis. Structures related to arrhythmogenicity in humans, such as the ligament/vein of Marshall and the myocardium surrounding the pulmonary veins, become highly innervated during embryonic development in both mice and humans. CONCLUSION Although early morphological cANS development at sinus venosus-related structures follows a similar sequence in mice and humans, there are substantial differences in the timing of functional establishment and differentiation in sympathetic and parasympathetic phenotypes, which should be taken into account when extrapolating mouse studies of the cANS to humans. The abundant innervation of sinus venosus-related structures may play a modulatory role in arrhythmogenesis under pathological conditions.
Collapse
Affiliation(s)
- Fleur Zwanenburg
- Department of Obstetrics and Fetal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Center of Congenital Heart Disease Amsterdam-Leiden (CAHAL), Leiden, The Netherlands
| | - Thomas A Bos
- Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands
| | - Arend D J Ten Harkel
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Center of Congenital Heart Disease Amsterdam-Leiden (CAHAL), Leiden, The Netherlands
| | - Monique C Haak
- Department of Obstetrics and Fetal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Center of Congenital Heart Disease Amsterdam-Leiden (CAHAL), Leiden, The Netherlands
| | - Nathan D Hahurij
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Center of Congenital Heart Disease Amsterdam-Leiden (CAHAL), Leiden, The Netherlands
| | - Robert E Poelmann
- Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Conny J van Munsteren
- Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands
| | - Lambertus J Wisse
- Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands
| | - Nico A Blom
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Center of Congenital Heart Disease Amsterdam-Leiden (CAHAL), Leiden, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands
- Center of Congenital Heart Disease Amsterdam-Leiden (CAHAL), Leiden, The Netherlands
| | - Monique R M Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands.
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
- Center of Congenital Heart Disease Amsterdam-Leiden (CAHAL), Leiden, The Netherlands.
| |
Collapse
|
3
|
Koppel CJ, De Henau CMS, Vreeken D, DeRuiter MC, Jongbloed MRM, van Gils JM. The Role of the Axonal Guidance Cue Semaphorin 3A in Innervation of the Postnatal Heart in Health and Disease. Can J Cardiol 2024:S0828-282X(24)01327-8. [PMID: 39746509 DOI: 10.1016/j.cjca.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
During cardiac development, the heart is innervated by the autonomous nervous system. After development, neurons of the autonomic nervous system have limited capacity for growth and regeneration. However, in recent decades, it has become clear that cardiac nerves can regenerate after cardiac damage. Excessive reinnervation, so-called sympathetic hyperinnervation, may render patients vulnerable to ventricular arrhythmias and heart failure. Several studies have investigated axonal guidance cues as mediators of cardiac innervation. Axonal guidance cues direct neuronal growth of the axon and play a significant role in the regeneration and remodelling of cardiac autonomic innervation after cardiac damage. This review focusses on the current literature regarding the axonal guidance cue group of semaphorins and their function in the healthy and diseased postnatal heart. In view of cardiac innervation, most studies have focussed on semaphorin 3A (SEMA3A), whereas less is known about the function of the other semaphorin classes. SEMA3A is a neuronal repellent and is associated with a decrease in the density of sympathetic neurons in the heart. Its decline in expression after myocardial infarction plays a role in the development of sympathetic hyperinnervation and the subsequent increased risk of ventricular arrhythmias. In congestive heart failure, the opposite occurs: an increase in SEMA3A expression underlies decreased nerve density that may also serve as a substrate for ventricular arrhythmias. Although the literature on their role in cardiac innervation is still relatively scarce, semaphorins, especially SEMA3A, seem worthwhile to consider when exploring options to modulate pathologic innervation patterns in cardiovascular disease.
Collapse
Affiliation(s)
- Claire J Koppel
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Dianne Vreeken
- Department of Cardiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Marco C DeRuiter
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Centre for Congenital Heart Disease Amsterdam-Leiden, Leiden University Medical Centre, Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Anatomy & Embryology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Janine M van Gils
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
4
|
Zhu T, Chen J, Zhang M, Tang Z, Tong J, Hao X, Li H, Xu J, Yang J. Tanshinone IIA Exerts Cardioprotective Effects Through Improving Gut-Brain Axis Post-Myocardial Infarction. Cardiovasc Toxicol 2024; 24:1317-1334. [PMID: 39377990 PMCID: PMC11564317 DOI: 10.1007/s12012-024-09928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024]
Abstract
Myocardial infarction (MI) is a lethal cardiovascular disease worldwide. Emerging evidence has revealed the critical role of gut dysbiosis and impaired gut-brain axis in the pathological progression of MI. Tanshinone IIA (Tan IIA), a traditional Chinese medicine, has been demonstrated to exert therapeutic effects for MI. However, the effects of Tan IIA on gut-brain communication and its potential mechanisms post-MI are still unclear. In this study, we initially found that Tan IIA significantly reduced myocardial inflammation, apoptosis and fibrosis, therefore alleviating hypertrophy and improving cardiac function following MI, suggesting the cardioprotective effect of Tan IIA against MI. Additionally, we observed that Tan IIA improved the gut microbiota as evidenced by changing the α-diversity and β-diversity, and reduced histopathological impairments by decreasing inflammation and permeability in the intestinal tissues, indicating the substantial improvement of Tan IIA in gut function post-MI. Lastly, Tan IIA notably reduced lipopolysaccharides (LPS) level in serum, inflammation responses in paraventricular nucleus (PVN) and sympathetic hyperexcitability following MI, suggesting that restoration of Tan IIA on MI-induced brain alterations. Collectively, these results indicated that the cardioprotective effects of Tan IIA against MI might be associated with improvement in gut-brain axis, and LPS might be the critical factor linking gut and brain. Mechanically, Tan IIA-induced decreased intestinal damage reduced LPS release into serum, and reduced serum LPS contributes to decreased neuroinflammation with PVN and sympathetic inactivation, therefore protecting the myocardium against MI-induced injury.
Collapse
Affiliation(s)
- Tong Zhu
- The Affiliated Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710161, Shaanxi, China
| | - Jie Chen
- The Affiliated Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710161, Shaanxi, China
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Mingxia Zhang
- The Affiliated Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710161, Shaanxi, China
| | - Zheng Tang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Jie Tong
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiuli Hao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hongbao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, 710061, China
| | - Jin Xu
- The Affiliated Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710161, Shaanxi, China.
| | - Jinbao Yang
- The Affiliated Xi'an International Medical Center Hospital, Northwest University, Xi'an, 710161, Shaanxi, China.
| |
Collapse
|
5
|
Tonko JB, Chow A, Lambiase PD. High-density isochronal repolarization mapping and re-entry vulnerability estimation for scar-related ventricular tachycardia ablation: mechanistic basis, clinical application, and challenges. Europace 2024; 26:euae271. [PMID: 39478673 PMCID: PMC11601750 DOI: 10.1093/europace/euae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Alterations in repolarization gradients and increased heterogeneity are key electrophysiological determinants of ventricular arrhythmogenesis across a variety of aetiologies with and without structural heart disease. High-density repolarization mapping to localize these repolarization abnormalities could improve characterization of the individual arrhythmogenic substrate and inform more targeted ablation. Yet, due to challenges posed by intrinsic features of human cardiac repolarization itself as well as technical and practical limitations, they are not routinely assessed, and traditional substrate mapping techniques remain strictly limited to determining conduction abnormalities. Here, we provide an overview of the mechanistic role of repolarization alterations in ventricular re-entry arrhythmias followed by a description of a clinical workflow that enables high-density repolarization mapping during ventricular tachycardia (VT) ablations using existing clinical tools. We describe step-by-step guidance of how-to set-up and generate repolarization maps illustrating the approach in case examples of structural normal and abnormal hearts. Furthermore, we discuss how repolarization mapping could be combined with existing substrate mapping approaches, including isochronal late activation mapping, to delineate sites of increased re-entry vulnerability, that may represent targets for ablation without the requirement for VT induction. Finally, we review challenges and pitfalls and ongoing controversies in relation to repolarization mapping and discuss the need for future technical and analytical improvements in repolarization mapping to integrate into ventricular substrate mapping strategies. Repolarization mapping remains investigational, and future research efforts need to be focused on prospective trials to establish the additional diagnostic value and its role in clinical ablation procedures.
Collapse
Affiliation(s)
- Johanna B Tonko
- Institute for Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, UK
- Barts Heart Centre, St Bartholomew’s Hospital, W Smithfield, London EC1A 7BE, UK
| | - Anthony Chow
- Barts Heart Centre, St Bartholomew’s Hospital, W Smithfield, London EC1A 7BE, UK
| | - Pier D Lambiase
- Institute for Cardiovascular Science, University College London, 5 University Street, London WC1E 6JF, UK
- Barts Heart Centre, St Bartholomew’s Hospital, W Smithfield, London EC1A 7BE, UK
| |
Collapse
|
6
|
Solano J, Eni G, Viswanath A, Enany B. Successful Rescue of Ventricular Fibrillation Electrical Storm Secondary to Acute Myocardial Infarction in a Patient Presenting to a District General Hospital: A Case Report. Cureus 2024; 16:e73959. [PMID: 39703273 PMCID: PMC11655938 DOI: 10.7759/cureus.73959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Ventricular arrhythmia is a critical and challenging cardiovascular complication of myocardial infarction (MI). An electrical storm (ES), characterised by three or more episodes of sustained ventricular arrhythmia within 24 hours, poses a significant life-threatening risk. Standard management includes advanced life support (ALS) protocols and specialised pharmacological interventions. We present the case of a 43-year-old female who presented to the emergency department (ED) following an out-of-hospital ventricular fibrillation (OOHVF) arrest, with the return of spontaneous circulation (ROSC) achieved after multiple defibrillation shocks. Electrocardiography (ECG) revealed anterior ST-segment elevation MI (STEMI) involving the left anterior descending (LAD) artery. During her ED stay, she experienced recurrent ventricular fibrillation (VF) arrests requiring repeated defibrillation, adrenaline, amiodarone, and thrombolysis with alteplase. She was subsequently intubated and transferred to a primary percutaneous coronary intervention (PPCI) centre with intensive care support. Angiography confirmed a 100% occlusion of the LAD, which was successfully treated with stenting. The patient was admitted to the intensive care unit (ICU) and later discharged with full neurological recovery, on secondary prevention and heart failure therapy, with follow-up planned. This case underscores the complexity of managing electrical storms in MI, particularly in non-PPCI centres. It emphasises the importance of thrombolysis as an early reperfusion strategy in STEMI, especially when PPCI is not immediately available.
Collapse
Affiliation(s)
- Jhiamluka Solano
- Education, Academy of Medical Educators, Cardiff, GBR
- Cardiology, Scunthorpe General Hospital, Scunthorpe, GBR
| | - Gedoni Eni
- Internal Medicine, Scunthorpe General Hospital, Scunthorpe, GBR
| | | | - Basem Enany
- Interventional Cardiology, Hull University Teaching Hospital National Health Service Trust, Hull, GBR
| |
Collapse
|
7
|
Sarkar A, Ajijola OA. Pathophysiologic Mechanisms in Cardiac Autonomic Nervous System and Arrhythmias. Card Electrophysiol Clin 2024; 16:261-269. [PMID: 39084719 DOI: 10.1016/j.ccep.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The autonomic nervous system, including the central nervous system and the cardiac plexus, maintains cardiac physiology. In diseased states, autonomic changes through neuronal remodeling generate electrical mechanisms of arrhythmia such as triggered activity or increased automaticity. This article will focus on the pathophysiological mechanisms of arrhythmia to highlight the role of the autonomic nervous system in disease and the related therapeutic interventions.
Collapse
Affiliation(s)
- Abdullah Sarkar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research program of Excellence, Los Angeles, CA, USA
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research program of Excellence, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Peng R, Shi J, Jiang M, Qian D, Yan Y, Bai H, Yu M, Cao X, Fu S, Lu S. Electroacupuncture Improves Cardiac Function via Inhibiting Sympathetic Remodeling Mediated by Promoting Macrophage M2 Polarization in Myocardial Infarction Mice. Mediators Inflamm 2024; 2024:8237681. [PMID: 38974599 PMCID: PMC11227948 DOI: 10.1155/2024/8237681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/24/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Electroacupuncture (EA) at the Neiguan acupoint (PC6) has shown significant cardioprotective effects. Sympathetic nerves play an important role in maintaining cardiac function after myocardial infarction (MI). Previous studies have found that EA treatment may improve cardiac function by modulating sympathetic remodeling after MI. However, the mechanism in how EA affects sympathetic remodeling and improves cardiac function remains unclear. The aim of this study is to investigate the cardioprotective mechanism of EA after myocardial ischemic injury by improving sympathetic remodeling and promoting macrophage M2 polarization. We established a mouse model of MI by occluding coronary arteries in male C57/BL6 mice. EA treatment was performed at the PC6 with current intensity (1 mA) and frequency (2/15 Hz). Cardiac function was evaluated using echocardiography. Heart rate variability in mice was assessed via standard electrocardiography. Myocardial fibrosis was evaluated by Sirius red staining. Levels of inflammatory factors were assessed using RT-qPCR. Sympathetic nerve remodeling was assessed through ELISA, western blotting, immunohistochemistry, and immunofluorescence staining. Macrophage polarization was evaluated using flow cytometry. Our results indicated that cardiac systolic function improved significantly after EA treatment, with an increase in fractional shortening and ejection fraction. Myocardial fibrosis was significantly mitigated in the EA group. The sympathetic nerve marker tyrosine hydroxylase and the nerve sprouting marker growth-associated Protein 43 were significantly reduced in the EA group, indicating that sympathetic remodeling was significantly reduced. EA treatment also promoted macrophage M2 polarization, reduced levels of inflammatory factors TNF-α, IL-1β, and IL-6, and decreased macrophage-associated nerve growth factor in myocardial tissue. To sum up, our results suggest that EA at PC6 attenuates sympathetic remodeling after MI to promote macrophage M2 polarization and improve cardiac function.
Collapse
Affiliation(s)
- Rou Peng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
| | - Junjing Shi
- The Second People's Hospital of Qidong, South Ring Road No. 229, Lvsigang Town, Qidong, Jiangsu Province 226200, China
| | - Minjiao Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
| | - Danying Qian
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuhang Yan
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hua Bai
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
| | - Meiling Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Cao
- Acupuncture and Chronobiology Key Laboratory of Sichuan ProvinceAcupuncture and Tuina School/Third Teaching HospitalChengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shuping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of EducationNanjing University of Chinese Medicine, Nanjing 210023, China
- School of Elderly Care Services and ManagementNanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
9
|
Bauer J, Vlcek J, Pauly V, Hesse N, Xia R, Mo L, Chivukula AS, Villgrater H, Dressler M, Hildebrand B, Wolf E, Rizas KD, Bauer A, Kääb S, Tomsits P, Schüttler D, Clauss S. Biomarker Periodic Repolarization Dynamics Indicates Enhanced Risk for Arrhythmias and Sudden Cardiac Death in Myocardial Infarction in Pigs. J Am Heart Assoc 2024; 13:e032405. [PMID: 38639363 PMCID: PMC11179938 DOI: 10.1161/jaha.123.032405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/08/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Periodic repolarization dynamics (PRD) is an electrocardiographic biomarker that captures repolarization instability in the low frequency spectrum and is believed to estimate the sympathetic effect on the ventricular myocardium. High PRD indicates an increased risk for postischemic sudden cardiac death (SCD). However, a direct link between PRD and proarrhythmogenic autonomic remodeling has not yet been shown. METHODS AND RESULTS We investigated autonomic remodeling in pigs with myocardial infarction (MI)-related ischemic heart failure induced by balloon occlusion of the left anterior descending artery (n=17) compared with pigs without MI (n=11). Thirty days after MI, pigs demonstrated enhanced sympathetic innervation in the infarct area, border zone, and remote left ventricle paralleled by altered expression of autonomic marker genes/proteins. PRD was enhanced 30 days after MI compared with baseline (pre-MI versus post-MI: 1.75±0.30 deg2 versus 3.29±0.79 deg2, P<0.05) reflecting pronounced autonomic alterations on the level of the ventricular myocardium. Pigs with MI-related ventricular fibrillation and SCD had significantly higher pre-MI PRD than pigs without tachyarrhythmias, suggesting a potential role for PRD as a predictive biomarker for ischemia-related arrhythmias (no ventricular fibrillation versus ventricular fibrillation: 1.50±0.39 deg2 versus 3.18±0.53 deg2 [P<0.05]; no SCD versus SCD: 1.67±0.32 deg2 versus 3.91±0.63 deg2 [P<0.01]). CONCLUSIONS We demonstrate that ischemic heart failure leads to significant proarrhythmogenic autonomic remodeling. The concomitant elevation of PRD levels in pigs with ischemic heart failure and pigs with MI-related ventricular fibrillation/SCD suggests PRD as a biomarker for autonomic remodeling and as a potential predictive biomarker for ventricular arrhythmias/survival in the context of MI.
Collapse
Affiliation(s)
- Julia Bauer
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Julia Vlcek
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Valerie Pauly
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Nora Hesse
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Ruibing Xia
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Li Mo
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Aparna Sharma Chivukula
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Hannes Villgrater
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Marie Dressler
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Bianca Hildebrand
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU MunichMunichGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU MunichMunichGermany
| | - Konstantinos D. Rizas
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
| | - Axel Bauer
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- University Hospital for Internal Medicine IIIMedical University of InnsbruckInnsbruckAustria
| | - Stefan Kääb
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU MunichMunichGermany
| | - Philipp Tomsits
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Dominik Schüttler
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
| | - Sebastian Clauss
- Department of Medicine IUniversity Hospital, LMU MunichMunichGermany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart AllianceMunichGermany
- Institute of Surgical Research at the Walter‐Brendel‐Centre of Experimental MedicineUniversity Hospital, LMU MunichMunichGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU MunichMunichGermany
| |
Collapse
|
10
|
Chen HS, van Roon L, Ge Y, van Gils JM, Schoones JW, DeRuiter MC, Zeppenfeld K, Jongbloed MRM. The relevance of the superior cervical ganglion for cardiac autonomic innervation in health and disease: a systematic review. Clin Auton Res 2024; 34:45-77. [PMID: 38393672 PMCID: PMC10944423 DOI: 10.1007/s10286-024-01019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE The heart receives cervical and thoracic sympathetic contributions. Although the stellate ganglion is considered the main contributor to cardiac sympathetic innervation, the superior cervical ganglia (SCG) is used in many experimental studies. The clinical relevance of the SCG to cardiac innervation is controversial. We investigated current morphological and functional evidence as well as controversies on the contribution of the SCG to cardiac innervation. METHODS A systematic literature review was conducted in PubMed, Embase, Web of Science, and COCHRANE Library. Included studies received a full/text review and quality appraisal. RESULTS Seventy-six eligible studies performed between 1976 and 2023 were identified. In all species studied, morphological evidence of direct or indirect SCG contribution to cardiac innervation was found, but its contribution was limited. Morphologically, SCG sidedness may be relevant. There is indirect functional evidence that the SCG contributes to cardiac innervation as shown by its involvement in sympathetic overdrive reactions in cardiac disease states. A direct functional contribution was not found. Functional data on SCG sidedness was largely unavailable. Information about sex differences and pre- and postnatal differences was lacking. CONCLUSION Current literature mainly supports an indirect involvement of the SCG in cardiac innervation, via other structures and plexuses or via sympathetic overdrive in response to cardiac diseases. Morphological evidence of a direct involvement was found, but its contribution seems limited. The relevance of SCG sidedness, sex, and developmental stage in health and disease remains unclear and warrants further exploration.
Collapse
Affiliation(s)
- H Sophia Chen
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, The Netherlands
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lieke van Roon
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yang Ge
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Janine M van Gils
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan W Schoones
- Directorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Zeppenfeld
- Department of Cardiology, Willem Einthoven Center for Cardiac Arrhythmia Research and Management, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Cardiology, Center of Congenital Heart Disease Amsterdam Leiden (CAHAL), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
11
|
Rast J, Sohinki D, Warner A. Non-invasive Neuromodulation of Arrhythmias. J Innov Card Rhythm Manag 2024; 15:5757-5766. [PMID: 38444451 PMCID: PMC10911637 DOI: 10.19102/icrm.2024.15022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/28/2023] [Indexed: 03/07/2024] Open
Abstract
Dysfunction of the cardiac autonomic nervous system (CANS) is associated with various cardiac arrhythmias. Subsequently, invasive techniques have successfully targeted the CANS for the treatment of certain arrhythmias, such as sympathetic denervation for ventricular tachycardia storm. Non-invasive strategies capable of modulating the CANS for arrhythmia treatment have begun to gain interest due to their low-risk profile and applicability as an adjuvant therapy. This review provides an evidence-based overview of the currently studied technologies capable of non-invasively modulating CANS for the suppression of atrial fibrillation and ventricular arrhythmias.
Collapse
|
12
|
Peng Y, Li P, Hu W, Shao Q, Li P, Wen H. Mechanisms by which spinal cord stimulation intervenes in atrial fibrillation: The involvement of the endothelin-1 and nerve growth factor/p75NTR pathways. Open Med (Wars) 2023; 18:20230802. [PMID: 37808162 PMCID: PMC10560034 DOI: 10.1515/med-2023-0802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Can the spinal cord stimulation (SCS) regulate the autonomic nerves through the endothelin-1 (ET-1) and nerve growth factor (NGF)/p75NTR pathways and thus inhibit the occurrence of atrial fibrillation (AF)? In our research, 16 beagles were randomly divided into a rapid atrial pacing (RAP) group (n = 8) and a RAP + SCS group (n = 8), and the effective refractory period (ERP), ERP dispersion, AF induction rate, and AF vulnerability window (WOV) at baseline, 6 h of RAP, 6 h of RAP + SCS were measured. The atrial tissue was then taken for immunohistochemical analysis to determine the localization of ET-1, NGF, p75NTR, NF-kB p65, and other genes. Our results showed that SCS attenuated the shortening of ERP in all parts caused by RAP, and after 6 h of SCS, the probability of AF in dogs was reduced compared with that in the RAP group. Moreover, the expression of ET-1, NGF, and p75NTR in the atrial tissues of dogs in the RAP + SCS group was significantly increased, but the expression of NF-kB p65 was reduced. In conclusion, SCS promotes the positive remodeling of cardiac autonomic nerves by weakening NFκB p65-dependent pathways to interfere with the ET-1 and NGF/p75NTR pathways to resist the original negative remodeling and inhibit the occurrence of AF.
Collapse
Affiliation(s)
- Yiyan Peng
- Xiaogan Central Hospital Postgraduate Training Base of Jinzhou Medical University, Xiaogan, 432100, Hubei, China
- Jinzhou Medical University, Jinzhou, 121001, China
| | - Peng Li
- Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, No. 6, Square Street, Xiaonan District, Xiaogan, 432100, Hubei, China
- Xiaogan Central Hospital, Xiaogan, 432100, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wei Hu
- Xiaogan Central Hospital, Xiaogan, 432100, Hubei, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
- Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, 432100, Hubei, China
| | - Qi Shao
- Xiaogan Central Hospital Postgraduate Training Base of Jinzhou Medical University, Xiaogan, 432100, Hubei, China
- Jinzhou Medical University, Jinzhou, 121001, China
| | - Panpan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
- Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, 432100, Hubei, China
| | - Haiyue Wen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
- Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, 432100, Hubei, China
| |
Collapse
|
13
|
Zhou L, Zhang Y, Cao G, Zhang C, Zheng C, Meng G, Lai Y, Zhou Z, Liu Z, Liu Z, Guo F, Dong X, Liang Z, Wang Y, Guo S, Zhou X, Jiang H, Yu L. Wireless Self-Powered Optogenetic System for Long-Term Cardiac Neuromodulation to Improve Post-MI Cardiac Remodeling and Malignant Arrhythmia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205551. [PMID: 36698262 PMCID: PMC10037959 DOI: 10.1002/advs.202205551] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Autonomic imbalance is an important characteristic of patients after myocardial infarction (MI) and adversely contributes to post-MI cardiac remodeling and ventricular arrhythmias (VAs). A previous study proved that optogenetic modulation could precisely inhibit cardiac sympathetic hyperactivity and prevent acute ischemia-induced VAs. Here, a wireless self-powered optogenetic modulation system is introduced, which achieves long-term precise cardiac neuromodulation in ambulatory canines. The wireless self-powered optical system based on a triboelectric nanogenerator is powered by energy harvested from body motion and realized the effective optical illumination that is required for optogenetic neuromodulation (ON). It is further demonstrated that long-term ON significantly mitigates MI-induced sympathetic remodeling and hyperactivity, and improves a variety of clinically relevant outcomes such as improves ventricular dysfunction, reduces infarct size, increases electrophysiological stability, and reduces susceptibility to VAs. These novel insights suggest that wireless ON holds translational potential for the clinical treatment of arrhythmia and other cardiovascular diseases related to sympathetic hyperactivity. Moreover, this innovative self-powered optical system may provide an opportunity to develop implantable/wearable and self-controllable devices for long-term optogenetic therapy.
Collapse
Affiliation(s)
- Liping Zhou
- Department of CardiologyRenmin Hospital of Wuhan UniversityHubei Key Laboratory of Autonomic Nervous System ModulationCardiac Autonomic Nervous System Research Center of Wuhan UniversityTaikang Center for Life and Medical SciencesWuhan UniversityCardiovascular Research InstituteWuhan UniversityHubei Key Laboratory of CardiologyWuhan430060P. R. China
| | - Yuanzheng Zhang
- Department of CardiologyRenmin Hospital of Wuhan UniversityHubei Key Laboratory of Autonomic Nervous System ModulationCardiac Autonomic Nervous System Research Center of Wuhan UniversityTaikang Center for Life and Medical SciencesWuhan UniversityCardiovascular Research InstituteWuhan UniversityHubei Key Laboratory of CardiologyWuhan430060P. R. China
- Hubei Yangtze Memory LaboratoriesKey Laboratory of Artificial Micro, and Nano‐structures of Ministry of EducationSchool of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| | - Gang Cao
- Biomedical CenterCollege of Veterinary MedicineHuazhong Agricultural UniversityWuhan430072P. R. China
| | - Chi Zhang
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430072P. R. China
| | - Chen Zheng
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430072P. R. China
| | - Guannan Meng
- Department of CardiologyRenmin Hospital of Wuhan UniversityHubei Key Laboratory of Autonomic Nervous System ModulationCardiac Autonomic Nervous System Research Center of Wuhan UniversityTaikang Center for Life and Medical SciencesWuhan UniversityCardiovascular Research InstituteWuhan UniversityHubei Key Laboratory of CardiologyWuhan430060P. R. China
| | - Yanqiu Lai
- Department of CardiologyRenmin Hospital of Wuhan UniversityHubei Key Laboratory of Autonomic Nervous System ModulationCardiac Autonomic Nervous System Research Center of Wuhan UniversityTaikang Center for Life and Medical SciencesWuhan UniversityCardiovascular Research InstituteWuhan UniversityHubei Key Laboratory of CardiologyWuhan430060P. R. China
| | - Zhen Zhou
- Department of CardiologyRenmin Hospital of Wuhan UniversityHubei Key Laboratory of Autonomic Nervous System ModulationCardiac Autonomic Nervous System Research Center of Wuhan UniversityTaikang Center for Life and Medical SciencesWuhan UniversityCardiovascular Research InstituteWuhan UniversityHubei Key Laboratory of CardiologyWuhan430060P. R. China
| | - Zhihao Liu
- Department of CardiologyRenmin Hospital of Wuhan UniversityHubei Key Laboratory of Autonomic Nervous System ModulationCardiac Autonomic Nervous System Research Center of Wuhan UniversityTaikang Center for Life and Medical SciencesWuhan UniversityCardiovascular Research InstituteWuhan UniversityHubei Key Laboratory of CardiologyWuhan430060P. R. China
| | - Zihan Liu
- Department of CardiologyRenmin Hospital of Wuhan UniversityHubei Key Laboratory of Autonomic Nervous System ModulationCardiac Autonomic Nervous System Research Center of Wuhan UniversityTaikang Center for Life and Medical SciencesWuhan UniversityCardiovascular Research InstituteWuhan UniversityHubei Key Laboratory of CardiologyWuhan430060P. R. China
| | - Fuding Guo
- Department of CardiologyRenmin Hospital of Wuhan UniversityHubei Key Laboratory of Autonomic Nervous System ModulationCardiac Autonomic Nervous System Research Center of Wuhan UniversityTaikang Center for Life and Medical SciencesWuhan UniversityCardiovascular Research InstituteWuhan UniversityHubei Key Laboratory of CardiologyWuhan430060P. R. China
| | - Xin Dong
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430072P. R. China
| | - Zhizhuo Liang
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430072P. R. China
| | - Yueyi Wang
- Department of CardiologyRenmin Hospital of Wuhan UniversityHubei Key Laboratory of Autonomic Nervous System ModulationCardiac Autonomic Nervous System Research Center of Wuhan UniversityTaikang Center for Life and Medical SciencesWuhan UniversityCardiovascular Research InstituteWuhan UniversityHubei Key Laboratory of CardiologyWuhan430060P. R. China
| | - Shishang Guo
- Hubei Yangtze Memory LaboratoriesKey Laboratory of Artificial Micro, and Nano‐structures of Ministry of EducationSchool of Physics and TechnologyWuhan UniversityWuhan430072P. R. China
| | - Xiaoya Zhou
- Department of CardiologyRenmin Hospital of Wuhan UniversityHubei Key Laboratory of Autonomic Nervous System ModulationCardiac Autonomic Nervous System Research Center of Wuhan UniversityTaikang Center for Life and Medical SciencesWuhan UniversityCardiovascular Research InstituteWuhan UniversityHubei Key Laboratory of CardiologyWuhan430060P. R. China
| | - Hong Jiang
- Department of CardiologyRenmin Hospital of Wuhan UniversityHubei Key Laboratory of Autonomic Nervous System ModulationCardiac Autonomic Nervous System Research Center of Wuhan UniversityTaikang Center for Life and Medical SciencesWuhan UniversityCardiovascular Research InstituteWuhan UniversityHubei Key Laboratory of CardiologyWuhan430060P. R. China
| | - Lilei Yu
- Department of CardiologyRenmin Hospital of Wuhan UniversityHubei Key Laboratory of Autonomic Nervous System ModulationCardiac Autonomic Nervous System Research Center of Wuhan UniversityTaikang Center for Life and Medical SciencesWuhan UniversityCardiovascular Research InstituteWuhan UniversityHubei Key Laboratory of CardiologyWuhan430060P. R. China
| |
Collapse
|
14
|
Sahoglu SG, Kazci YE, Karadogan B, Aydin MS, Nebol A, Turhan MU, Ozturk G, Cagavi E. High-resolution mapping of sensory fibers at the healthy and post-myocardial infarct whole transgenic hearts. J Neurosci Res 2023; 101:338-353. [PMID: 36517461 DOI: 10.1002/jnr.25150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/15/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
The sensory nervous system is critical to maintain cardiac function. As opposed to efferent innervation, less is known about cardiac afferents. For this, we mapped the VGLUT2-expressing cardiac afferent fibers of spinal and vagal origin by using the VGLUT2::tdTomato double transgenic mouse as an approach to visualize the whole hearts both at the dorsal and ventral sides. For comparison, we colabeled mixed-sex transgenic hearts with either TUJ1 protein for global cardiac innervation or tyrosine hydroxylase for the sympathetic network at the healthy state or following ischemic injury. Interestingly, the nerve density for global and VGLUT2-expressing afferents was found significantly higher on the dorsal side compared to the ventral side. From the global nerve innervation detected by TUJ1 immunoreactivity, VGLUT2 afferent innervation was detected to be 15-25% of the total network. The detailed characterization of both the atria and the ventricles revealed a remarkable diversity of spinal afferent nerve ending morphologies of flower sprays, intramuscular endings, and end-net branches that innervate distinct anatomical parts of the heart. Using this integrative approach in a chronic myocardial infarct model, we showed a significant increase in hyperinnervation in the form of axonal sprouts for cardiac afferents at the infarct border zone, as well as denervation at distal sites of the ischemic area. The functional and physiological consequences of the abnormal sensory innervation remodeling post-ischemic injury should be further evaluated in future studies regarding their potential contribution to cardiac dysfunction.
Collapse
Affiliation(s)
- Sevilay Goktas Sahoglu
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Neuroscience Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Yusuf Enes Kazci
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Neuroscience Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Behnaz Karadogan
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Serif Aydin
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Aylin Nebol
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Medical Biology and Genetics Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Ugurcan Turhan
- Department of Cardiovascular Surgery, Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Gurkan Ozturk
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Physiology, International School of Medicine, Istanbul Medipol University, İstanbul, Turkey
| | - Esra Cagavi
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Medical Biology and Genetics Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
15
|
Elia A, Fossati S. Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer's disease. Front Physiol 2023; 14:1060666. [PMID: 36798942 PMCID: PMC9926972 DOI: 10.3389/fphys.2023.1060666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The heart is a functional syncytium controlled by a delicate and sophisticated balance ensured by the tight coordination of its several cell subpopulations. Accordingly, cardiomyocytes together with the surrounding microenvironment participate in the heart tissue homeostasis. In the right atrium, the sinoatrial nodal cells regulate the cardiac impulse propagation through cardiomyocytes, thus ensuring the maintenance of the electric network in the heart tissue. Notably, the central nervous system (CNS) modulates the cardiac rhythm through the two limbs of the autonomic nervous system (ANS): the parasympathetic and sympathetic compartments. The autonomic nervous system exerts non-voluntary effects on different peripheral organs. The main neuromodulator of the Sympathetic Nervous System (SNS) is norepinephrine, while the principal neurotransmitter of the Parasympathetic Nervous System (PNS) is acetylcholine. Through these two main neurohormones, the ANS can gradually regulate cardiac, vascular, visceral, and glandular functions by turning on one of its two branches (adrenergic and/or cholinergic), which exert opposite effects on targeted organs. Besides these neuromodulators, the cardiac nervous system is ruled by specific neuropeptides (neurotrophic factors) that help to preserve innervation homeostasis through the myocardial layers (from epicardium to endocardium). Interestingly, the dysregulation of this neuro-signaling pathway may expose the cardiac tissue to severe disorders of different etiology and nature. Specifically, a maladaptive remodeling of the cardiac nervous system may culminate in a progressive loss of neurotrophins, thus leading to severe myocardial denervation, as observed in different cardiometabolic and neurodegenerative diseases (myocardial infarction, heart failure, Alzheimer's disease). This review analyzes the current knowledge on the pathophysiological processes involved in cardiac nervous system impairment from the perspectives of both cardiac disorders and a widely diffused and devastating neurodegenerative disorder, Alzheimer's disease, proposing a relationship between neurodegeneration, loss of neurotrophic factors, and cardiac nervous system impairment. This overview is conducive to a more comprehensive understanding of the process of cardiac neuro-signaling dysfunction, while bringing to light potential therapeutic scenarios to correct or delay the adverse cardiovascular remodeling, thus improving the cardiac prognosis and quality of life in patients with heart or neurodegenerative disorders.
Collapse
|
16
|
Ge Y, van Roon L, van Gils JM, Geestman T, van Munsteren CJ, Smits AM, Goumans MJTH, DeRuiter MC, Jongbloed MRM. Acute myocardial infarction induces remodeling of the murine superior cervical ganglia and the carotid body. Front Cardiovasc Med 2022; 9:758265. [PMID: 36277772 PMCID: PMC9582601 DOI: 10.3389/fcvm.2022.758265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
A role for cardiac sympathetic hyperinnervation in arrhythmogenesis after myocardial infarction (MI) has increasingly been recognized. In humans and mice, the heart receives cervical as well as thoracic sympathetic contributions. In mice, superior cervical ganglia (SCG) have been shown to contribute significantly to myocardial sympathetic innervation of the left ventricular anterior wall. Of interest, the SCG is situated adjacent to the carotid body (CB), a small organ involved in oxygen and metabolic sensing. We investigated the remodeling of murine SCG and CB over time after MI. Murine SCG were isolated from control mice, as well as 24 h, 3 days, 7 days and 6 weeks after MI. SCG and CBs were stained for the autonomic nervous system markers β3-tubulin, tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT), as well as for the neurotrophic factors brain derived neurotropic factor (BDNF), nerve growth factor (NGF) and their tyrosine receptor kinase (pan TRK). Results show that after MI a significant increase in neuron size occurs, especially in the region bordering the CB. Co-expression of TH and ChAT is observed in SCG neuronal cells, but not in the CB. After MI, a significant decrease in ChAT intensity occurs, which negatively correlated with the increased cell size. In addition, an increase of BDNF and NGF at protein and mRNA levels was observed in both the CB and SCG. This upregulation of neurotropic factors coincides with the upregulation of their receptor within the SCG. These findings were concomitant with an increase in GAP43 expression in the SCG, which is known to contribute to axonal outgrowth and elongation. In conclusion, neuronal remodeling toward an increased adrenergic phenotype occurs in the SCG, which is possibly mediated by the CB and might contribute to pathological hyperinnervation after MI.
Collapse
Affiliation(s)
- Yang Ge
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands,Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Lieke van Roon
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands,Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Janine M. van Gils
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands,Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Tom Geestman
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Conny J. van Munsteren
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Anke M. Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Marco C. DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Monique R. M. Jongbloed
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands,Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Monique R. M. Jongbloed, ; orcid.org/0000-0002-9132-0418
| |
Collapse
|
17
|
Effect of WenXin KeLi on Improvement of Arrhythmia after Myocardial Infarction by Intervening PI3K-AKT-mTOR Autophagy Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2022970. [PMID: 36212955 PMCID: PMC9536921 DOI: 10.1155/2022/2022970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/12/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
Background Myocardial infarction (MI) is an acute and serious cardiovascular disease. Arrhythmia after MI can lead to sudden cardiac death, which seriously affects the survival outcome of patients. WenXin KeLi is a Chinese patent medicine for the treatment of arrhythmia in a clinic, which can significantly improve symptoms of palpitation and play an important role in reducing the risk of arrhythmia after MI. In this study, we aimed to explore the pharmacological mechanism of WenXin KeLi in protecting the heart. Methods The MI model was established by ligating the left coronary artery and the ventricular fibrillation threshold (VFT) was measured by electrical stimulation. The expression of connexin43 (CX43) and autophagy-related protein were measured by Western Blot, and correlation analysis was conducted to study the relationship between cardiac autophagy, CX43, and arrhythmia in rats after MI. The effects of WenXin KeLi on arrhythmia, cardiac structure, and function in MI rats were respectively observed by electrical stimulation, cardiac gross section, Masson staining, and cardiac ultrasound. The effects of WenXin KeLi on the expression of phosphoinositide 3 kinase-protein kinase B-mammalian targets of rapamycin (PI3K-AKT-mTOR) autophagy pathway and CX43 were observed by Western Blot. Results After 4 weeks of MI, the VFT in the model group was significantly reduced, the expression levels of yeast ATG6 homolog (Beclin1), microtubule-associated protein 1A/1B-light chain 3 (LC3II/LC3I), and p-CX43 (S368) significantly increased, the expression of sequestosome-1(P62) and CX43 significantly decreased. LC3II/LC3I and Beclin1 expression were significantly negatively correlated with the VFT, and the expression of P62 and CX43 were significantly positively correlated with the VFT. LC3II/LC3I and Beclin1 expression were negatively correlated with CX43 expression, while P62 expression was positively correlated with CX43 expression. WenXin KeLi could significantly increase the VFT, reduce the deposition of collagen fibers, and increase the index levels of the left ventricular end-diastolic anterior wall (LVEDAW), interventricular septum end-diastolic (IVSED), left ventricular end-systolic anterior wall (LVESAW), interventricular septum end-systolic (IVSES), left ventricular end-diastolic posterior wall (LVEDPW), left ventricular end-systolic posterior wall (LVESPW), left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), and reduce the index levels of the left ventricular end-diastolic dimension (LVEDD), left ventricular end-systolic dimension (LVESD), left ventricular end-diastolic volume (LVEDV) and left ventricular end-systolic volume (LVESV). WenXin KeLi could increase the expression of CX43, P62, AKT, p-PI3K, p-AKT (308), p-AKT (473), and p-mTOR and decrease the expression of LC3II/LC3I and Beclin1. Conclusion WenXin KeLi can activate the PI3K-AKT-mTOR signaling pathway, improve cardiac autophagy and Cx43 expression in rats after MI, reduce the risk of arrhythmia after MI, and play a cardioprotective role.
Collapse
|
18
|
Dong Y, Xiao S, He J, Shi K, Chen S, Liu D, Huang B, Zhai Z, Li J. Angiotensin receptor-neprilysin inhibitor therapy and recurrence of atrial fibrillation after radiofrequency catheter ablation: A propensity-matched cohort study. Front Cardiovasc Med 2022; 9:932780. [PMID: 35990986 PMCID: PMC9386595 DOI: 10.3389/fcvm.2022.932780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCompared with conventional medicines, angiotensin receptor-neprilysin inhibitor (ARNI) could further improve the prognosis for multiple cardiovascular diseases, such as heart failure, hypertension, and myocardial infarction. However, the relationship between ARNI therapy and the recurrence of atrial fibrillation (AF) after radiofrequency catheter ablation is currently unknown.MethodsThis study is a retrospective cohort study. Patients with consecutive persistent or paroxysmal AF undergoing first-time radiofrequency ablation were enrolled from February 2018 to October 2021. We compared the risk of AF recurrence in patients with catheter ablation who received ARNI with the risk of AF recurrence in those who received the angiotensin-converting enzyme inhibitor (ACEI). The propensity-score matched analysis was conducted to examine the effectiveness of ARNI. We used a Cox regression model to evaluate AF recurrence events.ResultsAmong 679 eligible patients, 155 patients with ARNI treatment and 155 patients with ACEI treatment were included in the analyses. At a median follow-up of 228 (196–322) days, ARNI as compared with ACEI was associated with a lower risk of AF recurrence [adjusted hazard ratio (HR), 0.39; 95% confidence interval (CI), 0.24–0.63; p < 0.001]. In addition, no interaction was found in the subgroup analysis.ConclusionAngiotensin receptor-neprilysin inhibitor treatment was associated with a decreased risk of AF recurrence after first-time radiofrequency catheter ablation.
Collapse
|
19
|
Yang M, Xiong J, Zou Q, Wang X, Hu K, Zhao Q. Sinapic Acid Attenuated Cardiac Remodeling After Myocardial Infarction by Promoting Macrophage M2 Polarization Through the PPARγ Pathway. Front Cardiovasc Med 2022; 9:915903. [PMID: 35898278 PMCID: PMC9309384 DOI: 10.3389/fcvm.2022.915903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background Macrophage polarization is an important regulatory mechanism of ventricular remodeling. Studies have shown that sinapic acid (SA) exerts an anti-inflammatory effect. However, the effect of SA on macrophages is still unclear. Objectives The purpose of the study was to investigate the role of SA in macrophage polarization and ventricular remodeling after myocardial infarction (MI). Methods An MI model was established by ligating the left coronary artery. The rats with MI were treated with SA for 1 or 4 weeks after MI. The effect of SA on bone marrow-derived macrophages (BMDMs) was also observed in vitro. Results Cardiac systolic dysfunction was significantly improved after SA treatment. SA reduced MCP-1 and CCR2 expression and macrophage infiltration. SA decreased the levels of the inflammatory factors TNF-α, IL-1α, IL-1β, and iNOS and increased the levels of the M2 macrophage markers CD206, Arg-1, IL-10, Ym-1, Fizz-1, and TGF-β at 1 week after MI. SA significantly increased CD68+/CD206+ macrophage infiltration. Myocardial interstitial fibrosis and MMP-2 and MMP-9 levels were decreased, and the sympathetic nerve marker TH and nerve sprouting marker GAP43 were suppressed after SA treatment at 4 weeks after MI. The PPARγ level was notably upregulated after SA treatment. In vitro, SA also increased the expression of PPARγ mRNA in BMDMs and IL-4-treated BMDMs in a concentration-dependent manner. SA enhanced Arg1 and IL-10 expression in BMDMs, and the PPARγ antagonist GW9662 attenuated M2 macrophage marker expression. Conclusions Our results demonstrated that SA attenuated structural and neural remodeling by promoting macrophage M2 polarization via PPARγ activation after MI.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Xiong
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Qingyan Zhao
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Ke Hu
| |
Collapse
|
20
|
Walkowski B, Kleibert M, Majka M, Wojciechowska M. Insight into the Role of the PI3K/Akt Pathway in Ischemic Injury and Post-Infarct Left Ventricular Remodeling in Normal and Diabetic Heart. Cells 2022; 11:cells11091553. [PMID: 35563860 PMCID: PMC9105930 DOI: 10.3390/cells11091553] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Despite the significant decline in mortality, cardiovascular diseases are still the leading cause of death worldwide. Among them, myocardial infarction (MI) seems to be the most important. A further decline in the death rate may be achieved by the introduction of molecularly targeted drugs. It seems that the components of the PI3K/Akt signaling pathway are good candidates for this. The PI3K/Akt pathway plays a key role in the regulation of the growth and survival of cells, such as cardiomyocytes. In addition, it has been shown that the activation of the PI3K/Akt pathway results in the alleviation of the negative post-infarct changes in the myocardium and is impaired in the state of diabetes. In this article, the role of this pathway was described in each step of ischemia and subsequent left ventricular remodeling. In addition, we point out the most promising substances which need more investigation before introduction into clinical practice. Moreover, we present the impact of diabetes and widely used cardiac and antidiabetic drugs on the PI3K/Akt pathway and discuss the molecular mechanism of its effects on myocardial ischemia and left ventricular remodeling.
Collapse
Affiliation(s)
- Bartosz Walkowski
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
21
|
The Preventive Effect of Cardiac Sympathetic Denervation Induced by 6-OHDA on Myocardial Ischemia-Reperfusion Injury: The Changes of lncRNA/circRNAs-miRNA-mRNA Network of the Upper Thoracic Spinal Cord in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2492286. [PMID: 34880964 PMCID: PMC8648479 DOI: 10.1155/2021/2492286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
In this study, we investigated whether chemical 6-hydroxydopamine (6-OHDA) stimuli caused cardiac sympathetic denervation (SD), and we analyzed gene expression profiles to determine the changes in the lncRNA/circRNAs-miRNA-mRNA network in the affected spinal cord segments to identify putative target genes and molecular pathways in rats with myocardial ischemia–reperfusion injury (MIRI). Our results showed that cardiac sympathetic denervation induced by 6-OHDA alleviated MIRI. Compared with the ischemia reperfusion (IR, MIRI model) group, there were 148 upregulated and 51 downregulated mRNAs, 165 upregulated and 168 downregulated lncRNAs, 70 upregulated and 52 downregulated circRNAs, and 12 upregulated and 11 downregulated miRNAs in the upper thoracic spinal cord of the SD-IR group. Furthermore, we found that the differential genes related to cellular components were mainly enriched in extracellular and cortical cytoskeleton, and molecular functions were mainly enriched in chemokine activity. Pathway analysis showed that the differentially expressed genes were mainly related to the interaction of cytokines and cytokine receptors, sodium ion reabsorption, cysteine and methionine metabolism, mucoglycan biosynthesis, cGMP-PKG signaling pathway, and MAPK signaling pathway. In conclusion, the lncRNA/circRNAs-miRNA-mRNA networks in the upper thoracic spinal cord play an important role in the preventive effect of cardiac sympathetic denervation induced by 6-OHDA on MIRI, which offers new insights into the pathogenesis of MIRI and provides new targets for MIRI.
Collapse
|
22
|
Colchicine to Prevent Sympathetic Denervation after an Acute Myocardial Infarction: The COLD-MI Trial Protocol. ACTA ACUST UNITED AC 2021; 57:medicina57101047. [PMID: 34684084 PMCID: PMC8538713 DOI: 10.3390/medicina57101047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/04/2022]
Abstract
Inflammatory processes are deeply involved in ischemia-reperfusion injuries (IRI) and ventricular remodelling (VR) after a ST-segment elevation myocardial infarction (STEMI). They are associated with clinical adverse events (heart failure and cardiovascular death) adding damage to the myocardium after reperfusion. Moreover, acute myocardial infarction (AMI) induces a local sympathetic denervation leading to electrical instability and arrythmia. Colchicine, a well-known alkaloid with direct anti-inflammatory effects, was shown to reduce the myocardial necrosis size and limit the VR. In a recent proof of concept study, colchicine appears to prevent sympathetic denervation in a mice model of ischemia/reperfusion, but not in the necrosis or in the border zone areas. The Colchicine to Prevent Sympathetic Denervation after an AMI study (COLD-MI) is an ongoing, confirmative, prospective, monocentre, randomized, open-label trial. The COLD-MI trial aims to evaluate the intensity of sympathetic denervation after AMI and its potential modulation due to low dose colchicine. Sympathetic denervation will be noninvasively evaluated using single-photon emission computed tomography (SPECT). After a first episode of STEMI (Initial TIMI flow ≤ 1) and primary percutaneous coronary intervention (PPCI), patients will be randomized (n = 56) in a 1:1 ratio to either receive colchicine or not for 30 days. The primary end point will be the percentage of myocardial denervation measured by 123I-metaiodobenzylguanidine (123I-MIBG) SPECT at a 6-month follow-up. The main secondary end points will be basic ECG parameters (QRS duration, corrected QT) and HRV parameters from a 24 hour-recording Holter at 1- and 6-months follow-up. Results from this study will contribute to a better understanding of the cardioprotective effect of colchicine after AMI. The present study describes the rationale, design, and methods of the trial.
Collapse
|
23
|
Zandstra TE, Notenboom RGE, Wink J, Kiès P, Vliegen HW, Egorova AD, Schalij MJ, De Ruiter MC, Jongbloed MRM. Asymmetry and Heterogeneity: Part and Parcel in Cardiac Autonomic Innervation and Function. Front Physiol 2021; 12:665298. [PMID: 34603069 PMCID: PMC8481575 DOI: 10.3389/fphys.2021.665298] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The cardiac autonomic nervous system (cANS) regulates cardiac adaptation to different demands. The heart is an asymmetrical organ, and in the selection of adequate treatment of cardiac diseases it may be relevant to take into account that the cANS also has sidedness as well as regional differences in anatomical, functional, and molecular characteristics. The left and right ventricles respond differently to adrenergic stimulation. Isoforms of nitric oxide synthase, which plays an important role in parasympathetic function, are also distributed asymmetrically across the heart. Treatment of cardiac disease heavily relies on affecting left-sided heart targets which are thought to apply to the right ventricle as well. Functional studies of the right ventricle have often been neglected. In addition, many principles have only been investigated in animals and not in humans. Anatomical and functional heterogeneity of the cANS in human tissue or subjects is highly valuable for understanding left- and right-sided cardiac pathology and for identifying novel treatment targets and modalities. Within this perspective, we aim to provide an overview and synthesis of anatomical and functional heterogeneity of the cANS in tissue or subjects, focusing on the human heart.
Collapse
Affiliation(s)
- Tjitske E. Zandstra
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jeroen Wink
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Philippine Kiès
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Hubert W. Vliegen
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Martin J. Schalij
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marco C. De Ruiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Monique R. M. Jongbloed
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
24
|
Effects of Yiqi Huoxue Decoction on Post-Myocardial Infarction Cardiac Nerve Remodeling and Cardiomyocyte Hypertrophy in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5168574. [PMID: 34471416 PMCID: PMC8405294 DOI: 10.1155/2021/5168574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
Myocardial infarction can lead to ventricular remodeling and arrhythmia, which is closely related to nerve remodeling. Our previous study found that Yiqi Huoxue decoction (YQHX) can improve ventricular remodeling and reduce myocardial damage. Therefore, in this study, we observed the effect of YQHX on cardiac neural remodeling and cardiomyocyte hypertrophy and its possible mechanism. This research is composed of two parts: animal and H9c2 cells experiments. The animal model of acute myocardial infarction was established by ligating the left anterior descending coronary artery in Sprague Dawley (SD) rats. H9c2 cells were placed in 94% N2, 5% CO2, and 1% O2 hypoxic environment for 12 hours to replicate the hypoglycemic hypoxia model. The experimental results showed that, compared with the MI group, YQHX can significantly improve heart function after myocardial infarction and reduce nerve remodeling and myocardial hypertrophy. Pathological structure observation demonstrated reducing myocardial tissue damage and decreasing of cell cross-sectional area, diameter, and circumference. The positive rate of TH declined apparently, and the sympathetic nerve density was lower than that of the MI group. After YQHX was given for 28 days, the proneural remodeling factors TH, NGF, and GAP43 in the marginal zone of infarction and stellate ganglion decreased obviously while the inhibitory nerve remodeling factor Sema-3A increased. The myocardial hypertrophic protein ANP and β-MHC were also significantly inhibited with p-ERK1/2 protein expression level prominently reduced. There was no difference between the YQHX group and the Meto group. After myocardial infarction, nerve remodeling was seen in the marginal area of infarction and stellate ganglion, and the neuropeptides released by which promoted myocardial hypertrophy. The mechanism may be related to the ERK1/2 signaling pathway. YQHX could regulate the ERK1/2 signaling pathway, inhibit the release of nerve remodeling factors and myocardial hypertrophy protein to reduce nerve remodeling, and relieve myocardial hypertrophy.
Collapse
|
25
|
Fujiu K, Manabe I. Nerve-macrophage interactions in cardiovascular disease. Int Immunol 2021; 34:81-95. [PMID: 34173833 DOI: 10.1093/intimm/dxab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
The heart is highly innervated by autonomic neurons, and dynamic autonomic regulation of the heart and blood vessels is essential for animals to carry out the normal activities of life. Cardiovascular diseases, including heart failure and myocardial infarction, are often characterized in part by an imbalance in autonomic nervous system activation, with excess sympathetic and diminished parasympathetic activation. Notably, however, this is often accompanied by chronic inflammation within the cardiovascular tissues, which suggests there are interactions between autonomic dysregulation and inflammation. Recent studies have been unraveling the mechanistic links between autonomic nerves and immune cells within cardiovascular disease. The autonomic nervous system and immune system also act in concert to coordinate the actions of multiple organs that not only maintain homeostasis but also likely play key roles in disease-disease interactions, such as cardiorenal syndrome and multimorbidity. In this review, we summarize the physiological and pathological interactions between autonomic nerves and macrophages in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan.,Department of Advanced Cardiology, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo, Chiba, Chiba, Japan
| |
Collapse
|
26
|
LianXia Formula Granule Attenuates Cardiac Sympathetic Remodeling in Rats with Myocardial Infarction via the NGF/TrKA/PI3K/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5536406. [PMID: 34221073 PMCID: PMC8213506 DOI: 10.1155/2021/5536406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 01/24/2023]
Abstract
Sympathetic remodeling may cause severe arrhythmia after myocardial infarction (MI). Thus, targeting this process may be an effective strategy for clinical prevention of arrhythmias. LianXia Formula Granule (LXFG) can effectively improve the symptoms of patients with arrhythmia after MI, and modern pharmacological studies have shown that Coptidis Rhizoma and Rhizoma Pinelliae Preparata, the components of LXFG, have antiarrhythmia effects. Here, we investigated whether LXFG can mitigate sympathetic remodeling and suppress arrhythmia and then elucidated its underlying mechanism of action in rats after MI. Sprague-Dawley (SD) rats that had undergone a myocardial infarction model were randomly divided into 6 groups, namely, sham, model, metoprolol, and LXFG groups, with high, medium, and low dosages. We exposed the animals to 30 days of treatment and then evaluated incidence of arrhythmia and arrhythmia scores in vivo using programmed electrical stimulation. Moreover, we determined plasma catecholamines contents via enzyme-linked immunosorbent assay and detected expression of tyrosine hydroxylase (TH) at infarcted border zones via western blot, real-time PCR, and immunohistochemical analyses to assess sympathetic remodeling. Finally, we measured key molecules involved in the NGF/TrKA/PI3K/AKT pathways via western blot and real-time PCR. Compared with the model group, treatment with high dose of LXFG suppressed arrhythmia incidence and arrhythmia scores. In addition, all the LXFG groups significantly decreased protein and mRNA levels of TH, improved the average optical density of TH-positive nerve fibers, and reduced the levels of plasma catecholamines relative to the model group. Meanwhile, expression analysis revealed that key molecules in the NGF/TrKA/PI3K/AKT pathways were downregulated in the LXFG group when compared with model group. Overall, these findings indicate that LXFG suppresses arrhythmia and attenuates sympathetic remodeling in rats after MI. The mechanism is probably regulated by suppression of the NGF/TrKA/PI3K/AKT signaling pathway.
Collapse
|
27
|
Lu SF, Wang JM, Yuan J, Yang WX, Chen LY, Zhang T, Jing XY, Zhuang Y, Zhang CS, Fu SP, Yu ML. Electroacupuncture improves cardiac function and reduces infarct size by modulating cardiac autonomic remodeling in a mouse model of myocardial ischemia. Acupunct Med 2021; 39:681-690. [PMID: 34056953 DOI: 10.1177/09645284211009536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Sympathetic and parasympathetic nerve remodeling play an important role in cardiac function after myocardial ischemia (MI) injury. Increasing evidence indicates that electroacupuncture (EA) can regulate cardiac function by modulating the autonomic nervous system (ANS), but little is known about its effectiveness on neural remodeling post-MI. OBJECTIVES To investigate the role of EA in ANS remodeling post-MI. METHODS Adult male C57/BL6 mice were equally divided into the Control (Ctrl), MI and EA groups after generating the MI model by ligating the left anterior descending (LAD) coronary artery. Echocardiography and 2,3,5-triphenyltetrazolium (TTC) staining were employed to evaluate cardiac function and infarct size after EA treatment for five consecutive days. Serum norepinephrine (NE) levels were measured by ELISA to quantify sympathetic activation. Then, ANS remodeling was detected by immunohistochemistry (IHC), RT-qPCR, and Western blotting. RESULTS Our preliminary findings showed that EA increased ejection fraction and fractional shortening and reduced infarct area after MI injury. Serum NE levels in the EA group were significantly decreased compared with those in the MI group. IHC staining results demonstrated that the density of growth associated protein (GAP)43 and tyrosine hydroxylase (TH) positive nerve fibers in the EA group were decreased with increased choline acetyltransferase (CHAT) and vesicular acetylcholine transporter (VACHT). Meanwhile, the results verified that mRNA and protein expression of GAP43 and TH were significantly inhibited by EA treatment in the MI mice, accompanied by elevated CHAT and VACHT. CONCLUSIONS EA treatment could improve cardiac function and reduce infarct size by modulating sympathetic and parasympathetic nerve remodeling post-MI, thus helping the cardiac ANS reach a new balance to try to protect the heart from further possible injury.
Collapse
Affiliation(s)
- Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun-Meng Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Yuan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Xiu Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Yao Chen
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Yue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Zhuang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng-Shun Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu-Ping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei-Ling Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
28
|
Chatterjee NA, Singh JP. Autonomic modulation and cardiac arrhythmias: old insights and novel strategies. Europace 2021; 23:1708-1721. [PMID: 34050642 DOI: 10.1093/europace/euab118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
The autonomic nervous system (ANS) plays a critical role in both health and states of cardiovascular disease. There has been a long-recognized role of the ANS in the pathogenesis of both atrial and ventricular arrhythmias (VAs). This historical understanding has been expanded in the context of evolving insights into the anatomy and physiology of the ANS, including dysfunction of the ANS in cardiovascular disease such as heart failure and myocardial infarction. An expanding armamentarium of therapeutic strategies-both invasive and non-invasive-have brought the potential of ANS modulation to contemporary clinical practice. Here, we summarize the integrative neuro-cardiac anatomy underlying the ANS, review the physiological rationale for autonomic modulation in atrial and VAs, highlight strategies for autonomic modulation, and finally frame future challenges and opportunities for ANS therapeutics.
Collapse
Affiliation(s)
- Neal A Chatterjee
- Electrophysiology Section, Cardiology Division, Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Jagmeet P Singh
- Cardiac Arrhythmia Service, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Su L, Liu Y, Tang Y, Zhou M, Xiong L, Huang C. Resiniferatoxin reduces cardiac sympathetic nerve activation to exert a cardioprotective effect during myocardial infarction. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:408-416. [PMID: 33936362 PMCID: PMC8085824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Myocardial infarction (MI) is a common critical disease of the cardiovascular system. The process of MI is often accompanied by the excessive activation of cardiac sympathetic nerves, which leads to arrhythmia. Resiniferatoxin (RTX) is a transient receptor potential vanilloid 1 (TRPV1), involved in the cardiac sympathetic afferent reflex. However, whether RTX can reduce the occurrence of arrhythmia and exert a cardioprotective effect by inhibiting the sympathetic reflex during MI is still unknown. METHODS The left anterior descending artery of cardiac was clamped to construct a model of MI. RTX (50 μg/ml) was used by epicardial application in MI rats. Ventricular electrophysiologic properties were continuously monitored by a body surface ECG. Yrosine hydroxylase (TH) and growth associated protein 43 (GAP43) were detected by Immunofluorescence staining. Connexin43 and transforming growth factor beta receptor 1 (TGF-β1) were detected by western blot. Norepinephrine (NE) and BNP levels in blood and tissue were determined by ELISA. Cardiac function was assessed by echocardiography. RESULTS The ERP, APD90, QRS, QT and the Tend-Tpeak intervals in MI rats were all prolonged, but decreased after RTX treatment (n = 3, P<0.05). In contrast, the RR interval was shortened in the MI group, but prolonged in the MI+RTX group (n = 3, P<0.05). RTX treatment significantly reduced ventricular arrhythmias after MI. TH- and GAP43-positive nerve densities and TGF-β1, and cx-43 protein expression were up-regulated in the MI group compared to the sham group, and they were decreased in the MI+RTX group compared to the MI group (n = 3, P<0.05). RTX can decrease serum and tissue NE and BNP levels (n = 3, P<0.05). RTX pretreatment significantly decreased heart rate, HW/BW ratio and LVIDS, and increased LVEF andLVFS values (n = 3, P<0.05). CONCLUSION RTX improved cardiac dysfunction, ventricular electrophysiologic properties, and sympathetic nerve remodeling in rats with MI by inhibiting the excessive cardiac sympathetic drive.
Collapse
Affiliation(s)
- Ludefu Su
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology Wuhan 430000, People's Republic of China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology Wuhan 430000, People's Republic of China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology Wuhan 430000, People's Republic of China
| | - Mingmin Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology Wuhan 430000, People's Republic of China
| | - Liang Xiong
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology Wuhan 430000, People's Republic of China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology Wuhan 430000, People's Republic of China
| |
Collapse
|
30
|
Wang Y, He S, Xiong X, Liu J, Xie B, Yao Y, Yin J, Zi L, Wang X, Tang Y, Zhao Q. Left Stellate Ganglion Ablation Inhibits Ventricular Arrhythmias through Macrophage Regulation in Canines with Acute Ischemic Stroke. Int J Med Sci 2021; 18:891-901. [PMID: 33456346 PMCID: PMC7807184 DOI: 10.7150/ijms.50976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
To investigate the potential mechanism of ventricular arrhythmias (VAs) after acute ischemic stroke and explore the effects of left stellate gangling (LSG) ablation on VAs induced by stroke in canines. Materials and Methods: Twenty canines were randomly divided into the sham-operated group (n=6), AS group (n=7) and SGA group (n=7). Cerebral ischemic model was established in the AS group and the SGA group by right acute middle cerebral artery occlusion (MCAO). LSG ablation was performed in the SGA group as soon as MCAO. After 3 days, atrial electrophysiology and neural activity were measured in vivo. The levels of norepinephrine (NE) in plasma and ventricle were detected by ELISA. The levels of monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-α (TNF-α) and NF-κB p65 in ventricle were detected by western blotting. The pro-inflammatory polarization of macrophages in ventricle was detected by immunofluorescence. Results: Higher ventricular tachycardia (VT) inducibility and lower ventricular fibrillation threshold (VFT) were observed in the AS group compared with those in the sham-operated group, associated with higher LSG activity and NE levels, increased number of M1 macrophages and secretion of inflammatory cytokines in ventricle (all P<0.001). Compared with the AS group, the SGA group had lower VT inducibility and higher VFT, combined with lower NE levels, and reduced number of M1 macrophages and secretion of inflammatory cytokines in ventricle (all P<0.001). Conclusion: LSG ablation could reduce VAs vulnerability after acute stroke by preventing the macrophages polarization and activation induced by sympathetic hyperactivity.
Collapse
Affiliation(s)
- Youcheng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan City, Hubei Province, China
| | - Shanqing He
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan City, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan City, Hubei Province, China
| | - Jia Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan City, Hubei Province, China
| | - Baojun Xie
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan City, Hubei Province, China
| | - Yajun Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan City, Hubei Province, China
| | - Junkui Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan City, Hubei Province, China
| | - Liuliu Zi
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan City, Hubei Province, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan City, Hubei Province, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan City, Hubei Province, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan City, Hubei Province, China
| |
Collapse
|
31
|
Wang X, Huang X, Yang M, Pan X, Duan M, Cai H, Jiang G, Wen X, Zou D, Chen L. Tongxinluo promotes axonal plasticity and functional recovery after stroke. Transl Neurosci 2020; 11:428-438. [PMID: 33335781 PMCID: PMC7718613 DOI: 10.1515/tnsci-2020-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the neural plasticity in contralesional cortex and the effects of tongxinluo (TXL) in cerebral ischemic rats. METHODOLOGY We used stroke-prone renovascular hypertensive (RHRSP) cerebral ischemia rat models to study the effect of TXL and the underlying mechanisms. We performed foot-fault and beam-walking tests to evaluate the motor function of rats after cortical infarction. Biotinylated dextran amine (BDA) was used to track axonal sprouting and neural connections. RESULTS TXL enhanced the recovery of motor function in cerebral infarction rats. TXL increased axonal sprouting in the peri-infarcted area but not in the corpus callosum, indicating in situ origination instead of crossing between cortical hemispheres through the corpus callosum. TXL promoted the sprouting of corticospinal axons into the denervated side of spinal gray matter. The synaptophysin (SYN)-positive intensity in the peri-infarcted area of TXL-treated group was greater than that in the vehicle group. We observed co-localization of SYN with BDA-positive fibers in the denervated spinal cord gray matter in the TXL group, suggesting that axonal remodeling and synaptic connections were promoted by TXL. CONCLUSION TXL may promote the recovery of neurological function by promoting the axonal remodeling and synapse formation of motor neuronal fibers after focal cortical infarction in hypertensive rats.
Collapse
Affiliation(s)
- Xiaoting Wang
- Department of Neurology, Wuzhou Red Cross Hospital, Wuzhou, Guangxi Zhuang Autonomous Region, 543002, China
| | - Xiaoqin Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University , Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Mengqi Yang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University , Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xueying Pan
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University , Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Meiyi Duan
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University , Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Hui Cai
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University , Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Guimiao Jiang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University , Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xianlong Wen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University , Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Donghua Zou
- Department of Neurology, the Fifth Affiliated Hospital of Guangxi Medical University , Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University , Nanning, Guangxi Zhuang Autonomous Region, 530021, China
- Guangxi Key Laboratory of Regenerative Medicine and Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| |
Collapse
|
32
|
Low-dose colchicine prevents sympathetic denervation after myocardial ischemia-reperfusion: a new potential protective mechanism. Future Sci OA 2020; 7:FSO656. [PMID: 33437519 PMCID: PMC7787178 DOI: 10.2144/fsoa-2020-0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose: To evaluate the impact of colchicine on sympathetic denervation after acute myocardial infarction (AMI). Materials & methods: Ischemia/Reperfusion was induced in C57BL/6J male mice. Left coronary artery was ligated during 45 min followed by reperfusion. 400 μg/kg of colchicine or the placebo was administrated intraperitoneally 15 min before the reperfusion. Results: Colchicine treatment significantly improved heart rate variability index after AMI. Colchicine prevented sympathetic denervation in the remote area (p = 0.04) but not in the scar area (p = 0.70). Conclusion: These results suggest promising protective pathway of colchicine after AMI. This is a preclinical study of acute myocardial infarction in mice treated with colchicine or saline injection. ECG monitoring, immunofluorescence histology and NGF serum level measurement were performed. Here, it is demonstrated that colchicine improves heart rate variability, reduces cardiac denervation. The randomized COLD-MI trial will soon start and include patients. Cardiac denervation will be assessed using nuclear imaging with méta-iodobenzylguanidine (MIBG).
Collapse
|
33
|
Chen L, Chen XY, Wang QL, Yang SJ, Zhou H, Ding LS, Qing LS, Luo P. Astragaloside IV Derivative (LS-102) Alleviated Myocardial Ischemia Reperfusion Injury by Inhibiting Drp1 Ser616 Phosphorylation-Mediated Mitochondrial Fission. Front Pharmacol 2020; 11:1083. [PMID: 33041784 PMCID: PMC7528720 DOI: 10.3389/fphar.2020.01083] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Our previous studies showed that Astragaloside IV derivative (LS-102) exhibited potent protective function against ischemia reperfusion (I/R) injury, but little is known about the mechanisms. Mitochondrial fission regulated by dynamin-related protein1 (Drp1) is a newly recognized determinant of mitochondrial function. This study aimed to investigate the protection of LS-102 on mitochondrial structure and function by regulating the activity of Drp1 using models of H9c2 cardiomyocyte injury induced by hypoxia-reperfusion (H/R), and rat heart injury induced by I/R. The results showed that LS-102 significantly decreased apoptosis, levels of ROS, CK, LDH, and calcium, upregulating MMP, and the Bax/Bcl-2 ratio in cardiomyocytes during I/R injury. Furthermore, LS-102 prevented I/R-induced mitochondrial fission by decreasing Drp1's mitochondrial localization through decreasing the phosphorylation of Drp1 at Ser616 (Drp1Ser616) and increasing the phosphorylation of Drp1 at Ser637 (Drp1Ser637) in H9c2 cells. Importantly, we also robustly confirmed Drp1Ser616 as a novel GSK-3β phosphorylation site. GSK-3β-mediated phosphorylation at Drp1Ser616 may be associated with mitochondrial fission during I/R of cardiomyocytes. In conclusion, LS-102 exerts cardio protection against I/R-induced injury by inhibiting mitochondrial fission via blocking GSK-3β-mediated phosphorylation at Ser616 of Drp1.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- Department of Cardiac Encephalopathy, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Xiao-Yi Chen
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Qian-Long Wang
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Si-Jin Yang
- Department of Cardiac Encephalopathy, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Hua Zhou
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Li-Sheng Ding
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lin-Sen Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Pei Luo
- State Key Laboratories for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| |
Collapse
|
34
|
Wang Q, Zhao Y, Dong X, Li C, Zhou L, Zou C, Li X, Zhou N, Liu J, Sun Y, Wang J. The Occurrence of Valvular Atrial Fibrillation: Involvement of NGF/TrKA Signaling Pathway. J INVEST SURG 2020; 34:1379-1386. [PMID: 32781864 DOI: 10.1080/08941939.2020.1798570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Nerve growth factor (NGF) and tropomyosin kinase receptors A (TrKA) exert a crucial effect on the regulation of autonomic nervous system which contributes to the progress of atrial fibrillation (AF). Valvular heart disease (VHD) patients are more easily to induce the AF. We investigated whether NGF/TrKA could impact the occurrence of AF in VHD patients. MATERIALS AND METHODS Atrial tissues were resected from 30 VHD patients with chronic AF (n = 15, AF >6 months) or sinus rhythm (SR, n = 15). The expression of NGF, TrKA, protein kinase B (PKB/Akt), beta-isoforms of glycogen synthase kinase-3 (GSK3β), Serine473 phosphorylation of Akt (p-Ser473 Akt), Serine9 phosphorylation of GSK-3β (p-Ser9 GSK3β) in right atrial tissues and peripheral blood lymphocyte were quantified by Western blot. The localization of those genes expression was measured by immunohistochemistry. Double sandwich enzyme-linked immunosorbent assay was used to observe the trace changes of NGF-β in peripheral plasma. RESULTS Our results revealed that the NGF expression was markedly elevated in the tissue of right atrial appendage and peripheral blood lymphocytes from AF patients compared with the SR patients. But, the expression of TrKA, GSK3β, p-Akt and p-GSK3β were decreased. There was no difference about the expression of Akt from the AF patients and the SR patients. The NGF-β level in peripheral blood plasma of patients with AF and SR was not statistical difference. CONCLUSION Thus, we thought that NGF/TrKA signaling pathway may be involved in the AF in the patients with VHD, inactivation of GSK3β could increase the incidence of AF, but not relevant to phosphorylation.
Collapse
Affiliation(s)
- Qianli Wang
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Cardiovascular Surgery Intensive Care Unit, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, PR China
| | - Yong Zhao
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| | - Xin Dong
- Department of Cardiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Cong Li
- Intensive Care Unit, Shouguang People's Hospital, Shouguang, PR China
| | - Lin Zhou
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| | - Chengwei Zou
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China.,Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Xiaodong Li
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| | - Nannan Zhou
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| | - Junni Liu
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| | - Yuanyuan Sun
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| | - Jianchun Wang
- Department of Geriatric Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, PR China.,Department of Geriatric Cardiology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, PR China
| |
Collapse
|
35
|
Ge Y, Smits AM, van Munsteren JC, Gittenberger-de Groot AC, Poelmann RE, van Brakel TJ, Schalij MJ, Goumans MJ, DeRuiter MC, Jongbloed MRM. Human epicardium-derived cells reinforce cardiac sympathetic innervation. J Mol Cell Cardiol 2020; 143:26-37. [PMID: 32277975 DOI: 10.1016/j.yjmcc.2020.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 11/29/2022]
Abstract
RATIONALE After cardiac damage, excessive neurite outgrowth (sympathetic hyperinnervation) can occur, which is related to ventricular arrhythmias/sudden cardiac death. Post-damage reactivation of epicardium causes epicardium-derived cells (EPDCs) to acquire a mesenchymal character, contributing to cardiac regeneration. Whether EPDCs also contribute to cardiac re/hyperinnervation, is unknown. AIM To investigate whether mesenchymal EPDCs influence cardiac sympathetic innervation. METHODS AND RESULTS Sympathetic ganglia were co-cultured with mesenchymal EPDCs and/or myocardium, and neurite outgrowth and sprouting density were assessed. Results showed a significant increase in neurite density and directional (i.e. towards myocardium) outgrowth when ganglia were co-cultured with a combination of EPDCs and myocardium, as compared to cultures with EPDCs or myocardium alone. In absence of myocardium, this outgrowth was not directional. Neurite differentiation of PC12 cells in conditioned medium confirmed these results via a paracrine effect, in accordance with expression of neurotrophic factors in myocardial explants co-cultured with EPDCs. Of interest, EPDCs increased the expression of nerve growth factor (NGF) in cultured, but not in fresh myocardium, possibly due to an "ischemic state" of cultured myocardium, supported by TUNEL and Hif1α expression. Cardiac tissues after myocardial infarction showed robust NGF expression in the infarcted, but not remote area. CONCLUSION Neurite outgrowth and density increases significantly in the presence of EPDCs by a paracrine effect, indicating a new role for EPDCs in the occurrence of sympathetic re/hyperinnervation after cardiac damage.
Collapse
Affiliation(s)
- Yang Ge
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, the Netherlands; Department of Cardiology and Thoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZC, Leiden, the Netherlands.
| | - Anke M Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, the Netherlands
| | - J Conny van Munsteren
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, the Netherlands
| | - Adriana C Gittenberger-de Groot
- Department of Cardiology and Thoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZC, Leiden, the Netherlands
| | - Robert E Poelmann
- Department of Cardiology and Thoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZC, Leiden, the Netherlands
| | - Thomas J van Brakel
- Department of Cardiology and Thoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZC, Leiden, the Netherlands
| | - Martin J Schalij
- Department of Cardiology and Thoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZC, Leiden, the Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, the Netherlands
| | - Marco C DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, the Netherlands
| | - Monique R M Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333, ZC, Leiden, the Netherlands; Department of Cardiology and Thoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333, ZC, Leiden, the Netherlands.
| |
Collapse
|
36
|
Nuclear Imaging of the Cardiac Sympathetic Nervous System. JACC Cardiovasc Imaging 2020; 13:1036-1054. [DOI: 10.1016/j.jcmg.2019.01.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 01/08/2023]
|
37
|
Jiang X, Huang X, Tong Y, Gao H. Butyrate improves cardiac function and sympathetic neural remodeling following myocardial infarction in rats. Can J Physiol Pharmacol 2020; 98:391-399. [PMID: 31999473 DOI: 10.1139/cjpp-2019-0531] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increased inflammation is found in cardiac sympathetic neural remodeling with malignant ventricular arrhythmia (VA) following myocardial infarction (MI). Butyrate, as a microbiota-derived short-chain fatty acid, can inhibit inflammation and myocardial hypertrophy. However, the role of butyrate in sympathetic neural remodeling after MI is unknown. This study aimed to investigate whether butyrate could improve cardiac dysfunction and VA following MI by regulating inflammation and sympathetic neural remodeling. MI rats were randomized to administrate the butyrate or vehicle through intraperitoneal injection to undergo the study. Our data demonstrated that butyrate treatment preserved the partial cardiac function at 7 days post-MI. Butyrate downregulated the expression of essential for inflammatory response in the infarct border zone at 3 days post-MI. Particularly, butyrate promoted expression of M2 macrophage markers. Increased expressions of nerve growth factor and norephinephrine at 7 days after MI were inhibited in butyrate-treated rats. Furthermore, butyrate significantly decreased the density of nerve fibers for growth-associated protein-43 and tyrosine hydroxylase and resulted in fewer episodes of inducible VA. In conclusion, butyrate administration ameliorated cardiac function and VA after MI possibly through promoting M2 macrophage polarization to suppress inflammatory responses and inhibit sympathetic neural remodeling and may present an effective pharmacological strategy for the prevention of MI-related remodeling.
Collapse
Affiliation(s)
- Xiaojie Jiang
- Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China.,Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China
| | - Xin Huang
- Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China.,Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China
| | - Yifan Tong
- Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China.,Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China
| | - Hong Gao
- Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China.,Department of Cardiology, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University. Xiangshan North Road 128, Nanchang, Jiangxi 330008, China
| |
Collapse
|
38
|
Goldberger JJ, Arora R, Buckley U, Shivkumar K. Autonomic Nervous System Dysfunction: JACC Focus Seminar. J Am Coll Cardiol 2020; 73:1189-1206. [PMID: 30871703 DOI: 10.1016/j.jacc.2018.12.064] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 12/20/2022]
Abstract
Autonomic nervous system control of the heart is a dynamic process in both health and disease. A multilevel neural network is responsible for control of chronotropy, lusitropy, dromotropy, and inotropy. Intrinsic autonomic dysfunction arises from diseases that directly affect the autonomic nerves, such as diabetes mellitus and the syndromes of primary autonomic failure. Extrinsic autonomic dysfunction reflects the changes in autonomic function that are secondarily induced by cardiac or other disease. An array of tests interrogate various aspects of cardiac autonomic control in either resting conditions or with physiological perturbations from resting conditions. The prognostic significance of these assessments have been well established. Clinical usefulness has not been established, and the precise mechanistic link to mortality is less well established. Further efforts are required to develop optimal approaches to delineate cardiac autonomic dysfunction and its adverse effects to develop tools that can be used to guide clinical decision-making.
Collapse
Affiliation(s)
- Jeffrey J Goldberger
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida.
| | - Rishi Arora
- Feinberg Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Northwestern University-Feinberg School of Medicine, Chicago, Illinois
| | - Una Buckley
- Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California-Los Angeles Los Angeles, California
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, University of California-Los Angeles Los Angeles, California
| |
Collapse
|
39
|
Zhong LY, Fan XR, Shi ZJ, Fan ZC, Luo J, Lin N, Liu YC, Wu L, Zeng XR, Cao JM, Wei Y. Hyperpolarization-Activated Cyclic Nucleotide-Gated Ion (HCN) Channels Regulate PC12 Cell Differentiation Toward Sympathetic Neuron. Front Cell Neurosci 2019; 13:415. [PMID: 31616252 PMCID: PMC6763607 DOI: 10.3389/fncel.2019.00415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated ion channels (HCN channels) are widely expressed in the central and peripheral nervous systems and organs, while their functions are not well elucidated especially in the sympathetic nerve. The present study aimed to investigate the roles of HCN channel isoforms in the differentiation of sympathetic neurons using PC12 cell as a model. PC12 cells derived from rat pheochromocytoma were cultured and induced by nerve growth factor (NGF) (25 ng/ml) to differentiate to sympathetic neuron-like cells. Sympathetic directional differentiation of PC12 cells were evaluated by expressions of growth-associated protein 43 (GAP-43) (a growth cone marker), tyrosine hydroxylase (TH) (a sympathetic neuron marker) and neurite outgrowth. Results show that the HCN channel isoforms (HCN1-4) were all expressed in PC12 cells; blocking HCN channels with ivabradine suppressed NGF-induced GAP-43 expression and neurite outgrowth; silencing the expression of HCN2 and HCN4 using silenced using small interfering RNAs (siRNA), rather than HCN1 and HCN3, restrained GAP-43 expression and neurite outgrowth, while overexpression of HCN2 and HCN4 channels with gene transfer promoted GAP-43 expression and neurite outgrowth. Patch clamp experiments show that PC12 cells exhibited resting potentials (RP) of about −65 to −70 mV, and also presented inward HCN channel currents and outward (K+) currents, but no inward voltage-gated Na+ current was induced; NGF did not significantly affect the RP but promoted the establishment of excitability as indicated by the increased ability to depolarize and repolarize in the evoked suspicious action potentials (AP). We conclude that HCN2 and HCN4 channel isoforms, but not HCN1 and HCN3, promote the differentiation of PC12 cells toward sympathetic neurons. NGF potentiates the establishment of excitability during PC12 cell differentiation.
Collapse
Affiliation(s)
- Li-Ying Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xin-Rong Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhang-Jing Shi
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Zhong-Cai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Na Lin
- Department of Respiratory Medicine, Rongcheng People's Hospital, Rongcheng, China
| | - Ying-Cai Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xiao-Rong Zeng
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology of Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
40
|
Sattler K, El-Battrawy I, Gietzen T, Kummer M, Lang S, Zhou XB, Behnes M, Borggrefe M, Akin I. Improved Outcome of Cardiogenic Shock Triggered by Takotsubo Syndrome Compared With Myocardial Infarction. Can J Cardiol 2019; 36:860-867. [PMID: 32249068 DOI: 10.1016/j.cjca.2019.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cardiogenic shock (CS) is a severe complication of myocardial infarction (MI) or of takotsubo syndrome (TTS). For both diseases, CS is related to a worse long-term outcome. The outcome of CS has not been studied in a direct comparison of patients with MI and patients with TTS. METHODS Mortality and cardiovascular complications were compared in patients presenting with CS based on MI or TTS between 2003 and 2017 during a follow-up of 5 years. A total of 138 patients with TTS and 532 patients with MI were included. Of these, 66 patients with MI and 25 patients with TTS developed CS (12% vs 18%, P = 0.08). RESULTS Patients with MI and CS had more often malignant arrhythmias (74% vs 28%, P < 0.01), and need for resuscitation (80% vs 24%, P < 0.01) or death (71% vs 24%, P < 0.01) than patients with TTS and CS during the first 30 days. Although the overall rate of death remained higher in MI than in TTS (75.8% vs 52%, log rank, P < 0.01), deaths occurred in TTS constantly throughout the follow-up time, but not in MI. The incidence of heart failure increased in MI but not in TTS (31.8% vs 4%, P < 0.01) during follow-up. CONCLUSIONS Patients with MI and CS have a worse prognosis than patients with TTS and CS. This is driven by cardiovascular events or death during the first 30 days after the index event. However, patients with TTS and CS show high mortality as well, especially during long-term follow-up.
Collapse
Affiliation(s)
- Katherine Sattler
- First Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ibrahim El-Battrawy
- First Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany; DZHK, Partner Site, Heidelberg-Mannheim, Mannheim, Germany.
| | - Thorsten Gietzen
- First Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marvin Kummer
- First Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Siegfried Lang
- First Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany; DZHK, Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Xiao-Bo Zhou
- First Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Behnes
- First Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Borggrefe
- First Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany; DZHK, Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Ibrahim Akin
- First Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany; DZHK, Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| |
Collapse
|
41
|
Shi Y, Li Y, Yin J, Hu H, Xue M, Li X, Cheng W, Wang Y, Li X, Wang Y, Tan J, Yan S. A novel sympathetic neuronal GABAergic signalling system regulates NE release to prevent ventricular arrhythmias after acute myocardial infarction. Acta Physiol (Oxf) 2019; 227:e13315. [PMID: 31116911 PMCID: PMC6813916 DOI: 10.1111/apha.13315] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/30/2022]
Abstract
AIM Overactivation of the sympathetic nerve may lead to severe ventricular arrhythmias (VAs) after myocardial infarction (MI). Thus, targeting sympathetic nerve activity is an effective strategy to prevent VAs clinically. The superior cervical ganglion (SCG), the extracardiac sympathetic ganglion innervating cardiac muscles, has been found to have a GABAergic signalling system, the physiological significance of which is obscure. We aimed to explore the functional significance of SCG post MI and whether the GABAergic signal system is involved in the process. METHODS Adult male Sprague-Dawley rats were divided into seven different groups. Rats in the MI groups underwent ligation of the left anterior descending coronary artery. All animals were used for electrophysiological testing, renal sympathetic nerve activity (RSNA) testing, and ELISA. Primary SCG sympathetic neurons were used for the in vitro study. RESULTS The GABAA receptor agonist muscimol significantly decreased the ATP-induced increase in intracellular Ca2+ (P < 0.05). GABA treatment in MI rats significantly attenuated the level of serum and cardiac norepinephrine (NE; P < 0.05). Sympathetic activity and inducible VAs were also lower in MI + GABA rats than in MI rats (P < 0.05). Knockdown of the GABAA Rs β2 subunit (GABAA Rβ2 ) in the SCG of MI rats increased the NE levels in serum and cardiac tissue, RSNA and inducible VAs compared with vehicle shRNA (P < 0.05). CONCLUSION The GABAergic signalling system is functionally expressed in SCG sympathetic neurons, and activation of this system suppresses sympathetic activity, thereby facilitating cardiac protection and making it a potential target to alleviate VAs.
Collapse
Affiliation(s)
- Yugen Shi
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Yan Li
- Medical Research CenterShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
- School of MedicineShandong UniversityShandongChina
| | - Jie Yin
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Hesheng Hu
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Mei Xue
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Xiaolu Li
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Wenjuan Cheng
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Ye Wang
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Xinran Li
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Yu Wang
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Jiayu Tan
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| | - Suhua Yan
- Department of CardiologyShandong Provincial Qianfoshan Hospital, Shandong UniversityShandongChina
| |
Collapse
|
42
|
Serum of patients with acute myocardial infarction prevents inflammation in iPSC-cardiomyocytes. Sci Rep 2019; 9:5651. [PMID: 30948775 PMCID: PMC6449343 DOI: 10.1038/s41598-019-42079-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
Acute myocardial infarction (MI) evokes a systemic inflammatory response and locally the degradation of the necrotic tissue, followed by scar formation. The mechanisms for containment of the infarct zone are not studied well. The study aimed to examine the response of healthy cardiomyocytes to serum of patients with myocardial infarction. Human iPSC-cardiomyocytes (iPSC-CM) generated from two healthy donors were incubated with serum of patients with MI with and without ventricular fibrillation (VF) or of healthy controls. Different cell adhesion molecules were studied by flow cytometry and immunostaining. Cellular electrophysiology was studied by patch clamp. The cell adhesion molecules CD54/ICAM-1, CD58/LFA-3 and CD321/JAM-A were expressed on iPSC-CM within the plasma membrane. Incubation with serum of MI patients reduced the levels of expression of CD54/ICAM-1 and CD321/JAM-A by 15–20%. VF serum was less effective than serum of MI patients without VF. MI serum or VF serum did not affect resting potential, action potential duration or maximum depolarization velocity. Myocardial infarction serum exerts anti-inflammatory effects on healthy cardiomyocytes without affecting their electrical activity, thus helping to contain the infarct zone and to protect healthy tissue. Ventricular fibrillation during MI drives healthy cardiomyocytes towards a pro-inflammatory phenotype.
Collapse
|
43
|
Tomek J, Hao G, Tomková M, Lewis A, Carr C, Paterson DJ, Rodriguez B, Bub G, Herring N. β-Adrenergic Receptor Stimulation and Alternans in the Border Zone of a Healed Infarct: An ex vivo Study and Computational Investigation of Arrhythmogenesis. Front Physiol 2019; 10:350. [PMID: 30984029 PMCID: PMC6450465 DOI: 10.3389/fphys.2019.00350] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Following myocardial infarction (MI), the myocardium is prone to calcium-driven alternans, which typically precedes ventricular tachycardia and fibrillation. MI is also associated with remodeling of the sympathetic innervation in the infarct border zone, although how this influences arrhythmogenesis is controversial. We hypothesize that the border zone is most vulnerable to alternans, that β-adrenergic receptor stimulation can suppresses this, and investigate the consequences in terms of arrhythmogenic mechanisms. Methods and Results: Anterior MI was induced in Sprague-Dawley rats (n = 8) and allowed to heal over 2 months. This resulted in scar formation, significant (p < 0.05) dilation of the left ventricle, and reduction in ejection fraction compared to sham operated rats (n = 4) on 7 T cardiac magnetic resonance imaging. Dual voltage/calcium optical mapping of post-MI Langendorff perfused hearts (using RH-237 and Rhod2) demonstrated that the border zone was significantly more prone to alternans than the surrounding myocardium at longer cycle lengths, predisposing to spatially heterogeneous alternans. β-Adrenergic receptor stimulation with norepinephrine (1 μmol/L) attenuated alternans by 60 [52–65]% [interquartile range] and this was reversed with metoprolol (10 μmol/L, p = 0.008). These results could be reproduced by computer modeling of the border zone based on our knowledge of β-adrenergic receptor signaling pathways and their influence on intracellular calcium handling and ion channels. Simulations also demonstrated that β-adrenergic receptor stimulation in this specific region reduced the formation of conduction block and the probability of premature ventricular activation propagation. Conclusion: While high levels of overall cardiac sympathetic drive are a negative prognostic indicator of mortality following MI and during heart failure, β-adrenergic receptor stimulation in the infarct border zone reduced spatially heterogeneous alternans, and prevented conduction block and propagation of extrasystoles. This may help explain recent clinical imaging studies using meta-iodobenzylguanidine (MIBG) and 11C-meta-hydroxyephedrine positron emission tomography (PET) which demonstrate that border zone denervation is strongly associated with a high risk of future arrhythmia.
Collapse
Affiliation(s)
- Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Guoliang Hao
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Markéta Tomková
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew Lewis
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Carolyn Carr
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - David J Paterson
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Huang WA, Boyle NG, Vaseghi M. Cardiac Innervation and the Autonomic Nervous System in Sudden Cardiac Death. Card Electrophysiol Clin 2017; 9:665-679. [PMID: 29173409 PMCID: PMC5777242 DOI: 10.1016/j.ccep.2017.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Neural remodeling in the autonomic nervous system contributes to sudden cardiac death. The fabric of cardiac excitability and propagation is controlled by autonomic innervation. Heart disease predisposes to malignant ventricular arrhythmias by causing neural remodeling at the level of the myocardium, the intrinsic cardiac ganglia, extracardiac intrathoracic sympathetic ganglia, extrathoracic ganglia, spinal cord, and the brainstem, as well as the higher centers and the cortex. Therapeutic strategies at each of these levels aim to restore the balance between the sympathetic and parasympathetic branches. Understanding this complex neural network will provide important therapeutic insights into the treatment of sudden cardiac death.
Collapse
Affiliation(s)
- William A Huang
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, 100 MP, Suite 660, Los Angeles, CA 90095, USA
| | - Noel G Boyle
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, 100 MP, Suite 660, Los Angeles, CA 90095, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, David Geffen School of Medicine at UCLA, 100 MP, Suite 660, Los Angeles, CA 90095, USA.
| |
Collapse
|
45
|
Metoprolol prevents chronic obstructive sleep apnea-induced atrial fibrillation by inhibiting structural, sympathetic nervous and metabolic remodeling of the atria. Sci Rep 2017; 7:14941. [PMID: 29097705 PMCID: PMC5668297 DOI: 10.1038/s41598-017-14960-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/04/2017] [Indexed: 11/30/2022] Open
Abstract
Chronic obstructive sleep apnea (OSA) may promote the development of atrial fibrillation (AF) by inducing atrial electrical and structural remodeling as well as autonomic nerve hyperinnervation. Here, we investigated the roles of metoprolol in regulation of atrial remodeling induced by chronic OSA. A canine model of chronic OSA was established by stopping the ventilator and closing the airway for 4 h/day every other day for 12 weeks, while metoprolol (5 mg·kg-1·day-1) was continuously administered. Using that model, we observed that increases in sympathetic sprouting and atrial structural remodeling were sharply inhibited by metoprolol. Moreover, metoprolol dramatically inhibited the impairment of atrial energy metabolism by activating the Sirt1-AMPK pathway. In vitro, metoprolol significantly activated the Sirt1-AMPK pathway in intermittent hypoxic and isoproterenol-treated HL-1 cells, and the effect was abolished by the coadministration of EX-527, an inhibitor of Sirt1 activation. In summary, metoprolol protects against chronic OSA-induced atrial remodeling. Our results suggest a new and feasible treatment strategy for AF induced by OSA.
Collapse
|
46
|
Effect of Wenxin Granules on Gap Junction and MiR-1 in Rats with Myocardial Infarction. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3495021. [PMID: 29094045 PMCID: PMC5637836 DOI: 10.1155/2017/3495021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 08/20/2017] [Indexed: 01/09/2023]
Abstract
Myocardial infarction (MI) patients are at high risk of potential lethal arrhythmia. Gap junction and microRNA-1 (miR-1) are both arrhythmia generating conditions. The present study investigated whether Wenxin Granules (Wenxin-Keli, WXKL) could prevent potential lethal arrhythmia by improving gap junctions and miR-1 following MI. Male Sprague-Dawley rats were divided randomly into control, model, metoprolol, low dose WXKL, and high dose WXKL groups. The MI rat model was created by coronary artery ligation. Treatments were administrated intragastrically to the rats for 4 weeks. Conventional transmission electron microscopy was performed to observe the ultrastructure of gap junctions. Quantitative real-time PCR and western blotting were used to detect the expression of miR-1, protein kinase C (PKC), and related proteins. Additionally, a programmatic electrophysiological stimulation test was performed to detect the ventricular fibrillation threshold (VFT). WXKL protected the ultrastructure of the gap junctions and their constituent Cx43 by regulating miR-1 and PKC mediated signal transduction and increased the VFT significantly in the rat MI model. The results suggested that WXKL is an effective alternative medicine to prevent potentially lethal arrhythmia following MI.
Collapse
|
47
|
Tomek J, Rodriguez B, Bub G, Heijman J. β-Adrenergic receptor stimulation inhibits proarrhythmic alternans in postinfarction border zone cardiomyocytes: a computational analysis. Am J Physiol Heart Circ Physiol 2017; 313:H338-H353. [PMID: 28550171 PMCID: PMC5582914 DOI: 10.1152/ajpheart.00094.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/12/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023]
Abstract
We integrated, for the first time, postmyocardial infarction electrical and autonomic remodeling in a detailed, validated computer model of β-adrenergic stimulation in ventricular cardiomyocytes. Here, we show that β-adrenergic stimulation inhibits alternans and provide novel insights into underlying mechanisms, adding to a recent controversy about pro-/antiarrhythmic effects of postmyocardial infarction hyperinnervation. The border zone (BZ) of the viable myocardium adjacent to an infarct undergoes extensive autonomic and electrical remodeling and is prone to repolarization alternans-induced cardiac arrhythmias. BZ remodeling processes may promote or inhibit Ca2+ and/or repolarization alternans and may differentially affect ventricular arrhythmogenesis. Here, we used a detailed computational model of the canine ventricular cardiomyocyte to study the determinants of alternans in the BZ and their regulation by β-adrenergic receptor (β-AR) stimulation. The BZ model developed Ca2+ transient alternans at slower pacing cycle lengths than the control model, suggesting that the BZ may promote spatially heterogeneous alternans formation in an infarcted heart. β-AR stimulation abolished alternans. By evaluating all combinations of downstream β-AR stimulation targets, we identified both direct (via ryanodine receptor channels) and indirect [via sarcoplasmic reticulum (SR) Ca2+ load] modulation of SR Ca2+ release as critical determinants of Ca2+ transient alternans. These findings were confirmed in a human ventricular cardiomyocyte model. Cell-to-cell coupling indirectly modulated the likelihood of alternans by affecting the action potential upstroke, reducing the trigger for SR Ca2+ release in one-dimensional strand simulations. However, β-AR stimulation inhibited alternans in both single and multicellular simulations. Taken together, these data highlight a potential antiarrhythmic role of sympathetic hyperinnervation in the BZ by reducing the likelihood of alternans and provide new insights into the underlying mechanisms controlling Ca2+ transient and repolarization alternans. NEW & NOTEWORTHY We integrated, for the first time, postmyocardial infarction electrical and autonomic remodeling in a detailed, validated computer model of β-adrenergic stimulation in ventricular cardiomyocytes. Here, we show that β-adrenergic stimulation inhibits alternans and provide novel insights into underlying mechanisms, adding to a recent controversy about pro-/antiarrhythmic effects of postmyocardial infarction hyperinnervation. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/%CE%B2-ar-stimulation-and-alternans-in-border-zone-cardiomyocytes/.
Collapse
Affiliation(s)
- Jakub Tomek
- Life Sciences Interface Doctoral Training Centre, University of Oxford, Oxford, United Kingdom; .,Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, Quebec, Canada; and
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
48
|
Kuyumcu-Martinez MN, Bressan MC. Rebuilding a broken heart: lessons from developmental and regenerative biology. Development 2016; 143:3866-3870. [PMID: 27803055 DOI: 10.1242/dev.143842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In May 2016, the annual Weinstein Cardiovascular Development and Regeneration Conference was held in Durham, North Carolina, USA. The meeting assembled leading investigators, junior scientists and trainees from around the world to discuss developmental and regenerative biological approaches to understanding the etiology of congenital heart defects and the repair of diseased cardiac tissue. In this Meeting Review, we present several of the major themes that were discussed throughout the meeting and highlight the depth and range of research currently being performed to uncover the causes of human cardiac diseases and develop potential therapies.
Collapse
Affiliation(s)
- Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, Department of Neuroscience and Cell Biology, and Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Michael C Bressan
- Department of Cell Biology and Physiology, McAllister Heart Institute, University of North Carolina at Chapel Hill, 111 Mason Farm Rd, 6341C MBRB, Chapel Hill, NC 27599, USA
| |
Collapse
|