1
|
Buanec HL, Schiavon V, Merandet M, How-Kit A, Bergerat D, Fombellida-Lopez C, Bensussan A, Bouaziz JD, Burny A, Darcis G, Song H, Sajadi MM, Kottilil S, Gallo RC, Zagury D. Early elevated IFNα is a key mediator of HIV pathogenesis. COMMUNICATIONS MEDICINE 2024; 4:53. [PMID: 38504106 PMCID: PMC10951235 DOI: 10.1038/s43856-024-00454-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND A complete understanding of the different steps of HIV replication and an effective drug combination have led to modern antiretroviral regimens that block HIV replication for decades, but these therapies are not curative and must be taken for life. "Elite controllers" (ECs) is a term for the 0.5% of HIV-infected persons requiring no antiretroviral therapy, whose status may point the way toward a functional HIV cure. Defining the mechanisms of this control may be key to understanding how to replicate this functional cure in others. METHODS In ECs and untreated non-EC patients, we compared IFNα serum concentration, distribution of immune cell subsets, and frequency of cell markers associated with immune dysfunction. We also investigated the effect of an elevated dose of IFNα on distinct subsets within dendritic cells, natural killer cells, and CD4+ and CD8 + T cells. RESULTS Serum IFNα was undetectable in ECs, but all immune cell subsets from untreated non-EC patients were structurally and functionally impaired. We also show that the altered phenotype and function of these cell subsets in non-EC patients can be recapitulated when cells are stimulated in vitro with high-dose IFNα. CONCLUSIONS Elevated IFNα is a key mediator of HIV pathogenesis.
Collapse
Affiliation(s)
- Hélène Le Buanec
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Valérie Schiavon
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Marine Merandet
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | | | - David Bergerat
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Céline Fombellida-Lopez
- Laboratory of Infectious Diseases, GIGA-I3, GIGA-Institute University of Liege, 4000, Liege, Belgium
| | - Armand Bensussan
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Jean-David Bouaziz
- Université de Paris; INSERM U976, HIPI Unit, Institut de Recherche Saint-Louis, F-75010, Paris, France
- Dermatology Department, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Arsène Burny
- Laboratory of Molecular Biology, Gembloux Agrobiotech, University of Liège, Liège, Belgium
- Global Virus Network, Baltimore, MD, 21201, USA
| | - Gilles Darcis
- Laboratory of Infectious Diseases, GIGA-I3, GIGA-Institute University of Liege, 4000, Liege, Belgium
| | - Hongshuo Song
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Mohammad M Sajadi
- Global Virus Network, Baltimore, MD, 21201, USA
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shyamasundaran Kottilil
- Global Virus Network, Baltimore, MD, 21201, USA
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robert C Gallo
- Global Virus Network, Baltimore, MD, 21201, USA.
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
| | | |
Collapse
|
2
|
Wang Y, Yang L, Tang K, Zhang Y, Zhang C, Zhang Y, Jin B, Zhang Y, Zhuang R, Ma Y. Ad5-nCoV Vaccination Could Induce HLA-E Restricted CD8 + T Cell Responses Specific for Epitopes on Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein. Viruses 2023; 16:52. [PMID: 38257752 PMCID: PMC10820189 DOI: 10.3390/v16010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
We evaluated cellular immune responses induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines in an immunized population based on HLA-E-restricted CD8+ T cell epitope identification. HLA-E-restricted SARS-CoV-2 CD8+ T cell nonamer peptides were predicted with software. An HLA-E-transfected K562 cell binding assay was used to screen for high-affinity peptides. IFN-γ enzyme-linked immunospot assays were used to identify HLA-E-restricted epitopes. An HLA-E/epitope tetramer was employed to detect the frequencies of epitope-specific CD8+ T cells. Four CD8+ T cell epitopes on the spike protein of SARS-CoV-2 restricted by both HLA-E*0101 and E*0103 were identified. HLA-E-restricted epitope-specific IFN-γ-secreting CD8+ T cell responses could be detected in individuals vaccinated with SARS-CoV-2 vaccines. Importantly, the frequencies of epitope-specific CD8+ T cells in Ad5-nCoV vaccinated individuals were higher than in individuals vaccinated with recombinant protein or inactivated vaccines. Moreover, the frequencies of epitope-specific CD8+ T cells could be maintained for at least 120 days after only one dose of Ad5-nCoV vaccine, while the frequencies of epitope-specific CD8+ T cells decreased in individuals after two doses of Ad5-nCoV vaccine. These findings may contribute to a more comprehensive evaluation of the protective effects of vaccines for SARS-CoV-2; meanwhile, they may provide information to characterize HLA-E-restricted CD8+ T cell immunity against SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ran Zhuang
- Department of Immunology, Air Force Medical University, Xi’an 710032, China; (Y.W.); (L.Y.); (K.T.); (Y.Z.); (C.Z.); (Y.Z.); (B.J.); (Y.Z.)
| | - Ying Ma
- Department of Immunology, Air Force Medical University, Xi’an 710032, China; (Y.W.); (L.Y.); (K.T.); (Y.Z.); (C.Z.); (Y.Z.); (B.J.); (Y.Z.)
| |
Collapse
|
3
|
Picker LJ, Lifson JD, Gale M, Hansen SG, Früh K. Programming cytomegalovirus as an HIV vaccine. Trends Immunol 2023; 44:287-304. [PMID: 36894436 PMCID: PMC10089689 DOI: 10.1016/j.it.2023.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 03/09/2023]
Abstract
The initial development of cytomegalovirus (CMV) as a vaccine vector for HIV/simian immunodeficiency virus (SIV) was predicated on its potential to pre-position high-frequency, effector-differentiated, CD8+ T cells in tissues for immediate immune interception of nascent primary infection. This goal was achieved and also led to the unexpected discoveries that non-human primate (NHP) CMVs can be programmed to differentially elicit CD8+ T cell responses that recognize viral peptides via classical MHC-Ia, and/or MHC-II, and/or MHC-E, and that MHC-E-restricted CD8+ T cell responses can uniquely mediate stringent arrest and subsequent clearance of highly pathogenic SIV, an unprecedented type of vaccine-mediated protection. These discoveries delineate CMV vector-elicited MHC-E-restricted CD8+ T cells as a functionally distinct T cell response with the potential for superior efficacy against HIV-1, and possibly other infectious agents or cancers.
Collapse
Affiliation(s)
- Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
4
|
Jing Y, Zhang S, Wang H. DapNet-HLA: Adaptive dual-attention mechanism network based on deep learning to predict non-classical HLA binding sites. Anal Biochem 2023; 666:115075. [PMID: 36740003 DOI: 10.1016/j.ab.2023.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Human leukocyte antigen (HLA) plays a vital role in immunomodulatory function. Studies have shown that immunotherapy based on non-classical HLA has essential applications in cancer, COVID-19, and allergic diseases. However, there are few deep learning methods to predict non-classical HLA alleles. In this work, an adaptive dual-attention network named DapNet-HLA is established based on existing datasets. Firstly, amino acid sequences are transformed into digital vectors by looking up the table. To overcome the feature sparsity problem caused by unique one-hot encoding, the fused word embedding method is used to map each amino acid to a low-dimensional word vector optimized with the training of the classifier. Then, we use the GCB (group convolution block), SENet attention (squeeze-and-excitation networks), BiLSTM (bidirectional long short-term memory network), and Bahdanau attention mechanism to construct the classifier. The use of SENet can make the weight of the effective feature map high, so that the model can be trained to achieve better results. Attention mechanism is an Encoder-Decoder model used to improve the effectiveness of RNN, LSTM or GRU (gated recurrent neural network). The ablation experiment shows that DapNet-HLA has the best adaptability for five datasets. On the five test datasets, the ACC index and MCC index of DapNet-HLA are 4.89% and 0.0933 higher than the comparison method, respectively. According to the ROC curve and PR curve verified by the 5-fold cross-validation, the AUC value of each fold has a slight fluctuation, which proves the robustness of the DapNet-HLA. The codes and datasets are accessible at https://github.com/JYY625/DapNet-HLA.
Collapse
Affiliation(s)
- Yuanyuan Jing
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, PR China
| | - Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, PR China.
| | - Houqiang Wang
- School of Mathematics and Statistics, Xidian University, Xi'an, 710071, PR China
| |
Collapse
|
5
|
van Wolfswinkel M, van Meijgaarden KE, Ottenhoff THM, Niewold P, Joosten SA. Extensive flow cytometric immunophenotyping of human PBMC incorporating detection of chemokine receptors, cytokines and tetramers. Cytometry A 2023. [PMID: 36898852 DOI: 10.1002/cyto.a.24727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/19/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Characterization of immune cells is essential to advance our understanding of immunology and flow cytometry is an important tool in this context. Addressing both cellular phenotype and antigen-specific functional responses of the same cells is valuable to achieve a more integrated understanding of immune cell behavior and maximizes information obtained from precious samples. Until recently, panel size was limiting, resulting in panels generally focused on either deep immunophenotyping or functional readouts. Ongoing developments in the field of (spectral) flow cytometry have made panels of 30+ markers more accessible, opening up possibilities for advanced integrated analyses. Here, we optimized immune phenotyping by co-detection of markers covering chemokine receptors, cytokines and specific T cell/peptide tetramer interaction using a 32-color panel. Such panels enable integrated analysis of cellular phenotypes and markers assessing the quality of immune responses and will contribute to our understanding of the immune system.
Collapse
Affiliation(s)
| | | | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Paula Niewold
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| |
Collapse
|
6
|
Beltrami S, Rizzo S, Strazzabosco G, Gentili V, Alogna A, Narducci M, Bortolotti D, Schiuma G, Rizzo R. Non-classical HLA class I molecules and their potential role in viral infections. Hum Immunol 2023:S0198-8859(23)00061-7. [PMID: 37005169 DOI: 10.1016/j.humimm.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Human Leukocyte Antigens (HLA) are classified in three different classes I, II and III, and represent the key mediators of immune responses, self-tolerance development and pathogen recognition. Among them, non-classical subtypes (HLA-Ib), e.g. HLA-E and HLA-G, are characterize by tolerogenic functions that are often exploited by viruses to evade the host immune responses. In this perspective, we will review the main current data referred to HLA-G and HLA-E and viral infections, as well as the impact on immune response. Data were selected following eligibility criteria accordingly to the reviewed topic. We used a set of electronic databases (Medline/PubMed, Scopus, Web of Sciences (WOS), Cochrane library) for a systematic search until November 2022 using MeSH keywords/terms (i.e. HLA, HLA-G, HLA-E, viral infection, SARS-CoV-2, etc.…). Recent studies support the involvement of non-classical molecules, such as HLA-E and HLA-G, in the control of viral infection. On one side, viruses exploit HLA-G and HLA-E molecule to control host immune activation. On the other side, the expression of these molecules might control the inflammatory condition generated by viral infections. Hence, this review has the aim to summarize the state of art of literature about the modulation of these non-classical HLA-I molecules, to provide a general overview of the new strategies of viral immune system regulation to counteract immune defenses.
Collapse
Affiliation(s)
- Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Giovanni Strazzabosco
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Valentina Gentili
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Andrea Alogna
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Marco Narducci
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy; Temple University, Japan Campus, 1 Chome-14-29 Taishido, Setagaya City, Tokyo 154-0004, Italy
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Giovanna Schiuma
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy - Via Luigi Borsari, 46, 44121 Ferrara, Italy; LTTA, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy.
| |
Collapse
|
7
|
Koh JY, Kim DU, Moon BH, Shin EC. Human CD8 + T-Cell Populations That Express Natural Killer Receptors. Immune Netw 2023; 23:e8. [PMID: 36911797 PMCID: PMC9995994 DOI: 10.4110/in.2023.23.e8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Genome Insight, Inc., Daejeon 34051, Korea
| | - Dong-Uk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Bae-Hyeon Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
8
|
Brochu H, Wang R, Tollison T, Pyo CW, Thomas A, Tseng E, Law L, Picker LJ, Gale M, Geraghty DE, Peng X. Alternative splicing and genetic variation of mhc-e: implications for rhesus cytomegalovirus-based vaccines. Commun Biol 2022; 5:1387. [PMID: 36536032 PMCID: PMC9762870 DOI: 10.1038/s42003-022-04344-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Rhesus cytomegalovirus (RhCMV)-based vaccination against Simian Immunodeficiency virus (SIV) elicits MHC-E-restricted CD8+ T cells that stringently control SIV infection in ~55% of vaccinated rhesus macaques (RM). However, it is unclear how accurately the RM model reflects HLA-E immunobiology in humans. Using long-read sequencing, we identified 16 Mamu-E isoforms and all Mamu-E splicing junctions were detected among HLA-E isoforms in humans. We also obtained the complete Mamu-E genomic sequences covering the full coding regions of 59 RM from a RhCMV/SIV vaccine study. The Mamu-E gene was duplicated in 32 (54%) of 59 RM. Among four groups of Mamu-E alleles: three ~5% divergent full-length allele groups (G1, G2, G2_LTR) and a fourth monomorphic group (G3) with a deletion encompassing the canonical Mamu-E exon 6, the presence of G2_LTR alleles was significantly (p = 0.02) associated with the lack of RhCMV/SIV vaccine protection. These genomic resources will facilitate additional MHC-E targeted translational research.
Collapse
Affiliation(s)
- Hayden Brochu
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ruihan Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Tammy Tollison
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Alexander Thomas
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | | | - Lynn Law
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, 27607, USA.
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA.
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
9
|
Romero-Martín L, Duran-Castells C, Olivella M, Rosás-Umbert M, Ruiz-Riol M, Sanchez J, Hartigan-O Connor D, Mothe B, Olvera À, Brander C. Disruption of the HLA-E/NKG2X axis is associated with uncontrolled HIV infections. Front Immunol 2022; 13:1027855. [PMID: 36466823 PMCID: PMC9716355 DOI: 10.3389/fimmu.2022.1027855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 09/28/2023] Open
Abstract
The contribution of the HLA-E/NKG2X axis in NK-mediated control of HIV infection remains unclear. We have studied the relationship between HLA-E expression and phenotypical as well as functional characteristics of NK cells, in the context of chronic HIV infection and in an in vitro model of acute infection. High viremia in HIV+ individuals was related to increased HLA-E expression, and changes in NK subpopulations, especially a reduction of the CD56bright as well as an increase in adaptive NK subpopulation. Uncontrolled HIV infection was also characterized by a reversion of the NKG2A/NKG2C expression ratio and a loss of positive and negative regulation of NK mediated by HLA-E. This was reflected in a lower cytotoxic, degranulation and cytokine production capacity, especially in CD56bright and adaptive NK. In line with these results, HLA-E expression showed a positive correlation with viral growth inhibition in an in vitro model of acute infection at day 7, which was lost after 14 days of culture. Using HLA-E expressing K562 cells, we determined that only one out of 11 described HIV-derived HLA-E epitopes increased HLA-E surface stability. In spite of that, eight of the 11 epitopes were capable of increasing degranulation and three drove differences in NK-cell mediated cell lysis or cytokine secretion. In conclusion, our results indicate that HLA-E molecules presenting HIV-derived epitopes may sensitize target cells for NK lysis in early HIV infection. However, prolonged exposure to elevated HLA-E expression levels in vivo may lead to NK cell dysfunction and reduced viral control In chronic infection.
Collapse
Affiliation(s)
- Luis Romero-Martín
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
| | - Clara Duran-Castells
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Universitat Autonoma de Barcelona (UAB), Barcelona, Spain
| | - Mireia Olivella
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Míriam Rosás-Umbert
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Dennis Hartigan-O Connor
- California National Primate Research Center and Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Fundació Lluita contra la Sida, Infectious Disease Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Àlex Olvera
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
10
|
Shirane M, Yawata N, Motooka D, Shibata K, Khor SS, Omae Y, Kaburaki T, Yanai R, Mashimo H, Yamana S, Ito T, Hayashida A, Mori Y, Numata A, Murakami Y, Fujiwara K, Ohguro N, Hosogai M, Akiyama M, Hasegawa E, Paley M, Takeda A, Maenaka K, Akashi K, Yokoyama WM, Tokunaga K, Yawata M, Sonoda KH. Intraocular human cytomegaloviruses of ocular diseases are distinct from those of viremia and are capable of escaping from innate and adaptive immunity by exploiting HLA-E-mediated peripheral and central tolerance. Front Immunol 2022; 13:1008220. [PMID: 36341392 PMCID: PMC9626817 DOI: 10.3389/fimmu.2022.1008220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/20/2022] [Indexed: 01/24/2023] Open
Abstract
Human cytomegalovirus (HCMV) infections develop into CMV diseases that result in various forms of manifestations in local organs. CMV-retinitis is a form of CMV disease that develops in immunocompromised hosts with CMV-viremia after viruses in the peripheral circulation have entered the eye. In the HCMV genome, extensive diversification of the UL40 gene has produced peptide sequences that modulate NK cell effector functions when loaded onto HLA-E and are subsequently recognized by the NKG2A and NKG2C receptors. Notably, some HCMV strains carry UL40 genes that encode peptide sequences identical to the signal peptide sequences of specific HLA-A and HLA-C allotypes, which enables these CMV strains to escape HLA-E-restricted CD8+T cell responses. Variations in UL40 sequences have been studied mainly in the peripheral blood of CMV-viremia cases. In this study, we sought to investigate how ocular CMV disease develops from CMV infections. CMV gene sequences were compared between the intraocular fluids and peripheral blood of 77 clinical cases. UL40 signal peptide sequences were more diverse, and multiple sequences were typically present in CMV-viremia blood compared to intraocular fluid. Significantly stronger NK cell suppression was induced by UL40-derived peptides from intraocular HCMV compared to those identified only in peripheral blood. HCMV present in intraocular fluids were limited to those carrying a UL40 peptide sequence corresponding to the leader peptide sequence of the host's HLA class I, while UL40-derived peptides from HCMV found only in the peripheral blood were disparate from any HLA class I allotype. Overall, our analyses of CMV-retinitis inferred that specific HCMV strains with UL40 signal sequences matching the host's HLA signal peptide sequences were those that crossed the blood-ocular barrier to enter the intraocular space. UL40 peptide repertoires were the same in the intraocular fluids of all ocular CMV diseases, regardless of host immune status, implying that virus type is likely to be a common determinant in ocular CMV disease development. We thus propose a mechanism for ocular CMV disease development, in which particular HCMV types in the blood exploit peripheral and central HLA-E-mediated tolerance mechanisms and, thus, escape the antivirus responses of both innate and adaptive immunity.
Collapse
Affiliation(s)
- Mariko Shirane
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Nobuyo Yawata
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka, Japan
- Ocular inflammation and Immunology, Singapore Eye Research Institute, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Kensuke Shibata
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Toshikatsu Kaburaki
- Department of Ophthalmology, The University of Tokyo Hospital, Tokyo, Japan
- Department of Ophthalmology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Ryoji Yanai
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hisashi Mashimo
- Department of Ophthalmology, Japan Community Health Care Organization Hospital, Osaka, Japan
| | - Satoshi Yamana
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Takako Ito
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Akira Hayashida
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Yasuo Mori
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Akihiko Numata
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Nobuyuki Ohguro
- Department of Ophthalmology, Japan Community Health Care Organization Hospital, Osaka, Japan
| | - Mayumi Hosogai
- Department of Ophthalmology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masato Akiyama
- Department of Ocular Pathology and Imaging Science, Kyushu University, Fukuoka, Japan
| | - Eiichi Hasegawa
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Michael Paley
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Atsunobu Takeda
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Wayne M. Yokoyama
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University, St. Louis, MO, United States
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Makoto Yawata
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research, ASTAR, Singapore, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pediatrics, National University Health System, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- National University Singapore Medicine Immunology Translational Research Programme, National University of Singapore, Singapore, Singapore
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Jennifer Zhang Q. Donor selection based on NK alloreactivity for patients with hematological malignancies. Hum Immunol 2022; 83:695-703. [PMID: 35965181 DOI: 10.1016/j.humimm.2022.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells are an important defender against infections and tumors. Their function is regulated by the balance of inhibitory and activating receptors. Among all inhibitory NK receptors: killer immunoglobulin-like receptors (KIR) and CD94/NKG2A recognize human leukocyte antigen (HLA) Class I molecules, allowing NK cells to be 'licensed' to avoid autoreactivity, but be fully functional at the same time. Licensed NK cells can target malignant cells with altered or downregulated/missing 'self' antigens. NK cell attacking malignant cells is one of the mechanisms of graft-versus-leukemia (GVL) effect. Numerous studies have demonstrated that NK cells improve hematopoietic stem cell transplantation (HCT) survival by reducing relapse mortality through GVL effect. Therapeutic strategies, such as adoptive alloreactive NK cell transfer, CAR-NK cells, antibodies against NKG2A and KIR2DL1-3, have been utilized to treat hematological malignancies in HCT. In this review, NK cell functions, NK cell receptors and ligands, as well as common alloreactive NK donor selection algorithms for patients with hematological malignancies in the setting of HCT are discussed. The goal of this review is to provide insights on the controversial results and provide better understanding and resources on how to perform alloreactive donor NK cell selection in HCT.
Collapse
Affiliation(s)
- Qiuheng Jennifer Zhang
- UCLA Immunogenetics Center, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles 90095, USA.
| |
Collapse
|
12
|
Zhang X, Song Y, Chen X, Zhuang X, Wei Z, Yi L. Integration of Genetic and Immune Infiltration Insights into Data Mining of Multiple Sclerosis Pathogenesis. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1661334. [PMID: 35795733 PMCID: PMC9252675 DOI: 10.1155/2022/1661334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Background Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. MS pathogenesis is closely related to the environment, genetic, and immune system, but the underlying interactions have not been clearly elucidated. This study aims to unveil the genetic basis and immune landscape of MS pathogenesis with bioinformatics. Methods Gene matrix was retrieved from the gene expression database NCBI-GEO. Then, bioinformatics was used to standardize the samples and obtain differentially expressed genes (DEGs). The protein-protein interaction network was constructed with DEGs on the STRING website. Cytohubba plug-in and MCODE plug-in were used to mine hub genes. Meanwhile, the CIBERSORTX algorithm was used to explore the characteristics of immune cell infiltration in MS brain tissues. Spearman correlation analysis was performed between genes and immune cells, and the correlation between genes and different types of brain tissues was also analyzed using the WGCNA method. Results A total of 90 samples from 2 datasets were included, and 882 DEGs and 10 hub genes closely related to MS were extracted. Functional enrichment analysis suggested the role of immune response in MS. Besides, CIBERSORTX algorithm results showed that MS brain tissues contained a variety of infiltrating immune cells. Correlation analysis suggested that the hub genes were highly relevant to chronic active white matter lesions. Certain hub genes played a role in the activation of immune cells such as macrophages and natural killer cells. Conclusions Our study shall provide guidance for the further study of the genetic basis and immune infiltration mechanism of MS.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Rehabilitation, Shenzhen Longhua District Central Hospital, Shenzhen 518000, China
| | - Ying Song
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Xiao Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Xiaojia Zhuang
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Zhiqiang Wei
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| |
Collapse
|
13
|
Hansen SG, Hancock MH, Malouli D, Marshall EE, Hughes CM, Randall KT, Morrow D, Ford JC, Gilbride RM, Selseth AN, Trethewy RE, Bishop LM, Oswald K, Shoemaker R, Berkemeier B, Bosche WJ, Hull M, Silipino L, Nekorchuk M, Busman-Sahay K, Estes JD, Axthelm MK, Smedley J, Shao D, Edlefsen PT, Lifson JD, Früh K, Nelson JA, Picker LJ. Myeloid cell tropism enables MHC-E-restricted CD8 + T cell priming and vaccine efficacy by the RhCMV/SIV vaccine. Sci Immunol 2022; 7:eabn9301. [PMID: 35714200 PMCID: PMC9387538 DOI: 10.1126/sciimmunol.abn9301] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The strain 68-1 rhesus cytomegalovirus (RhCMV)-based vaccine for simian immunodeficiency virus (SIV) can stringently protect rhesus macaques (RMs) from SIV challenge by arresting viral replication early in primary infection. This vaccine elicits unconventional SIV-specific CD8+ T cells that recognize epitopes presented by major histocompatibility complex (MHC)-II and MHC-E instead of MHC-Ia. Although RhCMV/SIV vaccines based on strains that only elicit MHC-II- and/or MHC-Ia-restricted CD8+ T cells do not protect against SIV, it remains unclear whether MHC-E-restricted T cells are directly responsible for protection and whether these responses can be separated from the MHC-II-restricted component. Using host microRNA (miR)-mediated vector tropism restriction, we show that the priming of MHC-II and MHC-E epitope-targeted responses depended on vector infection of different nonoverlapping cell types in RMs. Selective inhibition of RhCMV infection in myeloid cells with miR-142-mediated tropism restriction eliminated MHC-E epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-II epitope-targeted response. Inhibition with the endothelial cell-selective miR-126 eliminated MHC-II epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-E epitope-targeted response. Dual miR-142 + miR-126-mediated tropism restriction reverted CD8+ T cell responses back to conventional MHC-Ia epitope targeting. Although the magnitude and differentiation state of these CD8+ T cell responses were generally similar, only the vectors programmed to elicit MHC-E-restricted CD8+ T cell responses provided protection against SIV challenge, directly demonstrating the essential role of these responses in RhCMV/SIV vaccine efficacy.
Collapse
Affiliation(s)
- Scott G. Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Emily E. Marshall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Colette M. Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Kurt T. Randall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - David Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Julia C. Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Roxanne M. Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Andrea N. Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Renee Espinosa Trethewy
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Lindsey M Bishop
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - William J. Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Michael Hull
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Lorna Silipino
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Jeremy Smedley
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Danica Shao
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006, USA
| |
Collapse
|
14
|
Dhall A, Patiyal S, Raghava GPS. HLAncPred: a method for predicting promiscuous non-classical HLA binding sites. Brief Bioinform 2022; 23:6587168. [PMID: 35580839 DOI: 10.1093/bib/bbac192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/23/2022] [Accepted: 04/27/2022] [Indexed: 12/25/2022] Open
Abstract
Human leukocyte antigens (HLA) regulate various innate and adaptive immune responses and play a crucial immunomodulatory role. Recent studies revealed that non-classical HLA-(HLA-E & HLA-G) based immunotherapies have many advantages over traditional HLA-based immunotherapy, particularly against cancer and COVID-19 infection. In the last two decades, several methods have been developed to predict the binders of classical HLA alleles. In contrast, limited attempts have been made to develop methods for predicting non-classical HLA binding peptides, due to the scarcity of sufficient experimental data. Of note, in order to facilitate the scientific community, we have developed an artificial intelligence-based method for predicting binders of class-Ib HLA alleles. All the models were trained and tested on experimentally validated data obtained from the recent release of IEDB. The machine learning models achieved more than 0.98 AUC for HLA-G alleles on validation dataset. Similarly, our models achieved the highest AUC of 0.96 and 0.94 on the validation dataset for HLA-E*01:01 and HLA-E*01:03, respectively. We have summarized the models developed in the past for non-classical HLA and validated the performance with the models developed in this study. Moreover, to facilitate the community, we have utilized our tool for predicting the potential non-classical HLA binding peptides in the spike protein of different variants of virus causing COVID-19, including Omicron (B.1.1.529). One of the major challenges in the field of immunotherapy is to identify the promiscuous binders or antigenic regions that can bind to a large number of HLA alleles. To predict the promiscuous binders for the non-classical HLA alleles, we developed a web server HLAncPred (https://webs.iiitd.edu.in/raghava/hlancpred) and standalone package.
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| |
Collapse
|
15
|
Zheng D, Wang X, Zhang Z, Li E, Yeung C, Borkar R, Qin G, Wu Y, Xu RH. Engineering of human mesenchymal stem cells resistant to multiple natural killer subtypes. Int J Biol Sci 2022; 18:426-440. [PMID: 34975342 PMCID: PMC8692142 DOI: 10.7150/ijbs.64640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Mesenchymal stem cells (MSCs) as a therapeutic promise are often quickly cleared by innate immune cells of the host including natural killer (NK) cells. Efforts have been made to generate immune-escaping human embryonic stem cells (hESCs) where T cell immunity is evaded by defecting β-2-microglobulin (B2M), a common unit for human leukocyte antigen (HLA) class I, and NK cells are inhibited via ectopic expression of HLA-E or -G. However, NK subtypes vary among recipients and even at different pathologic statuses. It is necessary to dissect and optimize the efficacy of the immune-escaping cells against NK subtypes. Here, we first generated B2M knockout hESCs and differentiated them to MSCs (EMSCs) and found that NK resistance occurred with B2M-/- EMSCs expressing HLA-E and -G only when they were transduced via an inducible lentiviral system in a dose-dependent manner but not when they were inserted into a safe harbor. HLA-E and -G expressed at high levels together in transduced EMSCs inhibited three major NK subtypes, including NKG2A+/LILRB1+, NKG2A+/LILRB1-, and NKG2A-/LILRB1+, which was further potentiated by IFN-γ priming. Thus, this study engineers MSCs with resistance to multiple NK subtypes and underscores that dosage matters when a transgene is used to confer a novel effect to host cells, especially for therapeutic cells to evade immune rejection.
Collapse
Affiliation(s)
- Dejin Zheng
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Xiaoyan Wang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Zhenwu Zhang
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Enqin Li
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Cheungkwan Yeung
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Roma Borkar
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Guihui Qin
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| | - Yaojiong Wu
- The Shenzhen Key Laboratory of Health Sciences and Technology, International Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Ren-He Xu
- Center of Reproduction, Development & Aging, and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China
| |
Collapse
|
16
|
Soma S, Lewinsohn DA, Lewinsohn DM. Donor Unrestricted T Cells: Linking innate and adaptive immunity. Vaccine 2021; 39:7295-7299. [PMID: 34740474 DOI: 10.1016/j.vaccine.2021.10.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Donor Unrestricted T Cells (DURTs) are characterized by their use of antigen presentation molecules that are often invariant. As these cells recognize diverse mycobacterial antigens, often found in BCG, these cells have the potential to either serve as targets for vaccination, or as a means to enable the induction of traditional T and B cell immunity. Here, we will review specific DURT family members, and their relationship to BCG.
Collapse
Affiliation(s)
- Shogo Soma
- Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, United States
| | - Deborah A Lewinsohn
- Division of Pediatric Infectious Disease, Department of Pediatrics, Oregon Health & Science University, Portland, OR. 97239, United States
| | - David M Lewinsohn
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Portland VA Medical Center, Oregon Health & Science University, United States.
| |
Collapse
|
17
|
Khoshbakht S, Azimzadeh Jamalkandi S, Masudi-Nejad A. Involvement of immune system and Epithelial-Mesenchymal-Transition in increased invasiveness of clustered circulatory tumor cells in breast cancer. BMC Med Genomics 2021; 14:273. [PMID: 34801010 PMCID: PMC8605524 DOI: 10.1186/s12920-021-01112-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background Circulating tumor cells (CTCs) are the critical initiators of distant metastasis formation. In which, the reciprocal interplay among different metastatic pathways and their metastasis driver genes which promote survival of CTCs is not well introduced using network approaches. Methods Here, to investigate the unknown pathways of single/cluster CTCs, the co-expression network was reconstructed, using WGCNA (Weighted Correlation Network Analysis) method. Having used the hierarchical clustering, we detected the Immune-response and EMT subnetworks. The metastatic potential of genes was assessed and validated through the support vector machine (SVM), neural network, and decision tree methods on two external datasets. To identify the active signaling pathways in CTCs, we reconstructed a casual network. The Log-Rank test and Kaplan–Meier curve were applied to detect prognostic gene signatures for distant metastasis-free survival (DMFS). Finally, a predictive model was developed for metastasis risk of patients using VIF-stepwise feature selection. Results Our results showed the crosstalk among EMT, the immune system, menstrual cycles, and the stemness pathway in CTCs. In which, fluctuation of menstrual cycles is a new detected pathway in breast cancer CTCs. The reciprocal association between immune responses and EMT was identified in CTCs. The SVM model indicated a high metastatic potential of EMT subnetwork (accuracy, sensitivity, and specificity scores were 87%). The DMFS model was identified to predict patients’ metastasis risks. (c-index = 0.7). Finally, novel metastatic biomarkers of KRT18 and KRT19 were detected in breast cancer CTCs. Conclusions In conclusion, the reciprocal interplay among critical unknown pathways in CTCs manifests both their survival in blood and metastatic potentials. Such findings may help to develop more precise predictive metastatic-risk models or detect pivotal metastatic biomarkers. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01112-9.
Collapse
Affiliation(s)
- Samane Khoshbakht
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | | | - Ali Masudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran. .,Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
18
|
Bansal A, Gehre MN, Qin K, Sterrett S, Ali A, Dang Y, Abraham S, Costanzo MC, Venegas LA, Tang J, Manjunath N, Brockman MA, Yang OO, Kan-Mitchell J, Goepfert PA. HLA-E-restricted HIV-1-specific CD8+ T cell responses in natural infection. J Clin Invest 2021; 131:148979. [PMID: 34228645 PMCID: PMC8363272 DOI: 10.1172/jci148979] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023] Open
Abstract
CD8+ T cell responses restricted by MHC-E, a nonclassical MHC molecule, have been associated with protection in an SIV/rhesus macaque model. The biological relevance of HLA-E-restricted CD8+ T cell responses in HIV infection, however, remains unknown. In this study, CD8+ T cells responding to HIV-1 Gag peptides presented by HLA-E were analyzed. Using in vitro assays, we observed HLA-E-restricted T cell responses to what we believe to be a newly identified subdominant Gag-KL9 as well as a well-described immunodominant Gag-KF11 epitope in T cell lines derived from chronically HIV-infected patients and also primed from healthy donors. Blocking of the HLA-E/KF11 binding by the B7 signal peptide resulted in decreased CD8+ T cell responses. KF11 presented via HLA-E in HIV-infected cells was recognized by antigen-specific CD8+ T cells. Importantly, bulk CD8+ T cells obtained from HIV-infected individuals recognized infected cells via HLA-E presentation. Ex vivo analyses at the epitope level showed a higher responder frequency of HLA-E-restricted responses to KF11 compared with KL9. Taken together, our findings of HLA-E-restricted HIV-specific immune responses offer intriguing and possibly paradigm-shifting insights into factors that contribute to the immunodominance of CD8+ T cell responses in HIV infection.
Collapse
Affiliation(s)
- Anju Bansal
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Mika N. Gehre
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Kai Qin
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Sarah Sterrett
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Ayub Ali
- Department of Medicine and AIDS Institute, UCLA, Los Angeles, California, USA
| | - Ying Dang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | - Sojan Abraham
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | - Margaret C. Costanzo
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Leon A. Venegas
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - N. Manjunath
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | | | - Otto O. Yang
- Department of Medicine and AIDS Institute, UCLA, Los Angeles, California, USA
| | - June Kan-Mitchell
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
19
|
Hazini A, Fisher K, Seymour L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J Immunother Cancer 2021; 9:e002899. [PMID: 34353849 PMCID: PMC8344275 DOI: 10.1136/jitc-2021-002899] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
It is now well accepted that many tumors undergo a process of clonal selection which means that tumor antigens arising at various stages of tumor progression are likely to be represented in just a subset of tumor cells. This process is thought to be driven by constant immunosurveillance which applies selective pressure by eliminating tumor cells expressing antigens that are recognized by T cells. It is becoming increasingly clear that the same selective pressure may also select for tumor cells that evade immune detection by acquiring deficiencies in their human leucocyte antigen (HLA) presentation pathways, allowing important tumor antigens to persist within cells undetected by the immune system. Deficiencies in antigen presentation pathway can arise by a variety of mechanisms, including genetic and epigenetic changes, and functional antigen presentation is a hard phenomenon to assess using our standard analytical techniques. Nevertheless, it is likely to have profound clinical significance and could well define whether an individual patient will respond to a particular type of therapy or not. In this review we consider the mechanisms by which HLA function may be lost in clinical disease, we assess the implications for current immunotherapy approaches using checkpoint inhibitors and examine the prognostic impact of HLA loss demonstrated in clinical trials so far. Finally, we propose strategies that might be explored for possible patient stratification.
Collapse
Affiliation(s)
- Ahmet Hazini
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Kerry Fisher
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Len Seymour
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
20
|
Pojero F, Candore G, Caruso C, Di Bona D, Groneberg DA, Ligotti ME, Accardi G, Aiello A. The Role of Immunogenetics in COVID-19. Int J Mol Sci 2021; 22:2636. [PMID: 33807915 PMCID: PMC7961811 DOI: 10.3390/ijms22052636] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is induced by SARS-CoV-2 and may arise as a variety of clinical manifestations, ranging from an asymptomatic condition to a life-threatening disease associated with cytokine storm, multiorgan and respiratory failure. The molecular mechanism behind such variability is still under investigation. Several pieces of experimental evidence suggest that genetic variants influencing the onset, maintenance and resolution of the immune response may be fundamental in predicting the evolution of the disease. The identification of genetic variants behind immune system reactivity and function in COVID-19 may help in the elaboration of personalized therapeutic strategies. In the frenetic look for universally shared treatment plans, those genetic variants that are common to other diseases/models may also help in addressing future research in terms of drug repurposing. In this paper, we discuss the most recent updates about the role of immunogenetics in determining the susceptibility to and the history of SARS-CoV-2 infection. We propose a narrative review of available data, speculating about lessons that we have learnt from other viral infections and immunosenescence, and discussing what kind of aspects of research should be deepened in order to improve our knowledge of how host genetic variability impacts the outcome for COVID-19 patients.
Collapse
Affiliation(s)
- Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Danilo Di Bona
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - David A. Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany;
| | - Mattia E. Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| |
Collapse
|
21
|
Araújo RC, Bertol BC, César Dias F, Debortoli G, Almeida PH, Fernandes Souza F, Villanova MG, Ramalho LNZ, Candolo Martinelli AL, Cruz Castelli ÉD, Mendes Junior CT, Antonio Donadi E. HLA-E gene polymorphisms in chronic hepatitis C: Impact on HLA-E liver expression and disease severity. Hum Immunol 2021; 82:177-185. [PMID: 33597096 DOI: 10.1016/j.humimm.2021.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Hepatitis C virus usually produces chronic infection and liver damage. Considering that: i) the human leukocyte antigen-E (HLA-E) molecule may modulate the immune response, and ii) little is known about the role of HLA-E gene variability on chronic hepatitis C, we studied the impact of HLA-E polymorphisms on the magnitude of HLA-E liver expression and severity of hepatitis C. HLA-E variability was evaluated in terms of: i) single nucleotide polymorphism (SNP) alleles and genotypes along the gene (beginning of the promoter region, coding region and 3'UTR), and ii) ensemble of SNPs that defines the coding region alleles, considered individually or as genotypes. The comparisons of the HLA-E variation sites between patients and controls revealed no significant results. The HLA-E + 424 T > C (rs1059510), +756 G > A (rs1264457) and + 3777 G > A (rs1059655) variation sites and the HLA-E*01:01:01:01 and HLA-E*01:03:02:01 alleles, considered at single or double doses, were associated with the magnitude of HLA-E liver expression in Kupfer cell, steatosis, inflammatory activity and liver fibrosis. Although these associations were lost after corrections for multiple comparisons, these variable sites may propitiate biological clues for the understanding of the mechanisms associated with hepatitis C severity.
Collapse
Affiliation(s)
- Roberta Chaves Araújo
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil.
| | - Bruna Cristina Bertol
- Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Fabricio César Dias
- Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Guilherme Debortoli
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON, Canada
| | - Patrícia Holanda Almeida
- Liver Transplant Department - Hospital Israelita Albert Einstein, 05652-900 São Paulo, State of São Paulo, Brazil
| | - Fernanda Fernandes Souza
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Marcia Guimarães Villanova
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Leandra Naira Zambelli Ramalho
- Pathology Department, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Ana Lourdes Candolo Martinelli
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Érick da Cruz Castelli
- Department of Pathology, School of Medicine. São Paulo State University, 18618-687 Botucatu, State of São Paulo, Brazil
| | - Celso Teixeira Mendes Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| | - Eduardo Antonio Donadi
- Immunology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, State of São Paulo, Brazil
| |
Collapse
|
22
|
Kedzierska K, Koutsakos M. The ABC of Major Histocompatibility Complexes and T Cell Receptors in Health and Disease. Viral Immunol 2021; 33:160-178. [PMID: 32286182 PMCID: PMC7185345 DOI: 10.1089/vim.2019.0184] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A seminal discovery of major histocompatibility complex (MHC) restriction in T cell recognition by Peter Doherty and Rolf Zinkernagel has led to 45 years of exciting research on the mechanisms governing peptide MHC (pMHC) recognition by T cell receptors (TCRs) and their importance in health and disease. T cells provide a significant level of protection against viral, bacterial, and parasitic infections, as well as tumors, hence, the generation of protective T cell responses is a primary goal for cell-mediated vaccines and immunotherapies. Understanding the mechanisms underlying generation of optimal high-avidity effector T cell responses, memory development, maintenance, and recall is of major importance for the rational design of preventative and therapeutic vaccines/immunotherapies. In this review, we summarize the lessons learned over the last four decades and outline our current understanding of the basis and consequences of pMHC/TCR interactions on T cell development and function, and TCR diversity and composition, driving better clinical outcomes and prevention of viral escape. We also discuss the current models of T cell memory formation and determinants of immunodominant T cell responses in animal models and humans. As TCR composition and diversity can affect both the protective capacity of T cells and protection against viral escape, defining the spectrum of TCR selection has implications for improving the functional efficacy of effector T cell responsiveness and memory formation.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
23
|
Huot N, Rascle P, Petitdemange C, Contreras V, Stürzel CM, Baquero E, Harper JL, Passaes C, Legendre R, Varet H, Madec Y, Sauermann U, Stahl-Hennig C, Nattermann J, Saez-Cirion A, Le Grand R, Keith Reeves R, Paiardini M, Kirchhoff F, Jacquelin B, Müller-Trutwin M. SIV-induced terminally differentiated adaptive NK cells in lymph nodes associated with enhanced MHC-E restricted activity. Nat Commun 2021; 12:1282. [PMID: 33627642 PMCID: PMC7904927 DOI: 10.1038/s41467-021-21402-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells play a critical understudied role during HIV infection in tissues. In a natural host of SIV, the African green monkey (AGM), NK cells mediate a strong control of SIVagm infection in secondary lymphoid tissues. We demonstrate that SIVagm infection induces the expansion of terminally differentiated NKG2alow NK cells in secondary lymphoid organs displaying an adaptive transcriptional profile and increased MHC-E-restricted cytotoxicity in response to SIV Env peptides while expressing little IFN-γ. Such NK cell differentiation was lacking in SIVmac-infected macaques. Adaptive NK cells displayed no increased NKG2C expression. This study reveals a previously unknown profile of NK cell adaptation to a viral infection, thus accelerating strategies toward NK-cell directed therapies and viral control in tissues.
Collapse
Affiliation(s)
- Nicolas Huot
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France ,grid.508487.60000 0004 7885 7602Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Caroline Petitdemange
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | | | - Eduard Baquero
- grid.462718.eInstitut Pasteur, Unité de Virologie Structurale, Paris, France
| | - Justin L. Harper
- grid.189967.80000 0001 0941 6502Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA
| | - Caroline Passaes
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Rachel Legendre
- grid.428999.70000 0001 2353 6535Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Hugo Varet
- grid.428999.70000 0001 2353 6535Biomics Platform, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Yoann Madec
- grid.428999.70000 0001 2353 6535 Institut Pasteur; Epidemiology of Emerging Diseases Unit, Paris, France
| | - Ulrike Sauermann
- grid.418215.b0000 0000 8502 7018Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Göttingen, Germany
| | - Christiane Stahl-Hennig
- grid.418215.b0000 0000 8502 7018Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Göttingen, Germany
| | - Jacob Nattermann
- grid.452463.2Medizinische Klinik und Poliklinik I, Universitätsklinikum Bonn, Germany; German Center for Infection Research (DZIF), Bonn, Germany
| | - Asier Saez-Cirion
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - R. Keith Reeves
- grid.38142.3c000000041936754XCenter for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Mirko Paiardini
- grid.189967.80000 0001 0941 6502Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA USA
| | | | - Beatrice Jacquelin
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Michaela Müller-Trutwin
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| |
Collapse
|
24
|
Ruibal P, Voogd L, Joosten SA, Ottenhoff THM. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol Rev 2021; 301:30-47. [PMID: 33529407 PMCID: PMC8154655 DOI: 10.1111/imr.12948] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Vaccination strategies against mycobacteria, focusing mostly on classical T‐ and B‐cells, have shown limited success, encouraging the addition of alternative targets. Classically restricted T‐cells recognize antigens presented via highly polymorphic HLA class Ia and class II molecules, while donor‐unrestricted T‐cells (DURTs), with few exceptions, recognize ligands via genetically conserved antigen presentation molecules. Consequently, DURTs can respond to the same ligands across diverse human populations. DURTs can be activated either through cognate TCR ligation or via bystander cytokine signaling. TCR‐driven antigen‐specific activation of DURTs occurs upon antigen presentation via non‐polymorphic molecules such as HLA‐E, CD1, MR1, and butyrophilin, leading to the activation of HLA‐E–restricted T‐cells, CD1‐restricted T‐cells, mucosal‐associated invariant T‐cells (MAITs), and TCRγδ T‐cells, respectively. NK cells and innate lymphoid cells (ILCs), which lack rearranged TCRs, are activated through other receptor‐triggering pathways, or can be engaged through bystander cytokines, produced, for example, by activated antigen‐specific T‐cells or phagocytes. NK cells can also develop trained immune memory and thus could represent cells of interest to mobilize by novel vaccines. In this review, we summarize the latest findings regarding the contributions of DURTs, NK cells, and ILCs in anti–M tuberculosis, M leprae, and non‐tuberculous mycobacterial immunity and explore possible ways in which they could be harnessed through vaccines and immunotherapies to improve protection against Mtb.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Burek Kamenaric M, Ivkovic V, Kovacevic Vojtusek I, Zunec R. The Role of HLA and KIR Immunogenetics in BK Virus Infection after Kidney Transplantation. Viruses 2020; 12:v12121417. [PMID: 33317205 PMCID: PMC7763146 DOI: 10.3390/v12121417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
BK virus (BKV) is a polyomavirus with high seroprevalence in the general population with an unremarkable clinical presentation in healthy people, but a potential for causing serious complications in immunosuppressed transplanted patients. Reactivation or primary infection in kidney allograft recipients may lead to allograft dysfunction and subsequent loss. Currently, there is no widely accepted specific treatment for BKV infection and reduction of immunosuppressive therapy is the mainstay therapy. Given this and the sequential appearance of viruria-viremia-nephropathy, screening and early detection are of utmost importance. There are numerous risk factors associated with BKV infection including genetic factors, among them human leukocyte antigens (HLA) and killer cell immunoglobulin-like receptors (KIR) alleles have been shown to be the strongest so far. Identification of patients at risk for BKV infection would be useful in prevention or early action to reduce morbidity and progression to frank nephropathy. Assessment of risk involving HLA ligands and KIR genotyping of recipients in the pre-transplant or early post-transplant period might be useful in clinical practice. This review summarizes current knowledge of the association between HLA, KIR and BKV infection and potential future directions of research, which might lead to optimal utilization of these genetic markers.
Collapse
Affiliation(s)
- Marija Burek Kamenaric
- Tissue Typing Center, Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Center Zagreb, 10 000 Zagreb, Croatia;
| | - Vanja Ivkovic
- Department of Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10 000 Zagreb, Croatia; (V.I.); (I.K.V.)
- Department of Public Health, Faculty of Health Studies, University of Rijeka, 51 000 Rijeka, Croatia
| | - Ivana Kovacevic Vojtusek
- Department of Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, 10 000 Zagreb, Croatia; (V.I.); (I.K.V.)
| | - Renata Zunec
- Tissue Typing Center, Clinical Department of Transfusion Medicine and Transplantation Biology, University Hospital Center Zagreb, 10 000 Zagreb, Croatia;
- Correspondence:
| |
Collapse
|
26
|
Walters LC, McMichael AJ, Gillespie GM. Detailed and atypical HLA-E peptide binding motifs revealed by a novel peptide exchange binding assay. Eur J Immunol 2020; 50:2075-2091. [PMID: 32716529 DOI: 10.1002/eji.202048719] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 07/23/2020] [Indexed: 11/05/2022]
Abstract
Diverse SIV and HIV epitopes that bind the rhesus homolog of HLA-E, Mamu-E, have recently been identified in SIVvaccine studies using a recombinant Rhesus cytomegalovirus (RhCMV 68-1) vector, where unprecedented protection against SIV challenge was achieved. Additionally, several Mycobacterial peptides identified both algorithmically and following elution from infected cells, are presented to CD8+ T cells by HLA-E in humans. Yet, a comparative and comprehensive analysis of relative HLA-E peptide binding strength via a reliable, high throughput in vitro assay is currently lacking. To address this, we developed and optimized a novel, highly sensitive peptide exchange ELISA-based assay that relatively quantitates peptide binding to HLA-E. Using this approach, we screened multiple peptides, including peptide panels derived from HIV, SIV, and Mtb predicted to bind HLA-E. Our results indicate that although HLA-E preferentially accommodates canonical MHC class I leader peptides, many non-canonical, sequence diverse, pathogen-derived peptides also bind HLA-E, albeit generally with lower relative binding strength. Additionally, our screens demonstrate that the majority of peptides tested, including some key Mtb and SIV epitopes that have been shown to elicit strong Mamu-E-restricted T cell responses, either bind HLA-E extremely weakly or give signals that are indistinguishable from the negative, peptide-free controls.
Collapse
Affiliation(s)
- Lucy C Walters
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Georgakopoulou EA, Valsamidi C, Veroutis D, Havaki S. The bright and dark side of skin senescence. Could skin rejuvenation anti-senescence interventions become a "bright" new strategy for the prevention of age-related skin pathologies? Mech Ageing Dev 2020; 193:111409. [PMID: 33249190 DOI: 10.1016/j.mad.2020.111409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/17/2020] [Accepted: 11/20/2020] [Indexed: 01/10/2023]
Abstract
The number of senescent cells in the skin is increasing with age. Numerous studies have attempted to elucidate the role of these cells in normal aging of the skin as well as in age-related skin conditions. In recent years, attempts have also been made to find treatments that aim either to cleanse the skin tissues of senescent cells or to neutralize their effects (referred to as senolytics and senomorphics respectively) and thus prevent the consequences, particularly on the skin's appearance in advanced age. Through this review, we have tried to gather data on the role of senescent cells in the skin, in treatments aimed at removing them, and we are asking a reasonable question as to whether anti-senescence treatments may contribute to the protection against age-related skin pathologies, including skin cancer, such as non-melanoma skin cancer, in addition to their involvement in skin rejuvenation.
Collapse
Affiliation(s)
- Eleni A Georgakopoulou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Christina Valsamidi
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Dimitrios Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece.
| |
Collapse
|
28
|
Genetic Variants of the NKG2C/HLA-E Receptor-Ligand Axis Are Determinants of Progression-Free Survival and Therapy Outcome in Aggressive B-Cell Lymphoma. Cancers (Basel) 2020; 12:cancers12113429. [PMID: 33218185 PMCID: PMC7699209 DOI: 10.3390/cancers12113429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 11/23/2022] Open
Abstract
Simple Summary NKG2C and its ligand HLA-E represent key molecules for NK cell-mediated immune responsiveness. However, the impact of genetic variants in NKG2C and HLA-E on clinical outcomes of aggressive B-cell non-Hodgkin lymphoma patients (B-NHL) has not been clarified. In this study, we analyzed the distribution of NKG2C deletion status and HLA-E variants in 441 patients and 192 healthy individuals. Homozygous deletion of NKG2C (NKG2C−/−) was more often found in high-risk patients compared to patients with a lower risk and consequently was associated with reduced 2-year progression-free survival. The HLA-E*01:01 allele frequency was increased in B-NHL patients and was strongly related with complete remission. Our results show that absence of NKG2C and HLA-E allelic variations is predictive for B-NHL outcome; while carriers of HLA-E*01:01 are characterized by high, complete remission rates, NKG2C−/− was rare, but associated with poorer outcome. Prospective validation of our results identifies patients that may benefit from risk-adapted therapy. Abstract Aggressive B-cell lymphomas account for the majority of non-Hodgkin lymphomas (B-NHL). NK cells govern the responses to anti-CD20 monoclonal antibodies and have emerged as attractive targets for immunotherapy in subtypes of B-NHL. NKG2C and its cognate ligand HLA-E represent key molecules for fine-tuning of NK cell-mediated immune responses. Here, we investigated the impact of genetic variants of NKG2C and HLA-E on clinical outcomes of 441 B-NHL patients. Homozygous deletion of NKG2C (NKG2C−/−) was three-fold increased in patients compared to 192 healthy controls. Among studied patients, NKG2C−/− was more abundant in International Prognostic Index (IPI) high-risk patients compared to patients with a lower IPI (p = 0.013). Strikingly, NKG2C−/− was associated with a significantly reduced 2-year PFS (progression-free survival) (p = 0.0062) and represented an independent risk factor for 2-year PFS in multivariate analysis (p = 0.005). For HLA-E, the cognate ligand of NKG2C, the HLA-E*01:01 allele frequency was increased in B-NHL patients compared to controls (p = 0.033) and was associated with complete remission in univariate (p = 0.034) and multivariate (p = 0.018) analysis. Our data suggest that NKG2C and HLA-E genotyping is a promising tool for both defining risk groups of aggressive B-NHL and predicting response to immune therapeutic approaches.
Collapse
|
29
|
Sabbatino F, Liguori L, Polcaro G, Salvato I, Caramori G, Salzano FA, Casolaro V, Stellato C, Dal Col J, Pepe S. Role of Human Leukocyte Antigen System as A Predictive Biomarker for Checkpoint-Based Immunotherapy in Cancer Patients. Int J Mol Sci 2020; 21:ijms21197295. [PMID: 33023239 PMCID: PMC7582904 DOI: 10.3390/ijms21197295] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in cancer immunotherapy have clearly shown that checkpoint-based immunotherapy is effective in a small subgroup of cancer patients. However, no effective predictive biomarker has been identified so far. The major histocompatibility complex, better known in humans as human leukocyte antigen (HLA), is a very polymorphic gene complex consisting of more than 200 genes. It has a crucial role in activating an appropriate host immune response against pathogens and tumor cells by discriminating self and non-self peptides. Several lines of evidence have shown that down-regulation of expression of HLA class I antigen derived peptide complexes by cancer cells is a mechanism of tumor immune escape and is often associated to poor prognosis in cancer patients. In addition, it has also been shown that HLA class I and II antigen expression, as well as defects in the antigen processing machinery complex, may predict tumor responses in cancer immunotherapy. Nevertheless, the role of HLA in predicting tumor responses to checkpoint-based immunotherapy is still debated. In this review, firstly, we will describe the structure and function of the HLA system. Secondly, we will summarize the HLA defects and their clinical significance in cancer patients. Thirdly, we will review the potential role of the HLA as a predictive biomarker for checkpoint-based immunotherapy in cancer patients. Lastly, we will discuss the potential strategies that may restore HLA function to implement novel therapeutic strategies in cancer patients.
Collapse
Affiliation(s)
- Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Oncology Unit, AOU San Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy
| | - Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Giovanna Polcaro
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Pulmonary Unit, Department of Biomedical Sciences, Dentistry, Morphological and Functional Imaging (BIOMORF), University of Messina, 98125 Messina, Italy;
| | - Gaetano Caramori
- Pulmonary Unit, Department of Biomedical Sciences, Dentistry, Morphological and Functional Imaging (BIOMORF), University of Messina, 98125 Messina, Italy;
| | - Francesco A. Salzano
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Correspondence: ; Tel.: +39-08996-5210
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Oncology Unit, AOU San Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy
| |
Collapse
|
30
|
Achiron A, Mandel M, Sheonefeld Y. Coronavirus 2019 outbreak pathogenesis: Why China and Italy? Eur J Rheumatol 2020; 7:S99-S101. [PMID: 32716835 DOI: 10.5152/eurjrheum.2020.2068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 01/09/2023] Open
Abstract
COVID-19 has spread to most countries in the world. However, there are differences in the rate of infection in different countries. Specifically, high incidence was reported in specific areas in China (Wuhan) and Italy (Lombardy). These differences may be related to different Human Leucocyte Antigen (HLA) patterns in various geographic areas. We suggest HLA spreading between Italy and China is related to the travels of Marco Polo through the Silk Road as a potential historic explanation to COVID-19 spreading.
Collapse
Affiliation(s)
- Anat Achiron
- Multiple Scleosis Center, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Yehuda Sheonefeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
31
|
Burwitz BJ, Hashiguchi PK, Mansouri M, Meyer C, Gilbride RM, Biswas S, Womack JL, Reed JS, Wu HL, Axthelm MK, Hansen SG, Picker LJ, Früh K, Sacha JB. MHC-E-Restricted CD8 + T Cells Target Hepatitis B Virus-Infected Human Hepatocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2169-2176. [PMID: 32161099 PMCID: PMC8109620 DOI: 10.4049/jimmunol.1900795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/05/2020] [Indexed: 12/30/2022]
Abstract
Currently 247 million people are living with chronic hepatitis B virus infection (CHB), and the development of novel curative treatments is urgently needed. Immunotherapy is an attractive approach to treat CHB, yet therapeutic approaches to augment the endogenous hepatitis B virus (HBV)-specific T cell response in CHB patients have demonstrated little success. In this study, we show that strain 68-1 rhesus macaque (RM) CMV vaccine vectors expressing HBV Ags engender HBV-specific CD8+ T cells unconventionally restricted by MHC class II and the nonclassical MHC-E molecule in RM. Surface staining of human donor and RM primary hepatocytes (PH) ex vivo revealed the majority of PH expressed MHC-E but not MHC class II. HBV-specific, MHC-E-restricted CD8+ T cells from RM vaccinated with RM CMV vaccine vectors expressing HBV Ags recognized HBV-infected PH from both human donor and RM. These results provide proof-of-concept that MHC-E-restricted CD8+ T cells could be harnessed for the treatment of CHB, either through therapeutic vaccination or adoptive immunotherapy.
Collapse
Affiliation(s)
- Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; and
| | - Patrick K Hashiguchi
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Mandana Mansouri
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | | | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Sreya Biswas
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Jennie L Womack
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Jason S Reed
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Helen L Wu
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; and
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; and
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; and
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006;
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; and
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006;
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006; and
| |
Collapse
|
32
|
Wilkinson KA, Cerrone M. Targeting Unconventional T Cells for Vaccination against Tuberculosis. Am J Respir Cell Mol Biol 2020; 62:401-402. [PMID: 31801037 PMCID: PMC7110973 DOI: 10.1165/rcmb.2019-0403ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Katalin A Wilkinson
- The Francis Crick InstituteLondon, United Kingdom
- Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape Town, South Africaand
| | - Maddalena Cerrone
- The Francis Crick InstituteLondon, United Kingdom
- Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape Town, South Africaand
- Department of Infectious DiseasesImperial College LondonLondon, United Kingdom
| |
Collapse
|
33
|
Grant EJ, Nguyen AT, Lobos CA, Szeto C, Chatzileontiadou DSM, Gras S. The unconventional role of HLA-E: The road less traveled. Mol Immunol 2020; 120:101-112. [PMID: 32113130 DOI: 10.1016/j.molimm.2020.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Histocompatibility Leukocyte Antigens, or HLAs, are one of the most polymorphic molecules in humans. This high degree of polymorphism endows HLA molecules with the ability to present a vast array of peptides, an essential trait for responding to ever-evolving pathogens. Unlike classical HLA molecules (HLA-Ia), some non-classical HLA-Ib molecules, including HLA-E, are almost monomorphic. Several studies show HLA-E can present self-peptides originating from the leader sequence of other HLA molecules, which signals to our immune system that the cell is healthy. Therefore, it was traditionally thought that the chief role of HLA-E in the body was in immune surveillance. However, there is emerging evidence that HLA-E is also able to present pathogen-derived peptides to the adaptive immune system, namely T cells, in a manner that is similar to classical HLA-Ia molecules. Here we describe the early findings of this less conventional role of HLA-E in the adaptive immune system and its importance for immunity.
Collapse
Affiliation(s)
- Emma J Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea T Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Christian A Lobos
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Demetra S M Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
34
|
Tsamadou C, Fürst D, Wang T, He N, Lee SJ, Spellman SR, Fleischhauer K, Hsu KC, Paczesny S, Verneris MR, Schrezenmeier H, Mytilineos J. Donor HLA-E Status Associates with Disease-Free Survival and Transplant-Related Mortality after Non In Vivo T Cell-Depleted HSCT for Acute Leukemia. Biol Blood Marrow Transplant 2019; 25:2357-2365. [PMID: 31425756 PMCID: PMC7050288 DOI: 10.1016/j.bbmt.2019.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 01/22/2023]
Abstract
Previous studies have suggested that HLA-E may have a significant role in the outcome of matched unrelated hematopoietic stem cell transplantation (HSCT), especially for patients with acute leukemia. We used Center for International Blood and Marrow Transplant Research data and samples of 1840 adult patients with acute leukemia and their 10/10 HLA-matched unrelated donors to investigate the impact of HLA-E matching status as well as of donor/recipient (D/R) HLA-E genotype on post-HSCT outcome. Both patients and donors were HLA-E genotyped by next-generation sequencing. All patients received their first transplant in complete remission between 2000 and 2015. Median follow-up time was 90 months. Overall survival, disease-free survival (DFS), transplant-related mortality (TRM), and relapse incidence were primary endpoints with statistical significance set at .01. D/R HLA-E genotype analysis revealed a significant association of donor HLA-E*01:03/01:03 genotype with DFS (hazard ratio [HR] = 1.35, P = .0006) and TRM (HR = 1.41, P = .0058) in patients who received T cell replete (ie, without in vivo T cell depletion) transplants (n = 1297). As for D/R HLA-E matching, we did not identify any significant effect on any of the clinical outcome endpoints. In conclusion, this is the largest study to date reporting an improvement of DFS and TRM after matched unrelated HSCT by avoidance of HLA-E*01:03 homozygous donors in patients transplanted with T cell replete grafts for acute leukemia.
Collapse
Affiliation(s)
- Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research and Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Naya He
- Center for International Blood and Marrow Transplant Research and Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Stephanie J Lee
- Center for International Blood and Marrow Transplant Research and Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota; National Marrow Donor Program, Minneapolis, Minnesota
| | | | | | - Sophie Paczesny
- Department of Pediatrics-Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael R Verneris
- Department of Pediatrics, Hematology/Oncology/BMT, University of Colorado, Denver, Colorado
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany; Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.
| |
Collapse
|
35
|
Kanevskiy L, Erokhina S, Kobyzeva P, Streltsova M, Sapozhnikov A, Kovalenko E. Dimorphism of HLA-E and its Disease Association. Int J Mol Sci 2019; 20:ijms20215496. [PMID: 31690066 PMCID: PMC6862560 DOI: 10.3390/ijms20215496] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
HLA-E is a nonclassical member of the major histocompatibility complex class I gene locus. HLA-E protein shares a high level of homology with MHC Ia classical proteins: it has similar tertiary structure, associates with β2-microglobulin, and is able to present peptides to cytotoxic lymphocytes. The main function of HLA-E under normal conditions is to present peptides derived from the leader sequences of classical HLA class I proteins, thus serving for monitoring of expression of these molecules performed by cytotoxic lymphocytes. However, opposite to multiallelic classical MHC I genes, HLA-E in fact has only two alleles—HLA-E*01:01 and HLA-E*01:03—which differ by one nonsynonymous amino acid substitution at position 107, resulting in an arginine in HLA-E*01:01 (HLA-ER) and glycine in HLA-E*01:03 (HLA-EG). In contrast to HLA-ER,HLA-EG has higher affinity to peptide, higher surface expression, and higher thermal stability of the corresponding protein, and it is more ancient than HLA-ER, though both alleles are presented in human populations in nearly equal frequencies. In the current review, we aimed to uncover the reason of the expansion of the younger allele, HLA-ER, by analysis of associations of both HLA-E alleles with a number of diseases, including viral and bacterial infections, cancer, and autoimmune disorders.
Collapse
Affiliation(s)
- Leonid Kanevskiy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Sofya Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Polina Kobyzeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Maria Streltsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Alexander Sapozhnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Elena Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| |
Collapse
|
36
|
Malik NN, Jenkins AM, Mellon J, Bailey G. Engineering strategies for generating hypoimmunogenic cells with high clinical and commercial value. Regen Med 2019; 14:983-989. [DOI: 10.2217/rme-2019-0117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Nafees N Malik
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
- Juvenescence, Douglas, Isle of Man, UK
| | | | | | - Gregory Bailey
- AgeX Therapeutics, Inc., Alameda, CA 94501, USA
- Juvenescence, Douglas, Isle of Man, UK
| |
Collapse
|
37
|
Vaccine Vectors Harnessing the Power of Cytomegaloviruses. Vaccines (Basel) 2019; 7:vaccines7040152. [PMID: 31627457 PMCID: PMC6963789 DOI: 10.3390/vaccines7040152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/05/2023] Open
Abstract
Cytomegalovirus (CMV) species have been gaining attention as experimental vaccine vectors inducing cellular immune responses of unparalleled strength and protection. This review outline the strengths and the restrictions of CMV-based vectors, in light of the known aspects of CMV infection, pathogenicity and immunity. We discuss aspects to be considered when optimizing CMV based vaccines, including the innate immune response, the adaptive humoral immunity and the T-cell responses. We also discuss the antigenic epitopes presented by unconventional major histocompatibility complex (MHC) molecules in some CMV delivery systems and considerations about routes for delivery for the induction of systemic or mucosal immune responses. With the first clinical trials initiating, CMV-based vaccine vectors are entering a mature phase of development. This impetus needs to be maintained by scientific advances that feed the progress of this technological platform.
Collapse
|
38
|
Liu J, Jaijyan DK, Tang Q, Zhu H. Promising Cytomegalovirus-Based Vaccine Vector Induces Robust CD8 + T-Cell Response. Int J Mol Sci 2019; 20:E4457. [PMID: 31510028 PMCID: PMC6770317 DOI: 10.3390/ijms20184457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023] Open
Abstract
Vaccination has had great success in combating diseases, especially infectious diseases. However, traditional vaccination strategies are ineffective for several life-threatening diseases, including acquired immunodeficiency syndrome (AIDS), tuberculosis, malaria, and cancer. Viral vaccine vectors represent a promising strategy because they can efficiently deliver foreign genes and enhance antigen presentation in vivo. However, several limitations, including pre-existing immunity and packaging capacity, block the application of viral vectors. Cytomegalovirus (CMV) has been demonstrated as a new type of viral vector with additional advantages. CMV could systematically elicit and maintain high frequencies of effector memory T cells through the "memory inflation" mechanism. Studies have shown that CMV can be genetically modified to induce distinct patterns of CD8+ T-cell responses, while some unconventional CD8+ T-cell responses are rarely induced through conventional vaccine strategies. CMV has been used as a vaccine vector to deliver many disease-specific antigens, and the efficacy of these vaccines was tested in different animal models. Promising results demonstrated that the robust and unconventional T-cell responses elicited by the CMV-based vaccine vector are essential to control these diseases. These accumulated data and evidence strongly suggest that a CMV-based vaccine vector represents a promising approach to develop novel prophylactic and therapeutic vaccines against some epidemic pathogens and tumors.
Collapse
Affiliation(s)
- Jian Liu
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China.
- College of Life Sciences, Jinan University, Guangzhou 510632, China.
| | - Dabbu Kumar Jaijyan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA.
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA.
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA.
- College of Life Sciences, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
39
|
Boucau J, Le Gall S. Antigen processing and presentation in HIV infection. Mol Immunol 2019; 113:67-74. [PMID: 29636181 PMCID: PMC6174111 DOI: 10.1016/j.molimm.2018.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/09/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
The presentation of virus-derived peptides by MHC molecules constitutes the earliest signals for immune recognition by T cells. In HIV infection, immune responses elicited during infection do not enable to clear infection and correlates of immune protection are not well defined. Here we review features of antigen processing and presentation specific to HIV, analyze how HIV has adapted to the antigen processing machinery and discuss how advances in biochemical and computational protein degradation analyses and in immunopeptidome definition may help identify targets for efficient immune clearance and vaccine immunogen design.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States.
| |
Collapse
|
40
|
Rohn H, Michita RT, Schramm S, Dolff S, Gäckler A, Korth J, Heinemann FM, Wilde B, Trilling M, Horn PA, Kribben A, Witzke O, Rebmann V. HLA-E Polymorphism Determines Susceptibility to BK Virus Nephropathy after Living-Donor Kidney Transplant. Cells 2019; 8:E847. [PMID: 31394776 PMCID: PMC6721664 DOI: 10.3390/cells8080847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Human leukocyte antigen (HLA)-E is important for the regulation of anti-viral immunity. BK polyomavirus (BKPyV) reactivation after kidney transplant is a serious complication that can result in BKPyV-associated nephropathy (PyVAN) and subsequent allograft loss. To elucidate whether HLA-E polymorphisms influence BKPyV replication and nephropathy, we determined the HLA-E genotype of 278 living donor and recipient pairs. A total of 44 recipients suffered from BKPyV replication, and 11 of these developed PyVAN. Homozygosity of the recipients for the HLA-E*01:01 genotype was associated with the protection against PyVAN after transplant (p = 0.025, OR 0.09, CI [95%] 0.83-4.89). Considering the time course of the occurrence of nephropathy, recipients with PyVAN were more likely to carry the HLA-E*01:03 allelic variant than those without PyVAN (Kaplan-Meier analysis p = 0.03; OR = 4.25; CI (95%) 1.11-16.23). Our findings suggest that a predisposition based on a defined HLA-E genotype is associated with an increased susceptibility to develop PyVAN. Thus, assessing HLA-E polymorphisms may enable physicians to identify patients being at an increased risk of this viral complication.
Collapse
Affiliation(s)
- Hana Rohn
- Department of Infectious Diseases, West German Centre for Infectious Diseases (WZI), University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | - Rafael Tomoya Michita
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
- Post-Graduation Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Sabine Schramm
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre for Infectious Diseases (WZI), University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Anja Gäckler
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Johannes Korth
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre for Infectious Diseases (WZI), University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
41
|
Joosten SA, Ottenhoff TH, Lewinsohn DM, Hoft DF, Moody DB, Seshadri C. Harnessing donor unrestricted T-cells for new vaccines against tuberculosis. Vaccine 2019; 37:3022-3030. [PMID: 31040086 PMCID: PMC6525272 DOI: 10.1016/j.vaccine.2019.04.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 01/14/2023]
Abstract
Mycobacterium bovis bacille Calmette-Guérin (BCG) prevents extrapulmonary tuberculosis (TB) and death among infants but fails to consistently and sufficiently prevent pulmonary TB in adults. Thus, TB remains the leading infectious cause of death worldwide, and new vaccine approaches are urgently needed. T-cells are important for protective immunity to Mycobacterium tuberculosis (Mtb), but the optimal T-cell antigens to be included in new vaccines are not established. T-cells are often thought of as responding mainly to peptide antigens presented by polymorphic major histocompatibility complex (MHC) I and II molecules. Over the past two decades, the number of non-peptidic Mtb derived antigens for αβ and γδ T-cells has expanded rapidly, creating broader perspectives about the types of molecules that could be targeted by T-cell-based vaccines against TB. Many of these non-peptide responsive T-cell subsets in humans are activated in a manner that is unrestricted by classical MHC-dependent antigen-presenting systems, but instead require essentially nonpolymorphic presentation systems. These systems are Cluster of differentiation 1 (CD1), MHC related protein 1 (MR1), butyrophilin 3A1, as well as the nonclassical MHC class Ib family member HLA-E. Thus, the resulting T-cell responses can be shared among a genetically diverse population, creating the concept of donor-unrestricted T-cells (DURTs). Here, we review evidence that DURTs are an abundant component of the human immune system and recognize many antigens expressed by Mtb, including antigens that are expressed in BCG and other candidate whole cell vaccines. Further, DURTs exhibit functional diversity and demonstrate the ability to control microbial infection in small animal models. Finally, we outline specific knowledge gaps and research priorities that must be addressed to realize the full potential of DURTs as part of new TB vaccines approaches.
Collapse
Affiliation(s)
- Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom H.M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - David M. Lewinsohn
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Oregon Health Sciences University, Portland, USA
| | - Daniel F. Hoft
- Department of Internal Medicine, Saint Louis University, Doisy Research Center, 8th floor, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| | - D. Branch Moody
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham & Women’s Hospital, Boston, Harvard Medical School, USA
| | - Chetan Seshadri
- Department of Medicine, Division of Infectious Diseases, University of Washington, Seattle, USA,Tuberculosis Research & Training Center, University of Washington, Seattle, USA,Corresponding author at: University of Washington Medical Center, 750 Republican Street, Room E663, Seattle, WA 98109, USA.
| | | |
Collapse
|
42
|
Sharpe HR, Bowyer G, Brackenridge S, Lambe T. HLA-E: exploiting pathogen-host interactions for vaccine development. Clin Exp Immunol 2019; 196:167-177. [PMID: 30968409 PMCID: PMC6468186 DOI: 10.1111/cei.13292] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Viruses, when used as vectors for vaccine antigen delivery, can induce strong cellular and humoral responses against target epitopes. Recent work by Hansen et al. describes the use of a cytomegalovirus‐vectored vaccine, which is able to generate a stable effector‐memory T cell population at the sites of vaccination in rhesus macaques. This vaccine, targeted towards multiple epitopes in simian immunodeficiency virus (SIV), did not induce classical CD8+ T cells. However, non‐canonical CD8+ T cell induction occurred via major histocompatibility complex (MHC) class II and MHC‐E. The MHC‐E‐restricted T cells could recognize broad epitopes across the SIV peptides, and conferred protection against viral challenge to 55% of vaccinated macaques. The human homologue, human leucocyte antigen (HLA)‐E, is now being targeted as a new avenue for vaccine development. In humans, HLA‐E is an unusually oligomorphic class Ib MHC molecule, in comparison to highly polymorphic MHC class Ia. Whereas MHC class Ia presents peptides derived from pathogens to T cells, HLA‐E classically binds defined leader peptides from class Ia MHC peptides and down‐regulates NK cell cytolytic activity when presented on the cell surface. HLA‐E can also restrict non‐canonical CD8+ T cells during natural infection with various pathogens, although the extent to which they are involved in pathogen control is mostly unknown. In this review, an overview is provided of HLA‐E and its ability to interact with NK cells and non‐canonical T cells. Also discussed are the unforeseen beneficial effects of vaccination, including trained immunity of NK cells from bacille Calmette–Guérin (BCG) vaccination, and the broad restriction of non‐canonical CD8+ T cells by cytomegalovirus (CMV)‐vectored vaccines in pre‐clinical trials.
Collapse
Affiliation(s)
- H R Sharpe
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - G Bowyer
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| | - S Brackenridge
- Nuffield Department of Medicine, NDM Research Building, University of Oxford, Oxford, UK
| | - T Lambe
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Rudolph ME, McArthur MA, Magder LS, Barnes RS, Chen WH, Sztein MB. Age-Associated Heterogeneity of Ty21a-Induced T Cell Responses to HLA-E Restricted Salmonella Typhi Antigen Presentation. Front Immunol 2019; 10:257. [PMID: 30886613 PMCID: PMC6409365 DOI: 10.3389/fimmu.2019.00257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/29/2019] [Indexed: 01/15/2023] Open
Abstract
Human-restricted Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of typhoid fever—a life-threatening disease of great global health significance, particularly in the developing world. Ty21a is an oral live-attenuated vaccine that protects against the development of typhoid disease in part by inducing robust T cell responses, among which multifunctional CD8+ cytotoxic T lymphocytes (CTL) play an important role. Following Ty21a vaccination, a significant component of adult CTL have shown to be targeted to S. Typhi antigen presented by the conserved major histocompatibility complex (MHC) class Ib molecule, human leukocyte antigen-E (HLA-E). S. Typhi challenge studies have shown that baseline, multifunctional HLA-E responsive T cells are associated with protection from, and delayed onset of, typhoid disease. However, despite the overwhelming burden of typhoid fever in school-aged children, and due to limited availability of pediatric samples, incomplete information is available regarding these important HLA-E-restricted responses in children, even though studies have shown that younger children may be less likely to develop protective cell mediated immune (CMI) responses than adults following vaccination. To address this gap, we have studied this phenomenon in depth by using mass cytometry to analyze pediatric and adult T cell responses to HLA-E-restricted S. Typhi antigen presentation, before and after Ty21a vaccination. Herein, we show variable responses in all age strata following vaccination among T effector memory (TEM) and T effector memory CD45RA+ (TEMRA) cells based on conventional gating analysis. However, by utilizing the dimensionality reduction tool tSNE (t-distributed Stochastic Neighbor Embedding), we are able to identify diverse, highly multifunctional gut-homing- TEM and TEMRA clusters of cells which are more abundant in adult and older pediatric participants than in younger children. These findings highlight a potential age-associated maturation of otherwise conserved HLA-E restricted T cell responses. Such insights, coupled with the marked importance of multifunctional T cell responses to combat infection, may better inform future pediatric vaccination strategies against S. Typhi and other infectious diseases.
Collapse
Affiliation(s)
- Mark E Rudolph
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Molecular Microbiology and Immunology Department, University of Maryland Graduate Program in Life Sciences, Baltimore, MD, United States
| | - Monica A McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Laurence S Magder
- Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Molecular Microbiology and Immunology Department, University of Maryland Graduate Program in Life Sciences, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
44
|
Calvo Tardón M, Allard M, Dutoit V, Dietrich PY, Walker PR. Peptides as cancer vaccines. Curr Opin Pharmacol 2019; 47:20-26. [PMID: 30831470 DOI: 10.1016/j.coph.2019.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/30/2022]
Abstract
Cancer vaccines based on synthetic peptides are a safe, well-tolerated immunotherapy able to specifically stimulate tumor-reactive T cells. However, their clinical efficacy does not approach that achieved with other immunotherapies such as immune checkpoint blockade. Nevertheless, major advances have been made in selecting tumor antigens to target, identifying epitopes binding to classical and non-classical HLA molecules, and incorporating these into optimal sized peptides for formulation into a vaccine. Limited potency of currently used adjuvants and the immunosuppressive tumor microenvironment are now understood to be major impediments to vaccine efficacy that need to be overcome. Rationally designed combination therapies are now being tested and should ultimately enable peptide vaccination to be added to immuno-oncology treatment options.
Collapse
Affiliation(s)
- Marta Calvo Tardón
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Mathilde Allard
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Center for Translational Research in Onco-Hematology, Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Pierre-Yves Dietrich
- Center for Translational Research in Onco-Hematology, Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R Walker
- Center for Translational Research in Onco-Hematology, Division of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
45
|
Xu YP, Wieten L, Wang SX, Cai Y, Olieslagers T, Zhang L, He LM, Tilanus MGJ, Hong WX. Clinical significance of HLA-E genotype and surface/soluble expression levels between healthy individuals and patients with acute leukemia. Leuk Lymphoma 2019; 60:208-215. [PMID: 29969046 DOI: 10.1080/10428194.2018.1474521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/03/2018] [Accepted: 04/30/2018] [Indexed: 01/09/2023]
Abstract
Human leukocyte antigen (HLA)-E is a nonclassical HLA molecule with limited polymorphisms. Genotype frequency and expression of HLA-E were examined here for the first time in acute leukemia patients and healthy controls. The frequency of HLA-E*01:03/*01:03 individuals was significantly higher (p = .008, OR = 1.845), while the frequency of HLA-E*01:01/*01:01 individuals was much lower in the patient group (p = .002, OR = .363) than in control group. The surface expression on HLA-E*01:03/*01:03 individuals was found to be significantly higher than on HLA-E*01:01/*01:01 individuals in both of acute leukemia and control groups, but no significant difference was observed between the corresponding genotypes in two groups. However, the level of expression of soluble HLA-E is significantly higher in patients than in the control group, but there was no genotype-specific expression in either group. These findings indicate that soluble HLA-E secretion and HLA-E*01:03/*01:03 genotype that brings higher surface expression might play important roles in the mechanisms underlying tumor escape in acute leukemia.
Collapse
Affiliation(s)
- Yun-Ping Xu
- a Immunogenetics Laboratory , Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center , Shenzhen , China
- b Transplantation Immunology, Tissue Typing Laboratory , Maastricht University Medical Center , Maastricht , The Netherlands
| | - Lotte Wieten
- b Transplantation Immunology, Tissue Typing Laboratory , Maastricht University Medical Center , Maastricht , The Netherlands
| | - Song-Xing Wang
- a Immunogenetics Laboratory , Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center , Shenzhen , China
| | - Yun Cai
- c Department of Hematopathology , Shenzhen Second People's Hospital , Shenzhen , China
| | - Timo Olieslagers
- b Transplantation Immunology, Tissue Typing Laboratory , Maastricht University Medical Center , Maastricht , The Netherlands
| | - Li Zhang
- a Immunogenetics Laboratory , Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center , Shenzhen , China
| | - Liu-Mei He
- a Immunogenetics Laboratory , Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center , Shenzhen , China
| | - Marce G J Tilanus
- b Transplantation Immunology, Tissue Typing Laboratory , Maastricht University Medical Center , Maastricht , The Netherlands
| | - Wen-Xu Hong
- a Immunogenetics Laboratory , Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center , Shenzhen , China
| |
Collapse
|
46
|
Wang X, Piersma SJ, Nelson CA, Dai YN, Christensen T, Lazear E, Yang L, Sluijter M, van Hall T, Hansen TH, Yokoyama WM, Fremont DH. A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement. eLife 2018; 7:38667. [PMID: 30575523 PMCID: PMC6320069 DOI: 10.7554/elife.38667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/20/2018] [Indexed: 11/13/2022] Open
Abstract
A recurrent theme in viral immune evasion is the sabotage of MHC-I antigen presentation, which brings virus the concomitant issue of ‘missing-self’ recognition by NK cells that use inhibitory receptors to detect surface MHC-I proteins. Here, we report that rodent herpesvirus Peru (RHVP) encodes a Qa-1 like protein (pQa-1) via RNA splicing to counteract NK activation. While pQa-1 surface expression is stabilized by the same canonical peptides presented by murine Qa-1, pQa-1 is GPI-anchored and resistant to the activity of RHVP pK3, a ubiquitin ligase that targets MHC-I for degradation. pQa-1 tetramer staining indicates that it recognizes CD94/NKG2A receptors. Consistently, pQa-1 selectively inhibits NKG2A+ NK cells and expression of pQa-1 can protect tumor cells from NK control in vivo. Collectively, these findings reveal an innovative NK evasion strategy wherein RHVP encodes a modified Qa-1 mimic refractory to MHC-I sabotage and capable of specifically engaging inhibitory receptors to circumvent NK activation.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Ted Christensen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Eric Lazear
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Marjolein Sluijter
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Wayne M Yokoyama
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
47
|
Godfrey DI, Le Nours J, Andrews DM, Uldrich AP, Rossjohn J. Unconventional T Cell Targets for Cancer Immunotherapy. Immunity 2018; 48:453-473. [PMID: 29562195 DOI: 10.1016/j.immuni.2018.03.009] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023]
Abstract
Most studies on the immunotherapeutic potential of T cells have focused on CD8 and CD4 T cells that recognize peptide antigens (Ag) presented by polymorphic major histocompatibility complex (MHC) class I and MHC class II molecules, respectively. However, unconventional T cells, which interact with MHC class Ib and MHC-I like molecules, are also implicated in tumor immunity, although their role therein is unclear. These include unconventional T cells targeting MHC class Ib molecules such as HLA-E and its murine ortholog Qa-1b, natural killer T (NKT) cells, mucosal associated invariant T (MAIT) cells, and γδ T cells. Here, we review the current understanding of the roles of these unconventional T cells in tumor immunity and discuss why further studies into the immunotherapeutic potential of these cells is warranted.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Jérôme Le Nours
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel M Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
48
|
Kilpeläinen A, Maya-Hoyos M, Saubí N, Soto CY, Joseph Munne J. Advances and challenges in recombinant Mycobacterium bovis BCG-based HIV vaccine development: lessons learned. Expert Rev Vaccines 2018; 17:1005-1020. [PMID: 30300040 DOI: 10.1080/14760584.2018.1534588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome, tuberculosis, and malaria are responsible for most human deaths produced by infectious diseases worldwide. Vaccination against HIV requires generation of memory T cells and neutralizing antibodies, mucosal immunity, and stimulation of an innate immune responses. In this context, the use of Mycobacterium bovis bacillus Calmette-Guérin (BCG) as a live vaccine vehicle is a promising approach for T-cell induction. AREAS COVERED In this review, we provide a comprehensive summary of the literature regarding immunogenicity studies in animal models performed since 2005. Furthermore, we provide expert commentary and 5-year view on how the development of potential recombinant BCG-based HIV vaccines involves careful selection of the HIV antigen, expression vectors, promoters, BCG strain, preclinical animal models, influence of preexisting immunity, and safety issues, for the rational design of recombinant BCG:HIV vaccines to prevent HIV transmission in the general population. EXPERT COMMENTARY The three critical issues to be considered when developing a rBCG:HIV vaccine are codon optimization, antigen localization, and plasmid stability in vivo. The use of integrative expression vectors are likely to improve the mycobacterial vaccine stability and immunogenicity to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective responses shortly following birth.
Collapse
Affiliation(s)
- Athina Kilpeläinen
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Milena Maya-Hoyos
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Narcís Saubí
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| | - Carlos Y Soto
- b Chemistry Department, Faculty of Sciences , Universidad Nacional de Colombia, Ciudad Universitaria , Bogotá , Colombia
| | - Joan Joseph Munne
- a Catalan Center for HIV Vaccine Research and Development, AIDS Research Unit, Infectious Diseases Department, Hospital Clínic/IDIBAPS, School of Medicine , University of Barcelona , Barcelona , Spain
| |
Collapse
|
49
|
Abstract
Tuberculosis kills more people worldwide than any other single infectious disease agent, a threat made more dire by the spread of drug-resistant strains of Mycobacterium tuberculosis (Mtb). Development of new vaccines capable of preventing TB disease and new Mtb infection are an essential component of the strategy to combat the TB epidemic. Accordingly, the WHO considers the development of new TB vaccines a major public health priority. In October 2017, the WHO convened a consultation with global leaders in the TB vaccine development field to emphasize the WHO commitment to this effort and to facilitate creative approaches to the discovery and development of TB vaccine candidates. This review summarizes the presentations at this consultation, updated with scientific literature references, and includes discussions of the public health need for a TB vaccine; the status of efforts to develop vaccines to replace or potentiate BCG in infants and develop new TB vaccines for adolescents and adults; strategies being employed to diversify vaccine platforms; and new animal models being developed to facilitate TB vaccine development. A perspective on the status of these efforts from the major funders and organizational contributors also is included. This presentation highlights the extraordinary progress being made to develop new TB vaccines and provided a clear picture of the exciting development pathways that are being explored.
Collapse
Affiliation(s)
| | | | - Johan Vekemans
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland
| |
Collapse
|
50
|
Abstract
Tuberculosis kills more people worldwide than any other single infectious disease agent, a threat made more dire by the spread of drug-resistant strains of Mycobacterium tuberculosis (Mtb). Development of new vaccines capable of preventing TB disease and new Mtb infection are an essential component of the strategy to combat the TB epidemic. Accordingly, the WHO considers the development of new TB vaccines a major public health priority. In October 2017, the WHO convened a consultation with global leaders in the TB vaccine development field to emphasize the WHO commitment to this effort and to facilitate creative approaches to the discovery and development of TB vaccine candidates. This review summarizes the presentations at this consultation, updated with scientific literature references, and includes discussions of the public health need for a TB vaccine; the status of efforts to develop vaccines to replace or potentiate BCG in infants and develop new TB vaccines for adolescents and adults; strategies being employed to diversify vaccine platforms; and new animal models being developed to facilitate TB vaccine development. A perspective on the status of these efforts from the major funders and organizational contributors also is included. This presentation highlights the extraordinary progress being made to develop new TB vaccines and provided a clear picture of the exciting development pathways that are being explored.
Collapse
Affiliation(s)
| | | | - Johan Vekemans
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland
| |
Collapse
|