1
|
Sun Y, Zhang Y, Guo Y, He D, Xu W, Fang W, Zhang C, Zuo Y, Zhang Z. Electrical aligned polyurethane nerve guidance conduit modulates macrophage polarization and facilitates immunoregulatory peripheral nerve regeneration. J Nanobiotechnology 2024; 22:244. [PMID: 38735969 PMCID: PMC11089704 DOI: 10.1186/s12951-024-02507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.
Collapse
Affiliation(s)
- Yiting Sun
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yinglong Zhang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yibo Guo
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Dongming He
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wanlin Xu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wei Fang
- MOE Key Laboratory of Low-Grade Energy, Utilization Technologies and Systems, CQU-NUS Renewable, Energy Materials & Devices Joint Laboratory, School of Energy & Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Chenping Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China.
| | - Zhen Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Gouveia D, Cardoso A, Carvalho C, Rijo I, Almeida A, Gamboa Ó, Lopes B, Sousa P, Coelho A, Balça MM, Salgado AJ, Alvites R, Varejão ASP, Maurício AC, Ferreira A, Martins Â. The Role of Early Rehabilitation and Functional Electrical Stimulation in Rehabilitation for Cats with Partial Traumatic Brachial Plexus Injury: A Pilot Study on Domestic Cats in Portugal. Animals (Basel) 2024; 14:323. [PMID: 38275783 PMCID: PMC10812540 DOI: 10.3390/ani14020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
This prospective observational cohort pilot study included 22 cats diagnosed with partial traumatic brachial plexus injury (PTBPI), aiming to explore responses to an early intensive neurorehabilitation protocol in a clinical setting. This protocol included functional electrical stimulation (FES), locomotor treadmill training and kinesiotherapy exercises, starting at the time with highest probability of nerve repair. The synergetic benefits of this multimodal approach were based on the potential structural and protective role of proteins and the release of neurotrophic factors. Furthermore, FES was parametrized according to the presence or absence of deep pain. Following treatment, 72.6% of the cats achieved ambulation: 9 cats within 15 days, 2 cats within 30 days and 5 cats within 60 days. During the four-year follow-up, there was evidence of improvement in both muscle mass and muscle weakness, in addition to the disappearance of neuropathic pain. Notably, after the 60 days of neurorehabilitation, 3 cats showed improved ambulation after arthrodesis of the carpus. Thus, early rehabilitation, with FES applied in the first weeks after injury and accurate parametrization according to the presence or absence of deep pain, may help in functional recovery and ambulation, reducing the probability of amputation.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
| | - Inês Rijo
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - Maria Manuel Balça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Artur Severo P. Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| |
Collapse
|
3
|
Mao X, Li T, Cheng J, Tao M, Li Z, Ma Y, Javed R, Bao J, Liang F, Guo W, Tian X, Fan J, Yu T, Ao Q. Nerve ECM and PLA-PCL based electrospun bilayer nerve conduit for nerve regeneration. Front Bioeng Biotechnol 2023; 11:1103435. [PMID: 36937756 PMCID: PMC10017983 DOI: 10.3389/fbioe.2023.1103435] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: The porcine nerve-derived extracellular matrix (ECM) fabricated as films has good performance in peripheral nerve regeneration. However, when constructed as conduits to bridge nerve defects, ECM lacks sufficient mechanical strength. Methods: In this study, a novel electrospun bilayer-structured nerve conduit (BNC) with outer poly (L-lactic acid-co-ε-caprolactone) (PLA-PCL) and inner ECM was fabricated for nerve regeneration. The composition, structure, and mechanical strength of BNC were characterized. Then BNC biosafety was evaluated by cytotoxicity, subcutaneous implantation, and cell affinity tests. Furthermore, BNC was used to bridge 10-mm rat sciatic nerve defect, and nerve functional recovery was assessed by walking track, electrophysiology, and histomorphology analyses. Results: Our results demonstrate that BNC has a network of nanofibers and retains some bioactive molecules, including collagen I, collagen IV, laminin, fibronectin, glycosaminoglycans, nerve growth factor, and brain-derived neurotrophic factor. Biomechanical analysis proves that PLA-PCL improves the BNC mechanical properties, compared with single ECM conduit (ENC). The functional evaluation of in vivo results indicated that BNC is more effective in nerve regeneration than PLA-PCL conduit or ENC. Discussion: In conclusion, BNC not only retains the good biocompatibility and bioactivity of ECM, but also obtains the appropriate mechanical strength from PLA-PCL, which has great potential for clinical repair of nerve defects.
Collapse
Affiliation(s)
- Xiaoyan Mao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Ting Li
- Department of Tissue Engineering, China Medical University, Shenyang, China
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junqiu Cheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Meihan Tao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Zhiyuan Li
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Yizhan Ma
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Jie Bao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Fang Liang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Weihong Guo
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohong Tian
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Jun Fan
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianhao Yu
- Liaoning Provincial Key Laboratory of Oral Diseases, The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
- Institute of Regulatory Science for Medical Device, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Lauer H, Prahm C, Thiel JT, Kolbenschlag J, Daigeler A, Hercher D, Heinzel JC. The Grasping Test Revisited: A Systematic Review of Functional Recovery in Rat Models of Median Nerve Injury. Biomedicines 2022; 10:biomedicines10081878. [PMID: 36009423 PMCID: PMC9405835 DOI: 10.3390/biomedicines10081878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The rat median nerve model is a well-established and frequently used model for peripheral nerve injury and repair. The grasping test is the gold-standard to evaluate functional recovery in this model. However, no comprehensive review exists to summarize the course of functional recovery in regard to the lesion type. According to PRISMA-guidelines, research was performed, including the databases PubMed and Web of Science. Groups were: (1) crush injury, (2) transection with end-to-end or with (3) end-to-side coaptation and (4) isogenic or acellular allogenic grafting. Total and respective number, as well as rat strain, type of nerve defect, length of isogenic or acellular allogenic allografts, time at first signs of motor recovery (FSR) and maximal recovery grasping strength (MRGS), were evaluated. In total, 47 articles met the inclusion criteria. Group I showed earliest signs of motor recovery. Slow recovery was observable in group III and in graft length above 25 mm. Isografts recovered faster compared to other grafts. The onset and course of recovery is heavily dependent from the type of nerve injury. The grasping test should be used complementary in addition to other volitional and non-volitional tests. Repetitive examinations should be planned carefully to optimize assessment of valid and reliable data.
Collapse
Affiliation(s)
- Henrik Lauer
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Johannes Tobias Thiel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - Adrien Daigeler
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
| | - David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Johannes C. Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (H.L.); (C.P.); (J.T.T.); (J.K.); (A.D.)
- Correspondence:
| |
Collapse
|
5
|
Patel M, Ahn S, Koh WG. Topographical pattern for neuronal tissue engineering. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Zhang Q, Burrell JC, Zeng J, Motiwala FI, Shi S, Cullen DK, Le AD. Implantation of a nerve protector embedded with human GMSC-derived Schwann-like cells accelerates regeneration of crush-injured rat sciatic nerves. Stem Cell Res Ther 2022; 13:263. [PMID: 35725660 PMCID: PMC9208168 DOI: 10.1186/s13287-022-02947-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Peripheral nerve injuries (PNIs) remain one of the great clinical challenges because of their considerable long-term disability potential. Postnatal neural crest-derived multipotent stem cells, including gingiva-derived mesenchymal stem cells (GMSCs), represent a promising source of seed cells for tissue engineering and regenerative therapy of various disorders, including PNIs. Here, we generated GMSC-repopulated nerve protectors and evaluated their therapeutic effects in a crush injury model of rat sciatic nerves. METHODS GMSCs were mixed in methacrylated collagen and cultured for 48 h, allowing the conversion of GMSCs into Schwann-like cells (GiSCs). The phenotype of GiSCs was verified by fluorescence studies on the expression of Schwann cell markers. GMSCs encapsulated in the methacrylated 3D-collagen hydrogel were co-cultured with THP-1-derived macrophages, and the secretion of anti-inflammatory cytokine IL-10 or inflammatory cytokines TNF-α and IL-1β in the supernatant was determined by ELISA. In addition, GMSCs mixed in the methacrylated collagen were filled into a nerve protector made from the decellularized small intestine submucosal extracellular matrix (SIS-ECM) and cultured for 24 h, allowing the generation of functionalized nerve protectors repopulated with GiSCs. We implanted the nerve protector to wrap the injury site of rat sciatic nerves and performed functional and histological assessments 4 weeks post-surgery. RESULTS GMSCs encapsulated in the methacrylated 3D-collagen hydrogel were directly converted into Schwann-like cells (GiSCs) characterized by the expression of S-100β, p75NTR, BDNF, and GDNF. In vitro, co-culture of GMSCs encapsulated in the 3D-collagen hydrogel with macrophages remarkably increased the secretion of IL-10, an anti-inflammatory cytokine characteristic of pro-regenerative (M2) macrophages, but robustly reduced LPS-stimulated secretion of TNF-1α and IL-1β, two cytokines characteristic of pro-inflammatory (M1) macrophages. In addition, our results indicate that implantation of functionalized nerve protectors repopulated with GiSCs significantly accelerated functional recovery and axonal regeneration of crush-injured rat sciatic nerves accompanied by increased infiltration of pro-regenerative (M2) macrophages while a decreased infiltration of pro-inflammatory (M1) macrophages. CONCLUSIONS Collectively, these findings suggest that Schwann-like cells converted from GMSCs represent a promising source of supportive cells for regenerative therapy of PNI through their dual functions, neurotrophic effects, and immunomodulation of pro-inflammatory (M1)/pro-regenerative (M2) macrophages.
Collapse
Affiliation(s)
- Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA, 19104, USA.
| | - Justin C. Burrell
- grid.25879.310000 0004 1936 8972Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA ,grid.410355.60000 0004 0420 350XCenter for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Jincheng Zeng
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA ,grid.410560.60000 0004 1760 3078Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, 523808 China
| | - Faizan I. Motiwala
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA
| | - Shihong Shi
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA
| | - D. Kacy Cullen
- grid.25879.310000 0004 1936 8972Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA ,grid.410355.60000 0004 0420 350XCenter for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104 USA
| | - Anh D. Le
- grid.25879.310000 0004 1936 8972Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104 USA ,grid.411115.10000 0004 0435 0884Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine Hospital of the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| |
Collapse
|
7
|
Shiah E, Laikhter E, Comer CD, Manstein SM, Bustos VP, Bain PA, Lee BT, Lin SJ. Neurotization in Innervated Breast Reconstruction: A Systematic Review of Techniques and Outcomes. J Plast Reconstr Aesthet Surg 2022; 75:2890-2913. [DOI: 10.1016/j.bjps.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/22/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022]
|
8
|
Polyhydroxybutyrate (PHB) Scaffolds for Peripheral Nerve Regeneration: A Systematic Review of Animal Models. BIOLOGY 2022; 11:biology11050706. [PMID: 35625434 PMCID: PMC9138984 DOI: 10.3390/biology11050706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/09/2022]
Abstract
Simple Summary Currently, polymeric biomaterials are the choice for the design of scaffolds for the regeneration of peripheral nerves. Polyhydroxybutyrate (PHB) is a polymer belonging to the class of polyesters that are produced naturally in nature by microorganisms. To gain a better understanding of the efficacy of therapeutic approaches involving PHB scaffolds for peripheral nerve regeneration, we conducted a systematic review of the literature with the aim of discussing the current knowledge of PHB scaffolds applied to nerve regeneration. The use of PHB as a biomaterial to prepare tubular scaffolds for nerve regeneration was shown to be promising. The incorporation of additives appears to be a trend that improves nerve regeneration. Abstract In the last two decades, artificial scaffolds for nerve regeneration have been produced using a variety of polymers. Polyhydroxybutyrate (PHB) is a natural polyester that can be easily processed and offer several advantages; hence, the purpose of this review is to provide a better understanding of the efficacy of therapeutic approaches involving PHB scaffolds in promoting peripheral nerve regeneration following nerve dissection in animal models. A systematic literature review was performed following the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA) criteria. The revised databases were: Pub-Med/MEDLINE, Web of Science, Science Direct, EMBASE, and SCOPUS. Sixteen studies were included in this review. Different animal models and nerves were studied. Extension of nerve gaps reconnected by PHB scaffolds and the time periods of analysis were varied. The additives included in the scaffolds, if any, were growth factors, neurotrophins, other biopolymers, and neural progenitor cells. The analysis of the quality of the studies revealed good quality in general, with some aspects that could be improved. The analysis of the risk of bias revealed several weaknesses in all studies. The use of PHB as a biomaterial to prepare tubular scaffolds for nerve regeneration was shown to be promising. The incorporation of additives appears to be a trend that improves nerve regeneration. One of the main weaknesses of the reviewed articles was the lack of standardized experimentation on animals. It is recommended to follow the currently available guidelines to improve the design, avoid the risk of bias, maximize the quality of studies, and enhance translationality.
Collapse
|
9
|
Augmenting Peripheral Nerve Regeneration with Adipose-Derived Stem Cells. Stem Cell Rev Rep 2022; 18:544-558. [PMID: 34417730 PMCID: PMC8858329 DOI: 10.1007/s12015-021-10236-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 02/03/2023]
Abstract
Peripheral nerve injuries (PNIs) are common and debilitating, cause significant health care costs for society, and rely predominately on autografts, which necessitate grafting a nerve section non-locally to repair the nerve injury. One possible approach to improving treatment is bolstering endogenous regenerative mechanisms or bioengineering new nervous tissue in the peripheral nervous system. In this review, we discuss critical-sized nerve gaps and nerve regeneration in rats, and summarize the roles of adipose-derived stem cells (ADSCs) in the treatment of PNIs. Several regenerative treatment modalities for PNI are described: ADSCs differentiating into Schwann cells (SCs), ADSCs secreting growth factors to promote peripheral nerve growth, ADSCs promoting myelination growth, and ADSCs treatments with scaffolds. ADSCs' roles in regenerative treatment and features are compared to mesenchymal stem cells, and the administration routes, cell dosages, and cell fates are discussed. ADSCs secrete neurotrophic factors and exosomes and can differentiate into Schwann cell-like cells (SCLCs) that share features with naturally occurring SCs, including the ability to promote nerve regeneration in the PNS. Future clinical applications are also discussed.
Collapse
|
10
|
Harnessing 3D collagen hydrogel-directed conversion of human GMSCs into SCP-like cells to generate functionalized nerve conduits. NPJ Regen Med 2021; 6:59. [PMID: 34593823 PMCID: PMC8484485 DOI: 10.1038/s41536-021-00170-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Achieving a satisfactory functional recovery after severe peripheral nerve injuries (PNI) remains one of the major clinical challenges despite advances in microsurgical techniques. Nerve autografting is currently the gold standard for the treatment of PNI, but there exist several major limitations. Accumulating evidence has shown that various types of nerve guidance conduits (NGCs) combined with post-natal stem cells as the supportive cells may represent a promising alternative to nerve autografts. In this study, gingiva-derived mesenchymal stem cells (GMSCs) under 3D-culture in soft collagen hydrogel showed significantly increased expression of a panel of genes related to development/differentiation of neural crest stem-like cells (NCSC) and/or Schwann cell precursor-like (SCP) cells and associated with NOTCH3 signaling pathway activation as compared to their 2D-cultured counterparts. The upregulation of NCSC-related genes induced by 3D-collagen hydrogel was abrogated by the presence of a specific NOTCH inhibitor. Further study showed that GMSCs encapsulated in 3D-collagen hydrogel were capable of transmigrating into multilayered extracellular matrix (ECM) wall of natural NGCs and integrating well with the aligned matrix structure, thus leading to biofabrication of functionalized NGCs. In vivo, implantation of functionalized NGCs laden with GMSC-derived NCSC/SCP-like cells (designated as GiSCs), significantly improved the functional recovery and axonal regeneration in the segmental facial nerve defect model in rats. Together, our study has identified an approach for rapid biofabrication of functionalized NGCs through harnessing 3D collagen hydrogel-directed conversion of GMSCs into GiSCs.
Collapse
|
11
|
Kuffler DP. Can lithium enhance the extent of axon regeneration and neurological recovery following peripheral nerve trauma? Neural Regen Res 2021; 17:948-952. [PMID: 34558506 PMCID: PMC8552832 DOI: 10.4103/1673-5374.324830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The clinical “gold standard” technique for attempting to restore function to nerves with a gap is to bridge the gap with sensory autografts. However, autografts induce good to excellent recovery only across short nerve gaps, in young patients, and when repairs are performed a short time post nerve trauma. Even under the best of conditions, < 50% of patients recover good recovery. Although many alternative techniques have been tested, none is as effective as autografts. Therefore, alternative techniques are required that increase the percentage of patients who recover function and the extent of their recovery. This paper examines the actions of lithium, and how it appears to trigger all the cellular and molecular events required to promote axon regeneration, and how both in animal models and clinically, lithium administration enhances both the extent of axon regeneration and neurological recovery. The paper proposes more extensive clinical testing of lithium for its ability and reliability to increase the extent of axon regeneration and functional recovery.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
| |
Collapse
|
12
|
Zafar S, Rasul A, Iqbal J, Anwar H, Imran A, Jabeen F, Shabbir A, Akram R, Maqbool J, Sajid F, Arshad MU, Hussain G, Islam S. Calotropis procera (leaves) supplementation exerts curative effects on promoting functional recovery in a mouse model of peripheral nerve injury. Food Sci Nutr 2021; 9:5016-5027. [PMID: 34532013 PMCID: PMC8441272 DOI: 10.1002/fsn3.2455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
Peripheral nerve injuries are among those complicated medical conditions, which are still waiting for their highly effective first-line therapies. In this study, the role of Calotropis procera crude leaves was evaluated at different doses for their effectiveness in improving functional recovery following sciatic nerve injury-induced in the mouse model. Thirty-two healthy albino mice were divided into four groups as Normal chow group (control, n = 8) and C. procera chow groups (50 mg/kg (n = 8), 100 mg/kg (n = 8) and 200 mg/kg (n = 8)). Behavioral analyses were performed to assess and compare improved functional recovery along with skeletal muscle mass measurement in all groups. Serum samples were analyzed for oxidative stress markers. Results showed that C. procera leaves at dose-dependent manner showed statistically prominent (p < .05) increase in sensorimotor functions reclamation as confirmed by behavioral analyses along with muscle mass restoration and prominent decline in TOS and momentous increase in TAC along with the augmented activity of antioxidative enzymes.
Collapse
Affiliation(s)
- Shamaila Zafar
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Azhar Rasul
- Department of ZoologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Javed Iqbal
- Department of NeurologyAllied HospitalFaisalabad Medical UniversityFaisalabadPakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Ali Imran
- Institute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Farhat Jabeen
- Department of ZoologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Asghar Shabbir
- Department of BiosciencesCOMSATS Institute of Information TechnologyIslamabadPakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | | | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| |
Collapse
|
13
|
Yow YY, Goh TK, Nyiew KY, Lim LW, Phang SM, Lim SH, Ratnayeke S, Wong KH. Therapeutic Potential of Complementary and Alternative Medicines in Peripheral Nerve Regeneration: A Systematic Review. Cells 2021; 10:cells10092194. [PMID: 34571842 PMCID: PMC8472132 DOI: 10.3390/cells10092194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the progressive advances, current standards of treatments for peripheral nerve injury do not guarantee complete recovery. Thus, alternative therapeutic interventions should be considered. Complementary and alternative medicines (CAMs) are widely explored for their therapeutic value, but their potential use in peripheral nerve regeneration is underappreciated. The present systematic review, designed according to guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, aims to present and discuss the current literature on the neuroregenerative potential of CAMs, focusing on plants or herbs, mushrooms, decoctions, and their respective natural products. The available literature on CAMs associated with peripheral nerve regeneration published up to 2020 were retrieved from PubMed, Scopus, and Web of Science. According to current literature, the neuroregenerative potential of Achyranthes bidentata, Astragalus membranaceus, Curcuma longa, Panax ginseng, and Hericium erinaceus are the most widely studied. Various CAMs enhanced proliferation and migration of Schwann cells in vitro, primarily through activation of MAPK pathway and FGF-2 signaling, respectively. Animal studies demonstrated the ability of CAMs to promote peripheral nerve regeneration and functional recovery, which are partially associated with modulations of neurotrophic factors, pro-inflammatory cytokines, and anti-apoptotic signaling. This systematic review provides evidence for the potential use of CAMs in the management of peripheral nerve injury.
Collapse
Affiliation(s)
- Yoon-Yen Yow
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| | - Tiong-Keat Goh
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Ke-Ying Nyiew
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Lee-Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, L4 Laboratory Block, Hong Kong
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| | - Siew-Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Shyamala Ratnayeke
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Kah-Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| |
Collapse
|
14
|
A systematic review and meta-analysis of studies comparing muscle-in-vein conduits with autologous nerve grafts for nerve reconstruction. Sci Rep 2021; 11:11691. [PMID: 34083605 PMCID: PMC8175734 DOI: 10.1038/s41598-021-90956-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
The gold-standard method for reconstruction of segmental nerve defects, the autologous nerve graft, has several drawbacks in terms of tissue availability and donor site morbidity. Therefore, feasible alternatives to autologous nerve grafts are sought. Muscle-in-vein conduits have been proposed as an alternative to autologous nerve grafts almost three decades ago, given the abundance of both tissues throughout the body. Based on the anti-inflammatory effects of veins and the proregenerative environment established by muscle tissue, this approach has been studied in various preclinical and some clinical trials. There is still no comprehensive systematic summary to conclude efficacy and feasibility of muscle-in-vein conduits for reconstruction of segmental nerve defects. Given this lack of a conclusive summary, we performed a meta-analysis to evaluate the potential of muscle-in-vein conduits. This work’s main findings are profound discrepancies regarding the results following nerve repair by means of muscle-in-vein conduits in a preclinical or clinical setting. We identified differences in study methodology, inter-species neurobiology and the limited number of clinical studies to be the main reasons for the still inconclusive results. In conclusion, we advise for large animal studies to elucidate the feasibility of muscle-in-vein conduits for repair of segmental defects of critical size in mixed nerves.
Collapse
|
15
|
Motherwell JM, Hendershot BD, Goldman SM, Dearth CL. Gait biomechanics: A clinically relevant outcome measure for preclinical research of musculoskeletal trauma. J Orthop Res 2021; 39:1139-1151. [PMID: 33458856 DOI: 10.1002/jor.24990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023]
Abstract
Traumatic injuries to the musculoskeletal system are the most prevalent of those suffered by United States Military Service members and accounts for two-thirds of initial hospital costs to the Department of Defense. These combat-related wounds often leave survivors with life-long disability and represent a significant impediment to the readiness of the fighting force. There are immense opportunities for the field of tissue engineering and regenerative medicine (TE/RM) to address these musculoskeletal injuries through regeneration of damaged tissues as a means to restore limb functionality and improve quality of life for affected individuals. Indeed, investigators have made promising advancements in the treatment for these injuries by utilizing small and large preclinical animal models to validate therapeutic efficacy of next-generation TE/RM-based technologies. Importantly, utilization of a comprehensive suite of functional outcome measures, particularly those designed to mimic data collected within the clinical setting, is critical for successful translation and implementation of these therapeutics. To that end, the objective of this review is to emphasize the clinical relevance and application of gait biomechanics as a functional outcome measure for preclinical research studies evaluating the efficacy of TE/RM therapies to treat traumatic musculoskeletal injuries. Specifically, common musculoskeletal injuries sustained by service members-including volumetric muscle loss, post-traumatic osteoarthritis, and composite tissue injuries-are examined as case examples to highlight the use of gait biomechanics as an outcome measure using small and large preclinical animal models.
Collapse
Affiliation(s)
- Jessica M Motherwell
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Brad D Hendershot
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephen M Goldman
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Christopher L Dearth
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Borah R, Ingavle GC, Kumar A, Sandeman SR, Mikhalovsky SV. Surface-Functionalized Conducting Nanofibers for Electrically Stimulated Neural Cell Function. Biomacromolecules 2021; 22:594-611. [PMID: 33448795 DOI: 10.1021/acs.biomac.0c01445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Strategies involving the inclusion of cell-instructive chemical and topographical cues to smart biomaterials in combination with a suitable physical stimulus may be beneficial to enhance nerve-regeneration rate. In this regard, we investigated the surface functionalization of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)-based electroconductive electrospun nanofibers coupled with externally applied electrical stimulus for accelerated neuronal growth potential. In addition, the voltage-dependent conductive mechanism of the nanofibers was studied in depth to interlink intrinsic conductive properties with electrically stimulated neuronal expressions. Surface functionalization was accomplished using 3-aminopropyltriethoxysilane (APTES) and 1,6-hexanediamine (HDA) as an alternative to costly biomolecule coating (e.g., collagen) for cell adhesion. The nanofibers were uniform, porous, electrically conductive, mechanically strong, and stable under physiological conditions. Surface amination boosted biocompatibility, 3T3 cell adhesion, and spreading, while the neuronal model rat PC12 cell line showed better differentiation on surface-functionalized mats compared to nonfunctionalized mats. When coupled with electrical stimulation (ES), these mats showed comparable or faster neurite formation and elongation than the collagen-coated mats with no-ES conditions. The findings indicate that surface amination in combination with ES may provide an improved strategy to faster nerve regeneration using MEH-PPV-based neural scaffolds.
Collapse
Affiliation(s)
- Rajiv Borah
- Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati 781035, India
| | - Ganesh C Ingavle
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune 412115, India
| | - Ashok Kumar
- Materials Research Laboratory, Department of Physics, Tezpur University, Tezpur 784028, India
| | - Susan R Sandeman
- Biomaterials and Medical Devices Research Group, School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - Sergey V Mikhalovsky
- ANAMAD Ltd, Sussex Innovation Centre, Science Park Square, Falmer, Brighton BN1 9SB, United Kingdom.,Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17, General Naumov street, Kyiv 03164, Ukraine
| |
Collapse
|
17
|
Marques CDO, Espindula IA, Darko EKK, Bonetti LV, Sonza A, Partata WA, Faccioni-Heuser MC, Malysz T. Whole-body vibration therapy does not improve the peripheral nerve regeneration in experimental model. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:68-78. [PMID: 33657756 PMCID: PMC8020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
OBJECTIVES Whole-body vibration (WBV) is commonly used to improve motor function, balance and functional performance, but its effects on the body are not fully understood. The main objective was to evaluate the morphometric and functional effects of WBV in an experimental nerve regeneration model. METHODS Wistar rats were submitted to unilateral sciatic nerve crush and treated with WBV (4-5 weeks), started at 3 or 10 days after injury. Functional performances were weekly assessed by sciatic functional index, horizontal ladder rung walking and narrow beam tests. Nerve histomorphometry analysis was assessed at the end of the protocol. RESULTS Injured groups, sedentary and WBV started at 3 days, had similar functional deficits. WBV, regardless of the start time, did not alter the histomorphometry parameters in the regeneration process. CONCLUSIONS The earlier therapy did not change the expected and natural recovery after the nerve lesion, but when the WBV starts later it seems to impair function parameter of recovery.
Collapse
Affiliation(s)
- Charlanne de Oliveira Marques
- Post graduation Program in Neuroscience, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil,Comparative Histophysiology Laboratory, Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Izabela Amaro Espindula
- Comparative Histophysiology Laboratory, Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Eric Kwame Karikari Darko
- Comparative Histophysiology Laboratory, Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Leandro Viçosa Bonetti
- Post Graduation Program in Health Science, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil,Department of Physiotherapy, University of Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Anelise Sonza
- Post Graduation Program in Physiotherapy, Health and Sport Sciences Center, Santa Catarina State University, Santa Catarina, Brazil
| | - Wania Aparecida Partata
- Laboratory of Comparative Neurobiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Maria Cristina Faccioni-Heuser
- Post graduation Program in Neuroscience, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil,Comparative Histophysiology Laboratory, Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Taís Malysz
- Post graduation Program in Neuroscience, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil,Comparative Histophysiology Laboratory, Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil,Corresponding author: Tais Malysz, PhD. Address: R. Sarmento Leite, 500 - Farroupilha, Porto Alegre – Rio Grande do Sul, Brasil E-mail:
| |
Collapse
|
18
|
Ghergherehchi CL, Shores JT, Alderete J, Weitzel EK, Bittner GD. Methylene blue enhances polyethylene glycol-fusion repair of completely severed rat sciatic nerves. Neural Regen Res 2021; 16:2056-2063. [PMID: 33642394 PMCID: PMC8343334 DOI: 10.4103/1673-5374.308099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Complete transection of peripheral mixed nerves immediately produces loss of sensory perception, muscle contractions and voluntary behavior mediated by the severed distal axons. In contrast to natural regeneration (~1 mm/d) of proximal axons that may eventually reinnervate denervated targets, re-innervation is restored within minutes by PEG-fusion that consists of neurorrhaphy and a sequence of well specified hypo- and isotonic calcium-free or calcium-containing solutions, the anti-oxidant methylene blue (MB) and the membrane fusogen polyethylene glycol (PEG). In this study, we examined the relative efficacy of PEG-fusion with no MB (0%), 0.5% MB, or 1% MB on the recovery of voluntary behaviors by female Sprague-Dawley rats with a complete mid-thigh severance of their sciatic nerve bathed in extracellular fluid or calcium-containing isotonic saline. The recovery of voluntary behaviors is the most relevant measure of success of any technique to repair peripheral nerve injuries. We assessed recovery by the sciatic functional index, a commonly used measure of voluntary hindlimb behaviors following complete sciatic transections. We reported that both 1% MB and 0.5% MB in sterile distilled water in our PEG-fusion protocol with neurorrhaphy significantly increased the rate and extent of behavioral recovery compared to PEG plus neurorrhaphy alone. Furthermore, 0.5% MB was as effective as 1% MB in voluntary behavioral recovery as assessed by the sciatic functional index. Since sterile 1% MB is no longer clinically available, we therefore recommend that 0.5% MB be included in upcoming human clinical trials to evaluate the safety and efficacy of PEG-fusion. All animal procedures were approved by the University of Texas Institutional Animal Care and Use Committee (AUP-2019-00225) on September 9, 2020.
Collapse
Affiliation(s)
- Cameron L Ghergherehchi
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Jaimie T Shores
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph Alderete
- Department of Surgery, RESTOR Laboratory, San Antonio, TX, USA
| | - Erik K Weitzel
- Department of Surgery, RESTOR Laboratory, San Antonio, TX, USA
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
19
|
Puhl DL, Funnell JL, Nelson DW, Gottipati MK, Gilbert RJ. Electrospun Fiber Scaffolds for Engineering Glial Cell Behavior to Promote Neural Regeneration. Bioengineering (Basel) 2020; 8:4. [PMID: 33383759 PMCID: PMC7823609 DOI: 10.3390/bioengineering8010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Electrospinning is a fabrication technique used to produce nano- or micro- diameter fibers to generate biocompatible, biodegradable scaffolds for tissue engineering applications. Electrospun fiber scaffolds are advantageous for neural regeneration because they mimic the structure of the nervous system extracellular matrix and provide contact guidance for regenerating axons. Glia are non-neuronal regulatory cells that maintain homeostasis in the healthy nervous system and regulate regeneration in the injured nervous system. Electrospun fiber scaffolds offer a wide range of characteristics, such as fiber alignment, diameter, surface nanotopography, and surface chemistry that can be engineered to achieve a desired glial cell response to injury. Further, electrospun fibers can be loaded with drugs, nucleic acids, or proteins to provide the local, sustained release of such therapeutics to alter glial cell phenotype to better support regeneration. This review provides the first comprehensive overview of how electrospun fiber alignment, diameter, surface nanotopography, surface functionalization, and therapeutic delivery affect Schwann cells in the peripheral nervous system and astrocytes, oligodendrocytes, and microglia in the central nervous system both in vitro and in vivo. The information presented can be used to design and optimize electrospun fiber scaffolds to target glial cell response to mitigate nervous system injury and improve regeneration.
Collapse
Affiliation(s)
- Devan L. Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Jessica L. Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Derek W. Nelson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Manoj K. Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ryan J. Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| |
Collapse
|
20
|
Gisbert Roca F, Más Estellés J, Monleón Pradas M, Martínez-Ramos C. Axonal extension from dorsal root ganglia on fibrillar and highly aligned poly(lactic acid)-polypyrrole substrates obtained by two different techniques: Electrospun nanofibres and extruded microfibres. Int J Biol Macromol 2020; 163:1959-1969. [DOI: 10.1016/j.ijbiomac.2020.09.181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
|
21
|
Palombella S, Guiotto M, Higgins GC, Applegate LL, Raffoul W, Cherubino M, Hart A, Riehle MO, di Summa PG. Human platelet lysate as a potential clinical-translatable supplement to support the neurotrophic properties of human adipose-derived stem cells. Stem Cell Res Ther 2020; 11:432. [PMID: 33023632 PMCID: PMC7537973 DOI: 10.1186/s13287-020-01949-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Background The autologous nerve graft, despite its donor site morbidity and unpredictable functional recovery, continues to be the gold standard in peripheral nerve repair. Rodent research studies have shown promising results with cell transplantation of human adipose-derived stem cells (hADSC) in a bioengineered conduit, as an alternative strategy for nerve regeneration. To achieve meaningful clinical translation, cell therapy must comply with biosafety. Cell extraction and expansion methods that use animal-derived products, including enzymatic adipose tissue dissociation and the use of fetal bovine serum (FBS) as a culture medium supplement, have the potential for transmission of zoonotic infectious and immunogenicity. Human-platelet-lysate (hPL) serum has been used in recent years in human cell expansion, showing reliability in clinical applications. Methods We investigated whether hADSC can be routinely isolated and cultured in a completely xenogeneic-free way (using hPL culture medium supplement and avoiding collagenase digestion) without altering their physiology and stem properties. Outcomes in terms of stem marker expression (CD105, CD90, CD73) and the osteocyte/adipocyte differentiation capacity were compared with classical collagenase digestion and FBS-supplemented hADSC expansion. Results We found no significant differences between the two examined extraction and culture protocols in terms of cluster differentiation (CD) marker expression and stem cell plasticity, while hADSC in hPL showed a significantly higher proliferation rate when compared with the usual FBS-added medium. Considering the important key growth factors (particularly brain-derived growth factor (BDNF)) present in hPL, we investigated a possible neurogenic commitment of hADSC when cultured with hPL. Interestingly, hADSC cultured in hPL showed a statistically higher secretion of neurotrophic factors BDNF, glial cell-derived growth factor (GDNF), and nerve-derived growth factor (NFG) than FBS-cultured cells. When cocultured in the presence of primary neurons, hADSC which had been grown under hPL supplementation, showed significantly enhanced neurotrophic properties. Conclusions The hPL-supplement medium could improve cell proliferation and neurotropism while maintaining stable cell properties, showing effectiveness in clinical translation and significant potential in peripheral nerve research.
Collapse
Affiliation(s)
- Silvia Palombella
- Unit of Regenerative Therapy, Service of Plastic, Reconstructive and Hand Surgery, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland. .,Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
| | - Martino Guiotto
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon, 21, 1011, Lausanne, Switzerland.,Centre for Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, UK
| | - Gillian C Higgins
- Centre for Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, UK.,Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Laurent L Applegate
- Unit of Regenerative Therapy, Service of Plastic, Reconstructive and Hand Surgery, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Wassim Raffoul
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon, 21, 1011, Lausanne, Switzerland
| | - Mario Cherubino
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Andrew Hart
- Centre for Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, UK.,Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Mathis O Riehle
- Centre for Cellular Microenvironment (CeMi), University of Glasgow, Glasgow, UK
| | - Pietro G di Summa
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon, 21, 1011, Lausanne, Switzerland.
| |
Collapse
|
22
|
Teixeira RKC, Calvo FC, Santos DRD, Araújo NPD, Tramontin DF, Costa LVPD, Barros RSMD. Criteria for assessing peripheral nerve injury. Behavioral and functional assessment in non-operated Wistar rats. Acta Cir Bras 2020; 35:e202000702. [PMID: 32813758 PMCID: PMC7433661 DOI: 10.1590/s0102-865020200070000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/14/2020] [Indexed: 11/22/2022] Open
Abstract
Purpose To evaluate the normality pattern in functional tests of peripheral nerves. Methods Sixty female and sixty male Wistar rats were submitted to vibrissae movement and nictitating reflex for facial nerve; grooming test and grasping test for brachial plexus; and walking tracking test and horizontal ladder test for lumbar plexus. The tests were performed separately, with an interval of seven days between each. Results All animals showed the best score in vibrissae movement, nictitating reflex, grooming test, and horizontal ladder test. The best score was acquired for the first time in more than 90% of animals. The mean of strength on the grasping test was 133.46±12.08g for the right and 121.74±8.73g for the left anterior paw. There was a difference between the right and left sides. There was no difference between the groups according to sex. There is no statistical difference comparing all functional indexes between sex, independent of the side analyzed. The peroneal functional index showed higher levels than the sciatic and tibial functional index on both sides and sex. Conclusions The behavioral and functional assessment of peripheral nerve regeneration are low-cost, easy to perform, and reliable tests. However, they need to be performed by experienced researchers to avoid misinterpretation.
Collapse
|
23
|
Dietzmeyer N, Förthmann M, Grothe C, Haastert-Talini K. Modification of tubular chitosan-based peripheral nerve implants: applications for simple or more complex approaches. Neural Regen Res 2020; 15:1421-1431. [PMID: 31997801 PMCID: PMC7059590 DOI: 10.4103/1673-5374.271668] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Surgical treatment of peripheral nerve injuries is still a major challenge in human clinic. Up to now, none of the well-developed microsurgical treatment options is able to guarantee a complete restoration of nerve function. This restriction is also effective for novel clinically approved artificial nerve guides. In this review, we compare surgical repair techniques primarily for digital nerve injuries reported with relatively high prevalence to be valuable attempts in clinical digital nerve repair and point out their advantages and shortcomings. We furthermore discuss the use of artificial nerve grafts with a focus on chitosan-based nerve guides, for which our own studies contributed to their approval for clinical use. In the second part of this review, very recent future perspectives for the enhancement of tubular (commonly hollow) nerve guides are discussed in terms of their clinical translatability and ability to form three-dimensional constructs that biomimick the natural nerve structure. This includes materials that have already shown their beneficial potential in in vivo studies like fibrous intraluminal guidance structures, hydrogels, growth factors, and approaches of cell transplantation. Additionally, we highlight upcoming future perspectives comprising co-application of stem cell secretome. From our overview, we conclude that already simple attempts are highly effective to increase the regeneration supporting properties of nerve guides in experimental studies. But for bringing nerve repair with bioartificial nerve grafts to the next level, e.g. repair of defects > 3 cm in human patients, more complex intraluminal guidance structures such as innovatively manufactured hydrogels and likely supplementation of stem cells or their secretome for therapeutic purposes may represent promising future perspectives.
Collapse
Affiliation(s)
- Nina Dietzmeyer
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Maria Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Center for Systems Neuroscience (ZSN) Hannover, Hannover, Germany
| |
Collapse
|
24
|
Chen X, Ye K, Yu J, Gao J, Zhang L, Ji X, Chen T, Wang H, Dai Y, Tang B, Xu H, Sun X, Hu J. Regeneration of sciatic nerves by transplanted microvesicles of human neural stem cells derived from embryonic stem cells. Cell Tissue Bank 2020; 21:233-248. [PMID: 32052220 DOI: 10.1007/s10561-020-09816-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Injured nerves cannot regenerate on their own, and a lack of engraftable human nerves has been a major obstacle in cell-based therapies for regenerating damaged nerves. A monolayer culture approach to obtain adherent neural stem cells from human embryonic stem cells (hESC-NSCs) was established, and the greatest number of stemness characteristics were achieved by the eighth generation of hESC-NSCs (P8 hESC-NSCs). To overcome deficits in cell therapy, we used microvesicles secreted from P8 hESC-NSCs (hESC-NSC-MVs) instead of entire hESC-NSCs. To investigate the therapeutic efficacy of hESC-NSC-MVs in vitro, hESC-NSC-MVs were cocultured with dorsal root ganglia to determine the length of axons. In vivo, we transected the sciatic nerve in SD rats and created a 5-mm gap. A sciatic nerve defect was bridged using a silicone tube filled with hESC-NSC-MVs (45 μg) in the MVs group, P8 hESC-NSCs (1 × 106 single cells) in the cell group and PBS in the control group. The hESC-NSC-MVs group showed better morphological recovery and a significantly greater number of regenerated axons than the hESC-NSCs group 12 weeks after nerve injury. These results indicated that the hESC-NSC-MVs group had the greatest ability to repair and reconstruct nerve structure and function. As a result, hESC-NSC-MVs may have potential for applications in the field of nerve regenerative repair.
Collapse
Affiliation(s)
- Xiang Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
- Department of Clinical Laboratory, Nantong First People's Hospital, Nantong, 226000, Jiangsu, China
| | - Kai Ye
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Jiahong Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Jianyi Gao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Xianyan Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Tianyan Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Yao Dai
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Bin Tang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Hong Xu
- Department of Clinical Laboratory, Zhenjiang Centre for Disease Prevention and Control, Zhenjiang, 212003, Jiangsu, China
| | - Xiaochun Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Jiabo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China.
| |
Collapse
|
25
|
Restoration of Neurological Function Following Peripheral Nerve Trauma. Int J Mol Sci 2020; 21:ijms21051808. [PMID: 32155716 PMCID: PMC7084579 DOI: 10.3390/ijms21051808] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Following peripheral nerve trauma that damages a length of the nerve, recovery of function is generally limited. This is because no material tested for bridging nerve gaps promotes good axon regeneration across the gap under conditions associated with common nerve traumas. While many materials have been tested, sensory nerve grafts remain the clinical “gold standard” technique. This is despite the significant limitations in the conditions under which they restore function. Thus, they induce reliable and good recovery only for patients < 25 years old, when gaps are <2 cm in length, and when repairs are performed <2–3 months post trauma. Repairs performed when these values are larger result in a precipitous decrease in neurological recovery. Further, when patients have more than one parameter larger than these values, there is normally no functional recovery. Clinically, there has been little progress in developing new techniques that increase the level of functional recovery following peripheral nerve injury. This paper examines the efficacies and limitations of sensory nerve grafts and various other techniques used to induce functional neurological recovery, and how these might be improved to induce more extensive functional recovery. It also discusses preliminary data from the clinical application of a novel technique that restores neurological function across long nerve gaps, when repairs are performed at long times post-trauma, and in older patients, even under all three of these conditions. Thus, it appears that function can be restored under conditions where sensory nerve grafts are not effective.
Collapse
|
26
|
Govindappa PK, Talukder MAH, Gurjar AA, Hegarty JP, Elfar JC. An effective erythropoietin dose regimen protects against severe nerve injury-induced pathophysiological changes with improved neural gene expression and enhances functional recovery. Int Immunopharmacol 2020; 82:106330. [PMID: 32143001 PMCID: PMC7483891 DOI: 10.1016/j.intimp.2020.106330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/07/2020] [Accepted: 02/16/2020] [Indexed: 02/06/2023]
Abstract
The functional recovery following non-severing peripheral nerve injury (PNI) is often incomplete. Erythropoietin (EPO) is a pleiotropic hormone and it has been shown to protect peripheral nerves following mild and even moderate severity injuries. However, the effectiveness of EPO in severe PNI is largely unknown. In this study, we sought to investigate the neuroprotective effect of a new dose regimen of EPO in severe sciatic nerve crush injury (SSCI). Adult male mice (8 animals/group) were randomly assigned to sham (normal saline, 0.1 ml/mouse), SSCI (normal saline, 0.1 ml/mouse) and SSCI with EPO (5000 IU/kg) groups. SSCI was performed using calibrated forceps for 30 sec. EPO or normal saline was administered intraperitoneally immediately after the SSCI and at post-injury day1 and 2. The functional recovery after injury was assessed by sciatic function index (SFI), von Frey Test (VFT), and grip strength test. Mice were euthanized on day 7 and 21 and nerves at injury/peri-injury site were processed for gene (quantitative real-time PCR) and protein (immunohistochemistry) expression analysis. EPO significantly improved SFI, VFT, and hind limb paw grip strength from post-injury day 7. EPO demonstrated significant regulatory effects on mRNA expression of inflammatory (IL-1β and TNF-α), anti-inflammatory (IL-10), angiogenesis (VEGF and eNOS), and myelination (MBP) genes. The protein expression of IL-1β, F4/80, CD31, NF-κB p65, NF-H, MPZ, and DHE (redox-sensitive probe) was also significantly modulated by EPO treatment. In conclusion, the new dose regimen of EPO augments sciatic nerve functional recovery by mitigating inflammatory, anti-inflammatory, oxidative stress, angiogenesis, and myelination components of SSCI.
Collapse
Affiliation(s)
- Prem Kumar Govindappa
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - M A Hassan Talukder
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Anagha A Gurjar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - John P Hegarty
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
27
|
Malanotte JA, Ribeiro LDFC, Peretti AL, Kakihata CMM, Potulsky A, Guimarães ATB, Bertolini GRF, Nassar PO, Nassar CA. Low-Level Laser Effect on Peripheral Sciatic Regeneration Under the Systemic Inflammatory Condition of Periodontal Disease. J Lasers Med Sci 2020; 11:56-64. [PMID: 32099628 DOI: 10.15171/jlms.2020.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Periodontal disease (PD) is an inflammatory condition, which leads to tooth loss and promotes a systemic inflammatory state that can aggravate the nerve degeneration. As laser therapy may stimulate regeneration, this study aimed to evaluate the effect of the low-level laser (LLL) on peripheral nerve regeneration under the systemic inflammatory condition of PD. Methods: Thirry-two male rats were used, distributed in 4 groups: nerve injury (NIG); periodontal disease with nerve injury (PDNI); nerve injury and treatment (TNIG); periodontal disease with nerve injury and treatment (PDNIT). On the 7th day of the experiment, the animals had ligatures placed around the lower first molars. On the 22nd day, they underwent peripheral nerve damage, and on the 25th day, the LLL treatment was initiated, performed for two weeks. The sciatic functional index (SFI) was evaluated with subsequent euthanasia of all the animals on the 37th day of the experiment. The sciatic nerve was collected for morphological and oxidative stress analysis and the hemi jaws for radiographic analysis. Results: Regarding the SFI, there was no difference among the groups in the first evaluation (EV) pre-injury; as for theEV2, after injury, all the groups presented a decrease in these values, which remained in post-treatment. For the morphology of the PDNI, nerve tissue presented larger diameter fibers, whereas, for NIT and PDNIT, fibers had smaller diameters with endoneurial organization. When it comes to the antioxidant system, there was an increase in protein concentration, higher superoxide activity, and decreased glutathione transferase activity in the treated groups. Catalase and cholinesterase did not differ between the groups, and lipoperoxidation (LPO) increased in the PD groups. For the mandible radiographic analysis, it was possible to verify the induction of PD. Conclusion: As for the used parameters, the low-level laser was not effective in increasing the nociceptive threshold, but it contributed to the regeneration of nerve fibers, although the inflammation was still present in the site. However, the treatment was effective in protecting cells against oxidative damage due to increased SOD and increased protein, although the decrease in GST demonstrates the inhibition of this stage of the antioxidant system.
Collapse
Affiliation(s)
| | | | - Ana Luiza Peretti
- Biosciences and Health, Western Paraná State University (UNIOESTE), Cascavel, Brazil
| | | | - Andrey Potulsky
- Agroecology and Sustainable Rural Development, Federal University of Southern Border - UFFS, Laranjeiras do Sul, Brazil
| | | | | | | | - Carlos Augusto Nassar
- Biosciences and Health, Western Paraná State University (UNIOESTE), Cascavel, Brazil
| |
Collapse
|
28
|
Gisbert Roca F, Lozano Picazo P, Pérez-Rigueiro J, Guinea Tortuero GV, Monleón Pradas M, Martínez-Ramos C. Conduits based on the combination of hyaluronic acid and silk fibroin: Characterization, in vitro studies and in vivo biocompatibility. Int J Biol Macromol 2020; 148:378-390. [PMID: 31954793 DOI: 10.1016/j.ijbiomac.2020.01.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/27/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
We address the production of structures intended as conduits made from natural biopolymers, capable of promoting the regeneration of axonal tracts. We combine hyaluronic acid (HA) and silk fibroin (SF) with the aim of improving mechanical and biological properties of HA. The results show that SF can be efficiently incorporated into the production process, obtaining conduits with tubular structure with a matrix of HA-SF blend. HA-SF has better mechanical properties than sole HA, which is a very soft hydrogel, facilitating manipulation. Culture of rat Schwann cells shows that cell adhesion and proliferation are higher than in pure HA, maybe due to the binding motifs contributed by the SF protein. This increased proliferation accelerates the formation of a tight cell layer, which covers the inner channel surface of the HA-SF tubes. Biocompatibility of the scaffolds was studied in immunocompetent mice. Both HA and HA-SF scaffolds were accepted by the host with no residual immune response at 8 weeks. New collagen extracellular matrix and new blood vessels were visible and they were present earlier when SF was present. The results show that incorporation of SF enhances the mechanical properties of the materials and results in promising biocompatible conduits for tubulization strategies.
Collapse
Affiliation(s)
- Fernando Gisbert Roca
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain
| | - Paloma Lozano Picazo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- CIBER-BBN, Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Spain; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Gustavo Victor Guinea Tortuero
- CIBER-BBN, Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Spain; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain; CIBER-BBN, Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, 46022 Valencia, Spain; Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón 12071, Spain..
| |
Collapse
|
29
|
Pan D, Mackinnon SE, Wood MD. Advances in the repair of segmental nerve injuries and trends in reconstruction. Muscle Nerve 2020; 61:726-739. [PMID: 31883129 DOI: 10.1002/mus.26797] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Despite advances in surgery, the reconstruction of segmental nerve injuries continues to pose challenges. In this review, current neurobiology regarding regeneration across a nerve defect is discussed in detail. Recent findings include the complex roles of nonneuronal cells in nerve defect regeneration, such as the role of the innate immune system in angiogenesis and how Schwann cells migrate within the defect. Clinically, the repair of nerve defects is still best served by using nerve autografts with the exception of small, noncritical sensory nerve defects, which can be repaired using autograft alternatives, such as processed or acellular nerve allografts. Given current clinical limits for when alternatives can be used, advanced solutions to repair nerve defects demonstrated in animals are highlighted. These highlights include alternatives designed with novel topology and materials, delivery of drugs specifically known to accelerate axon growth, and greater attention to the role of the immune system.
Collapse
Affiliation(s)
- Deng Pan
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Susan E Mackinnon
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew D Wood
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
30
|
Amani H, Kazerooni H, Hassanpoor H, Akbarzadeh A, Pazoki-Toroudi H. Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3524-3539. [PMID: 31437011 DOI: 10.1080/21691401.2019.1639723] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nervous system is known as a crucial part of the body and derangement in this system can cause potentially lethal consequences or serious side effects. Unfortunately, the nervous system is unable to rehabilitate damaged regions following seriously debilitating disorders such as stroke, spinal cord injury and brain trauma which, in turn, lead to the reduction of quality of life for the patient. Major challenges in restoring the damaged nervous system are low regenerative capacity and the complexity of physiology system. Synthetic polymeric biomaterials with outstanding properties such as excellent biocompatibility and non-immunogenicity find a wide range of applications in biomedical fields especially neural implants and nerve tissue engineering scaffolds. Despite these advancements, tailoring polymeric biomaterials for design of a desired scaffold is fundamental issue that needs tremendous attention to promote the therapeutic benefits and minimize adverse effects. This review aims to (i) describe the nervous system and related injuries. Then, (ii) nerve tissue engineering strategies are discussed and (iii) physiochemical properties of synthetic polymeric biomaterials systematically highlighted. Moreover, tailoring synthetic polymeric biomaterials for nerve tissue engineering is reviewed.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science , Tehran , Iran
| | - Hanif Kazerooni
- Biotechnology Group, Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) , Tehran , Iran
| | - Hossein Hassanpoor
- Department of Cognitive Science, Dade Pardazi, Shenakht Mehvar, Atynegar (DSA) Institute , Tehran , Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
31
|
Li T, Sui Z, Matsuno A, Ten H, Oyama K, Ito A, Jiang H, Ren X, Javed R, Zhang L, Ao Q. Fabrication and Evaluation of a Xenogeneic Decellularized Nerve-Derived Material: Preclinical Studies of a New Strategy for Nerve Repair. Neurotherapeutics 2020; 17:356-370. [PMID: 31758411 PMCID: PMC7007487 DOI: 10.1007/s13311-019-00794-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The repair and regeneration of transected peripheral nerves is an important area of clinical research, and the adhesion of anastomosis sites to surrounding tissues is a vital factor affecting the quality of nerve recovery after nerve anastomosis. This study involves the generation of a novel nerve repair membrane derived from decellularized porcine nerves using a unique, innovative technique. The decellularized nerve matrix was verified to be effective in eliminating cellular components, and it still retained some neural extracellular matrix components and bioactive molecules (collagens, glycosaminoglycans, laminin, fibronectin, TGF-β, etc.), which were mainly determined by proteomic analysis, histochemistry, immunohistochemistry, and enzyme-linked immunosorbent assay. Cytotoxicity, intracutaneous reactivity, hemolysis, and cell affinity analyses were conducted to confirm the biosecurity of the nerve repair membrane. The in vivo functionality was assessed in a rat sciatic nerve transection model, and indices of functional nerve recovery, including the measurement of the claw-spread reflex, nerve anastomosis site adhesion, electrophysiological properties, and the number of regenerated nerve fibers, were evaluated. The results indicated that the nerve repair membrane could effectively prevent adhesion between the nerve anastomosis sites and the surrounding tissues and enhance nerve regeneration, which could be attributed to its various bioactive components. In conclusion, the novel nerve repair membrane derived from xenogeneic decellularized nerves described in this study shows great potential auxiliary clinical treatment for peripheral nerve injuries.
Collapse
Affiliation(s)
- Ting Li
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Zhigang Sui
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Akira Matsuno
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Hirotomo Ten
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo, Japan
- Department of Judo Physical Therapy, Faculty of Health, Teikyo Heisei University, Tokyo, Japan
| | - Kenichi Oyama
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Akihiro Ito
- Department of Neurosurgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Hong Jiang
- Shandong Junxiu Biotechnology Company, Limited, Yantai, China
| | - Xiaomin Ren
- Shandong Junxiu Biotechnology Company, Limited, Yantai, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.
- Institute of Regulatory Science for Medical Devices, Engineering Research Center in Biomaterials, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Hussain G, Wang J, Rasul A, Anwar H, Qasim M, Zafar S, Aziz N, Razzaq A, Hussain R, de Aguilar JLG, Sun T. Current Status of Therapeutic Approaches against Peripheral Nerve Injuries: A Detailed Story from Injury to Recovery. Int J Biol Sci 2020; 16:116-134. [PMID: 31892850 PMCID: PMC6930373 DOI: 10.7150/ijbs.35653] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/22/2019] [Indexed: 12/14/2022] Open
Abstract
Peripheral nerve injury is a complex condition with a variety of signs and symptoms such as numbness, tingling, jabbing, throbbing, burning or sharp pain. Peripheral nerves are fragile in nature and can easily get damaged due to acute compression or trauma which may lead to the sensory and motor functions deficits and even lifelong disability. After lesion, the neuronal cell body becomes disconnected from the axon's distal portion to the injury site leading to the axonal degeneration and dismantlement of neuromuscular junctions of targeted muscles. In spite of extensive research on this aspect, complete functional recovery still remains a challenge to be resolved. This review highlights detailed pathophysiological events after an injury to a peripheral nerve and the associated factors that can either hinder or promote the regenerative machinery. In addition, it throws light on the available therapeutic strategies including supporting therapies, surgical and non-surgical interventions to ameliorate the axonal regeneration, neuronal survival, and reinnervation of peripheral targets. Despite the availability of various treatment options, we are still lacking the optimal treatments for a perfect and complete functional regain. The need for the present age is to discover or design such potent compounds that would be able to execute the complete functional retrieval. In this regard, plant-derived compounds are getting more attention and several recent reports validate their remedial effects. A plethora of plants and plant-derived phytochemicals have been suggested with curative effects against a number of diseases in general and neuronal injury in particular. They can be a ray of hope for the suffering individuals.
Collapse
Affiliation(s)
- Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Jing Wang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian Province, 361021 China
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000 Pakistan
| | - Shamaila Zafar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Nimra Aziz
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Aroona Razzaq
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Rashad Hussain
- Department of Neurosurgery, Center for Translational Neuromedicine (SMD), School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY 14642, USA
| | - Jose-Luis Gonzalez de Aguilar
- Université de Strasbourg, UMR_S 1118, Strasbourg, France
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian Province, 361021 China
| |
Collapse
|
33
|
Vitamin B Complex Treatment Attenuates Local Inflammation after Peripheral Nerve Injury. Molecules 2019; 24:molecules24244615. [PMID: 31861069 PMCID: PMC6943485 DOI: 10.3390/molecules24244615] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 01/20/2023] Open
Abstract
Peripheral nerve injury (PNI) leads to a series of cellular and molecular events necessary for axon regeneration and reinnervation of target tissues, among which inflammation is crucial for the orchestration of all these processes. Macrophage activation underlies the pathogenesis of PNI and is characterized by morphological/phenotype transformation from proinflammatory (M1) to an anti-inflammatory (M2) type with different functions in the inflammatory and reparative process. The aim of this study was to evaluate influence of the vitamin B (B1, B2, B3, B5, B6, and B12) complex on the process of neuroinflammation that is in part regulated by l-type CaV1.2 calcium channels. A controlled transection of the motor branch of the femoral peripheral nerve was used as an experimental model. Animals were sacrificed after 1, 3, 7, and 14 injections of vitamin B complex. Isolated nerves were used for immunofluorescence analysis. Treatment with vitamin B complex decreased expression of proinflammatory and increased expression of anti-inflammatory cytokines, thus contributing to the resolution of neuroinflammation. In parallel, B vitamins decreased the number of M1 macrophages that expressed the CaV1.2 channel, and increased the number of M2 macrophages that expressed this channel, suggesting their role in M1/M2 transition after PNI. In conclusion, B vitamins had the potential for treatment of neuroinflammation and neuroregeneration and thereby might be an effective therapy for PNI in humans.
Collapse
|
34
|
Wu S, Kuss M, Qi D, Hong J, Wang HJ, Zhang W, Chen S, Ni S, Duan B. Development of Cryogel-Based Guidance Conduit for Peripheral Nerve Regeneration. ACS APPLIED BIO MATERIALS 2019; 2:4864-4871. [DOI: 10.1021/acsabm.9b00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing; Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao 266071, China
| | | | | | | | | | | | - Shaojuan Chen
- College of Textiles & Clothing; Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao 266071, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan 250100, China
| | - Bin Duan
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
35
|
Luzhansky ID, Sudlow LC, Brogan DM, Wood MD, Berezin MY. Imaging in the repair of peripheral nerve injury. Nanomedicine (Lond) 2019; 14:2659-2677. [PMID: 31612779 PMCID: PMC6886568 DOI: 10.2217/nnm-2019-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Surgical intervention followed by physical therapy remains the major way to repair damaged nerves and restore function. Imaging constitutes promising, yet underutilized, approaches to improve surgical and postoperative techniques. Dedicated methods for imaging nerve regeneration will potentially provide surgical guidance, enable recovery monitoring and postrepair intervention, elucidate failure mechanisms and optimize preclinical procedures. Herein, we present an outline of promising innovations in imaging-based tracking of in vivo peripheral nerve regeneration. We emphasize optical imaging because of its cost, versatility, relatively low toxicity and sensitivity. We discuss the use of targeted probes and contrast agents (small molecules and nanoparticles) to facilitate nerve regeneration imaging and the engineering of grafts that could be used to track nerve repair. We also discuss how new imaging methods might overcome the most significant challenges in nerve injury treatment.
Collapse
Affiliation(s)
- Igor D Luzhansky
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Brogan
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew D Wood
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
36
|
Moharrami Kasmaie F, Jahromi Z, Gazor R, Zaminy A. Comparison of melatonin and curcumin effect at the light and dark periods on regeneration of sciatic nerve crush injury in rats. EXCLI JOURNAL 2019; 18:653-665. [PMID: 31611748 PMCID: PMC6785766 DOI: 10.17179/excli2019-1369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/14/2019] [Indexed: 01/29/2023]
Abstract
Being one of the acute clinical problems, peripheral nerve injury can bring about a number of consequences including severe disability, reduced Quality of life (QOL) and immense costs. Currently, melatonin and curcumin are widely applied because of their immunomodulatory, anti-inflammatory, neuro-protective and antioxidant properties. The present study aims to compare the effects of melatonin and curcumin during light and dark periods on sciatic nerve crush injury repair. Accordingly, rats received IP injections of curcumin (100 mg/kg) and melatonin (10 mg/kg) over two periods of light (9:00 a.m.) and dark (9:00 p.m.) for 4 weeks. In order to evaluate rats, functional (walking track analysis and electrophysiological measurements), histomorphometric and gastrocnemius muscle mass investigations were administered. No statistically significant difference was identified between dark and light curcumin groups while curcumin groups displayed better results than did melatonin groups. In addition, dark melatonin group displayed better results than the light melatonin. On the whole, this study found that melatonin and curcumin can be used to quicken neural recovery and help treat nerve injury. It was also found that better neuroregeneration or nerve regeneration was induced when rats were treated by melatonin during the dark period while effects and injection time did not correlate in curcumin application.
Collapse
Affiliation(s)
| | - Zohreh Jahromi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Rouhollah Gazor
- Department of Anatomical Sciences, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Zaminy
- Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
37
|
Da Silva K, Kumar P, Choonara YE, du Toit LC, Pillay V. Preprocessing of Medical Image Data for Three-Dimensional Bioprinted Customized-Neural-Scaffolds. Tissue Eng Part C Methods 2019; 25:401-410. [PMID: 31144597 DOI: 10.1089/ten.tec.2019.0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT Nerve damage, which can be devastating, triggers several biological cascades, which result in the insufficiencies of the human nervous system to provide complete nerve repair and regain of function. Since no therapeutic strategy exists to provide immediate attention and intervention to patients with newly acquired nerve damage, we propose a strategy in which accelerated medical image processing through graphical processing unit implementation and three-dimensional printing are combined to produce a time-efficient, patient-specific (custom-neural-scaffold) solution to nerve damage. This work aims to beneficially shorten the time required for medical decision-making so that improved patient outcomes are achieved.
Collapse
Affiliation(s)
- Kate Da Silva
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Parktown, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Parktown, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Parktown, South Africa
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Parktown, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Parktown, South Africa
| |
Collapse
|
38
|
Cohen E, Merzendorfer H. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. EXTRACELLULAR SUGAR-BASED BIOPOLYMERS MATRICES 2019; 12. [PMCID: PMC7115017 DOI: 10.1007/978-3-030-12919-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply and cost-effectively extracted from waste material of fish industry, mainly crab and shrimp shells. Research over the past five decades has revealed that chitosan, in particular, possesses unique and useful characteristics such as chemical versatility, polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity, antimicrobial and antioxidative properties, low toxicity, and biocompatibility and biodegradability features. A plethora of chemical chitosan derivatives have been synthesized yielding improved materials with suggested or effective applications in water treatment, biosensor engineering, agriculture, food processing and storage, textile additives, cosmetics fabrication, and in veterinary and human medicine. The number of studies in this research field has exploded particularly during the last two decades. Here, we review recent advances in utilizing chitosan and chitosan derivatives in different technical, agricultural, and biomedical fields.
Collapse
Affiliation(s)
- Ephraim Cohen
- Department of Entomology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hans Merzendorfer
- School of Science and Technology, Institute of Biology – Molecular Biology, University of Siegen, Siegen, Germany
| |
Collapse
|
39
|
Pillutla P, Nix E, Elberson BW, Nagy L. Complete Femoral Nerve Transection with Sural Nerve Cable Graft in a 21-Month-Old Child. J Neurosci Rural Pract 2019; 10:139-141. [PMID: 30765990 PMCID: PMC6337968 DOI: 10.4103/jnrp.jnrp_235_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Severe peripheral nerve injury occasionally requires urgent nerve grafting especially with significant separation of the proximal and distal ends of the injured nerve. Proper reinnervation to provide continued sensory and motor function is essential especially in the pediatric population. These patients would suffer lifelong disability without correction, yet have significantly improved regenerative capacity with prompt and effective management, making nerve grafts an ideal choice for complete nerve transection. This case report describes the successful sural nerve cable graft reinnervation of a transected femoral nerve in a 21-month-old male. This procedure was made difficult by severe trauma to the surrounding area with laceration of the femoral artery, significant separation of the femoral nerve ends, and the compact anatomy of such a young patient.
Collapse
Affiliation(s)
- Pranati Pillutla
- Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA
| | - Evan Nix
- Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA
| | | | - Laszlo Nagy
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
40
|
Kou YH, Jiang BG, Yu F, Yu YL, Niu SP, Zhang PX, Yin XF, Han N, Zhang YJ, Zhang DY. Repair of long segmental ulnar nerve defects in rats by several different kinds of nerve transposition. Neural Regen Res 2019; 14:692-698. [PMID: 30632510 PMCID: PMC6352591 DOI: 10.4103/1673-5374.247473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multiple regeneration of axonal buds has been shown to exist during the repair of peripheral nerve injury, which confirms a certain repair potential of the injured peripheral nerve. Therefore, a systematic nerve transposition repair technique has been proposed to treat severe peripheral nerve injury. During nerve transposition repair, the regenerated nerve fibers of motor neurons in the anterior horn of the spinal cord can effectively grow into the repaired distal nerve and target muscle tissues, which is conducive to the recovery of motor function. The aim of this study was to explore regeneration and nerve functional recovery after repairing a long-segment peripheral nerve defect by transposition of different donor nerves. A long-segment (2 mm) ulnar nerve defect in Sprague-Dawley rats was repaired by transposition of the musculocutaneous nerve, medial pectoral nerve, muscular branches of the radial nerve and anterior interosseous nerve (pronator quadratus muscle branch). In situ repair of the ulnar nerve was considered as a control. Three months later, wrist flexion function, nerve regeneration and innervation muscle recovery in rats were assessed using neuroelectrophysiological testing, osmic acid staining and hematoxylin-eosin staining, respectively. Our findings indicate that repair of a long-segment ulnar nerve defect with different donor nerve transpositions can reinnervate axonal function of motor neurons in the anterior horn of spinal cord and restore the function of affected limbs to a certain extent.
Collapse
|
41
|
Kou YH, Yu YL, Zhang YJ, Han N, Yin XF, Yuan YS, Yu F, Zhang DY, Zhang PX, Jiang BG. Repair of peripheral nerve defects by nerve transposition using small gap bio-sleeve suture with different inner diameters at both ends. Neural Regen Res 2019; 14:706-712. [PMID: 30632512 PMCID: PMC6352590 DOI: 10.4103/1673-5374.247475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During peripheral nerve transposition repair, if the diameter difference between transposed nerves is large or multiple distal nerves must be repaired at the same time, traditional epineurial neurorrhaphy has the problem of high tension at the suture site, which may even lead to the failure of nerve suture. We investigated whether a small gap bio-sleeve suture with different inner diameters at both ends can be used to repair a 2-mm tibial nerve defect by proximal transposition of the common peroneal nerve in rats and compared the results with the repair seen after epineurial neurorrhaphy. Three months after surgery, neurological function, nerve regeneration, and recovery of nerve innervation muscle were assessed using the tibial nerve function index, neuroelectrophysiological testing, muscle biomechanics and wet weight measurement, osmic acid staining, and hematoxylin-eosin staining. There was no obvious inflammatory reaction and neuroma formation in the tibial nerve after repair by the small gap bio-sleeve suture with different inner diameters at both ends. The conduction velocity, muscle strength, wet muscle weight, cross-sectional area of muscle fibers, and the number of new myelinated nerve fibers in the bio-sleeve suture group were similar to those in the epineurial neurorrhaphy group. Our findings indicate that small gap bio-sleeve suture with different inner diameters at both ends can achieve surgical suture between nerves of different diameters and promote regeneration and functional recovery of injured peripheral nerves.
Collapse
Affiliation(s)
- Yu-Hui Kou
- Peking University People's Hospital, Beijing, China
| | - You-Lai Yu
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ya-Jun Zhang
- Peking University People's Hospital, Beijing, China
| | - Na Han
- Peking University People's Hospital, Beijing, China
| | | | - Yu-Song Yuan
- Peking University People's Hospital, Beijing, China
| | - Fei Yu
- Peking University People's Hospital, Beijing, China
| | | | | | | |
Collapse
|
42
|
Han GH, Peng J, Liu P, Ding X, Wei S, Lu S, Wang Y. Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation. Neural Regen Res 2019; 14:1343-1351. [PMID: 30964052 PMCID: PMC6524503 DOI: 10.4103/1673-5374.253511] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve scaffolds promotes the repair of injured peripheral nerves. Autologous Schwann cell transplantation in humans has been reported recently. This article reviews current methods for removing the extracellular matrix and analyzes its composition and function. The development and secretory products of Schwann cells are also reviewed. The methods for the repair of peripheral nerve injuries that use myelin and Schwann cell transplantation are assessed. This survey of the literature data shows that using a decellularized nerve conduit combined with Schwann cells represents an effective strategy for the treatment of peripheral nerve injury. This analysis provides a comprehensive basis on which to make clinical decisions for the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Gong-Hai Han
- Kunming Medical University, Kunming, Yunnan Province; Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ping Liu
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Xiao Ding
- Shihezi University Medical College, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Shuai Wei
- Shihezi University Medical College, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Sheng Lu
- 920th Hospital of Joint Service Support Force, Kunming, Yunnan Province, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
43
|
Conduit-based Nerve Repairs Provide Greater Resistance to Tension Compared with Primary Repairs: A Biomechanical Analysis on Large Animal Samples. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2018; 6:e1981. [PMID: 30656099 PMCID: PMC6326599 DOI: 10.1097/gox.0000000000001981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/24/2018] [Indexed: 11/29/2022]
Abstract
Background: When primary repair of transected peripheral nerves is not possible due to large gaps, nerve grafts or repair using conduits are other options to bridge the gap such that the nerve is repaired without tension. When nerve gaps are repaired primarily, there is a worry about tension, failure, and poor healing. In this biomechanical study comparing nerves repaired primarily versus those repaired with conduits, we hypothesized that conduit repair provided greater mechanical breaking strength. Methods: We dissected fresh cadaveric sheep hooves and transacted their peripheral nerves. Subsequently, we divided these transacted nerves into 2 groups: primary repair versus repair using a nerve conduit. After repair using a standardized technique, we tensioned each of these repairs via a load tester and recorded the force required till repair failure occurred. Results: Six nerves using primary nerve repair and 6 nerves repaired with a nerve conduit (10 mm length × 2.5 mm diameter) were studied. The average breaking strength of the nerves repaired with the nerve conduit was 0.92 N and that using the primary nerve repair technique was 0.46 N (P = 0.001). All the nerves repaired using nerve conduit repair had an additional 5 mm added to their total length as compared with the nerves in the other group. Conclusions: Nerve repair using a nerve conduit ensures a higher breaking strength and potentially a greater tension-free repair as compared with primary nerve repairs in a sheep model. This study supports the use of conduits in the bridging of nerve gaps.
Collapse
|
44
|
Belanger K, Schlatter G, Hébraud A, Marin F, Testelin S, Dakpé S, Devauchelle B, Egles C. A multi-layered nerve guidance conduit design adapted to facilitate surgical implantation. Health Sci Rep 2018; 1:e86. [PMID: 30623049 PMCID: PMC6295612 DOI: 10.1002/hsr2.86] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND AIMS The gold standard procedure after a severe nerve injury is the nerve autograft, yet this technique has drawbacks. In recent years, progress has been made in the development of artificial nerve guides to replace the autograft, but no device has been able to demonstrate superiority. The present study introduces an adaptable foundation design for peripheral nerve regeneration. METHODS Silk fibroin was electrospun, creating a tri-layered material with aligned fiber surfaces and a randomly deposited fiber interior. This material was rolled into a micro-channeled conduit, which was then enveloped by a jacket layer of the same tri-layered material. RESULTS The proposed implant design succeeds in incorporating various desirable aspects of synthetic nerve guides, while facilitating the surgical implantation process for medical application. The aligned fiber surfaces of the conduit support axon guidance, while the tri-layered architecture improves its structural integrity compared with a fully aligned fiber material. Moreover, the jacket layer creates a small niche on each end which facilitates surgical implantation. An in vivo study in rats showed that nerve regeneration using this device was comparable to results after direct suture. CONCLUSION This proof-of-principle study, therefore, advances the development of tissue engineered nerve grafts by creating an optimized guidance conduit design capable of successful nerve regeneration.
Collapse
Affiliation(s)
- Kayla Belanger
- UMR 7338, Biomécanique et Bioingénierie, Centre de recherches de RoyallieuSorbonne Universités, Université de Technologie de Compiègne, CNRSCompiègne cedexFrance
| | - Guy Schlatter
- ICPEES Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515, CNRSUniversité de StrasbourgStrasbourg cedexFrance
| | - Anne Hébraud
- ICPEES Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515, CNRSUniversité de StrasbourgStrasbourg cedexFrance
| | - Frédéric Marin
- UMR 7338, Biomécanique et Bioingénierie, Centre de recherches de RoyallieuSorbonne Universités, Université de Technologie de Compiègne, CNRSCompiègne cedexFrance
| | - Sylvie Testelin
- Facing Faces Institute, Amiens University Hospital CenterAmiens Cedex 1France
| | - Stéphanie Dakpé
- Facing Faces Institute, Amiens University Hospital CenterAmiens Cedex 1France
| | - Bernard Devauchelle
- Facing Faces Institute, Amiens University Hospital CenterAmiens Cedex 1France
| | - Christophe Egles
- UMR 7338, Biomécanique et Bioingénierie, Centre de recherches de RoyallieuSorbonne Universités, Université de Technologie de Compiègne, CNRSCompiègne cedexFrance
- Tufts University, School of Dental MedicineBostonMAUSA
| |
Collapse
|
45
|
Lin T, Liu S, Chen S, Qiu S, Rao Z, Liu J, Zhu S, Yan L, Mao H, Zhu Q, Quan D, Liu X. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Acta Biomater 2018; 73:326-338. [PMID: 29649641 DOI: 10.1016/j.actbio.2018.04.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022]
Abstract
Decellularized matrix hydrogels derived from tissues or organs have been used for tissue repair due to their biocompatibility, tunability, and tissue-specific extracellular matrix (ECM) components. However, the preparation of decellularized peripheral nerve matrix hydrogels and their use to repair nerve defects have not been reported. Here, we developed a hydrogel from porcine decellularized nerve matrix (pDNM-G), which was confirmed to have minimal DNA content and retain collagen and glycosaminoglycans content, thereby allowing gelatinization. The pDNM-G exhibited a nanofibrous structure similar to that of natural ECM, and a ∼280-Pa storage modulus at 10 mg/mL similar to that of native neural tissues. Western blot and liquid chromatography tandem mass spectrometry analysis revealed that the pDNM-G consisted mostly of ECM proteins and contained primary ECM-related proteins, including fibronectin and collagen I and IV). In vitro experiments showed that pDNM-G supported Schwann cell proliferation and preserved cell morphology. Additionally, in a 15-mm rat sciatic nerve defect model, pDNM-G was combined with electrospun poly(lactic-acid)-co-poly(trimethylene-carbonate)conduits to bridge the defect, which did not elicit an adverse immune response and promoted the activation of M2 macrophages associated with a constructive remodeling response. Morphological analyses and electrophysiological and functional examinations revealed that the regenerative outcomes achieved by pDNM-G were superior to those by empty conduits and closed to those using rat decellularized nerve matrix allograft scaffolds. These findings indicated that pDNM-G, with its preserved ECM composition and nanofibrous structure, represents a promising biomaterial for peripheral nerve regeneration. STATEMENT OF SIGNIFICANCE Decellularized nerve allografts have been widely used to treat peripheral nerve injury. However, given their limited availability and lack of bioactive factors, efforts have been made to improve the efficacy of decellularized nerve allograft for nerve regeneration, with limited success. Xenogeneic decellularized tissue matrices or hydrogels have been widely used for surgical applications owing to their ease of harvesting and low immunogenicity. Moreover, decellularized tissue matrix hydrogels show good biocompatibility and are highly tunable. In this study, we prepared a porcine decellularized nerve matrix (pDNM-G) and evaluated its potential for promoting nerve regeneration. Our results demonstrate that pDNM-G can support Schwann cell proliferation and peripheral nerve regeneration by means of residual primary extracellular matrix components and nano-fibrous structure features.
Collapse
Affiliation(s)
- Tao Lin
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Sheng Liu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Shihao Chen
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Shuai Qiu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Zilong Rao
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Jianghui Liu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Shuang Zhu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Liwei Yan
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China
| | - Haiquan Mao
- Institute for NanoBioTechnology, and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, USA
| | - Qingtang Zhu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China.
| | - Daping Quan
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China.
| | - Xiaolin Liu
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue-engineering and Technology Research Center, Guangdong Provincial Functional Biomaterials Engineering Technology Research Center, Guangzhou, China.
| |
Collapse
|
46
|
Alvites R, Rita Caseiro A, Santos Pedrosa S, Vieira Branquinho M, Ronchi G, Geuna S, Varejão AS, Colette Maurício A. Peripheral nerve injury and axonotmesis: State of the art and recent advances. COGENT MEDICINE 2018. [DOI: 10.1080/2331205x.2018.1466404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto (REQUIMTE/LAQV), R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sílvia Santos Pedrosa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Mariana Vieira Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Giulia Ronchi
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Stefano Geuna
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Artur S.P. Varejão
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Orbassano, Turin, Italy
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
47
|
Bridging the Gap: Engineered Porcine-derived Urinary Bladder Matrix Conduits as a Novel Scaffold for Peripheral Nerve Regeneration. Ann Plast Surg 2018; 78:S328-S334. [PMID: 28328634 DOI: 10.1097/sap.0000000000001042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE This study aims to compare engineered nerve conduits constructed from porcine-derived urinary bladder matrix (UBM) with the criterion-standard nerve autografts, for segmental loss peripheral nerve repairs. METHODS Forty-eight Sprague-Dawley rats were divided into 2 groups. All underwent a 10-mm sciatic nerve gap injury. This was repaired using either (1) reverse autograft-the 10-mm cut segment was oriented 180 degrees and used to coapt the proximal and distal stumps or (2) UBM conduit-the 10-mm nerve gap was bridged with UBM conduit. Behavior assessments such as sciatic function index and foot fault asymmetry scores were performed weekly. At 3- or 6-week time endpoints, the repaired nerves and bilateral gastrocnemius/soleus muscles were harvested from each animal. Nerves were evaluated using immunohistochemistry for motor and sensory axon staining and with diffusion tensor imaging. The net wet muscle weights were calculated to assess the degree of muscle atrophy. RESULTS The UBM group demonstrated significantly improved foot fault asymmetry scores at 2 and 4 weeks, whereas there was no difference in sciatic function index. The net muscle weights were similar between both groups. Motor axon counts proximal/inside/distal to the conduit/graft were similar between UBM conduits and reverse autografts, whereas sensory axon counts within and distal to the conduit were significantly higher than those of the autograft at 6 weeks. Sensory axonal regeneration seemed to be adherent to the inner surface of the UBM conduit, whereas it had a scattered appearance in autografts. Diffusion tensor imaging parameters between groups were similar. CONCLUSIONS Urinary bladder matrix conduits prove to be at least similar to nerve autografts for the repair of peripheral nerve injuries with a short gap. The matrix perhaps serves as a scaffold to augment sensory nerve growth. CLINICAL RELEVANCE In a clinical setting, UBM may eliminate the donor site morbidity and increased operative time associated with nerve autografting.
Collapse
|
48
|
Lee S, Esworthy T, Stake S, Miao S, Zuo YY, Harris BT, Zhang LG. Advances in 3D Bioprinting for Neural Tissue Engineering. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700213] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Se‐Jun Lee
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
| | - Seth Stake
- Department of Medicine George Washington University Washington DC 20052 USA
| | - Shida Miao
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
| | - Yi Y. Zuo
- Department of Mechanical Engineering University of Hawaii at Manoa Honolulu HI 96822 USA
| | - Brent T. Harris
- Department of Neurology and Pathology Georgetown University Washington DC 20007 USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering George Washington University Washington DC 20052 USA
- Department of Medicine George Washington University Washington DC 20052 USA
- Department of Biomedical Engineering George Washington University Washington DC 20052 USA
| |
Collapse
|
49
|
Nasiri M, Babaie J, Amiri S, Azimi E, Shamshiri S, Khalaj V, Golkar M, Fard-Esfahani P. SHuffle™ T7 strain is capable of producing high amount of recombinant human fibroblast growth factor-1 (rhFGF-1) with proper physicochemical and biological properties. J Biotechnol 2017; 259:30-38. [PMID: 28827102 DOI: 10.1016/j.jbiotec.2017.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/14/2017] [Accepted: 08/11/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Human fibroblast growth factor-1 (FGF-1) has powerful mitogenic activities in a variety of cell types and plays significant roles in many physiological processes e.g. angiogenesis and wound healing. There is increasing demand for large scale production of recombinant human FGF-1 (rhFGF-1), in order to investigate the potential medical use. In the present study, we explored SHuffle™ T7 strain for production of rhFGF-1. METHODS A synthetic gene encoding Met-140 amino acid form of human FGF-1 was utilized for expression of the protein in three different E. coli hosts (BL21 (DE3), Rosetta-gami™ 2(DE3), SHuffle™ T7). Total expressions and soluble/insoluble expression ratios of rhFGF-1 in different hosts were analyzed and compared. Soluble rhFGF-1 produced in SHuffle™ T7 cells was purified using one-step heparin-Sepharose affinity chromatography and characterized by a variety of methods for physicochemical and biological properties. RESULTS The highest level of rhFGF-1 expression and maximum soluble/insoluble ratio were achieved in SHuffle™ T7 strain. Using a single-step heparin-Sepharose chromatography, about 1500mg of purified rhFGF-1 was obtained from one liter of the culture, representing purification yield of ∼70%. The purified protein was reactive toward anti-FGF-1 ployclonal antibody in immunoblotting. Mass spectrometry confirmed the protein had expected amino acid sequence and molecular weight. In reverse-phase high-performance liquid chromatography (RP-HPLC), the protein displayed the same retention time with the human FGF-1 standard, and purity of 94%. Less than 0.3% of the purified protein was comprised of oligomers and/or aggregates as judged by high-performance size-exclusion chromatography (HP-SEC). Secondary and tertiary structures of the protein, investigated by circular dichroism and intrinsic fluorescence spectroscopy methods, respectively, represented native folding of the protein. The purified rhFGF-1 was bioactive and stimulated proliferation of NIH 3T3 cells with EC50 of 0.84ng/mL. CONCLUSION Although SHuffle™ T7 has been introduced for production of disulfide-bonded proteins in cytoplasm, we herein successfully recruited it for high yield production of soluble and bioactive rhFGF-1, a protein with 3 free cysteine and no disulfide bond. To our knowledge, this is the highest-level of rhFGF-1 expression in E. coli reported so far. Extensive physicochemical and biological analysis showed the protein had similar characteristic to authentic FGF-1.
Collapse
Affiliation(s)
- Marzieh Nasiri
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran; Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| | - Jalal Babaie
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | - Samira Amiri
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | - Ebrahim Azimi
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | - Shiva Shamshiri
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | - Vahid Khalaj
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran.
| | - Majid Golkar
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
50
|
Open surgical implantation of a viable cryopreserved placental membrane after decompression and neurolysis of common peroneal nerve: a case series. J Orthop Surg Res 2017; 12:88. [PMID: 28606158 PMCID: PMC5469139 DOI: 10.1186/s13018-017-0587-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/19/2017] [Indexed: 01/17/2023] Open
Abstract
Background The purpose of this study is to report on the rehabilitative outcomes associated with common peroneal nerve (CPN) decompression and neurolysis revision when performed with open surgical implantation of a viable cryopreserved placental membrane (vCPM). Methods Seven patients who underwent secondary CPN decompression and neurolysis with open surgical implantation of a viable cryopreserved placental membrane (vCPM) after previously failed surgery without vCPM utilization were identified through a retrospective medical record review and outcomes were analyzed. Primary mechanism of injury, severity of symptoms at time of referral, pre-operative and post-operative evaluations on edema with ultrasound, Medical Research Council (MRC) scale for motor strength, range of motion, nerve conduction velocity (NCV), and electromyography (EMG) were analyzed. Results Five patients (71.4%) achieved full recovery of motor function MRC grade 5/5, and the remaining two patients achieved MRC grade 4/5. At the 7-month follow-up visit, NCV tests indicated improved conduction velocity and normal amplitude for all 7 patients, and all patients demonstrated proper gait pattern with a return to normal activities of daily living. There were no vCPM-related adverse events. Conclusions The use of vCPM wrap as an adjunct to surgical repairs of CPN injuries may contribute to positive clinical outcomes.
Collapse
|