1
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
2
|
Abstract
PURPOSE Dental implant osseointegration comprises two types of bone formation-contact and distance osteogenesis-which result in bone formation originating from the implant surface or bone edges, respectively. The physicochemical properties of the implant surface regulate initial contact osteogenesis by directly tuning the osteoprogenitor cells in the peri-implant environment. However, whether these implant surface properties can regulate osteoprogenitor cells distant from the implant remains unclear. Innate immune cells, including neutrophils and macrophages, govern bone metabolism, suggesting their involvement in osseointegration and distance osteogenesis. This narrative review discusses the role of innate immunity in osseointegration and the effects of implant surface properties on distant osteogenesis, focusing on innate immune regulation. STUDY SELECTION The role of innate immunity in bone formation and the effects of implant surface properties on innate immune function were reviewed based on clinical, animal, and in vitro studies. RESULTS Neutrophils and macrophages are responsible for bone formation during osseointegration, via inflammatory mediators. The microroughness and hydrophilic status of titanium implants have the potential to alleviate this inflammatory response of neutrophils, and induce an anti-inflammatory response in macrophages, to tune both contact and distance osteogenesis through the activation of osteoblasts. Thus, the surface micro-roughness and hydrophilicity of implants can regulate the function of distant osteoprogenitor cells through innate immune cells. CONCLUSIONS Surface modification of implants aimed at regulating innate immunity may be useful in promoting further osteogenesis and overcoming the limitations encountered in severe situations, such as early loading protocol application.
Collapse
Affiliation(s)
- Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
3
|
Gibon E, Takakubo Y, Zwingenberger S, Gallo J, Takagi M, Goodman SB. Friend or foe? Inflammation and the foreign body response to orthopedic biomaterials. J Biomed Mater Res A 2024; 112:1172-1187. [PMID: 37656958 DOI: 10.1002/jbm.a.37599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
The use of biomaterials and implants for joint replacement, fracture fixation, spinal stabilization and other orthopedic indications has revolutionized patient care by reliably decreasing pain and improving function. These surgical procedures always invoke an acute inflammatory reaction initially, that in most cases, readily subsides. Occasionally, chronic inflammation around the implant develops and persists; this results in unremitting pain and compromises function. The etiology of chronic inflammation may be specific, such as with infection, or be unknown. The histological hallmarks of chronic inflammation include activated macrophages, fibroblasts, T cell subsets, and other cells of the innate immune system. The presence of cells of the adaptive immune system usually indicates allergic reactions to metallic haptens. A foreign body reaction is composed of activated macrophages, giant cells, fibroblasts, and other cells often distributed in a characteristic histological arrangement; this reaction is usually due to particulate debris and other byproducts from the biomaterials used in the implant. Both chronic inflammation and the foreign body response have adverse biological effects on the integration of the implant with the surrounding tissues. Strategies to mitigate chronic inflammation and the foreign body response will enhance the initial incorporation and longevity of the implant, and thereby, improve long-term pain relief and overall function for the patient. The seminal research performed in the laboratory of Dr. James Anderson and co-workers has provided an inspirational and driving force for our laboratory's work on the interactions and crosstalk among cells of the mesenchymal, immune, and vascular lineages, and orthopedic biomaterials. Dr. Anderson's delineation of the fundamental biologic processes and mechanisms underlying acute and chronic inflammation, the foreign body response, resolution, and eventual functional integration of implants in different organ systems has provided researchers with a strategic approach to the use of biomaterials to improve health in numerous clinical scenarios.
Collapse
Affiliation(s)
- Emmanuel Gibon
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuya Takakubo
- Department of Rehabilitation, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Stefan Zwingenberger
- University Center for Orthopaedics, Traumatology, and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc Teaching Hospital, Olomouc, Czech Republic
| | - Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Stuart B Goodman
- Department of Orthopaedic Surgery and (by courtesy) Bioengineering, Stanford University Medical Center Outpatient Center, California, USA
| |
Collapse
|
4
|
Sutthiwanjampa C, Kang SH, Kim MK, Hwa Choi J, Kim HK, Woo SH, Bae TH, Kim WJ, Kang SH, Park H. Tumor necrosis factor-α-treated human adipose-derived stem cells enhance inherent radiation tolerance and alleviate in vivo radiation-induced capsular contracture. J Adv Res 2024:S2090-1232(24)00295-9. [PMID: 39019109 DOI: 10.1016/j.jare.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION Post-mastectomy radiotherapy plays a crucial role in breast cancer treatment but can lead to an inflammatory response causing soft tissue damage, particularly radiation-induced capsular contracture (RICC), impacting breast reconstruction outcomes. Adipose-derived stem cells (ADSCs), known for their regenerative potential via paracrine capacity, exhibit inherent radiotolerance. The influence of tumor necrosis factor-alpha (TNF-α) on ADSCs has been reported to enhance the paracrine effect of ADSCs, promoting wound healing by modulating inflammatory responses. OBJECTIVE This study investigates the potential of TNF-α-treated human ADSCs (T-hASCs) on silicone implants to alleviate RICC, hypothesizing to enhance suppressive effects on RICC by modulating inflammatory responses in a radiation-exposed environment. METHODS In vitro, T-hASCs were cultured on various surfaces to assess viability after exposure to radiation up to 20 Gy. In vivo, T-hASC and non-TNF-α-treated hASC (C-hASCs)-coated membranes were implanted in mice before radiation exposure, and an evaluation of the RICC mitigation took place 4 and 8 weeks after implantation. In addition, the growth factors released from T-hASCs were assessed. RESULTS In vitro, hASCs displayed significant radiotolerance, maintaining consistent viability after exposure to 10 Gy. TNF-α treatment further enhanced radiation tolerance, as evidenced by significantly higher viability than C-hASCs at 20 Gy. In vivo, T-hASC-coated implants effectively suppressed RICC, reducing capsule thickness. T-hASCs exhibited remarkable modulation of the inflammatory response, suppressing M1 macrophage polarization while enhancing M2 polarization. The elevated secretion of vascular endothelial growth factor from T-hASCs is believed to induce macrophage polarization, potentially reducing RICC. CONCLUSION This study establishes T-hASCs as a promising strategy for ameliorating the adverse effects experienced by breast reconstruction patients after mastectomy and radiation therapy. The observed radiotolerance, anti-fibrotic effects, and immune modulation suggest the possibility of enhancing patient outcomes and quality of life. Further research and clinical trials are warranted for broader clinical uses.
Collapse
Affiliation(s)
- Chanutchamon Sutthiwanjampa
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Seung Hyun Kang
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Mi Kyung Kim
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Departments of Pathology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Jin Hwa Choi
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Radiation Oncology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Han Koo Kim
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Soo Hyun Woo
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Tae Hui Bae
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Woo Joo Kim
- Department of Plastic Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea
| | - Shin Hyuk Kang
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
5
|
Zymovets V, Rakhimova O, Wadelius P, Schmidt A, Brundin M, Kelk P, Landström M, Vestman NR. Exploring the impact of oral bacteria remnants on stem cells from the Apical papilla: mineralization potential and inflammatory response. Front Cell Infect Microbiol 2023; 13:1257433. [PMID: 38089810 PMCID: PMC10711090 DOI: 10.3389/fcimb.2023.1257433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Bacterial persistence is considered one of the main causal factors for regenerative endodontic treatment (RET) failure in immature permanent teeth. This interference is claimed to be caused by the interaction of bacteria that reside in the root canal with the stem cells that are one of the essentials for RET. The aim of the study was to investigate whether prolonged exposure of stem cells from the apical papilla (SCAP) to bacterial remnants of Fusobacterium nucleatum, Actinomyces gerensceriae, Slackia exigua, Enterococcus faecalis, Peptostreptococcaceae yurii, commonly found in infected traumatized root canals, and the probiotic bacteria Lactobacillus gasseri and Limosilactobacillus reuteri, can alter SCAP's inflammatory response and mineralization potential. Methods To assess the effect of bacterial remnants on SCAP, we used UV-C-inactivated bacteria (as cell wall-associated virulence factors) and bacterial DNA. Histochemical staining using Osteoimage Mineralization Assay and Alizarin Red analysis was performed to study SCAP mineralization, while inflammatory and osteo/odontogenic-related responses of SCAPs were assessed with Multiplex ELISA. Results We showed that mineralization promotion was greater with UV C-inactivated bacteria compared to bacterial DNA. Immunofluorescence analysis detected that the early mineralization marker alkaline phosphatase (ALP) was increased by the level of E. coli lipopolysaccharide (LPS) positive control in the case of UV-C-inactivated bacteria; meanwhile, DNA treatment decreased the level of ALP compared to the positive control. SCAP's secretome assessed with Multiplex ELISA showed the upregulation of pro-inflammatory factors IL-6, IL-8, GM-CSF, IL-1b, neurotrophic factor BDNF, and angiogenic factor VEGF, induced by UV-C-killed bacteria. Discussion The results suggest that long term stimulation (for 21 days) of SCAP with UV-C-inactivated bacteria stimulate their mineralization and inflammatory response, while DNA influence has no such effect, which opens up new ideas about the nature of RET failure.
Collapse
Affiliation(s)
| | | | - Philip Wadelius
- Department of Endodontics, Region of Västerbotten, Umeå, Sweden
| | - Alexej Schmidt
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Malin Brundin
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Peyman Kelk
- Section for Anatomy, Department of Integrative Medical Biology (IMB), Umeå University, Umeå, Sweden
| | - Maréne Landström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Nelly Romani Vestman
- Department of Odontology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Kurzyk A, Szwed-Georgiou A, Pagacz J, Antosik A, Tymowicz-Grzyb P, Gerle A, Szterner P, Włodarczyk M, Płociński P, Urbaniak MM, Rudnicka K, Biernat M. Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications. Sci Rep 2023; 13:15384. [PMID: 37717040 PMCID: PMC10505220 DOI: 10.1038/s41598-023-42271-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Nanohydroxyapatite (nanoHAP) is widely used in bone regeneration, but there is a need to enhance its properties to provide stimuli for cell commitment and osteoconduction. This study examines the effect of calcination at 1200 °C on the physicochemical and biological properties of nanoHAP doped with magnesium (Mg2+), strontium (Sr2+), and zinc (Zn2+). A synergistic effect of dual modification on nanoHAP biological properties was investigated. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), BET analysis, Fourier-transform spectroscopy, and thermal analysis methods. Furthermore, ion release tests and in vitro biological characterization, including cytocompatibility, reactive oxygen species production, osteoconductive potential and cell proliferation, were performed. The XRD results indicate that the ion substitution of nanoHAP has no effect on the apatite structure, and after calcination, β-tricalcium phosphate (β-TCP) is formed as an additional phase. SEM analysis showed that calcination induces the agglomeration of particles and changes in surface morphology. A decrease in the specific surface area and in the ion release rate was observed. Combining calcination and nanoHAP ion modification is beneficial for cell proliferation and osteoblast response and provide additional stimuli for cell commitment in bone regeneration.
Collapse
Affiliation(s)
- Agata Kurzyk
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8 St., 31-983, Kraków, Poland.
| | - Aleksandra Szwed-Georgiou
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland
| | - Joanna Pagacz
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8 St., 31-983, Kraków, Poland
| | - Agnieszka Antosik
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8 St., 31-983, Kraków, Poland
| | - Paulina Tymowicz-Grzyb
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8 St., 31-983, Kraków, Poland
| | - Anna Gerle
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8 St., 31-983, Kraków, Poland
| | - Piotr Szterner
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8 St., 31-983, Kraków, Poland
| | - Marcin Włodarczyk
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland
| | - Mateusz M Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 12/16 Banacha St., 90-237, Lodz, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237, Lodz, Poland
| | - Monika Biernat
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Cementowa 8 St., 31-983, Kraków, Poland
| |
Collapse
|
7
|
Sonmez Kaplan S, Sazak Ovecoglu H, Genc D, Akkoc T. TNF-α, IL-1B and IL-6 affect the differentiation ability of dental pulp stem cells. BMC Oral Health 2023; 23:555. [PMID: 37568110 PMCID: PMC10422753 DOI: 10.1186/s12903-023-03288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND This in vitro study examined the effect of the inflammatory cytokines (tumour necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6) on osteogenic, chondrogenic, and adipogenic differentiation of dental pulp stem cells (DPSCs) which have significant relevance in future regenerative therapies. METHODS DPSCs were isolated from the impacted third molar dental pulp and determined with flow cytometry analysis. DPSCs were divided into into 5 main groups with 3 subdivisions for each group making a total of 15 groups. Experimental groups were stimulated with TNF-α, IL-1β, IL-6, and a combination of all three to undergo osteogenic, chondrogenic, and adipogenic differentiation protocols. Next, the differentiation of each group was examined with different staining procedures under a light microscope. Histological analysis of osteogenic, chondrogenic, and adipogenic differentiated pellets was assessed using a modified Bern score. Statistical significance determined using one-way analysis of variance, and correlations were assessed using Pearson's test (two-tailed). RESULTS Stimulation with inflammatory cytokines significantly inhibited the osteogenic, chondrogenic and adipogenic differentiation of DPSCs in terms of matrix and cell formation resulting in weak staining than the unstimulated groups with inflammatory cytokines. On contrary, the unstimulated groups of MSCs have shown to be highly proliferative ability in terms of osteogenic, chondrogenic, and adipogenic differentiation. CONCLUSIONS DPSCs have high osteogenic, chondrogenic, and adipogenic differentiation capabilities. Pretreatment with inflammatory cytokines decreases the differentiation ability in vitro, thus inhibiting tissue formation.
Collapse
Affiliation(s)
- Sema Sonmez Kaplan
- Department of Endodontics, Faculty of Dentistry, Biruni University, 10. Yıl Caddesi Protokol Yolu No: 45, 34010, Topkapı, Istanbul, Turkey.
| | - Hesna Sazak Ovecoglu
- Faculty of Dentistry Department of Endodontics, Marmara University, Istanbul, Turkey
| | - Deniz Genc
- Department of Pediatric Health & Diseases Faculty of Health Sciences, Muğla Sıtkı Koçman University, Mugla, Turkey
- Research Laboratories Center, Immunology and Stem Cell Laboratory, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Tunc Akkoc
- Immunology Department, Marmara University Medical Faculty, Istanbul, Turkey
| |
Collapse
|
8
|
Kushioka J, Chow SKH, Toya M, Tsubosaka M, Shen H, Gao Q, Li X, Zhang N, Goodman SB. Bone regeneration in inflammation with aging and cell-based immunomodulatory therapy. Inflamm Regen 2023; 43:29. [PMID: 37231450 DOI: 10.1186/s41232-023-00279-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Aging of the global population increases the incidence of osteoporosis and associated fragility fractures, significantly impacting patient quality of life and healthcare costs. The acute inflammatory reaction is essential to initiate healing after injury. However, aging is associated with "inflammaging", referring to the presence of systemic low-level chronic inflammation. Chronic inflammation impairs the initiation of bone regeneration in elderly patients. This review examines current knowledge of the bone regeneration process and potential immunomodulatory therapies to facilitate bone healing in inflammaging.Aged macrophages show increased sensitivity and responsiveness to inflammatory signals. While M1 macrophages are activated during the acute inflammatory response, proper resolution of the inflammatory phase involves repolarizing pro-inflammatory M1 macrophages to an anti-inflammatory M2 phenotype associated with tissue regeneration. In aging, persistent chronic inflammation resulting from the failure of M1 to M2 repolarization leads to increased osteoclast activation and decreased osteoblast formation, thus increasing bone resorption and decreasing bone formation during healing.Inflammaging can impair the ability of stem cells to support bone regeneration and contributes to the decline in bone mass and strength that occurs with aging. Therefore, modulating inflammaging is a promising approach for improving bone health in the aging population. Mesenchymal stem cells (MSCs) possess immunomodulatory properties that may benefit bone regeneration in inflammation. Preconditioning MSCs with pro-inflammatory cytokines affects MSCs' secretory profile and osteogenic ability. MSCs cultured under hypoxic conditions show increased proliferation rates and secretion of growth factors. Resolution of inflammation via local delivery of anti-inflammatory cytokines is also a potential therapy for bone regeneration in inflammaging. Scaffolds containing anti-inflammatory cytokines, unaltered MSCs, and genetically modified MSCs can also have therapeutic potential. MSC exosomes can increase the migration of MSCs to the fracture site and enhance osteogenic differentiation and angiogenesis.In conclusion, inflammaging can impair the proper initiation of bone regeneration in the elderly. Modulating inflammaging is a promising approach for improving compromised bone healing in the aging population.
Collapse
Affiliation(s)
- Junichi Kushioka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masakazu Toya
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Huaishuang Shen
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xueping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
9
|
Singhatanadgit W, Olsen I, Young A. ICAM-1-mediated osteoblast-T lymphocyte direct interaction increases mineralization through TGF-β1 suppression. J Cell Physiol 2023; 238:420-433. [PMID: 36602898 DOI: 10.1002/jcp.30939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
Modulation of osteoblast functions by T lymphocytes is important in inflammation-associated mineralized tissue diseases. The study aimed to determine whether direct interaction between these two cell types affects osteoblast functions and mineralization. The results showed that direct contact between the two cell types was evident by scanning electron microscopy and transmission electron microscopy. Under osteogenic induction, higher hydroxyapatite precipitation was observed in cocultures with direct contact with T lymphocytes compared with that by osteoblasts cultured alone. Cocultures without direct cell contact caused a decrease in mineralization. Direct cell contact also upregulated intercellular adhesion molecule (ICAM)-1 and simultaneously downregulated transforming growth factor (TGF)-β1 in osteoblasts. However, the downregulation of TGF-β1 was reversed by ICAM-1 blocking. Exogenously added TGF-β1 in cocultures with direct cell contact suppressed mineralization. In conclusion, studies are consistent with ICAM-1-mediated direct contact between osteoblasts and T lymphocytes increasing mineralization via downregulation of TGF-β1 in osteoblasts in vitro. This suggests a possible unexpected, but crucial, role of T lymphocytes in enhancing matrix mineralization during the repair process in vivo. The study identifies ICAM-1/TGF-β1 as possible novel therapeutic targets for the treatment and prevention of inflammation-associated mineralized tissue diseases.
Collapse
Affiliation(s)
- Weerachai Singhatanadgit
- Research Unit in Mineralized Tissue Reconstruction and Faculty of Dentistry, Thammasat University, Khlong Luang, Pathum Thani, Thailand
| | - Irwin Olsen
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, London, UK
| | - Anne Young
- Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, London, UK
| |
Collapse
|
10
|
Ou-yang Y, Dai MM. Screening for genes, miRNAs and transcription factors of adipogenic differentiation and dedifferentiation of mesenchymal stem cells. J Orthop Surg Res 2023; 18:46. [PMID: 36647068 PMCID: PMC9843867 DOI: 10.1186/s13018-023-03514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The purpose of present study was to reveal the molecular mechanisms responsible for both adipogenic differentiation and dedifferentiation of mesenchymal stem cells (MSCs). METHODS Microarray data GSE36923 were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between adipogenically differentiated cells vs undifferentiated bone marrow-derived MSCs, adipogenically differentiated cells vs dedifferentiated cells samples at day 7 and adipogenically differentiated cells vs dedifferentiated cells samples at day 35 were screened, and overlapped DEGs across the three groups were analyzed. The underlying functions of the upregulated and downregulated DEGs were investigated by Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The protein-protein interaction network was constructed, and hub genes were obtained subsequently. Hub genes were verified with GSE113253 dataset, and then miRNA-gene network and TF-gene network were constructed. RESULTS A total of 284 upregulated DEGs and 376 downregulated DEGs overlapped across the three groups. PPAR signaling pathway, AMPK signaling pathway, insulin signaling pathway, carbon metabolism, pyruvate metabolism, fatty acid metabolism, regulation of lipolysis in adipocytes, biosynthesis of amino acids, citrate cycle (TCA cycle) and 2-Oxocarboxylic acid metabolism were the top 10 pathways involving in the upregulated DEGs, and graft-versus-host disease, allograft rejection, viral myocarditis, cell adhesion molecules, phagosome, type I diabetes mellitus, antigen processing and presentation, autoimmune thyroid disease, intestinal immune network for IgA production and rheumatoid arthritis were the top 10 pathways in downregulated DEGs. After validation, the 8 hub genes were IL6, PPARG, CCL2, FASN, CEBPA, ADIPOQ, FABP4 and LIPE. Ten key miRNAs were hsa-mir-27a-3p, hsa-mir-182-5p, hsa-mir-7-5p, hsa-mir-16-5p, hsa-mir-1-3p, hsa-mir-155-5p, hsa-mir-21-3p, hsa-mir-34a-5p, hsa-mir-27a-5p and hsa-mir-30c-5p, and 10 key TFs were TFDP1, GTF2A2, ZNF584, NRF1, ZNF512, NFRKB, CEBPG, KLF16, GLIS2 and MXD4. CONCLUSION Our study constructed miRNA-gene network and TF-gene network involved in both adipogenic differentiation and dedifferentiation of MSCs, contributing to enhancing the efficiency of MSCs transplantation in soft tissue defect repair and developing more potent remedies for adipogenesis-related skeletal disorders.
Collapse
Affiliation(s)
- Yi Ou-yang
- grid.284723.80000 0000 8877 7471Department of Traumatic Joint Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), No.1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province China
| | - Miao-miao Dai
- grid.284723.80000 0000 8877 7471Department of Ophthalmology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), No.1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province China
| |
Collapse
|
11
|
Thant AA, Ruangpornvisuti V, Sangvanich P, Banlunara W, Limcharoen B, Thunyakitpisal P. Characterization of a bioscaffold containing polysaccharide acemannan and native collagen for pulp tissue regeneration. Int J Biol Macromol 2023; 225:286-297. [PMID: 36356879 DOI: 10.1016/j.ijbiomac.2022.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Dental pulp regeneration exploits tissue engineering concepts using stem cells/scaffolds/growth-factors. Extracted collagen is commonly used as a biomaterial-scaffold due to its biocompatibility/biodegradability and mimics the natural extracellular matrix. Adding biomolecules into a collagen-scaffold enhanced pulp regeneration. Acemannan, β-(1-4)-acetylated-polymannose, is a polysaccharide extracted from aloe vera. Acemannan is a regenerative biomaterial. Therefore, acemannan could be a biomolecule in a collagen-scaffold. Here, acemannan and native collagen were obtained and characterized. The AceCol-scaffold's physical properties were investigated using FTIR, SEM, contact angle, swelling, pore size, porosity, compressive modulus, and degradation assays. The AceCol-scaffold's biocompatibility, growth factor secretion, osteogenic protein expression, and calcification were evaluated in vitro. The AceCol-scaffolds demonstrated higher hydrophilicity, swelling, porosity, and larger pore size than the collagen scaffolds (p < 0.05). Better cell-cell and cell-scaffold adhesion, and dentin extracellular matrix protein (BSP/OPN/DSPP) expression were observed in the AceCol-scaffold, however, DSPP expression was not detected in the collagen group. Significantly increased cellular proliferation, VEGF and BMP2 expression, and mineralization were detected in the AceCol-scaffold compared with the collagen-scaffold (p < 0.05). Computer simulation revealed that acemannan's 3D structure changes to bind with collagen. In conclusion, the AceCol-scaffold synergistically provides better physical and biological properties than collagen. The AceCol-scaffold is a promising material for tissue regeneration.
Collapse
Affiliation(s)
- Aye Aye Thant
- Dental Biomaterials Science Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | | | - Polkit Sangvanich
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pasutha Thunyakitpisal
- Research Unit of Herbal Medicine, Biomaterial and Material for Dental Treatment, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
12
|
Khokhani P, Belluomo R, Croes M, Gawlitta D, Kruyt MC, Weinans H. An in-vitro model to test the influence of immune cell secretome on MSC osteogenic differentiation. Tissue Eng Part C Methods 2022; 28:420-430. [PMID: 35770885 DOI: 10.1089/ten.tec.2022.0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Immune cells and their soluble factors have an important role in the bone healing process. Modulation of the immune response, therefore, offers a potential strategy to enhance bone formation. To investigate the influence of the immune system on osteogenesis, we developed and applied an in-vitro model that incorporates both innate and adaptive immune cells. Human peripheral blood mononuclear cells (PBMCs) were isolated and cultured for 24 hours and subsequently stimulated with immune-modulatory agents; C-class CpG oligodeoxynucleotide (CpG ODN C), Polyinosinic acid-polycytidylic acid Poly(I:C), and lipopolysaccharide (LPS); all pathogen recognition receptor agonists, and that target Toll-like receptors TLR9, -3, and -4, respectively. The conditioned medium obtained from PBMCs after 24 hours was used to investigate its effects on the metabolic activity and osteogenic differentiation capacity of human bone marrow-derived mesenchymal stromal cells (MSCs). Conditioned media from unstimulated PBMCs did not affect the metabolic activity and osteogenic differentiation capacity of MSCs. The conditioned medium from CpG ODN C and LPS stimulated PBMCs increased alkaline phosphatase activity of MSCs by approximately 3-fold as compared to the unstimulated control, whereas Poly(I:C) conditioned medium did not enhance ALP activity of MSCs. Moreover, direct stimulation of MSCs with the immune-modulatory stimuli did not result in increased alkaline phosphatase activity. These results demonstrate that soluble factors present in conditioned medium from PBMCs stimulated with immune-modulatory factors enhance osteogenesis of MSCs. This in-vitro model can serve as a tool in screening immune-modulatory stimulants from a broad variety of immune cells for (indirect) effects on osteogenesis and also to identify soluble factors from multiple immune cell types that may modulate bone healing.
Collapse
Affiliation(s)
- Paree Khokhani
- University Medical Centre Utrecht, 8124, Orthopedics , UMC Utrecht, dept. Orthopedics, G5.203, Heidelberglaan 100, Utrecht, Utrecht, Drenthe, Netherlands, 3584CX.,University Medical Centre, Utrecht (UMCU), UMC Utrecht, dept. Orthopedics, G5.203, Heidelberglaan 100, Netherlands;
| | - Ruggero Belluomo
- University Medical Centre Utrecht, 8124, Orthopedics , Utrecht, Utrecht, Netherlands;
| | - Michiel Croes
- University Medical Centre Utrecht, 8124, Orthopedics , Utrecht, Utrecht, Netherlands;
| | - Debby Gawlitta
- University Medical Center Utrecht, Oral and Maxillofacial Surgery, Prosthodontics & Special Dental Care, Heidelberglaan 100, G05.129, PO Box 85500, Utrecht, Netherlands, 3508 GA;
| | - Moyo C Kruyt
- University medical center Utrecht, Orthopedics, HP G 05.228, PO Box 85500, Utrecht, Netherlands, 3508 GA;
| | - Harrie Weinans
- University Medical Centre Utrecht, 8124, Orthopedics, Utrecht, Utrecht, Netherlands;
| |
Collapse
|
13
|
Shin J, Kang E, Park J, Cho B, Jang S. Anti‑inflammatory effect of red ginseng marc, Artemisia scoparia, Paeonia japonica and Angelica gigas extract mixture in LPS‑stimulated RAW 264.7 cells. Biomed Rep 2022; 17:63. [PMID: 35719838 PMCID: PMC9198992 DOI: 10.3892/br.2022.1546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
A normal inflammatory response is essential in protecting the body from foreign substances. However, excessive inflammation contributes to diseases such as oxidative stress, heart disease, and cancer. In this study, we evaluated the anti-inflammatory effects of RAPA (red ginseng marc, Artemisia scoparia Waldst.et Kit, Paeonia japonica Miyabe & Takeda, and Angelica gigas Nakai extract mixture) in LPS-stimulated RAW 264.7 cells (macrophages). RAPA suppressed the expression of inflammatory factors such as iNOS and COX-2 and decreased the production of nitric oxide. In addition, RAPA decreased the expression of the inflammatory cytokines TNF-α and IL-6. Furthermore, RAPA inhibited the phosphorylation of MAPKs such as JNK and ERK as well as IκB and NF-κB. In conclusion, RAPA inhibited production of inflammatory mediators via downregulation of the MAPK and NF-κB signaling pathways in LPS-stimulated RAW 264.7 cells. The results of this study demonstrated that RAPA regulates excessive inflammatory responses at the cellular level. Therefore, it is necessary to investigate whether the same effect is observed in vivo through further research.
Collapse
Affiliation(s)
- Jae Shin
- Institute of Health and Science, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| | - Eun Kang
- Institute of Health and Science, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| | - Ji Park
- Institute of Health and Science, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| | - Byoung Cho
- Institute of Health and Science, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| | - Seon Jang
- Institute of Health and Science, Jeonju University, Jeonju‑si, Jeollabuk‑do 55069, Republic of Korea
| |
Collapse
|
14
|
Tao LY, Łagosz-Ćwik KB, Hogervorst JMA, Schoenmaker T, Grabiec AM, Forouzanfar T, van der Weijden FA, de Vries TJ. Diabetes Medication Metformin Inhibits Osteoclast Formation and Activity in In Vitro Models for Periodontitis. Front Cell Dev Biol 2022; 9:777450. [PMID: 35096812 PMCID: PMC8793072 DOI: 10.3389/fcell.2021.777450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetes and periodontitis are comorbidities and may share common pathways. Several reports indicate that diabetes medication metformin may be beneficial for the periodontal status of periodontitis patients. Further research using appropriate cell systems of the periodontium, the tissue that surrounds teeth may reveal the possible mechanism. Periodontal ligament fibroblasts anchor teeth in bone and play a role in the onset of both alveolar bone formation and degradation, the latter by inducing osteoclast formation from adherent precursor cells. Therefore, a cell model including this type of cells is ideal to study the influence of metformin on both processes. We hypothesize that metformin will enhance bone formation, as described for osteoblasts, whereas the effects of metformin on osteoclast formation is yet undetermined. Periodontal ligament fibroblasts were cultured in the presence of osteogenic medium and 0.2 or 1 mM metformin. The influence of metformin on osteoclast formation was first studied in PDLF cultures supplemented with peripheral blood leukocytes, containing osteoclast precursors. Finally, the effect of metformin on osteoclast precursors was studied in cultures of CD14+ monocytes that were stimulated with M-CSF and receptor activator of Nf-κB ligand (RANKL). No effects of metformin were observed on osteogenesis: not on alkaline phosphatase activity, Alizarin red deposition, nor on the expression of osteogenic markers RUNX-2, Collagen I and Osteonectin. Metformin inhibited osteoclast formation and accordingly downregulated the genes involved in osteoclastogenesis: RANKL, macrophage colony stimulating factor (M-CSF) and osteoclast fusion gene DC-STAMP. Osteoclast formation on both plastic and bone as well as bone resorption was inhibited by metformin in M-CSF and RANKL stimulated monocyte cultures, probably by reduction of RANK expression. The present study unraveling the positive effect of metformin in periodontitis patients at the cellular level, indicates that metformin inhibits osteoclast formation and activity, both when orchestrated by periodontal ligament fibroblasts and in cytokine driven osteoclast formation assays. The results indicate that metformin could have a systemic beneficiary effect on bone by inhibiting osteoclast formation and activity.
Collapse
Affiliation(s)
- Lucy Y Tao
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Amsterdam, Netherlands.,Amsterdam University College, University of Amsterdam and Vrije University Amsterdam, Amsterdam, Netherlands
| | - Katarzyna B Łagosz-Ćwik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jolanda M A Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Amsterdam, Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Amsterdam, Netherlands
| | - Aleksander M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tim Forouzanfar
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Amsterdam UMC, Amsterdam, Netherlands
| | - Fridus A van der Weijden
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Amsterdam, Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Luo Q, Li X, Zhong W, Cao W, Zhu M, Wu A, Chen W, Ye Z, Han Q, Natarajan D, Pathak JL, Zhang Q. Dicalcium silicate-induced mitochondrial dysfunction and autophagy-mediated macrophagic inflammation promotes osteogenic differentiation of BMSCs. Regen Biomater 2021; 9:rbab075. [PMID: 35480858 PMCID: PMC9039510 DOI: 10.1093/rb/rbab075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Dicalcium silicate (Ca2SiO4, C2S) has osteogenic potential but induces macrophagic inflammation. Mitochondrial function plays a vital role in macrophage polarization and macrophagic inflammation. The mitochondrial function of C2S-treated macrophages is still unclear. This study hypothesized: (i) the C2S modulates mitochondrial function and autophagy in macrophages to regulate macrophagic inflammation, and (ii) C2S-induced macrophagic inflammation regulates osteogenesis. We used RAW264.7 cells as a model of macrophage. The C2S (75-150 μg/ml) extract was used to analyze the macrophagic mitochondrial function and macrophage-mediated effect on osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (BMSCs). The results showed that C2S extract (150 μg/ml) induced TNF-α, IL-1β and IL-6 production in macrophages. C2S extract (150 μg/ml) enhanced reactive oxygen species level and intracellular calcium level but reduced mitochondrial membrane potential and ATP production. TEM images showed reduced mitochondrial abundance and altered the mitochondrial morphology in C2S (150 μg/ml)-treated macrophages. Protein level expression of PINK1, Parkin, Beclin1 and LC3 was upregulated but TOMM20 was downregulated. mRNA sequencing and KEGG analysis showed that C2S-induced differentially expressed mRNAs in macrophages were mainly distributed in the essential signaling pathways involved in mitochondrial function and autophagy. The conditioned medium from C2S-treated macrophage robustly promoted osteogenic differentiation in BMSCs. In conclusion, our results indicate mitochondrial dysfunction and autophagy as the possible mechanism of C2S-induced macrophagic inflammation. The promotion of osteogenic differentiation of BMSCs by the C2S-induced macrophagic inflammation suggests the potential application of C2S in developing immunomodulatory bone grafts.
Collapse
Affiliation(s)
- Qianting Luo
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen 529030, China
| | - Xingyang Li
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Wenchao Zhong
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Wei Cao
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
- Department of Oral Cell Biology, Academic Centre of Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam 1081LA, The Netherlands
| | - Mingjing Zhu
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Antong Wu
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Wanyi Chen
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Qiao Han
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Duraipandy Natarajan
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Janak L Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| |
Collapse
|
16
|
Genç D, Sezer Kürkçü M, Yiğittürk G, Günaydın B, Elbe H, Aladağ A, Çöl B, Tarhan EF. Synovial fluid niche promoted differentiation of dental follicle mesenchymal stem cells toward chondrogenesis in rheumatoid arthritis. Arch Rheumatol 2021; 37:94-109. [PMID: 35949879 PMCID: PMC9326389 DOI: 10.46497/archrheumatol.2022.8891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives
In this study, we aimed to investigate the differentiation potential of dental follicle mesenchymal stem cells (MSCs) in the synovial fluid (SF) niche of early-onset or end-stage rheumatoid arthritis (RA). Patients and methods
Between May 2020 and January 2021, six patients (1 male, 5 females; mean age: 57.5±11.2 years; range, 49 to 65 years) who were diagnosed with RA with the indication of SF aspiration were included in the study. The third passage dental follicle stem cells (DFSCs) were cocultured with fresh SF samples of end-stage or early-onset RA patients in micromass culture system for 21 days. SF samples were analyzed for secreted cytokines. Chondrogenic markers (CD49e, CD49f) were analyzed in DFSCs, gene expression analysis was performed for the expressions of Col I, Col II, Aggrecan and Sox-9, and histochemical analysis was performed by staining three-dimensional pellets with anti-collagen II antibody. The neutralization assay was performed with anti-interleukin (IL)-6, anti-interferon-gamma (IFN-g), and anti-IL-1beta(b). Results
The high levels of IL-1b and IL-6 were observed in end-stage RA patients’ SF samples compared to the early-onset patients (p<0.05). The CD49e and CD49f expressions in DFSCs were significantly higher in the SF samples of end-stage RA patients (p<0.05). Also, the Col II, Sox-9 and Aggrecan messenger ribonucleic acid (mRNA) expressions increased in the DFSCs, when cultured with end-stage RA patients’ SF samples (p<0.01). Collagen-II expression in histochemical analysis of micromass pellets was higher in the DFSCs cultured with end-stage RA patients’ SF samples. The neutralization of IL-6 significantly decreased the CD49e and CD49f expressions (p<0.05). Conclusion
The high levels of IL-6 in SF niche of end-stage RA patients were found to differentiate DFSCs toward chondrogenesis. Based on these findings, DFSCs can be used as a new cell-based treatment in RA patients for the cartilage damage.
Collapse
Affiliation(s)
- Deniz Genç
- Department of Pediatric Health and Diseases Nursing, Muğla Sıtkı Koçman University, Faculty of Health Sciences, Muğla, Turkey
| | - Merve Sezer Kürkçü
- Muğla Sıtkı Koçman University, Research Laboratories Center, Muğla, Turkey
| | - Gürkan Yiğittürk
- Department of Histology and Embryology, Muğla Sıtkı Koçman University, Faculty of Medicine, Muğla, Turkey
| | - Burcu Günaydın
- Department of Histology and Embryology, Muğla Sıtkı Koçman University, Institute of Health Sciences, Muğla, Turkey
| | - Hülya Elbe
- Department of Histology and Embryology, Muğla Sıtkı Koçman University, Faculty of Medicine, Muğla, Turkey
| | - Akın Aladağ
- Muğla Sıtkı Koçman University, Faculty of Dentistry, Muğla, Turkey
| | - Bekir Çöl
- Department of Biology, Muğla Sıtkı Koçman University, Faculty of Science, Muğla, Turkey
| | - Emine Figen Tarhan
- Department of Rheumatology, Muğla Sıtkı Koçman University, Faculty of Medicine, Muğla, Turkey
| |
Collapse
|
17
|
Loo-Kirana R, Gilijamse M, Hogervorst J, Schoenmaker T, de Vries TJ. Although Anatomically Micrometers Apart: Human Periodontal Ligament Cells Are Slightly More Active in Bone Remodeling Than Alveolar Bone Derived Cells. Front Cell Dev Biol 2021; 9:709408. [PMID: 34616725 PMCID: PMC8488427 DOI: 10.3389/fcell.2021.709408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023] Open
Abstract
The periodontal ligament (PDL) and the alveolar bone are part of the periodontium, a complex structure that supports the teeth. The alveolar bone is continuously remodeled and is greatly affected by several complex oral events, like tooth extraction, orthodontic movement, and periodontitis. Until now, the role of PDL cells in terms of osteogenesis and osteoclastogenesis has been widely studied, whereas surprisingly little is known about the bone remodeling capacity of alveolar bone. Therefore, the purpose of this study was to compare the biological character of human alveolar bone cells and PDL cells in terms of osteogenesis and osteoclastogenesis in vitro. Paired samples of PDL cells and alveolar bone cells from seven patients with compromised general and oral health were collected and cultured. Bone A (early outgrowth) and bone B (late outgrowth) were included. PDL, bone A, bone B cell cultures all had a fibroblast appearance with similar expression pattern of six mesenchymal markers. These cultures were subjected to osteogenesis and osteoclastogenesis assays. For osteoclastogenesis assays, the cells were co-cultured with peripheral blood mononuclear cells, a source for osteoclast precursor cells. The total duration of the experiments was 21 days. Osteogenesis was slightly favored for PDL compared to bone A and B as shown by stronger Alizarin red staining and higher expression of RUNX2 and Collagen I at day 7 and for ALP at day 21. PDL induced approximately two times more osteoclasts than alveolar bone cells. In line with these findings was the higher expression of cell fusion marker DC-STAMP in PDL-PBMC co-cultures compared to bone B at day 21. In conclusion, alveolar bone contains remodeling activity, but to a different extent compared to PDL cells. We showed that human alveolar bone cells can be used as an in vitro model to study bone remodeling.
Collapse
Affiliation(s)
- Rebecca Loo-Kirana
- Department of Periodontology, Academic Centre For Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marjolijn Gilijamse
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Amsterdam UMC, Location VUmc, Amsterdam, Netherlands.,Department of Oral and Maxillofacial Surgery, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - Jolanda Hogervorst
- Department of Oral Cell Biology, Academic Centre For Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre For Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Centre For Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
18
|
Wang Q, Xu L, Willumeit-Römer R, Luthringer-Feyerabend BJC. Macrophage-derived oncostatin M/bone morphogenetic protein 6 in response to Mg-based materials influences pro-osteogenic activity of human umbilical cord perivascular cells. Acta Biomater 2021; 133:268-279. [PMID: 33321219 DOI: 10.1016/j.actbio.2020.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/26/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023]
Abstract
Macrophages are the central immune cell involved in the foreign body reaction to the implants. Furthermore, the magnesium-based materials could modulate macrophage functions, and subsequently influence bone formation via not clearly understood mechanisms. To analysis the roles of materials (magnesium and its gadolinium-based alloy; Mg and Mg-10Gd) on secretion of macrophages and their effects on pro-osteogenic activity, human mesenchymal stem cells (MSC) and macrophages were cocultured directly on the materials surface. Here, oncostatin M (OSM) - glycoprotein 130 (gp130) signaling complex as well as BMP6/SMAD were found to be involved in the Mg and Mg-10Gd multifactorial modulating osteogenic differentiation. Furthermore, materials upregulated the gene expression of bone morphogenetic protein 6 (BMP6) in macrophages, as well as its protein receptors and mothers against decapentaplegic homolog (SMAD) 1/4/5 in cocultured MSC. Besides, both materials could reduce the secretion of tumour necrosis factor alpha (TNFα) and interleukin 1 beta (IL1β) in macrophages and cocultures. These results collectively imply that Mg and Mg-10Gd could create a beneficial microenvironment for osteogenic differentiation and further support Mg-based biomaterial immunomodulatory properties by modulating the interactions of macrophages and MSC for bone regeneration. STATEMENT OF SIGNIFICANCE: Mg-activated macrophages could regulate the pro-osteogenic activity via OSM/gp130 and Smad-related signalling. The neutralisation assay was utilised to confirm the hypothesis of inductive osteoblastic differentiation of human MSC via OSM/gp130 signalling. Current study are essential to evidence that the coordinated communication between macrophages and MSC (OSM/gp130/BMP6/TNFα/IL1β), which could be utilised for improving magnesium-based bone biomaterials and therapeutic applications.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht, Germany
| | - Lei Xu
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht, Germany
| | - Regine Willumeit-Römer
- Institute of Materials Research, Division for Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht, Germany
| | | |
Collapse
|
19
|
Kreller T, Sahm F, Bader R, Boccaccini AR, Jonitz-Heincke A, Detsch R. Biomimetic Calcium Phosphate Coatings for Bioactivation of Titanium Implant Surfaces: Methodological Approach and In Vitro Evaluation of Biocompatibility. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3516. [PMID: 34202595 PMCID: PMC8269522 DOI: 10.3390/ma14133516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Ti6Al4V as a common implant material features good mechanical properties and corrosion resistance. However, untreated, it lacks bioactivity. In contrast, coatings with calcium phosphates (CaP) were shown to improve cell-material interactions in bone tissue engineering. Therefore, this work aimed to investigate how to tailor biomimetic CaP coatings on Ti6Al4V substrates using modified biomimetic calcium phosphate (BCP) coating solutions. Furthermore, the impact of substrate immersion in a 1 M alkaline CaCl2 solution (pH = 10) on subsequent CaP coating formation was examined. CaP coatings were characterized via scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, and laser-scanning microscope. Biocompatibility of coatings was carried out with primary human osteoblasts analyzing cell morphology, proliferation, collagen type 1, and interleukin 6 and 8 release. Results indicate a successful formation of low crystalline hydroxyapatite (HA) on top of every sample after immersion in each BCP coating solution after 14 days. Furthermore, HA coating promoted cell proliferation and reduced the concentration of interleukins compared to the uncoated surface, assuming increased biocompatibility.
Collapse
Affiliation(s)
- Thomas Kreller
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; (T.K.); (A.R.B.)
| | - Franziska Sahm
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany; (F.S.); (R.B.); (A.J.-H.)
| | - Rainer Bader
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany; (F.S.); (R.B.); (A.J.-H.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; (T.K.); (A.R.B.)
| | - Anika Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany; (F.S.); (R.B.); (A.J.-H.)
| | - Rainer Detsch
- Department of Materials Science and Engineering, Institute of Biomaterials, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; (T.K.); (A.R.B.)
| |
Collapse
|
20
|
Adipose-Derived Stem Cells Secretome and Its Potential Application in "Stem Cell-Free Therapy". Biomolecules 2021; 11:biom11060878. [PMID: 34199330 PMCID: PMC8231996 DOI: 10.3390/biom11060878] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ASCs) secrete many cytokines, proteins, growth factors, and extracellular vesicles with beneficial outcomes that can be used in regenerative medicine. It has great potential, and the development of new treatment strategies using the ASCs secretome is of global interest. Besides cytokines, proteins, and growth factors, the therapeutic effect of secretome is hidden in non-coding RNAs such as miR-21, miR-24, and miR-26 carried via exosomes secreted by adequate cells. The whole secretome, including ASC-derived exosomes (ASC-exos) has been proven in many studies to have immunomodulatory, proangiogenic, neurotrophic, and epithelization activity and can potentially be used for neurodegenerative, cardiovascular, respiratory, inflammatory, and autoimmune diseases as well as wound healing treatment. Due to limitations in the use of stem cells in cell-based therapy, its secretome with emphasis on exosomes seems to be a reasonable and safer alternative with increased effectiveness and fewer side effects. Moreover, the great advantage of cell-free therapy is the possibility of biobanking the ASCs secretome. In this review, we focus on the current state of knowledge on the use of the ASCs secretome in stem cell-free therapy.
Collapse
|
21
|
Banavar SR, Rawal SY, Pulikkotil SJ, Daood U, Paterson IC, Davamani FA, Kajiya M, Kurihara H, Khoo SP, Tan EL. 3D Clumps/Extracellular Matrix Complexes of Periodontal Ligament Stem Cells Ameliorate the Attenuating Effects of LPS on Proliferation and Osteogenic Potential. J Pers Med 2021; 11:528. [PMID: 34207600 PMCID: PMC8227185 DOI: 10.3390/jpm11060528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The effects of lipopolysaccharide (LPS) on cell proliferation and osteogenic potential (OP) of MSCs have been frequently studied. OBJECTIVE to compare the effects of LPS on periodontal-ligament-derived mesenchymal stem cells (PDLSCs) in monolayer and 3D culture. METHODS The PDLSCs were colorimetrically assessed for proliferation and osteogenic potential (OP) after LPS treatment. The 3D cells were manually prepared by scratching and allowing them to clump up. The clumps (C-MSCs) were treated with LPS and assessed for Adenosine triphosphate (ATP) and OP. Raman spectroscopy was used to analyze calcium salts, DNA, and proline/hydroxyproline. Multiplexed ELISA was performed to assess LPS induced local inflammation. RESULTS The proliferation of PDLSCs decreased with LPS. On Day 28, LPS-treated cells showed a reduction in their OP. C-MSCs with LPS did not show a decrease in ATP production. Principal bands identified in Raman analysis were the P-O bond at 960 cm-1 of the mineral component, 785 cm-1, and 855 cm-1 showing qualitative changes in OP, proliferation, and proline/hydroxyproline content, respectively. ELISA confirmed increased levels of IL-6 and IL-8 but with the absence of TNF-α and IL-1β secretion. CONCLUSIONS These observations demonstrate that C-MSCs are more resistant to the effects of LPS than cells in monolayer cell culture. Though LPS stimulation of C-MSCs creates an early pro-inflammatory milieu by secreting IL-6 and IL-8, PDLSCs possess inactivated TNF promoter and an ineffective caspase-1 activating process.
Collapse
Affiliation(s)
- Spoorthi Ravi Banavar
- Oral Diagnostic and Surgical Sciences, School of Dentistry, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Swati Yeshwant Rawal
- Department of Surgical Sciences, Marquette University, 1250 W. Wisconsin Ave, Milwaukee, WI 53233, USA;
| | - Shaju Jacob Pulikkotil
- Clinical Dentistry, School of Dentistry, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (S.J.P.); (U.D.)
| | - Umer Daood
- Clinical Dentistry, School of Dentistry, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (S.J.P.); (U.D.)
| | - Ian C. Paterson
- Department of Oral Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur 50603, Malaysia
| | | | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Hidemi Kurihara
- Dental Academy, 1-6-2 Higashiyanagi, Kudamatsu City 744-0017, Japan;
| | - Suan Phaik Khoo
- Oral Diagnostic and Surgical Sciences, School of Dentistry, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Eng Lai Tan
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia;
| |
Collapse
|
22
|
Albashari AA, He Y, Albaadani MA, Xiang Y, Ali J, Hu F, Zhang Y, Zhang K, Luo L, Wang J, Ye Q. Titanium Nanotube Modified With Silver Cross-Linked Basic Fibroblast Growth Factor Improves Osteoblastic Activities of Dental Pulp Stem Cells and Antibacterial Effect. Front Cell Dev Biol 2021; 9:654654. [PMID: 33869214 PMCID: PMC8047219 DOI: 10.3389/fcell.2021.654654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/04/2021] [Indexed: 11/25/2022] Open
Abstract
Titanium modifications with different silver loading methods demonstrate excellent antibacterial properties. Yet pure silver nanoparticles with limited bioactive properties may delay regeneration of bone surrounding the dental implant. Therefore, loading silver with bioactive drugs on titanium surfaces seems to be a very promising strategy. Herein, we designed a silver (Ag) step-by-step cross-linking with the basic fibroblast growth factor (bFGF) by polydopamine (PDA) and heparin on titanium nanotube (TNT) as its cargo (TNT/PDA/Ag/bFGF) to improve the implant surface. Our results showed that TNT/PDA/Ag/bFGF significantly enhanced the osteogenic differentiation of dental pulp stem cells (DPSCs). It also showed an excellent effect in bacterial inhibition and a reduction of pro-inflammatory factors through inhibition of M1 macrophage activity. These results showed that bFGF cross-linked silver coating on TNTs presented good osteogenic differentiation and early anti-infiammatory and antibacterial properties. Together, this novel design on titanium provides a promising therapeutic for dental implants.
Collapse
Affiliation(s)
| | - Yan He
- Laboratory for Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | | | - Yangfan Xiang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jihea Ali
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yuan Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jianming Wang
- Laboratory for Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Yin X, Yang C, Wang Z, Zhang Y, Li Y, Weng J, Feng B. Alginate/chitosan modified immunomodulatory titanium implants for promoting osteogenesis in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112087. [PMID: 33947577 DOI: 10.1016/j.msec.2021.112087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
The essentiality of macrophages for biomaterial-mediated osteogenesis has been increasingly recognized. However, it is still unclear what is the specific role and molecular mechanisms of macrophages and material properties in the regulation of osteogenesis. As an interdisciplinary field exploring the cross-talk between immune and skeletal systems, osteoimmunology has shifted the perspective of bone substitute materials from immunosuppressive materials to immunomodulatory materials. To fabricate an immunomodulatory Ti implant, alginate/chitosan multilayer films were fabricated on the surface of titania nanotubes (TNTs) to control the release of an anti-inflammatory cytokine interleukin (IL)-4 according to our previous work. The osteogenic effects and regulation mechanisms of the immunomodulatory Ti implants were investigated in vitro in different BMSCs culture modes. Alginate/chitosan multilayer-coated samples (with or without IL-4 loading) showed better direct osteogenic ability than TNTs by promoting biomineralization and up-regulating osteogenic gene expression (BMP1α, ALP, OPN, OCN) of BMSCs. Notably, material-induced macrophage polarization, M1 and M2, enhanced early and mid-stage osteogenesis of BMSCs via distinct pathways: M1 activated both BMP6/SMADs and Wnt10b/β-catenin pathways; while M2 activated TGF-β/SMADs pathway. Material surface properties dominated in regulating late osteogenesis probably due to the surface chemical composition (alginate, chitosan and Ca2+, etc.). Due to synergistic effects of material-induced inflammatory microenvironment and material surface properties, IL-4-loaded samples exhibited superior osteogenic capability through co-activation of three signaling pathways. The in vivo studies in rat bone defect model revealed that IL-4-loaded immunomodulatory implants successfully achieved macrophage phenotypic transition from pro-inflammatory M1 to anti-inflammatory M2 and subsequently improved new bone formation.
Collapse
Affiliation(s)
- Xianzhen Yin
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Congling Yang
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ziquan Wang
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yiting Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Weng
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Bo Feng
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
24
|
Amarasekara DS, Kim S, Rho J. Regulation of Osteoblast Differentiation by Cytokine Networks. Int J Mol Sci 2021; 22:ijms22062851. [PMID: 33799644 PMCID: PMC7998677 DOI: 10.3390/ijms22062851] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoblasts, which are bone-forming cells, play pivotal roles in bone modeling and remodeling. Osteoblast differentiation, also known as osteoblastogenesis, is orchestrated by transcription factors, such as runt-related transcription factor 1/2, osterix, activating transcription factor 4, special AT-rich sequence-binding protein 2 and activator protein-1. Osteoblastogenesis is regulated by a network of cytokines under physiological and pathophysiological conditions. Osteoblastogenic cytokines, such as interleukin-10 (IL-10), IL-11, IL-18, interferon-γ (IFN-γ), cardiotrophin-1 and oncostatin M, promote osteoblastogenesis, whereas anti-osteoblastogenic cytokines, such as tumor necrosis factor-α (TNF-α), TNF-β, IL-1α, IL-4, IL-7, IL-12, IL-13, IL-23, IFN-α, IFN-β, leukemia inhibitory factor, cardiotrophin-like cytokine, and ciliary neurotrophic factor, downregulate osteoblastogenesis. Although there are gaps in the body of knowledge regarding the interplay of cytokine networks in osteoblastogenesis, cytokines appear to be potential therapeutic targets in bone-related diseases. Thus, in this study, we review and discuss our osteoblast, osteoblast differentiation, osteoblastogenesis, cytokines, signaling pathway of cytokine networks in osteoblastogenesis.
Collapse
Affiliation(s)
- Dulshara Sachini Amarasekara
- Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo 00300, Sri Lanka;
| | - Sumi Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea;
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea;
- Correspondence: ; Tel.: +82-42-821-6420; Fax: +82-42-822-7367
| |
Collapse
|
25
|
Xing H, Li R, Qing Y, Ying B, Qin Y. Biomaterial-based osteoimmunomodulatory strategies via the TLR4-NF-κB signaling pathway: A review. APPLIED MATERIALS TODAY 2021; 22:100969. [DOI: 10.1016/j.apmt.2021.100969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Khokhani P, Rahmani NR, Kok A, Öner FC, Alblas J, Weinans H, Kruyt MC, Croes M. Use of Therapeutic Pathogen Recognition Receptor Ligands for Osteo-Immunomodulation. MATERIALS 2021; 14:ma14051119. [PMID: 33673651 PMCID: PMC7957819 DOI: 10.3390/ma14051119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 01/08/2023]
Abstract
Therapeutic pathogen recognition receptor (PRR) ligands are reaching clinical practice following their ability to skew the immune response in a specific direction. We investigated the effects of various therapeutic PRR ligands on bone cell differentiation and inflammation. Following stimulation, alkaline phosphatase (ALP) activity (Day 10), osteocalcin, osteonectin expression (Day 14), and calcium deposition (Day 21) were quantified in bone marrow-derived human mesenchymal stem cells (hMSCs). The osteoclastogenic response was determined by measuring tartrate-resistant acid phosphate (TRAP) activity in human monocytes. TNF-α, IL-6, IL-8, and IL-10 expressions were measured by enzyme-linked immunosorbent assay as an indicator of the ligands’ inflammatory properties. We found that nucleic acid-based ligands Poly(I:C) and CpG ODN C increased early ALP activity in hMSCs by 4-fold without affecting osteoclast formation. These ligands did not enhance expression of the other, late osteogenic markers. MPLA, Curdlan, and Pam3CSK4 did not affect osteogenic differentiation, but inhibited TRAP activity in monocytes, which was associated with increased expression of all measured cytokines. Nucleic acid-based ligands are identified as the most promising osteo-immunomodulators, as they favor early osteogenic differentiation without inducing an exaggerated immune-cell mediated response or interfering in osteoclastogenesis and thus can be potentially harnessed for multifunctional coatings for bone biomaterials.
Collapse
Affiliation(s)
- Paree Khokhani
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Nada R Rahmani
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Anne Kok
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - F Cumhur Öner
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, Technical University Delft, 2628 CD Delft, The Netherlands
| | - Moyo C Kruyt
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Michiel Croes
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
27
|
Nasi S, Castelblanco M, Chobaz V, Ehirchiou D, So A, Bernabei I, Kusano T, Nishino T, Okamoto K, Busso N. Xanthine Oxidoreductase Is Involved in Chondrocyte Mineralization and Expressed in Osteoarthritic Damaged Cartilage. Front Cell Dev Biol 2021; 9:612440. [PMID: 33634117 PMCID: PMC7900416 DOI: 10.3389/fcell.2021.612440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Pathologic calcification of cartilage consists of the formation of basic calcium phosphate (BCP) and/or calcium pyrophosphate dihydrate (CPPD) containing calcium crystals in mature hyaline or articular cartilage and is associated with aging, cartilage injury and likely plays a role in accelerating the pathology of osteoarthritis (OA). The pathways regulating joint calcification, in particular cartilage calcification, are not completely understood, but inflammation and the formation of reactive oxygen species (ROS) are contributory factors. The xanthine oxidase (XO) form of xanthine oxidoreductase (XOR), the key enzyme in xanthine and uric acid metabolism, is a major cellular source of superoxide. We hypothesized that XOR could be implicated in chondrocyte mineralization and cartilage calcification and degradation in OA. We showed both in murine primary chondrocyte and chondrogenic ATDC5 cells, that mineralization was inhibited by two different XOR inhibitors, febuxostat and allopurinol. In addition, XOR inhibition reduced the expression of the pro-mineralizing cytokine interleukin-6 (IL-6). We next generated XOR knock-out chondrocyte cell lines with undetectable XOR expression and XO activity. XOR knock-out chondrocyte cells showed decreased mineralization and reduced alkaline phosphatase (Alp) activity. To assess the precise form of XOR involved, primary chondrocytes of XOR mutant mice expressing either the XDH form (XDH ki) or the XO form (XO ki) were studied. We found that XO ki chondrocytes exhibited increased mineralization compared to XDH ki chondrocytes, and this was associated with enhanced Alp activity, ROS generation and IL-6 secretion. Finally, we found increased XOR expression in damaged vs. undamaged cartilage obtained from OA patients and XOR expression partially co-localized with areas showing pathologic calcification. Altogether, our results suggest that XOR, via its XO form, contribute to chondrocyte mineralization and pathological calcification in OA cartilage.
Collapse
Affiliation(s)
- Sonia Nasi
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Mariela Castelblanco
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Véronique Chobaz
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Driss Ehirchiou
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Alexander So
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Ilaria Bernabei
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Teruo Kusano
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Takeshi Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Ken Okamoto
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Nathalie Busso
- Service of Rheumatology, Department of Musculoskeletal Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Kazimierczak P, Koziol M, Przekora A. The Chitosan/Agarose/NanoHA Bone Scaffold-Induced M2 Macrophage Polarization and Its Effect on Osteogenic Differentiation In Vitro. Int J Mol Sci 2021; 22:ijms22031109. [PMID: 33498630 PMCID: PMC7866113 DOI: 10.3390/ijms22031109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 12/05/2022] Open
Abstract
Chronic immune response to bone implant may lead to delayed healing and its failure. Thus, newly developed biomaterials should be characterized by high biocompatibility. Moreover, it is well known that macrophages play a crucial role in the controlling of biomaterial-induced inflammatory response. Immune cells synthesize also a great amount of signaling molecules that regulate cell differentiation and tissue remodeling. Non-activated macrophages (M0) may be activated (polarized) into two main types of macrophage phenotype: proinflammatory type 1 macrophages (M1) and anti-inflammatory type 2 macrophages (M2). The aim of the present study was to assess the influence of the newly developed chitosan/agarose/nanohydroxyapatite bone scaffold (Polish Patent) on the macrophage polarization and osteogenic differentiation. Obtained results showed that macrophages cultured on the surface of the biomaterial released an elevated level of anti-inflammatory cytokines (interleukin-4, -10, -13, transforming growth factor-beta), which is typical of the M2 phenotype. Moreover, an evaluation of cell morphology confirmed M2 polarization of the macrophages on the surface of the bone scaffold. Importantly, in this study, it was demonstrated that the co-culture of macrophages-seeded biomaterial with bone marrow-derived stem cells (BMDSCs) or human osteoblasts (hFOB 1.19) enhanced their osteogenic ability, confirming the immunomodulatory effect of the macrophages on the osteogenic differentiation process. Thus, it was proved that the developed biomaterial carries a low risk of inflammatory response and induces macrophage polarization into the M2 phenotype with osteopromotive properties, which makes it a promising bone scaffold for regenerative medicine applications.
Collapse
Affiliation(s)
- Paulina Kazimierczak
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-7026
| | - Malgorzata Koziol
- Chair and Department of Medical Microbiology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| | - Agata Przekora
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland;
| |
Collapse
|
29
|
Gromolak S, Krawczenko A, Antończyk A, Buczak K, Kiełbowicz Z, Klimczak A. Biological Characteristics and Osteogenic Differentiation of Ovine Bone Marrow Derived Mesenchymal Stem Cells Stimulated with FGF-2 and BMP-2. Int J Mol Sci 2020; 21:E9726. [PMID: 33419255 PMCID: PMC7766718 DOI: 10.3390/ijms21249726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-based therapies using mesenchymal stem cells (MSCs) are a promising tool in bone tissue engineering. Bone regeneration with MSCs involves a series of molecular processes leading to the activation of the osteoinductive cascade supported by bioactive factors, including fibroblast growth factor-2 (FGF-2) and bone morphogenetic protein-2 (BMP-2). In this study, we examined the biological characteristics and osteogenic differentiation potential of sheep bone marrow MSCs (BM-MSCs) treated with 20 ng/mL of FGF-2 and 100 ng/mL BMP-2 in vitro. The biological properties of osteogenic-induced BM-MSCs were investigated by assessing their morphology, proliferation, phenotype, and cytokine secretory profile. The osteogenic differentiation was characterized by Alizarin Red S staining, immunofluorescent staining of osteocalcin and collagen type I, and expression levels of genetic markers of osteogenesis. The results demonstrated that BM-MSCs treated with FGF-2 and BMP-2 maintained their primary MSC properties and improved their osteogenic differentiation capacity, as confirmed by increased expression of osteocalcin and collagen type I and upregulation of osteogenic-related gene markers BMP-2, Runx2, osterix, collagen type I, osteocalcin, and osteopontin. Furthermore, sheep BM-MSCs produced a variety of bioactive factors involved in osteogenesis, and supplementation of the culture medium with FGF-2 and BMP-2 affected the secretome profile of the cells. The results suggest that sheep osteogenic-induced BM-MSCs may be used as a cellular therapy to study bone repair in the preclinical large animal model.
Collapse
Affiliation(s)
- Sandra Gromolak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (S.G.); (A.K.)
| | - Agnieszka Krawczenko
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (S.G.); (A.K.)
| | - Agnieszka Antończyk
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 51, 50-366 Wroclaw, Poland; (A.A.); (K.B.); (Z.K.)
| | - Krzysztof Buczak
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 51, 50-366 Wroclaw, Poland; (A.A.); (K.B.); (Z.K.)
| | - Zdzisław Kiełbowicz
- Department of Surgery, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 51, 50-366 Wroclaw, Poland; (A.A.); (K.B.); (Z.K.)
| | - Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (S.G.); (A.K.)
| |
Collapse
|
30
|
Goenka V, Borkar T, Desai A, Das RK. Therapeutic potential of mesenchymal stem cells in treating both types of diabetes mellitus and associated diseases. J Diabetes Metab Disord 2020; 19:1979-1993. [PMID: 33520872 PMCID: PMC7843693 DOI: 10.1007/s40200-020-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus is a common lifestyle disease which can be classified into type 1 diabetes mellitus and type 2 diabetes mellitus. While both result in hyperglycemia due to lack of insulin action and further associated chronic ailments, there is a marked distinction in the cause for each type due to which both require a different prophylaxis. As observed, type 1 diabetes is caused due to the autoimmune action of the body resulting in the destruction of pancreatic islet cells. On the other hand, type 2 diabetes is caused either due to insulin resistance of target cells or lack of insulin production as per physiological requirements. Attempts to cure the disease have been made by bringing drastic changes in the patients' lifestyle; parenteral administration of insulin; prescription of drugs such as biguanides, meglitinides, and amylin; pancreatic transplantation; and immunotherapy. While these attempts cause a certain degree of relief to the patient, none of these can cure diabetes mellitus. However, a new treatment strategy led by the discovery of mesenchymal stem cells and their unique immunomodulatory and multipotent properties has inspired therapies to treat diabetes by essentially reversing the conditions causing the disease. The current review aims to enumerate the role of various mesenchymal stem cells and the different approaches to treat both types of diabetes and its associated diseases as well.
Collapse
Affiliation(s)
- Vidul Goenka
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Tanhai Borkar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Aska Desai
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Raunak Kumar Das
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
31
|
Jauković A, Kukolj T, Obradović H, Okić-Đorđević I, Mojsilović S, Bugarski D. Inflammatory niche: Mesenchymal stromal cell priming by soluble mediators. World J Stem Cells 2020; 12:922-937. [PMID: 33033555 PMCID: PMC7524701 DOI: 10.4252/wjsc.v12.i9.922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are adult stem cells of stromal origin that possess self-renewal capacity and the ability to differentiate into multiple mesodermal cell lineages. They play a critical role in tissue homeostasis and wound healing, as well as in regulating the inflammatory microenvironment through interactions with immune cells. Hence, MSCs have garnered great attention as promising candidates for tissue regeneration and cell therapy. Because the inflammatory niche plays a key role in triggering the reparative and immunomodulatory functions of MSCs, priming of MSCs with bioactive molecules has been proposed as a way to foster the therapeutic potential of these cells. In this paper, we review how soluble mediators of the inflammatory niche (cytokines and alarmins) influence the regenerative and immunomodulatory capacity of MSCs, highlighting the major advantages and concerns regarding the therapeutic potential of these inflammatory primed MSCs. The data summarized in this review may provide a significant starting point for future research on priming MSCs and establishing standardized methods for the application of preconditioned MSCs in cell therapy.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| |
Collapse
|
32
|
Park JH, Kang YH, Hwang SC, Oh SH, Byun JH. Parthenolide Has Negative Effects on In Vitro Enhanced Osteogenic Phenotypes by Inflammatory Cytokine TNF-α via Inhibiting JNK Signaling. Int J Mol Sci 2020; 21:ijms21155433. [PMID: 32751648 DOI: 10.3390/ijms21155433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor kappa B (NF-κB) regulates inflammatory gene expression and represents a likely target for novel disease treatment approaches, including skeletal disorders. Several plant-derived sesquiterpene lactones can inhibit the activation of NF-κB. Parthenolide (PTL) is an abundant sesquiterpene lactone, found in Mexican Indian Asteraceae family plants, with reported anti-inflammatory activity, through the inhibition of a common step in the NF-κB activation pathway. This study examined the effects of PTL on the enhanced, in vitro, osteogenic phenotypes of human periosteum-derived cells (hPDCs), mediated by the inflammatory cytokine tumor necrosis factor (TNF)-α. PTL had no significant effects on hPDC viability or osteoblastic activities, whereas TNF-α had positive effects on the in vitro osteoblastic differentiation of hPDCs. c-Jun N-terminal kinase (JNK) signaling played an important role in the enhanced osteoblastic differentiation of TNF-α-treated hPDCs. Treatment with 1 µM PTL did not affect TNF-α-treated hPDCs; however, 5 and 10 µM PTL treatment decreased the histochemical detection and activity of alkaline phosphatase (ALP), alizarin red-positive mineralization, and the expression of ALP and osteocalcin mRNA. JNK phosphorylation decreased significantly in TNF-α-treated hPDCs pretreated with PTL. These results suggested that PTL exerts negative effects on the increased osteoblastic differentiation of TNF-α-treated hPDCs by inhibiting JNK signaling.
Collapse
Affiliation(s)
- Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Changwon Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Se Heang Oh
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
33
|
Goodman SB, Lin T. Modifying MSC Phenotype to Facilitate Bone Healing: Biological Approaches. Front Bioeng Biotechnol 2020; 8:641. [PMID: 32671040 PMCID: PMC7328340 DOI: 10.3389/fbioe.2020.00641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Healing of fractures and bone defects normally follows an orderly series of events including formation of a hematoma and an initial stage of inflammation, development of soft callus, formation of hard callus, and finally the stage of bone remodeling. In cases of severe musculoskeletal injury due to trauma, infection, irradiation and other adverse stimuli, deficient healing may lead to delayed or non-union; this results in a residual bone defect with instability, pain and loss of function. Modern methods of mechanical stabilization and autologous bone grafting are often successful in achieving fracture union and healing of bone defects; however, in some cases, this treatment is unsuccessful because of inadequate biological factors. Specifically, the systemic and local microenvironment may not be conducive to bone healing because of a loss of the progenitor cell population for bone and vascular lineage cells. Autologous bone grafting can provide the necessary scaffold, progenitor and differentiated lineage cells, and biological cues for bone reconstruction, however, autologous bone graft may be limited in quantity or quality. These unfavorable circumstances are magnified in systemic conditions with chronic inflammation, including obesity, diabetes, chronic renal disease, aging and others. Recently, strategies have been devised to both mitigate the necessity for, and complications from, open procedures for harvesting of autologous bone by using minimally invasive aspiration techniques and concentration of iliac crest bone cells, followed by local injection into the defect site. More elaborate strategies (not yet approved by the U.S. Food and Drug Administration-FDA) include isolation and expansion of subpopulations of the harvested cells, preconditioning of these cells or inserting specific genes to modulate or facilitate bone healing. We review the literature pertinent to the subject of modifying autologous harvested cells including MSCs to facilitate bone healing. Although many of these techniques and technologies are still in the preclinical stage and not yet approved for use in humans by the FDA, novel approaches to accelerate bone healing by modifying cells has great potential to mitigate the physical, economic and social burden of non-healing fractures and bone defects.
Collapse
Affiliation(s)
- Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Redwood City, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Tzuhua Lin
- Orthopaedic Research Laboratories, Stanford University, Stanford, CA, United States
| |
Collapse
|
34
|
Li W, Alahdal M, Deng Z, Liu J, Zhao Z, Cheng X, Chen X, Li J, Yin J, Li Y, Wang G, Wang D, Tang K, Zhang J. Molecular functions of FSTL1 in the osteoarthritis. Int Immunopharmacol 2020; 83:106465. [PMID: 32259701 DOI: 10.1016/j.intimp.2020.106465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
|
35
|
Ueno M, Lo CW, Barati D, Conrad B, Lin T, Kohno Y, Utsunomiya T, Zhang N, Maruyama M, Rhee C, Huang E, Romero-Lopez M, Tong X, Yao Z, Zwingenberger S, Yang F, Goodman SB. Interleukin-4 overexpressing mesenchymal stem cells within gelatin-based microribbon hydrogels enhance bone healing in a murine long bone critical-size defect model. J Biomed Mater Res A 2020; 108:2240-2250. [PMID: 32363683 DOI: 10.1002/jbm.a.36982] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cell (MSC)-based therapy is a promising strategy for bone repair. Furthermore, the innate immune system, and specifically macrophages, plays a crucial role in the differentiation and activation of MSCs. The anti-inflammatory cytokine Interleukin-4 (IL-4) converts pro-inflammatory M1 macrophages into a tissue regenerative M2 phenotype, which enhances MSC differentiation and function. We developed lentivirus-transduced IL-4 overexpressing MSCs (IL-4 MSCs) that continuously produce IL-4 and polarize macrophages toward an M2 phenotype. In the current study, we investigated the potential of IL-4 MSCs delivered using a macroporous gelatin-based microribbon (μRB) scaffold for healing of critical-size long bone defects in Mice. IL-4 MSCs within μRBs enhanced M2 marker expression without inhibiting M1 marker expression in the early phase, and increased macrophage migration into the scaffold. Six weeks after establishing the bone defect, IL-4 MSCs within μRBs enhanced bone formation and helped bridge the long bone defect. IL-4 MSCs delivered using macroporous μRB scaffold is potentially a valuable strategy for the treatment of critical-size long bone defects.
Collapse
Affiliation(s)
- Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Chi-Wen Lo
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Danial Barati
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Bogdan Conrad
- Stem Cell Biology and Regenerative Medicine Program, Stanford University, Stanford, California, USA
| | - Tzuhua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yusuke Kohno
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Claire Rhee
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Ejun Huang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Monica Romero-Lopez
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Xinming Tong
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Stefan Zwingenberger
- University Center for Orthopaedics and Traumatology, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA.,Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
36
|
Gardin C, Bosco G, Ferroni L, Quartesan S, Rizzato A, Tatullo M, Zavan B. Hyperbaric Oxygen Therapy Improves the Osteogenic and Vasculogenic Properties of Mesenchymal Stem Cells in the Presence of Inflammation In Vitro. Int J Mol Sci 2020; 21:ijms21041452. [PMID: 32093391 PMCID: PMC7073059 DOI: 10.3390/ijms21041452] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
Hyperbaric oxygen (HBO) therapy has been reported to be beneficial for treating many conditions of inflammation-associated bone loss. The aim of this work was to in vitro investigate the effect of HBO in the course of osteogenesis of human Mesenchymal Stem Cells (MSCs) grown in a simulated pro-inflammatory environment. Cells were cultured with osteogenic differentiation factors in the presence or not of the pro-inflammatory cytokine Tumor Necrosis Factor-α (TNF-α), and simultaneously exposed daily for 60 min, and up to 21 days, at 2,4 atmosphere absolute (ATA) and 100% O2. To elucidate osteogenic differentiation-dependent effects, cells were additionally pre-committed prior to treatments. Cell metabolic activity was evaluated by means of the MTT assay and DNA content quantification, whereas osteogenic and vasculogenic differentiation was assessed by quantification of extracellular calcium deposition and gene expression analysis. Metabolic activity and osteogenic properties of cells did not differ between HBO, high pressure (HB) alone, or high oxygen (HO) alone and control if cells were pre-differentiated to the osteogenic lineage. In contrast, when treatments started contextually to the osteogenic differentiation of the cells, a significant reduction in cell metabolic activity first, and in mineral deposition at later time points, were observed in the HBO-treated group. Interestingly, TNF-α supplementation determined a significant improvement in the osteogenic capacity of cells subjected to HBO, which was not observed in TNF-α-treated cells exposed to HB or HO alone. This study suggests that exposure of osteogenic-differentiating MSCs to HBO under in vitro simulated inflammatory conditions enhances differentiation towards the osteogenic phenotype, providing evidence of the potential application of HBO in all those processes requiring bone regeneration.
Collapse
Affiliation(s)
- Chiara Gardin
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35128 Padova, Italy; (G.B.); (S.Q.); (A.R.)
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Quartesan
- Department of Biomedical Sciences, University of Padova, 35128 Padova, Italy; (G.B.); (S.Q.); (A.R.)
| | - Alex Rizzato
- Department of Biomedical Sciences, University of Padova, 35128 Padova, Italy; (G.B.); (S.Q.); (A.R.)
| | - Marco Tatullo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Correspondence: (B.Z.); (M.T.); Tel.: +39-0532-455-502 (B.Z.)
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy; (C.G.); (L.F.)
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (B.Z.); (M.T.); Tel.: +39-0532-455-502 (B.Z.)
| |
Collapse
|
37
|
Kronemberger GS, Dalmônico GML, Rossi AL, Leite PEC, Saraiva AM, Beatrici A, Silva KR, Granjeiro JM, Baptista LS. Scaffold- and serum-free hypertrophic cartilage tissue engineering as an alternative approach for bone repair. Artif Organs 2020; 44:E288-E299. [PMID: 31950507 DOI: 10.1111/aor.13637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Human adipose stem/stromal cell (ASC) spheroids were used as a serum-free in vitro model to recapitulate the molecular events and extracellular matrix organization that orchestrate a hypertrophic cartilage phenotype. Induced-ASC spheroids (ø = 450 µm) showed high cell viability throughout the period of culture. The expression of collagen type X alpha 1 chain (COLXA1) and matrix metallopeptidase 13 (MMP-13) was upregulated at week 2 in induced-ASC spheroids compared with week 5 (P < .001) evaluated by quantitative real-time PCR. In accordance, secreted levels of IL-6 (P < .0001), IL-8 (P < .0001), IL-10 (P < .0001), bFGF (P < .001), VEGF (P < .0001), and RANTES (P < .0001) were the highest at week 2. Strong in situ staining for collagen type X and low staining for TSP-1 was associated with the increase of hypertrophic genes expression at week 2 in induced-ASC spheroids. Collagen type I, osteocalcin, biglycan, and tenascin C were detected at week 5 by in situ staining, in accordance with the highest expression of alkaline phosphatase (ALPL) gene and the presence of calcium deposits as evaluated by Alizarin Red O staining. Induced-ASC spheroids showed a higher force required to compression at week 2 (P < .0001). The human ASC spheroids under serum-free inducer medium and normoxic culture conditions were induced to a hypertrophic cartilage phenotype, opening a new perspective to recapitulate endochondral ossification in vivo.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | | | | | - Paulo Emílio Correa Leite
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Antonio M Saraiva
- Laboratory of Macromolecules, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Anderson Beatrici
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Scientific and Technological Metrology Division (Dimci), National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói, Brazil
| | - Leandra Santos Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ), Duque de Caxias, Brazil.,Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil.,Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil.,Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
38
|
Gu H, Huang Z, Chen G, Zhou K, Zhang Y, Chen J, Xu J, Yin X. Network and pathway-based analyses of genes associated with osteoporosis. Medicine (Baltimore) 2020; 99:e19120. [PMID: 32080087 PMCID: PMC7034680 DOI: 10.1097/md.0000000000019120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) is a disease characterized by bone mass loss, bone microstructure damage, increased bone fragility, and easy fracture. The molecular mechanism underlying OP remains unclear.In this study, we identified 217 genes associated with OP, and formed a gene set [OP-related genes gene set (OPgset)].The highly enriched GOs and pathways showed OPgset genes were significantly involved in multiple biological processes (skeletal system development, ossification, and osteoblast differentiation), and several OP-related pathways (Wnt signaling pathway, osteoclast differentiation, steroid hormone biosynthesis, and adipocytokine signaling pathway). Besides, pathway crosstalk analysis indicated three major modules, with first module consisted of pathways mainly involved in bone development-related signaling pathways, second module in Wnt-related signaling pathway and third module in metabolic pathways. Further, we calculated degree centrality of a node and selected ten key genes/proteins, including TGFB1, IL6, WNT3A, TNF, PTH, TP53, WNT1, IGF1, IL10, and SERPINE1. We analyze the K-core and construct three k-core sub-networks of OPgset genes.In summary, we for the first time explored the molecular mechanism underlying OP via network- and pathway-based methods, results from our study will improve our understanding of the pathogenesis of OP. In addition, these methods performed in this study can be used to explore pathogenesis and genes related to a specific disease.
Collapse
|
39
|
Al-Waeli H, Nicolau B, Stone L, Abu Nada L, Gao Q, Abdallah MN, Abdulkader E, Suzuki M, Mansour A, Al Subaie A, Tamimi F. Chronotherapy of Non-Steroidal Anti-Inflammatory Drugs May Enhance Postoperative Recovery. Sci Rep 2020; 10:468. [PMID: 31949183 PMCID: PMC6965200 DOI: 10.1038/s41598-019-57215-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Postoperative pain relief is crucial for full recovery. With the ongoing opioid epidemic and the insufficient effect of acetaminophen on severe pain; non-steroidal anti-inflammatory drugs (NSAIDs) are heavily used to alleviate this pain. However, NSAIDs are known to inhibit postoperative healing of connective tissues by inhibiting prostaglandin signaling. Pain intensity, inflammatory mediators associated with wound healing and the pharmacological action of NSAIDs vary throughout the day due to the circadian rhythm regulated by the clock genes. According to this rhythm, most of wound healing mediators and connective tissue formation occurs during the resting phase, while pain, inflammation and tissue resorption occur during the active period of the day. Here we show, in a murine tibia fracture surgical model, that NSAIDs are most effective in managing postoperative pain, healing and recovery when drug administration is limited to the active phase of the circadian rhythm. Limiting NSAID treatment to the active phase of the circadian rhythm resulted in overexpression of circadian clock genes, such as Period 2 (Per2) at the healing callus, and increased serum levels of anti-inflammatory cytokines interleukin-13 (IL-13), interleukin-4 (IL-4) and vascular endothelial growth factor. By contrast, NSAID administration during the resting phase resulted in severe bone healing impairment.
Collapse
Affiliation(s)
- H Al-Waeli
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - B Nicolau
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - L Stone
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - L Abu Nada
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - Q Gao
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - M N Abdallah
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, Ontario, M5G 1G, Canada
| | - E Abdulkader
- Faculty of Dentistry, McGill University, 2001 Avenue McGill College Suite 500, Montréal, QC, H3A 1G1, Canada
| | - M Suzuki
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Mansour
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - A Al Subaie
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada
| | - F Tamimi
- Faculty of Dentistry, McGill University, Strathcona Anatomy and Dentistry Building, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
40
|
Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, Goodman SB. Modulation of the Inflammatory Response and Bone Healing. Front Endocrinol (Lausanne) 2020; 11:386. [PMID: 32655495 PMCID: PMC7325942 DOI: 10.3389/fendo.2020.00386] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
The optimal treatment for complex fractures and large bone defects is an important unsolved issue in orthopedics and related specialties. Approximately 5-10% of fractures fail to heal and develop non-unions. Bone healing can be characterized by three partially overlapping phases: the inflammatory phase, the repair phase, and the remodeling phase. Eventual healing is highly dependent on the initial inflammatory phase, which is affected by both the local and systemic responses to the injurious stimulus. Furthermore, immune cells and mesenchymal stromal cells (MSCs) participate in critical inter-cellular communication or crosstalk to modulate bone healing. Deficiencies in this inter-cellular exchange, inhibition of the natural processes of acute inflammation, and its resolution, or chronic inflammation due to a persistent adverse stimulus can lead to impaired fracture healing. Thus, an initial and optimal transient stage of acute inflammation is one of the key factors for successful, robust bone healing. Recent studies demonstrated the therapeutic potential of immunomodulation for bone healing by the preconditioning of MSCs to empower their immunosuppressive properties. Preconditioned MSCs (also known as "primed/ licensed/ activated" MSCs) are cultured first with pro-inflammatory cytokines (e.g., TNFα and IL17A) or exposed to hypoxic conditions to mimic the inflammatory environment prior to their intended application. Another approach of immunomodulation for bone healing is the resolution of inflammation with anti-inflammatory cytokines such as IL4, IL10, and IL13. In this review, we summarize the principles of inflammation and bone healing and provide an update on cellular interactions and immunomodulation for optimal bone healing.
Collapse
Affiliation(s)
- Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Claire Rhee
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Takeshi Utsunomiya
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Ning Zhang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Masaya Ueno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
- Department of Bioengineering, Stanford University, Stanford, CA, United States
- *Correspondence: Stuart B. Goodman
| |
Collapse
|
41
|
Zheng K, Torre E, Bari A, Taccardi N, Cassinelli C, Morra M, Fiorilli S, Vitale-Brovarone C, Iviglia G, Boccaccini AR. Antioxidant mesoporous Ce-doped bioactive glass nanoparticles with anti-inflammatory and pro-osteogenic activities. Mater Today Bio 2020; 5:100041. [PMID: 32211607 PMCID: PMC7083763 DOI: 10.1016/j.mtbio.2020.100041] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/31/2022] Open
Abstract
Mesoporous bioactive glass nanoparticles (MBGNs) are emerging biomaterials for bone repair/regeneration, considering their favorable pro-osteogenic and proangiogenic activities. To further improve their therapeutic effects, the endowment of MBGNs with additional antioxidant properties is of particular interest to target oxidative stress related to bone remodeling and diseases. To this end, we developed antioxidant cerium-containing MBGNs (Ce-MBGNs) (particle size of 100-300 nm) by using a postimpregnation strategy to incorporate Ce, through which the shape, pore structure, and dispersity of the nanoparticles were preserved. The incorporated amount of Ce could be tailored by adjusting the concentration of the Ce precursor solution. When impregnated at a relatively low temperature (20 °C), Ce-MBGNs containing either 1.8 or 2.8 mol% of Ce were produced, while the formation of by-product cerium oxide nanoparticles (nanoceria) could be avoided. In both developed Ce-MBGNs, the concentration of Ce4+ was higher than that of Ce3+, while the relative molar percentage of Ce4+ was similar (∼74%) in both Ce-MBGNs. The obtained Ce-MBGNs were evidenced to be non-cytotoxic against fibroblasts at the concentration of 1 mg/mL. Moreover, the incorporation of Ce into MBGNs significantly reduced the expression of oxidative stress-related genes in macrophages (J774a.1). Particularly in the presence of pro-oxidation agents, Ce-MBGNs could downregulate the expression of oxidative stress-related genes in comparsion with the polystyrene plates (control). When cultured with Ce-MBGNs, the expression of proinflammatory-related genes in macrophages could also be downregulated in comparsion with MBGNs and the control. Ce-MBGNs also exhibited pro-osteogenic activities through suppressing pro-osteoclastogenic responses. The obtained results highlight the great potential of the developed Ce-MBGNs in a variety of biomedical applications, particularly in treating bone defects under inflammatory conditions, considering their antioxidant, anti-inflammatory, and pro-osteogenesis activities.
Collapse
Affiliation(s)
- Kai Zheng
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Elisa Torre
- Nobil Bio Ricerche Srl, Portacomaro D'Asti, Italy
| | - Alessandra Bari
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Nicola Taccardi
- Institute of Chemical Reaction Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Marco Morra
- Nobil Bio Ricerche Srl, Portacomaro D'Asti, Italy
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | | | | | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
42
|
Accelerated Osteogenic Differentiation of MC3T3-E1 Cells by Lactoferrin-Conjugated Nanodiamonds through Enhanced Anti-Oxidant and Anti-Inflammatory Effects. NANOMATERIALS 2019; 10:nano10010050. [PMID: 31878270 PMCID: PMC7022293 DOI: 10.3390/nano10010050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/16/2023]
Abstract
The purpose of this study was to investigate the effects of lactoferrin (LF)-conjugated nanodiamonds (NDs) in vitro on both anti-oxidant and anti-inflammation activity as well as osteogenic promotion. The application of LF-NDs resulted in sustained release of LF for up to 7 days. In vitro anti-oxidant analyses performed using Dichlorofluorescin diacetate (DCF-DA) assay and cell proliferation studies showed that LF (50 μg)-NDs effectively scavenged the reactive oxygen species (ROS) in MC3T3-E1 cells (osteoblast-like cells) after H2O2 treatment and increased proliferation of cells after H2O2 treatment. Treatment of lipopolysaccharide (LPS)-induced MC3T3-E1 cells with LF-NDs suppressed levels of pro-inflammatory cytokines, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). In addition, LF-NDs were associated with outstanding enhancement of osteogenic activity of MC3T3-E1 cells due to increased alkaline phosphatase (ALP) and calcium deposition. Our findings suggest that LF-NDs are an important substrate for alleviating ROS effects and inflammation, as well as promoting osteogenic differentiation of cells.
Collapse
|
43
|
Bastidas‐Coral AP, Hogervorst JMA, Forouzanfar T, Kleverlaan CJ, Koolwijk P, Klein‐Nulend J, Bakker AD. IL-6 counteracts the inhibitory effect of IL-4 on osteogenic differentiation of human adipose stem cells. J Cell Physiol 2019; 234:20520-20532. [PMID: 31016754 PMCID: PMC6767193 DOI: 10.1002/jcp.28652] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/16/2022]
Abstract
Fracture repair is characterized by cytokine production and hypoxia. To better predict cytokine modulation of mesenchymal stem cell (MSC)-aided bone healing, we investigated whether interleukin 4 (IL-4), IL-6, and their combination, affect osteogenic differentiation, vascular endothelial growth factor (VEGF) production, and/or mammalian target of rapamycin complex 1 (mTORC1) activation by MSCs under normoxia or hypoxia. Human adipose stem cells (hASCs) were cultured with IL-4, IL-6, or their combination for 3 days under normoxia (20% O 2 ) or hypoxia (1% O 2 ), followed by 11 days without cytokines under normoxia or hypoxia. Hypoxia did not alter IL-4 or IL-6-modulated gene or protein expression by hASCs. IL-4 alone decreased runt-related transcription factor 2 (RUNX2) and collagen type 1 (COL1) gene expression, alkaline phosphatase (ALP) activity, and VEGF protein production by hASCs under normoxia and hypoxia, and decreased mineralization of hASCs under hypoxia. In contrast, IL-6 increased mineralization of hASCs under normoxia, and enhanced RUNX2 gene expression under normoxia and hypoxia. Neither IL-4 nor IL-6 affected phosphorylation of the mTORC1 effector protein P70S6K. IL-4 combined with IL-6 diminished the inhibitory effect of IL-4 on ALP activity, bone nodule formation, and VEGF production, and decreased RUNX2 and COL1 expression, similar to IL-4 alone, under normoxia and hypoxia. In conclusion, IL-4 alone, but not in combination with IL-6, inhibits osteogenic differentiation and angiogenic stimulation potential of hASCs under normoxia and hypoxia, likely through pathways other than mTORC1. These results indicate that cytokines may differentially affect bone healing and regeneration when applied in isolation or in combination.
Collapse
Affiliation(s)
- Angela P. Bastidas‐Coral
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Jolanda M. A. Hogervorst
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial SurgeryAmsterdam University Medical Centers (Amsterdam UMC)/ACTA, location VUmc, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Cornelis J. Kleverlaan
- Department of Dental Materials ScienceAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Pieter Koolwijk
- Department of PhysiologyAmsterdam Cardiovascular Sciences, Amsterdam University Medical Centers (Amsterdam UMC)AmsterdamThe Netherlands
| | - Jenneke Klein‐Nulend
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| | - Astrid D. Bakker
- Department of Oral Cell BiologyAcademic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement SciencesAmsterdamThe Netherlands
| |
Collapse
|
44
|
Zhang T, Yao Y. Effects of inflammatory cytokines on bone/cartilage repair. J Cell Biochem 2019; 120:6841-6850. [PMID: 30335899 DOI: 10.1002/jcb.27953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/02/2018] [Indexed: 01/24/2023]
Abstract
Many inflammatory factors can affect cell behaviors and work as a form of inter-regulatory networks through the inflammatory pathway. Inflammatory cytokines are critical for triggering bone regeneration after fracture or bone injury. Also, inflammatory cytokines play an important role in cartilage repair. The synergistic or antagonistic effects of both proinflammatory and anti-inflammatory cytokines have a great influence on fracture healing. This review discusses key inflammatory cytokines and signaling pathways involved in bone or cartilage repair.
Collapse
Affiliation(s)
- Tingshuai Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Orthopaedic Technology And Implant Materials, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongchang Yao
- Department of Joint Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Orthopaedic Technology And Implant Materials, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
45
|
Modeling the Macrophage-Mediated Inflammation Involved in the Bone Fracture Healing Process. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS 2019. [DOI: 10.3390/mca24010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new mathematical model is presented to study the effects of macrophages on the bone fracture healing process. The model consists of a system of nonlinear ordinary differential equations that represents the interactions among classically and alternatively activated macrophages, mesenchymal stem cells, osteoblasts, and pro- and anti-inflammatory cytokines. A qualitative analysis of the model is performed to determine the equilibria and their corresponding stability properties. Numerical simulations are also presented to support the theoretical results, and to monitor the evolution of a broken bone for different types of fractures under various medical interventions. The model can be used to guide clinical experiments and to explore possible medical treatments that accelerate the bone fracture healing process, either by surgical interventions or drug administrations.
Collapse
|
46
|
Hao CL, Lin HL, Ke LY, Yen HW, Shen KP. Pre-germinated brown rice extract ameliorates high-fat diet-induced metabolic syndrome. J Food Biochem 2019; 43:e12769. [PMID: 31353547 DOI: 10.1111/jfbc.12769] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/26/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022]
Abstract
This study examined the effect of pre-germinated brown rice extract (PGBRE), containing no dietary fibers, but γ-oryzanol, γ-aminobutyric acid (GABA), flavonoids, and anthocyanidin, on high-fat-diet (HFD)-induced metabolic syndrome. C57BL/6 mice were divided into five groups: regular diet, HFD, HFD with oral PGBRE 30, 300, or 600 mg/kg per day for 18 weeks. In the HFD group, higher body and liver weight gain, hyperglycemia, HbA1c, and insulin; higher TG, TC, LDL-C, non-HDL, atherosclerosis index, lower HDL, adiponectin in blood; higher TG in the liver; higher TG, bile acid in feces; and lower protein levels of AMP-activated protein kinase, insulin receptor, insulin receptor substrate-1, insulin receptor substrate-2, peroxisome proliferator-activated receptor-γ, phosphatidylinositol-3-kinase, Akt/PKB, glucose transporter-1, glucose transporter-4, glucokinase in the skeletal muscle; lower glucagon-like peptide 1 (GLP-1) in the intestine; higher sterol regulatory element-binding protein-1 (SREBP-1), stearoyl-CoA desaturase 1 (SCD-1), fatty acid synthase (FAS), 3-hydroxy-3-methylglutaryl-CoA reductase, proprotein convertase subtilisin/kexin type 9 (PCSK9), and lower PPAR-α, low-density lipoprotein receptor, cholesterol-7α-hydroxylase in the liver; higher SREBP-1, SCD-1, FAS, and lower PPAR-α, adiponectin in the adipose tissue were found. In HFD + PGBRE groups, the above biochemical parameters were improved. PRACTICAL APPLICATIONS: According to the results, we suggested that dietary fibers played a minor role in this study. Extract of PGBR, excluding dietary fiber, showed beneficial activity to ameliorate metabolic syndrome. γ-oryzanol, GABA, flavonoids, and anthocyanidin in PGBRE can inhibit HFD-induced metabolic syndrome and we demonstrated clearly its action mechanisms. This is the first report to examine the relation between PGBRE, GLP-1, and PCSK9. Taken together, PGBRE can potentially be used to develop a good supplement to control metabolic syndrome.
Collapse
Affiliation(s)
- Chi-Long Hao
- Division of Cardiology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Hui-Li Lin
- Department of Food Science and Nutrition, Meiho University, Pingtung, Taiwan
| | - Liang-Yin Ke
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Yen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuo-Ping Shen
- Department of Nursing, Meiho University, Pingtung, Taiwan
| |
Collapse
|
47
|
Wu R, Ruan J, Sun Y, Liu M, Sha Z, Fan C, Wu Q. Long non-coding RNA HIF1A-AS2 facilitates adipose-derived stem cells (ASCs) osteogenic differentiation through miR-665/IL6 axis via PI3K/Akt signaling pathway. Stem Cell Res Ther 2018; 9:348. [PMID: 30545407 PMCID: PMC6293597 DOI: 10.1186/s13287-018-1082-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Background This study was aimed to investigate the role and specific molecular mechanism of HIF1A-AS2/miR-665/IL6 axis in regulating osteogenic differentiation of adipose-derived stem cells (ASCs) via the PI3K/Akt signaling pathway. Methods RNAs’ expression profile in normal/osteogenic differentiation-induced ASCs (osteogenic group) was from the Gene Expression Omnibus database. The analysis was carried out using Bioconductor of R. Gene Set Enrichment Analysis and Kyoto Encyclopedia of Genes and Genomes dataset were applied to identify up- and downregulated signaling pathways. Co-expression network of specific lncRNAs and mRNAs was structured by Cytoscape, while binding sites amongst lncRNA, mRNA, and miRNA were predicted by TargetScan and miRanda. ASCs were derived from human adipose tissue and were authenticated by flow cytometry. ASC cell function was surveyed by alizarin red and alkaline phosphatase (ALP) staining. Molecular mechanism of HIF1A-AS2/miR-665/IL6 axis was investigated by RNAi, cell transfection, western blot, and qRT-PCR. RNA target relationships were validated by dual-luciferase assay. Results HIF1A-AS2 and IL6 were highly expressed while miR-665 was lowly expressed in induced ASCs. HIF1A-AS2 and IL6 improved the expression level of osteoblast markers Runx2, Osterix, and Osteocalcin and also accelerated the formation of calcium nodule and ALP activity, yet miR-665 had opposite effects. HIF1A-AS2 directly targeted miR-665, whereas miR-665 repressed IL6 expression. Moreover, the HIF1A-AS2/miR-665/IL6 regulating axis activated the PI3K/Akt signaling pathway. Conclusions LncRNA HIF1A-AS2 could sponge miR-665 and hence upregulate IL6, activate the PI3K/Akt signaling pathway, and ultimately promote ASC osteogenic differentiation. Electronic supplementary material The online version of this article (10.1186/s13287-018-1082-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruoyu Wu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jihao Ruan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yongjin Sun
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Mengyu Liu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhuang Sha
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai, 200233, China.
| | - Qingkai Wu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No.600 Yishan Road, Xuhui District, Shanghai, 200233, China. .,Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
48
|
Zhao F, Xie W, Zhang W, Fu X, Gao W, Lei B, Chen X. 3D Printing Nanoscale Bioactive Glass Scaffolds Enhance Osteoblast Migration and Extramembranous Osteogenesis through Stimulating Immunomodulation. Adv Healthc Mater 2018; 7:e1800361. [PMID: 29952135 DOI: 10.1002/adhm.201800361] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/17/2018] [Indexed: 11/10/2022]
Abstract
Bioactive glass (BG) can repair bone defects, however, it is not clear whether BG has the ability for bone augmentation without making any bone defect. Unlike the intramembranous osteogenesis in bone defect repair, the extramembranous osteogenesis occurs outside the cortical bone and the osteoprogenitor cells show the reversed migration. Herein, nanoscale bioactive glass scaffolds (BGSs) are fabricated, and their role and immunomodulation-related mechanism in the extramembranous osteogenesis are investigated. The in vitro migration and differentiation of calvaria preosteoblasts are studied by culturing with peripheral macrophage-conditioned medium after stimulating with BGSs. The results indicate that the proinflammatory environment significantly promotes preosteoblast migration, but has limited effect on osteogenic differentiation. However, the anti-inflammatory environment and BGSs significantly increase the osteogenic differentiation of preosteoblasts. The in vivo extramembranous osteogenesis evaluation shows that the active osteogenesis is observed near the skull. The osteoblasts derived from the reverse migration of cranial cells can be confirmed by comparing with the scaffolds implanted in back subcutaneous which is just colonized by fibrous tissue. This study may bring a fresh perspective for BG in bone regeneration and explore the osteogenic immunomodulation of peripheral macrophages in a nonosteogenic environment.
Collapse
Affiliation(s)
- Fujian Zhao
- Department of Biomedical Engineering; School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration; South China University of Technology; Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering; Ministry of Education; South China University of Technology; Guangzhou 510006 China
| | - Weihan Xie
- Department of Biomedical Engineering; School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration; South China University of Technology; Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering; Ministry of Education; South China University of Technology; Guangzhou 510006 China
| | - Wen Zhang
- Department of Biomedical Engineering; School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration; South China University of Technology; Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering; Ministry of Education; South China University of Technology; Guangzhou 510006 China
| | - Xiaoling Fu
- Department of Biomedical Engineering; School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration; South China University of Technology; Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering; Ministry of Education; South China University of Technology; Guangzhou 510006 China
| | - Wendong Gao
- Department of Biomedical Engineering; School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration; South China University of Technology; Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering; Ministry of Education; South China University of Technology; Guangzhou 510006 China
| | - Bo Lei
- Frontier Institute of Science and Technology; Xi'an Jiaotong University; Xi'an 710000 China
| | - Xiaofeng Chen
- Department of Biomedical Engineering; School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
- National Engineering Research Center for Tissue Restoration; South China University of Technology; Guangzhou 510006 China
- Key Laboratory of Biomedical Materials and Engineering; Ministry of Education; South China University of Technology; Guangzhou 510006 China
| |
Collapse
|
49
|
de Vries TJ, Schoenmaker T, Micha D, Hogervorst J, Bouskla S, Forouzanfar T, Pals G, Netelenbos C, Eekhoff EMW, Bravenboer N. Periodontal ligament fibroblasts as a cell model to study osteogenesis and osteoclastogenesis in fibrodysplasia ossificans progressiva. Bone 2018; 109:168-177. [PMID: 28705683 DOI: 10.1016/j.bone.2017.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/21/2023]
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is a progressive disease characterized by periods of heterotopic ossification of soft connective tissues, including ligaments. Though progress has been made in recent years in unraveling the underlying mechanism, patient-derived cell models are necessary to test potential treatment options. Periodontal ligament fibroblasts (PLF) from extracted teeth can be used to study deviant bone modeling processes in vitro since these cells are derived from genuine ligaments. They further provide a tool to study the hitherto unknown role of the bone morphogenesis protein receptor type 1 (BMPR-1) Activin A type 1 receptor ACVR1-R206H mutation in osteoclastogenesis. To further validate this potential model, osteogenesis and osteoclastogenesis was studied in the presence of TGF-β/activin receptor inhibitor GW788388. Control and FOP fibroblasts (n=6 of each) were used in osteogenesis and osteoclastogenesis assays in the absence or presence of TGF-β/activin receptor inhibitor GW788388. For osteogenesis, alkaline phosphatase (ALP) activity, alizarin red staining for mineralization and qPCR for expression of osteogenic markers was assessed. TRACP staining, multinuclearity and expression of osteoclastogenesis markers were used as a measure of osteoclast formation. FOP fibroblasts cultured in osteogenic medium displayed a trend of higher ALP activity at 7days. Gene expression of ALP from FOP fibroblasts was significantly higher at 3days. Mineralization was similar at 21days for both groups. GW788388 did not influence mineral deposition in both groups. Osteoclast formation was inhibited by GW788388 on plastic for both controls and FOP. On cortical bone slices, however, osteoclast formation was significantly lowered by GW788388, only in FOP cultures. qPCR revealed strong expression of RANKL at 7days and a significant decline at 14 and 21days in both FOP and control cultures. In contrast to the osteoclastogenesis results, the RANKL/OPG ratio was higher in the presence of GW788388, only in FOP cultures. TGF-β expression was significantly higher at 14 and 21days compared to 7days, possibly signifying a role in later stages of osteoclast formation. Addition of GW788388 strongly decreased TGF-β expression. Our study shows that periodontal ligament fibroblasts from FOP patients displayed at most slightly enhanced in vitro osteogenesis and osteoclastogenesis. This model could be useful to elucidate molecular mechanisms leading to heterotopic ossification in FOP such as in the presence of specific ACVR1-R206H activators as Activin A.
Collapse
Affiliation(s)
- Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jolanda Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Siham Bouskla
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Tim Forouzanfar
- Department of Oral and Maxillofacial Surgery and Oral Pathology, VU University Medical Center, Amsterdam, The Netherlands, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Gerard Pals
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Coen Netelenbos
- Internal Medicine, Endocrinology Section, VU University Medical Center, Amsterdam, The Netherlands
| | - E Marelise W Eekhoff
- Internal Medicine, Endocrinology Section, VU University Medical Center, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Ruppeka-Rupeika E, Hogervorst J, Wouters F, Schoenmaker T, Forouzanfar T, de Vries TJ. Osteogenic and osteoclastogenic potential of jaw bone-derived cells-A case study. J Cell Biochem 2018; 119:5391-5401. [PMID: 29363782 DOI: 10.1002/jcb.26690] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/22/2018] [Indexed: 01/12/2023]
Abstract
Though the stem cell properties of tooth-derived periodontal ligament and gingival cells have been widely documented, surprisingly little is known about both the osteogenic and osteoclastogenic differentiation capacities of the more clinically relevant jaw bone-derived cells. These cells could be considered being recruited during bone healing such as after tooth extraction, after placing an implant, or after surgical or traumatic injury. Here, we compared the osteoblast and osteoclastogenesis features of four consecutive bone outgrowths with periodontal ligament and gingiva cells. For osteogenesis assay, cells were cultured in osteogenic medium, whereas in osteoclastogenesis assays, cells were cultured in the presence of human peripheral blood mononuclear cells (PBMCs) as a source of osteoclast precursors. After osteogenic stimulus, all six cell types responded by an increased expression of osteoblast markers RUNX2 and DMP1. Periodontal ligament cells expressed significantly higher levels of RUNX2 compared to all bone outgrowths. Alkaline phosphatase enzyme levels in periodontal ligament cells reached earlier and higher peak expression. Mineral deposits were highest in periodontal ligament, gingiva and the first bone outgrowth. Osteoclastogenesis revealed a stepwise increase of secreted pro-osteoclastogenesis proteins M-CSF, IL-1β, and TNF-α in the last three consecutive bone cultures. OPG mRNA showed the opposite: high expression in periodontal and gingiva cells and the first outgrowth. Osteoclast numbers were similar between the six cultures, both on bone and on plastic. This first study reveals that jaw bone outgrowths contain bone remodelling features that are slightly different from tooth-associated cells.
Collapse
Affiliation(s)
- Elizabete Ruppeka-Rupeika
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam University College, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Jolanda Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Fenne Wouters
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Tim Forouzanfar
- Department of Oral and Maxillofacial Surgery and Oral Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|