1
|
Kadhim IH, Oluremi AS, Chhetri BP, Ghosh A, Ali N. Encapsulation of Inositol Hexakisphosphate with Chitosan via Gelation to Facilitate Cellular Delivery and Programmed Cell Death in Human Breast Cancer Cells. Bioengineering (Basel) 2024; 11:931. [PMID: 39329673 PMCID: PMC11429465 DOI: 10.3390/bioengineering11090931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Inositol hexakisphosphate (InsP6) is the most abundant inositol polyphosphate both in plant and animal cells. Exogenous InsP6 is known to inhibit cell proliferation and induce apoptosis in cancerous cells. However, cellular entry of exogenous InsP6 is hindered due to the presence of highly negative charge on this molecule. Therefore, to enhance the cellular delivery of InsP6 in cancerous cells, InsP6 was encapsulated by chitosan (CS), a natural polysaccharide, via the ionic gelation method. Our hypothesis is that encapsulated InsP6 will enter the cell more efficiently to trigger its apoptotic effects. The incorporation of InsP6 into CS was optimized by varying the ratios of the two and confirmed by InsP6 analysis via polyacrylamide gel electrophoresis (PAGE) and atomic absorption spectrophotometry (AAS). The complex was further characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) for physicochemical changes. The data indicated morphological changes and changes in the spectral properties of the complex upon encapsulation. The encapsulated InsP6 enters human breast cancer MCF-7 cells more efficiently than free InsP6 and triggers apoptosis via a mechanism involving the production of reactive oxygen species (ROS). This work has potential for developing cancer therapeutic applications utilizing natural compounds that are likely to overcome the severe toxic effects associated with synthetic chemotherapeutic drugs.
Collapse
Affiliation(s)
- Ilham H Kadhim
- Department of Biology, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Adeolu S Oluremi
- Department of Biology, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Bijay P Chhetri
- Department of Chemistry, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Anindya Ghosh
- Department of Chemistry, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Nawab Ali
- Department of Biology, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| |
Collapse
|
2
|
Razavi SA, Kalari M, Haghzad T, Haddadi F, Nasiri S, Hedayati M. Exploring the potential of myo-inositol in thyroid disease management: focus on thyroid cancer diagnosis and therapy. Front Endocrinol (Lausanne) 2024; 15:1418956. [PMID: 39329107 PMCID: PMC11424451 DOI: 10.3389/fendo.2024.1418956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/28/2024] Open
Abstract
Thyroid cancer (TC) is a malignancy that is increasing in prevalence on a global scale, necessitating the development of innovative approaches for both diagnosis and treatment. Myo-inositol (MI) plays a crucial role in a wide range of physiological and pathological functions within human cells. To date, studies have investigated the function of MI in thyroid physiology as well as its potential therapeutic benefits for hypothyroidism and autoimmune thyroiditis. However, research in the field of TC is very restricted. Metabolomics studies have highlighted the promising diagnostic capabilities of MI, recognizing it as a metabolic biomarker for identifying thyroid tumors. Furthermore, MI can influence therapeutic characteristics by modulating key cellular pathways involved in TC. This review evaluates the potential application of MI as a naturally occurring compound in the management of thyroid diseases, including hypothyroidism, autoimmune thyroiditis, and especially TC. The limited number of studies conducted in the field of TC emphasizes the critical need for future research to comprehend the multifaceted role of MI in TC. A significant amount of research and clinical trials is necessary to understand the role of MI in the pathology of TC, its diagnostic and therapeutic potential, and to pave the way for personalized medicine strategies in managing this intricate disease.
Collapse
Affiliation(s)
- S. Adeleh Razavi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Kalari
- Department of Biochemistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Tahereh Haghzad
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Fatemeh Haddadi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Shirzad Nasiri
- Department of Surgery, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
L'Abbate S, Nicolini G, Forini F, Lepore E, Marchetti S, Unfer V, Forte G, Kusmic C. Oral supplementation of inositols effectively recovered lithium-induced cardiac dysfunctions in mice. Biomed Pharmacother 2024; 178:117287. [PMID: 39137652 DOI: 10.1016/j.biopha.2024.117287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
This study investigates the effects of inositol (INO) supplementation on cardiac changes caused by Li in mice. The study involved 4 groups of C57BL6 mice (n=10 each): (i) mice orally administered with Li2CO3 for 8 weeks, then 4 additional weeks without (Li_group) or (ii) with INO supplementation (Li_INOdelayed_group) (total of 12 weeks); (iii) mice given Li2CO3 and INO supplementation concurrently for 12 weeks (Li+INO_group); (iv) one group left untreated (C-group). The INO was administered as a mixture of myo-inositol and d-chiro-inositol (80:1) in drinking water. The mice were characterised for heart morphology, function, electrical activity, arrhythmogenic susceptibility, and multiorgan histopathology (heart, liver and kidney). Cardiomyocyte size, protein expression of key signalling pathways related to hypertrophy, and transcription levels of ion channel subunits and hypertrophy markers were evaluated in the ventricle tissue. The study found that INO supplementation reduced the Li-induced cardiac adverse effects, including systolic impairment and increased susceptibility to arrhythmias. The positive effect on arrhythmias might be attributed to the restored expression levels of the potassium channel subunit Kv 1.5. Additionally, INO improved cardiomyocyte hypertrophy, possibly by inhibiting the Li-induced activation of the ERK1/2 signalling pathway and by restoring the normal expression level of BNP, and alleviated injury in the liver and kidney. The effect was preventive if INO supplementation was taken concurrently with Li and therapeutic if INO was administered after Li-induced cardiac impairments were established. These results provide new insights into the cardioprotective effect of INO and suggest a potential treatment approach for Li-induced cardiac disease.
Collapse
Affiliation(s)
- Serena L'Abbate
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Giuseppina Nicolini
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Francesca Forini
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | | | - Sabrina Marchetti
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Virginia Unfer
- A.G.Un.Co. Obstetrics and Gynaecology Center, Rome 00155, Italy; The Experts Group on Inositol in Basic and Clinical Research (EGOI), Rome 00161, Italy
| | | | - Claudia Kusmic
- Istituto di Fisiologia Clinica - Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy.
| |
Collapse
|
4
|
Sharma A, Debik J, Naume B, Ohnstad HO, Bathen TF, Giskeødegård GF. Comprehensive multi-omics analysis of breast cancer reveals distinct long-term prognostic subtypes. Oncogenesis 2024; 13:22. [PMID: 38871719 DOI: 10.1038/s41389-024-00521-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related death worldwide. The diverse nature and heterogeneous biology of BC pose challenges for survival prediction, as patients with similar diagnoses often respond differently to treatment. Clinically relevant BC intrinsic subtypes have been established through gene expression profiling and are implemented in the clinic. While these intrinsic subtypes show a significant association with clinical outcomes, their long-term survival prediction beyond 5 years often deviates from expected clinical outcomes. This study aimed to identify naturally occurring long-term prognostic subgroups of BC based on an integrated multi-omics analysis. This study incorporates a clinical cohort of 335 untreated BC patients from the Oslo2 study with long-term follow-up (>12 years). Multi-Omics Factor Analysis (MOFA+) was employed to integrate transcriptomic, proteomic, and metabolomic data obtained from the tumor tissues. Our analysis revealed three prominent multi-omics clusters of BC patients with significantly different long-term prognoses (p = 0.005). The multi-omics clusters were validated in two independent large cohorts, METABRIC and TCGA. Importantly, a lack of prognostic association to long-term follow-up above 12 years in the previously established intrinsic subtypes was shown for these cohorts. Through a systems-biology approach, we identified varying enrichment levels of cell-cycle and immune-related pathways among the prognostic clusters. Integrated multi-omics analysis of BC revealed three distinct clusters with unique clinical and biological characteristics. Notably, these multi-omics clusters displayed robust associations with long-term survival, outperforming the established intrinsic subtypes.
Collapse
Affiliation(s)
- Abhibhav Sharma
- Department of Public Health and Nursing (ISM), Norwegian University of Science and Technology- NTNU, Trondheim, Norway.
| | - Julia Debik
- Department of Public Health and Nursing (ISM), Norwegian University of Science and Technology- NTNU, Trondheim, Norway
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | - Bjørn Naume
- Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hege Oma Ohnstad
- Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | - Guro F Giskeødegård
- Department of Public Health and Nursing (ISM), Norwegian University of Science and Technology- NTNU, Trondheim, Norway.
| |
Collapse
|
5
|
Arrieche D, Olea AF, Jara-Gutiérrez C, Villena J, Pardo-Baeza J, García-Davis S, Viteri R, Taborga L, Carrasco H. Ethanolic Extract from Fruits of Pintoa chilensis, a Chilean Extremophile Plant. Assessment of Antioxidant Activity and In Vitro Cytotoxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:1409. [PMID: 38794478 PMCID: PMC11125100 DOI: 10.3390/plants13101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Pintoa chilensis is a shrub with yellow flowers that reach up to two meters high, endemic of the Atacama Region in Chile. This species grows under special environmental conditions such as low altitude, arid areas, and directly sun-exposed habitats. In the present study, ethanolic extract was obtained from fruits of P. chilensis, and then partitioned in solvents of increasing polarity to obtain five fractions: hexane (HF), dichloromethane (DF), ethyl acetate (AF), and the residual water fraction (QF). The antioxidant activity of extracts was evaluated by using the DPPH, ABTS, and FRAP methods. The results show that the antioxidant capacity of P. chilensis is higher than that reported for other plants growing in similar environments. This effect is attributed to the highest content of flavonoids and total phenols found in P. chilensis. On the other hand, the cell viability of a breast cancer cell line (MCF-7) and a non-tumor cell line (MCF-10A) was assessed in the presence of different extract fractions. The results indicate that the hexane fraction (HF) exhibits the highest cytotoxicity on both cell lines (IC50 values equal to 35 and 45 µg/mL), whereas the dichloromethane fraction (DF) is the most selective one. The GC-MS analysis of the dichloromethane fraction (DF) shows the presence of fatty acids, sugars, and polyols as major components.
Collapse
Affiliation(s)
- Dioni Arrieche
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Andrés F. Olea
- Grupo QBAB, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, San Miguel, Santiago 8900000, Chile;
| | - Carlos Jara-Gutiérrez
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2362905, Chile; (C.J.-G.); (J.V.)
| | - Joan Villena
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería para la Salud (MEDING), Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2362905, Chile; (C.J.-G.); (J.V.)
| | - Javier Pardo-Baeza
- Programa de Conservación de Flora Nativa del Norte de Chile, Biorestauración Consultores, Copiapó 1530000, Chile;
| | - Sara García-Davis
- Instituto Universitario de Bio—Orgánica “Antonio González” (IUBO-AG), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain;
| | - Rafael Viteri
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo, Guayaquil 092301, Ecuador;
| | - Lautaro Taborga
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile;
| | - Héctor Carrasco
- Grupo QBAB, Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, San Miguel, Santiago 8900000, Chile;
| |
Collapse
|
6
|
Hamar J, Cnaani A, Kültz D. Effects of CRISPR/Cas9 targeting of the myo-inositol biosynthesis pathway on hyper-osmotic tolerance of tilapia cells. Genomics 2024; 116:110833. [PMID: 38518899 DOI: 10.1016/j.ygeno.2024.110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Myo-inositol is an important compatible osmolyte in vertebrates. This osmolyte is produced by the myo-inositol biosynthesis (MIB) pathway composed of myo-inositol phosphate synthase and inositol monophosphatase. These enzymes are among the highest upregulated proteins in tissues and cell cultures from teleost fish exposed to hyperosmotic conditions indicating high importance of this pathway for tolerating this type of stress. CRISPR/Cas9 gene editing of tilapia cells produced knockout lines of MIB enzymes and control genes. Metabolic activity decreased significantly for MIB KO lines in hyperosmotic media. Trends of faster growth of the MIB knockout lines in isosmotic media and faster decline of MIB knockout lines in hyperosmotic media were also observed. These results indicate a decline in metabolic fitness but only moderate effects on cell survival when tilapia cells with disrupted MIB genes are exposed to hyperosmolality. Therefore MIB genes are required for full osmotolerance of tilapia cells.
Collapse
Affiliation(s)
- Jens Hamar
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Dietmar Kültz
- Department of Animal Sciences & Genome Center, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Razavi SA, Khorsand B, Salehipour P, Hedayati M. Metabolite signature of human malignant thyroid tissue: A systematic review and meta-analysis. Cancer Med 2024; 13:e7184. [PMID: 38646957 PMCID: PMC11033922 DOI: 10.1002/cam4.7184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Thyroid cancer (TC) is the predominant malignancy within the endocrine system. However, the standard method for TC diagnosis lacks the capability to identify the pathological condition of all thyroid lesions. The metabolomics approach has the potential to manage this problem by identifying differential metabolites. AIMS This study conducted a systematic review and meta-analysis of the NMR-based metabolomics studies in order to identify significant altered metabolites associated with TC. METHODS A systematic search of published literature in any language in three databases including Embase, PubMed, and Scopus was conducted. Out of 353 primary articles, 12 studies met the criteria for inclusion in the systematic review. Among these, five reports belonging to three articles were eligible for meta-analysis. The correlation coefficient of the orthogonal partial least squares discriminant analysis, a popular model in the multivariate statistical analysis of metabolomic data, was chosen for meta-analysis. The altered metabolites were chosen based on the fact that they had been found in at least three studies. RESULTS In total, 49 compounds were identified, 40 of which were metabolites. The increased metabolites in thyroid lesions compared normal samples included lactate, taurine, alanine, glutamic acid, glutamine, leucine, lysine, phenylalanine, serine, tyrosine, valine, choline, glycine, and isoleucine. Lipids were the decreased compounds in thyroid lesions. Lactate and alanine were increased in malignant versus benign thyroid lesions, while, myo-inositol, scyllo-inositol, citrate, choline, and phosphocholine were found to be decreased. The meta-analysis yielded significant results for three metabolites of lactate, alanine, and citrate in malignant versus benign specimens. DISCUSSION In this study, we provided a concise summary of 12 included metabolomic studies, making it easier for future researchers to compare their results with the prior findings. CONCLUSION It appears that the field of TC metabolomics will experience notable advancement, leading to the discovery of trustworthy diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- S. Adeleh Razavi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Babak Khorsand
- Department of NeurologyUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Computer Engineering, Faculty of EngineeringFerdowsi University of MashhadMashhadIran
| | - Pouya Salehipour
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
8
|
Aispuro-Hernández E, de Jesús Vergara-Jiménez M, Cárdenas-Torres FI, Lagarda-Díaz I, Martínez-Téllez MÁ, Soto-Córdova FJ, Corrales-Maldonado CG, Del Carmen Vargas-Arispuro I, Ontiveros N. Fruit Juices of Etcho (Pachycereus pecten-aboriginum) and Giant Cardon (Pachycereus pringlei) are Sources of Health-Promoting Ingredients with Potential Anticancer Properties. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:728-734. [PMID: 37658958 DOI: 10.1007/s11130-023-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
Mexico is one of the main diversification centers of cacti in the world, with more than 500 endemic species, most of which remain nutritionally and functionally uncharacterized. The columnar cacti of the genus Pachycereus comprise five underutilized endemic Mexican species, whose nutraceutical properties have only been studied in the P. weberi species. Therefore, this study aimed to evaluate the nutritional quality and bioactive properties of etcho (P. pecten-aboriginum) and giant cardon (P. pringlei) fruit. The physical, chemical, and nutritional composition of etcho and giant cardon fruits were characterized, as well as the profile and content of bioactive compounds, antioxidant activity (ABTS•+ and DPPH•), and antiproliferative capacity in cervical (HeLa) and breast cancer (MDA-MB-231, MCF-7, and T-47D) cell lines. Our results suggest that etcho and giant cardon fruits are rich sources of essential nutrients and bioactive phytochemicals (including K, Mg, P, dietary fiber, polyphenolic compounds, vitamin C, betalains, and myo-inositol) with antioxidant and anticancer potential by inhibiting the proliferation of all evaluated cell lines with IC50 values in the range of 198 to 287 µg of gallic acid equivalents/mL. Therefore, etcho and giant cardon fruits could be used for nutraceutical purposes, and their consumption could promote health benefits.
Collapse
Affiliation(s)
- Emmanuel Aispuro-Hernández
- Posgrado en Ciencias de la Nutrición y Alimentos Medicinales, Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, 80019, México
| | - Marcela de Jesús Vergara-Jiménez
- Posgrado en Ciencias de la Nutrición y Alimentos Medicinales, Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, 80019, México
| | - Feliznando Isidro Cárdenas-Torres
- Posgrado en Ciencias de la Nutrición y Alimentos Medicinales, Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, 80019, México
| | - Irlanda Lagarda-Díaz
- Departamento de Física, Investigadores por México CONAHCyT-Universidad de Sonora, Hermosillo, Sonora, 83000, México
| | | | | | | | | | - Noé Ontiveros
- Facultad de Ciencias Biológicas y de Salud, Departamento de Ciencias Químico-Biológicas y Agropecuarias, Laboratorio de Análisis Clínicos e Investigación (LACIUS, U.N.), Universidad de Sonora, Navojoa, Sonora, 85880, México.
| |
Collapse
|
9
|
Yang L, Yang M, Cui C, Long X, Li Y, Dai W, Lang T, Zhou Q. The myo-inositol biosynthesis rate-limiting enzyme ISYNA1 suppresses the stemness of ovarian cancer via Notch1 pathway. Cell Signal 2023; 107:110688. [PMID: 37105506 DOI: 10.1016/j.cellsig.2023.110688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Accepted: 04/23/2023] [Indexed: 04/29/2023]
Abstract
Cancer stem cells (CSCs) play a central role in ovarian cancer (OC), understanding regulatory mechanisms governing their stemness is critical. Here, we report ISYNA1, the rate-limiting enzyme in myo-inositol biosynthesis, as a suppressor of OC regulating cancer stemness. We identified ISYNA1 as a differentially expressed gene in normal ovary and ovarian cancer tissues, as well as OC cells and OCSCs. Low ISYNA1 expression correlated with poor prognosis in OC patients. In addition, ISYNA1 was negatively correlated with CSC markers, and ISYNA1-related pathways were enriched in Wnt, Notch, and other critical cancer pathways. ISYNA1 deficiency promoted OC cell growth, migration, and invasion ability in vitro and in vivo. Knockdown of ISYNA1 increased stemness of OC cells, including self-renewal, CSC markers expression, ALDH activity, and proportion of CD44+/CD117+ CSCs. Conversely, ectopic overexpression of ISYNA1 suppresses cell proliferation, migration, invasion and stemness of OC cells. Mechanistically, ISYNA1 inhibits OC stemness by regulating myo-inositol to suppress Notch1 signaling. In summary, these data provide evidence that ISYNA1 act as a tumor suppressor in OC and a regulator of stemness, providing insight into potentially targetable pathways for ovarian cancer therapy.
Collapse
Affiliation(s)
- Lingling Yang
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Muyao Yang
- College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Chenxi Cui
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xingtao Long
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China
| | - Yunzhe Li
- College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Weili Dai
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.
| | - Qi Zhou
- School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China; Department of Gynecologic Oncology, Chongqing University Cancer Hospital, Chongqing 400030, People's Republic of China.
| |
Collapse
|
10
|
Monti N, Dinicola S, Querqui A, Fabrizi G, Fedeli V, Gesualdi L, Catizone A, Unfer V, Bizzarri M. Myo-Inositol Reverses TGF-β1-Induced EMT in MCF-10A Non-Tumorigenic Breast Cells. Cancers (Basel) 2023; 15:cancers15082317. [PMID: 37190245 DOI: 10.3390/cancers15082317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Epithelial-Mesenchymal Transition (EMT), triggered by external and internal cues in several physiological and pathological conditions, elicits the transformation of epithelial cells into a mesenchymal-like phenotype. During EMT, epithelial cells lose cell-to-cell contact and acquire unusual motility/invasive capabilities. The associated architectural and functional changes destabilize the epithelial layer consistency, allowing cells to migrate and invade the surrounding tissues. EMT is a critical step in the progression of inflammation and cancer, often sustained by a main driving factor as the transforming growth factor-β1 (TGF-β1). Antagonizing EMT has recently gained momentum as an attractive issue in cancer treatment and metastasis prevention. Herein, we demonstrate the capability of myo-inositol (myo-Ins) to revert the EMT process induced by TGF-β1 on MCF-10A breast cells. Upon TGF-β1 addition, cells underwent a dramatic phenotypic transformation, as witnessed by structural (disappearance of the E-cadherin-β-catenin complexes and the emergence of a mesenchymal shape) and molecular modifications (increase in N-cadherin, Snai1, and vimentin), including the release of increased collagen and fibronectin. However, following myo-Ins, those changes were almost completely reverted. Inositol promotes the reconstitution of E-cadherin-β-catenin complexes, decreasing the expression of genes involved in EMT, while promoting the re-expression of epithelial genes (keratin-18 and E-cadherin). Noticeably, myo-Ins efficiently inhibits the invasiveness and migrating capability of TGF-β1 treated cells, also reducing the release of metalloproteinase (MMP-9) altogether with collagen synthesis, allowing for the re-establishment of appropriate cell-to-cell junctions, ultimately leading the cell layer back towards a more compact state. Inositol effects were nullified by previous treatment with an siRNA construct to inhibit CDH1 transcripts and, hence, E-cadherin synthesis. This finding suggests that the reconstitution of E-cadherin complexes is an irreplaceable step in the inositol-induced reversion of EMT. Overall, such a result advocates for the useful role of myo-Ins in cancer treatment.
Collapse
Affiliation(s)
- Noemi Monti
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy
| | - Simona Dinicola
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy
| | - Alessandro Querqui
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy
| | - Gianmarco Fabrizi
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy
| | - Valeria Fedeli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy
| | - Luisa Gesualdi
- Section of Histology and Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Angela Catizone
- Section of Histology and Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Vittorio Unfer
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
- Gynecology Department, UniCamillus-Saint Camillus International University of Health and Medical Sciences, 00161 Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Systems Biology Group Laboratory, Sapienza University, 00161 Rome, Italy
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
| |
Collapse
|
11
|
Bizzarri M, Monti N, Piombarolo A, Angeloni A, Verna R. Myo-Inositol and D-Chiro-Inositol as Modulators of Ovary Steroidogenesis: A Narrative Review. Nutrients 2023; 15:nu15081875. [PMID: 37111094 PMCID: PMC10145676 DOI: 10.3390/nu15081875] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Myo-inositol is a natural polyol, the most abundant among the nine possible structural isomers available in living organisms. Inositol confers some distinctive traits that allow for a striking distinction between prokaryotes and eukaryotes, the basic clusters into which organisms are partitioned. Inositol cooperates in numerous biological functions where the polyol participates or by furnishing the fundamental backbone of several related derived metabolites, mostly obtained through the sequential addition of phosphate groups (inositol phosphates, phosphoinositides, and pyrophosphates). Overall myo-inositol and its phosphate metabolites display an entangled network, which is involved in the core of the biochemical processes governing critical transitions inside cells. Noticeably, experimental data have shown that myo-inositol and its most relevant epimer D-chiro-inositol are both necessary to permit a faithful transduction of insulin and of other molecular factors. This improves the complete breakdown of glucose through the citric acid cycle, especially in glucose-greedy tissues, such as the ovary. In particular, while D-chiro-inositol promotes androgen synthesis in the theca layer and down-regulates aromatase and estrogen expression in granulosa cells, myo-inositol strengthens aromatase and FSH receptor expression. Inositol effects on glucose metabolism and steroid hormone synthesis represent an intriguing area of investigation, as recent results have demonstrated that inositol-related metabolites dramatically modulate the expression of several genes. Conversely, treatments including myo-inositol and its isomers have proven to be effective in the management and symptomatic relief of a number of diseases associated with the endocrine function of the ovary, namely polycystic ovarian syndrome.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University, Via A. Scarpa 16, 00160 Rome, Italy
- Systems Biology Group Lab, Sapienza University, 00160 Rome, Italy
| | - Noemi Monti
- Department of Experimental Medicine, Sapienza University, Via A. Scarpa 16, 00160 Rome, Italy
| | - Aurora Piombarolo
- Department of Experimental Medicine, Sapienza University, Via A. Scarpa 16, 00160 Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University, Via A. Scarpa 16, 00160 Rome, Italy
| | - Roberto Verna
- Systems Biology Group Lab, Sapienza University, 00160 Rome, Italy
| |
Collapse
|
12
|
Fedeli V, Catizone A, Querqui A, Unfer V, Bizzarri M. The Role of Inositols in the Hyperandrogenic Phenotypes of PCOS: A Re-Reading of Larner’s Results. Int J Mol Sci 2023; 24:ijms24076296. [PMID: 37047265 PMCID: PMC10093919 DOI: 10.3390/ijms24076296] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrinological disorder in women, in which, besides chronic anovulation/oligomenorrhea and ovarian cysts, hyperandrogenism plays a critical role in a large fraction of subjects. Inositol isomers—myo-Inositol and D-Chiro-Inositol—have recently been pharmacologically effective in managing many PCOS symptoms while rescuing ovarian fertility. However, some disappointing clinical results prompted the reconsideration of their specific biological functions. Surprisingly, D-Chiro-Ins stimulates androgen synthesis and decreases the ovarian estrogen pathway; on the contrary, myo-Ins activates FSH response and aromatase activity, finally mitigating ovarian hyperandrogenism. However, when the two isomers are given in association—according to the physiological ratio of 40:1—patients could benefit from myo-Ins enhanced FSH and estrogen responsiveness, while taking advantage of the insulin-sensitizing effects displayed mostly by D-Chiro-Ins. We need not postulate insulin resistance to explain PCOS pathogenesis, given that insulin hypersensitivity is likely a shared feature of PCOS ovaries. Indeed, even in the presence of physiological insulin stimulation, the PCOS ovary synthesizes D-Chiro-Ins four times more than that measured in control theca cells. The increased D-Chiro-Ins within the ovary is detrimental in preserving steroidogenic control, and this failure can easily explain why treatment strategies based upon high D-Chiro-Ins have been recognized as poorly effective. Within this perspective, two factors emerge as major determinants in PCOS: hyperandrogenism and reduced aromatase expression. Therefore, PCOS could no longer be considered a disease only due to increased androgen synthesis without considering the contemporary downregulation of aromatase and FSH receptors. Furthermore, these findings suggest that inositols can be specifically effective only for those PCOS phenotypes featured by hyperandrogenism.
Collapse
|
13
|
Aragoneses-Cazorla G, Vallet-Regí M, Gómez-Gómez MM, González B, Luque-Garcia JL. Integrated transcriptomics and metabolomics analysis reveals the biomolecular mechanisms associated to the antitumoral potential of a novel silver-based core@shell nanosystem. Mikrochim Acta 2023; 190:132. [PMID: 36914921 PMCID: PMC10011303 DOI: 10.1007/s00604-023-05712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
A combination of omics techniques (transcriptomics and metabolomics) has been used to elucidate the mechanisms responsible for the antitumor action of a nanosystem based on a Ag core coated with mesoporous silica on which transferrin has been anchored as a targeting ligand against tumor cells (Ag@MSNs-Tf). Transcriptomics analysis has been carried out by gene microarrays and RT-qPCR, while high-resolution mass spectrometry has been used for metabolomics. This multi-omics strategy has enabled the discovery of the effect of this nanosystem on different key molecular pathways including the glycolysis, the pentose phosphate pathway, the oxidative phosphorylation and the synthesis of fatty acids, among others.
Collapse
Affiliation(s)
- Guillermo Aragoneses-Cazorla
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (I+12), 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Saragossa, Spain
| | - Ma Milagros Gómez-Gómez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Blanca González
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (I+12), 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Saragossa, Spain
| | - Jose L Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
14
|
Chen Q, Shen L, Li S. Emerging role of inositol monophosphatase in cancer. Biomed Pharmacother 2023; 161:114442. [PMID: 36841024 DOI: 10.1016/j.biopha.2023.114442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
Inositol monophosphatase (IMPase) is an enzyme with two homologs-IMPA1 and IMPA2-that is responsible for dephosphorylating myo-inositol monophosphate to generate myo-inositol. IMPase has been extensively studied in neuropsychiatric diseases and is regarded as a susceptibility gene. Recently, emerging evidence has implied that IMPase is linked to cancer development and progression and correlates with patient survival outcomes. Interestingly, whether it acts as a tumor-promoter or tumor-suppressor is inconsistent among different research studies. In this review, we summarize the latest findings on IMPase in cancer, focusing on exploring the underlying mechanisms for its pro- and anticancer roles. In addition, we discuss the potential methods of IMPase regulation in cancer cells and the possible approaches for IMPase intervention in clinical practice.
Collapse
Affiliation(s)
- Qian Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
15
|
Graziani V, Garcia AR, Alcolado LS, Le Guennec A, Henriksson MA, Conte MR. Metabolic rewiring in MYC-driven medulloblastoma by BET-bromodomain inhibition. Sci Rep 2023; 13:1273. [PMID: 36690651 PMCID: PMC9870962 DOI: 10.1038/s41598-023-27375-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumour in children. High-risk MB patients harbouring MYC amplification or overexpression exhibit a very poor prognosis. Aberrant activation of MYC markedly reprograms cell metabolism to sustain tumorigenesis, yet how metabolism is dysregulated in MYC-driven MB is not well understood. Growing evidence unveiled the potential of BET-bromodomain inhibitors (BETis) as next generation agents for treating MYC-driven MB, but whether and how BETis may affect tumour cell metabolism to exert their anticancer activities remains unknown. In this study, we explore the metabolic features characterising MYC-driven MB and examine how these are altered by BET-bromodomain inhibition. To this end, we employed an NMR-based metabolomics approach applied to the MYC-driven MB D283 and D458 cell lines before and after the treatment with the BETi OTX-015. We found that OTX-015 triggers a metabolic shift in both cell lines resulting in increased levels of myo-inositol, glycerophosphocholine, UDP-N-acetylglucosamine, glycine, serine, pantothenate and phosphocholine. Moreover, we show that OTX-015 alters ascorbate and aldarate metabolism, inositol phosphate metabolism, phosphatidylinositol signalling system, glycerophospholipid metabolism, ether lipid metabolism, aminoacyl-tRNA biosynthesis, and glycine, serine and threonine metabolism pathways in both cell lines. These insights provide a metabolic characterisation of MYC-driven childhood MB cell lines, which could pave the way for the discovery of novel druggable pathways. Importantly, these findings will also contribute to understand the downstream effects of BETis on MYC-driven MB, potentially aiding the development of new therapeutic strategies to combat medulloblastoma.
Collapse
Affiliation(s)
- Vittoria Graziani
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Aida Rodriguez Garcia
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Lourdes Sainero Alcolado
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Adrien Le Guennec
- Centre for Biomolecular Spectroscopy, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Marie Arsenian Henriksson
- Department of Microbiology and Tumor Biology, Biomedicum B7, Karolinska Institutet, 171 65, Stockholm, Sweden.
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
16
|
Sun P, Zhang Y, Sun L, Sun N, Wang J, Ma H. Kisspeptin regulates the proliferation and apoptosis of ovary granulosa cells in polycystic ovary syndrome by modulating the PI3K/AKT/ERK signalling pathway. BMC Womens Health 2023; 23:15. [PMID: 36627631 PMCID: PMC9832680 DOI: 10.1186/s12905-022-02154-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The development of polycystic ovary syndrome (PCOS) is closely correlated with apoptosis and oxidative stress in ovarian granulosa cells. Kisspeptin plays an important role in reproductive organ function. This study aimed to explore the role of kisspeptin in PCOS and oxidative stress-triggered apoptosis of ovarian granular cells. METHODS A PCOS rat model was established by injecting dehydroepiandrosterone (DHEA) and feeding the rats a high-fat diet. The RNA and protein levels of kisspeptin were analysed by quantitative PCR, western blotting, and histological staining. Tissue damage was evaluated using haematoxylin and eosin (H&E) staining. The viability and proliferation of human granulosa cell KGN were measured using the cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell cycle and apoptosis were analysed by flow cytometry. Oxidative stress was analysed by measuring reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) levels. RESULTS Kisspeptin was downregulated in the ovarian granulosa cells of PCOS rats compared to those of control rats. Kisspeptin overexpression enhanced KGN cell proliferation and inhibited apoptosis. ROS generation was suppressed by kisspeptin, along with decreased levels of MDA and increased levels of the antioxidants GSH, SOD, and CAT. Kisspeptin activates PI3K/AKT and ERK signalling, and inactivation of ERK1/2 suppresses the protective role of kisspeptin in ovarian granulosa cells. CONCLUSION Kisspeptin improves proliferation and alleviates apoptosis and oxidative stress in ovarian granulosa cells by activating PI3K/AKT and ERK signalling.
Collapse
Affiliation(s)
- Pingping Sun
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Yuemin Zhang
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Lilan Sun
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Na Sun
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Jinguang Wang
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| | - Huagang Ma
- grid.416966.a0000 0004 1758 1470Reproductive Medicine Center, Weifang People’s Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261000 Shandong China
| |
Collapse
|
17
|
Jia Z, Song R, Xu Y, Liu X, Zhang X. Astaxanthin absorption modulated antioxidant enzyme activity and targeted specific metabolic pathways in rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7003-7016. [PMID: 35689476 DOI: 10.1002/jsfa.12062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/25/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Saponification contributed to an increase in the in vitro antioxidant activity of astaxanthin (Asta) extracts derived from Penaeus sinensis (Solenocera crassicornis) by-products. However, the influence of non-saponification (N-Asta) and saponification Asta (S-Asta) absorption on antioxidant activity in vivo was limited. The antioxidant properties of N-Asta and S-Asta were therefore compared in Sprague Dawley male rats after 6 h and 12 of absorption using biochemistry assays combined with an untargeted metabonomics strategy. RESULTS Non-saponified Asta and S-Asta showed similar digestive properties in a stimulated gastrointestinal tract. Increased glutathione content and decreased malondialdehyde content were measured in the liver tissues of N-Asta and S-Asta treated rats after 12 h of absorption. Absorption of N-Asta increased liver total superoxide dismutase, glutathione peroxidase, and catalase activity. Treatment with S-Asta up-regulated NAD(P)H: quinine oxidoreductase-1, and heme oxygenase-1 expression was associated with the nuclear erythroid 2-related factor 2/antioxidant responsive element pathway at the end of 12 h absorption. With partial least square-discriminant analysis and metabolite heatmap profiles, the S-Asta group was clearly separated from the N-Asta group. The S-Asta treatment also demonstrated stronger influences on plasma metabolites than the N-Asta treatment. Both N-Asta and S-Asta absorption showed critical roles in the regulation of specific metabolites, and 15 potential biomarkers were identified in eight key pathways to separate these experimental groups after 12 h of absorption. However, an increased serotonin level was only detected in the S-Asta group after 12 h absorption. CONCLUSION Absorption of N-Asta and S-Asta induced different antioxidant effects in normal rats, which were associated with metabolite changes. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe Jia
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Ru Song
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yan Xu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xinyan Liu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoxia Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, School of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
18
|
Song J, Nilsson G, Xu Y, Zelco A, Rocha-Ferreira E, Wang Y, Zhang X, Zhang S, Ek J, Hagberg H, Zhu C, Wang X. Temporal brain transcriptome analysis reveals key pathological events after germinal matrix hemorrhage in neonatal rats. J Cereb Blood Flow Metab 2022; 42:1632-1649. [PMID: 35491813 PMCID: PMC9441725 DOI: 10.1177/0271678x221098811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Germinal matrix hemorrhage (GMH) is a common complication in preterm infants and is associated with high risk of adverse neurodevelopmental outcomes. We used a rat GMH model and performed RNA sequencing to investigate the signaling pathways and biological processes following hemorrhage. GMH induced brain injury characterized by early hematoma and subsequent tissue loss. At 6 hours after GMH, gene expression indicated an increase in mitochondrial activity such as ATP metabolism and oxidative phosphorylation along with upregulation of cytoprotective pathways and heme metabolism. At 24 hours after GMH, the expression pattern suggested an increase in cell cycle progression and downregulation of neurodevelopmental-related pathways. At 72 hours after GMH, there was an increase in genes related to inflammation and an upregulation of ferroptosis. Hemoglobin components and genes related to heme metabolism and ferroptosis such as Hmox1, Alox15, and Alas2 were among the most upregulated genes. We observed dysregulation of processes involved in development, mitochondrial function, cholesterol biosynthesis, and inflammation, all of which contribute to neurodevelopmental deterioration following GMH. This study is the first temporal transcriptome profile providing a comprehensive overview of the molecular mechanisms underlying brain injury following GMH, and it provides useful guidance in the search for therapeutic interventions.
Collapse
Affiliation(s)
- Juan Song
- Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Gisela Nilsson
- Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Aura Zelco
- Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eridan Rocha-Ferreira
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Yafeng Wang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Xiaoli Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Shan Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Joakim Ek
- Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Xiaoyang Wang
- Centre for Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China.,Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Omics Analysis of Chemoresistant Triple Negative Breast Cancer Cells Reveals Novel Metabolic Vulnerabilities. Cells 2022; 11:cells11172719. [PMID: 36078127 PMCID: PMC9454761 DOI: 10.3390/cells11172719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of drug resistance in cancer poses the greatest hurdle for successful therapeutic results and is associated with most cancer deaths. In triple negative breast cancer (TNBC), due to the lack of specific therapeutic targets, systemic chemotherapy is at the forefront of treatments, but it only benefits a fraction of patients because of the development of resistance. Cancer cells may possess an innate resistance to chemotherapeutic agents or develop new mechanisms of acquired resistance after long-term drug exposure. Such mechanisms involve an interplay between genetic, epigenetic and metabolic alterations that enable cancer cells to evade therapy. In this work, we generated and characterized a chemoresistant TNBC cell line to be used for the investigation of mechanisms that drive resistance to paclitaxel. Transcriptomic analysis highlighted the important role of metabolic-associated pathways in the resistant cells, prompting us to employ 1H-NMR to explore the metabolome and lipidome of these cells. We identified and described herein numerous metabolites and lipids that were significantly altered in the resistant cells. Integrated analysis of our omics data revealed MSMO1, an intermediate enzyme of cholesterol biosynthesis, as a novel mediator of chemoresistance in TNBC. Overall, our data provide a critical insight into the metabolic adaptations that accompany acquired resistance in TNBC and pinpoint potential new targets.
Collapse
|
20
|
Ahmed N, Kidane B, Wang L, Nugent Z, Moldovan N, McElrea A, Shariati-Ievari S, Qing G, Tan L, Buduhan G, Srinathan SK, Meyers R, Aliani M. Metabolic Alterations in Sputum and Exhaled Breath Condensate of Early Stage Non-Small Cell Lung Cancer Patients After Surgical Resection: A Pilot Study. Front Oncol 2022; 12:874964. [PMID: 35719971 PMCID: PMC9204221 DOI: 10.3389/fonc.2022.874964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Every year, close to two million people world-wide are diagnosed with and die of lung cancer. Most patients present with advanced-stage cancer with limited curative options and poor prognosis. Diagnosis of lung cancer at an early stage provides the best chance for a cure. Low- dose CT screening of the chest in the high-risk population is the current standard of care for early detection of lung cancer. However, CT screening is invasive due to radiation exposure and carries the risk of unnecessary biopsies in non-cancerous tumors. In this pilot study, we present metabolic alterations observed in sputum and breath condensate of the same population of early- stage non-small cell lung cancer (NSCLC) patients cancer before and after surgical resection (SR), which could serve as noninvasive diagnostic tool. Exhaled breath condensate (EBC) (n=35) and sputum (n=15) were collected from early-stage non-small cell lung cancer (NSCLC) patients before and after SR. Median number of days for EBC and sputum collection before and after SR were 7 and 42; and 7 and 36 respectively Nuclear magnetic resonance (NMR) and liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) were used to analyze the metabolic profile of the collected samples. A total of 26 metabolites with significant alteration post SR were identified, of which 14 (54%) were lipids and 12 constituted nine different chemical metabolite classes. Eighteen metabolites (69%) were significantly upregulated and 8 (31%) were downregulated. Median fold change for all the up- and downregulated metabolites (LC-QTOF-MS) were 10 and 8, respectively. Median fold change (MFC) in concentration of all the up- and downregulated metabolites (NMR) were 0.04 and 0.27, respectively. Furthermore, glucose (median fold change, 0.01, p=0.037), adenosine monophosphate (13 log fold, p=0.0037) and N1, N12- diacetylspermine (8 log fold p=0.011) sputum levels were significantly increased post-SR. These identified sputa and EBC indices of altered metabolism could serve as basis for further exploration of biomarkers for early detection of lung cancer, treatment response, and targets for drug discovery. Validation of these promising results by larger clinical studies is warranted.
Collapse
Affiliation(s)
- Naseer Ahmed
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Biniam Kidane
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Le Wang
- Department of Epidemiology and Cancer Registry, CancerCare Manitoba, Winnipeg, MB, Canada
- St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Zoann Nugent
- Department of Epidemiology and Cancer Registry, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Nataliya Moldovan
- Department of Radiology, Section of Radiation Oncology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - April McElrea
- St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | | | - Gefei Qing
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lawrence Tan
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Gordon Buduhan
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Sadeesh K. Srinathan
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Renelle Meyers
- BC Cancer Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Michel Aliani
- St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
21
|
Inositol hexakisphosphate induces apoptosis, cell cycle arrest in non-Hodgkin’s Burkitt lymphoma cells and mediates anti-angiogenic, antitumor effects in T-cell lymphoma bearing Swiss albino mice. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
The paradoxical role of inositol in cancer: a consequence of the metabolic state of a tumor. Cancer Metastasis Rev 2022; 41:249-254. [DOI: 10.1007/s10555-022-10032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Metabolic Profiling of Thymic Epithelial Tumors Hints to a Strong Warburg Effect, Glutaminolysis and Precarious Redox Homeostasis as Potential Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14061564. [PMID: 35326714 PMCID: PMC8945961 DOI: 10.3390/cancers14061564] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Thymomas and thymic carcinomas (TCs) are malignant thymic epithelial tumors (TETs) with poor outcome, if non-resectable. Metabolic signatures of TETs have not yet been studied and may offer new therapeutic options. This is the first metabolomics investigation on thymic epithelial tumors employing nuclear magnetic resonance spectroscopy of tissue samples. We could detect and quantify up to 37 metabolites in the major tumor subtypes, including acetylcholine that was not previously detected in other non-endocrine cancers. A metabolite-based cluster analysis distinguished three clinically relevant tumor subgroups, namely indolent and aggressive thymomas, as well as TCs. A metabolite-based metabolic pathway analysis also gave hints to activated metabolic pathways shared between aggressive thymomas and TCs. This finding was largely backed by enrichment of these pathways at the transcriptomic level in a large, publicly available, independent TET dataset. Due to the differential expression of metabolites in thymic epithelial tumors versus normal thymus, pathways related to proline, cysteine, glutathione, lactate and glutamine appear as promising therapeutic targets. From these findings, inhibitors of glutaminolysis and of the downstream TCA cycle are anticipated to be rational therapeutic strategies. If our results can be confirmed in future, sufficiently powered studies, metabolic signatures may contribute to the identification of new therapeutic options for aggressive thymomas and TCs. Abstract Thymomas and thymic carcinomas (TC) are malignant thymic epithelial tumors (TETs) with poor outcome, if non-resectable. Metabolic signatures of TETs have not yet been studied and may offer new therapeutic options. Metabolic profiles of snap-frozen thymomas (WHO types A, AB, B1, B2, B3, n = 12) and TCs (n = 3) were determined by high resolution magic angle spinning 1H nuclear magnetic resonance (HRMAS 1H-NMR) spectroscopy. Metabolite-based prediction of active KEGG metabolic pathways was achieved with MetPA. In relation to metabolite-based metabolic pathways, gene expression signatures of TETs (n = 115) were investigated in the public “The Cancer Genome Atlas” (TCGA) dataset using gene set enrichment analysis. Overall, thirty-seven metabolites were quantified in TETs, including acetylcholine that was not previously detected in other non-endocrine cancers. Metabolite-based cluster analysis distinguished clinically indolent (A, AB, B1) and aggressive TETs (B2, B3, TCs). Using MetPA, six KEGG metabolic pathways were predicted to be activated, including proline/arginine, glycolysis and glutathione pathways. The activated pathways as predicted by metabolite-profiling were generally enriched transcriptionally in the independent TCGA dataset. Shared high lactic acid and glutamine levels, together with associated gene expression signatures suggested a strong “Warburg effect”, glutaminolysis and redox homeostasis as potential vulnerabilities that need validation in a large, independent cohort of aggressive TETs. If confirmed, targeting metabolic pathways may eventually prove as adjunct therapeutic options in TETs, since the metabolic features identified here are known to confer resistance to cisplatin-based chemotherapy, kinase inhibitors and immune checkpoint blockers, i.e., currently used therapies for non-resectable TETs.
Collapse
|
24
|
Chamaraux-Tran TN, Muller M, Pottecher J, Diemunsch PA, Tomasetto C, Namer IJ, Dali-Youcef N. Metabolomic Impact of Lidocaine on a Triple Negative Breast Cancer Cell Line. Front Pharmacol 2022; 13:821779. [PMID: 35273500 PMCID: PMC8902240 DOI: 10.3389/fphar.2022.821779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Metabolomics and onco-anesthesia are two emerging research fields in oncology. Metabolomics (metabolites analysis) is a new diagnostic and prognostic tool that can also be used for predicting the therapeutic or toxic responses to anticancer treatments. Onco-anesthesia studies assess the impact of anesthesia on disease-free and overall survival after cancer surgery. It has been shown that local anesthetics (LA), particularly lidocaine (LIDO), exert antitumor properties both in vitro and in vivo and may alter the biologic fingerprints of cancer cells. As LA are known to impair mitochondrial bioenergetics and byproducts, the aim of the present study was to assess the impact of LIDO on metabolomic profile of a breast cancer cell line. Methods: Breast cancer MDA-MB-231 cells were exposed for 4 h to 0.5 mM LIDO or vehicle (n = 4). The metabolomic fingerprint was characterized by high resolution magic angle spinning NMR spectroscopy (HRMAS). The multivariate technique using the Algorithm to Determine Expected Metabolite Level Alteration (ADEMA) (Cicek et al., PLoS Comput. Biol., 2013, 9, e1002859), based on mutual information to identify expected metabolite level changes with respect to a specific condition, was used to determine the metabolites variations caused by LIDO. Results: LIDO modulates cell metabolites levels. Several pathways, including glutaminolysis, choline, phosphocholine and total choline syntheses were significantly downregulated in the LIDO group. Discussion: This is the first study assessing the impact of LIDO on metabolomic fingerprint of breast cancer cells. Among pathways downregulated by LIDO, many metabolites are reported to be associated with adverse prognosis when present at a high titer in breast cancer patients. These results fit with the antitumor properties of LIDO and suggest its impact on metabolomics profile of cancer cells. These effects of LIDO are of clinical significance because it is widely used for local anesthesia with cutaneous infiltration during percutaneous tumor biopsy. Future in vitro and preclinical studies are necessary to assess whether metabolomics analysis requires modification of local anesthetic techniques during tumor biopsy.
Collapse
Affiliation(s)
- Thiên-Nga Chamaraux-Tran
- Service d'anesthésie-réanimation et Médecine Périopératoire, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, Illkirch, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,ER 3072, Mitochondrie Stress Oxydant et Protection Musculaire, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Marie Muller
- Service d'anesthésie-réanimation et Médecine Périopératoire, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Julien Pottecher
- Service d'anesthésie-réanimation et Médecine Périopératoire, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,ER 3072, Mitochondrie Stress Oxydant et Protection Musculaire, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Pierre A Diemunsch
- Service d'anesthésie-réanimation et Médecine Périopératoire, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, Illkirch, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
| | - Izzie-Jacques Namer
- Université de Strasbourg, Faculté de Médecine, Strasbourg, France.,MNMS-Platform, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Service de Médecine Nucléaire et d'Imagerie Moléculaire, Institut de Cancérologie Strasbourg Europe, Strasbourg, France.,ICube, Université de Strasbourg/CNRS, UMR 7357, Strasbourg, France
| | - Nassim Dali-Youcef
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch, Illkirch, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France.,Laboratoire de Biochimie et Biologie Moléculaire, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1 Place de l'hôpital, Strasbourg, France
| |
Collapse
|
25
|
da Silva E, Santos J, Morey A, Yamauchi L, Bracarense AL. Phytic acid modulates the morphology, immunological response of cytokines and β-defensins in porcine intestine exposed to deoxynivalenol and fumonisin B1. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Occurrence of mycotoxins in agricultural products represents a risk for human and animal health. Therefore, there is a requirement of strategies to mitigate their harmful impacts. This study investigated the effects of phytic acid (IP6) on the immunological response of pro-(interleukin (IL)-1β, IL-6, IL-8, IL-10, interferon (IFN)-γ, tumour necrosis factor (TNF)-α) and anti-inflammatory (IL-10) cytokines and β-defensins 1 (pBD-1) and 2 (pBD-2) in porcine jejunal explants exposed to deoxynivalenol (DON) and fumonisin B1 (FB1). The explants were exposed to the following treatments: control, DON (10 μM), DON plus IP6 2.5 mM or 5 mM, FB1 (70 μM), FB1 IP6 plus 2.5 or 5 mM. The expression levels of the cytokines were measured by RT-qPCR. The exposure to FB1 and DON induced intestinal lesions. The presence of 2.5 and 5 mM IP6 inhibited the morphological changes induced by the mycotoxins. The explants exposed to DON showed an increase in the expression of IL-1β and IL-8 and a decrease in the levels of IL-6, IFN-γ, IL-10 and pBD-2. IP6 (5 mM) decreased the expression of IL-8 and increased the expression in pBD-1 and 2 compared to DON alone. FB1 induced a significant decrease in the levels of most of the pro-inflammatory cytokines, IL-10 and pBD-1, and an increase in IL-1β expression. The addition of IP6 5 mM induced significant increase in TNF-α expression compared to FB1. Taken together, the results suggest IP6 modulates immunological changes induced by DON and FB1 on intestinal mucosa resulting in beneficial effects that contribute to intestinal homeostasis and health.
Collapse
Affiliation(s)
- E.O. da Silva
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, rodovia Celso Garcia Cid, km 380, 86057-970, Londrina, Paraná, Brazil
| | - J.P. Santos
- Laboratory of Molecular Biology of Microorganisms, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - A.T. Morey
- Laboratory of Molecular Biology of Microorganisms, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
- Instituto Federal do Rio Grande do Sul, Campus Canoas, Canoas, Rio Grande do Sul, Brazil
| | - L.M. Yamauchi
- Laboratory of Molecular Biology of Microorganisms, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - A.P.F.R. Loureiro Bracarense
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, rodovia Celso Garcia Cid, km 380, 86057-970, Londrina, Paraná, Brazil
| |
Collapse
|
26
|
Martins AS, Batista de Carvalho ALM, Marques MPM, Gil AM. Response of Osteosarcoma Cell Metabolism to Platinum and Palladium Chelates as Potential New Drugs. Molecules 2021; 26:4805. [PMID: 34443394 PMCID: PMC8401043 DOI: 10.3390/molecules26164805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
This paper reports the first metabolomics study of the impact of new chelates Pt2Spm and Pd2Spm (Spm = Spermine) on human osteosarcoma cellular metabolism, compared to the conventional platinum drugs cisplatin and oxaliplatin, in order to investigate the effects of different metal centers and ligands. Nuclear Magnetic Resonance metabolomics was used to identify meaningful metabolite variations in polar cell extracts collected during exposure to each of the four chelates. Cisplatin and oxaliplatin induced similar metabolic fingerprints of changing metabolite levels (affecting many amino acids, organic acids, nucleotides, choline compounds and other compounds), thus suggesting similar mechanisms of action. For these platinum drugs, a consistent uptake of amino acids is noted, along with an increase in nucleotides and derivatives, namely involved in glycosylation pathways. The Spm chelates elicit a markedly distinct metabolic signature, where inverse features are observed particularly for amino acids and nucleotides. Furthermore, Pd2Spm prompts a weaker response from osteosarcoma cells as compared to its platinum analogue, which is interesting as the palladium chelate exhibits higher cytotoxicity. Putative suggestions are discussed as to the affected cellular pathways and the origins of the distinct responses. This work demonstrates the value of untargeted metabolomics in measuring the response of cancer cells to either conventional or potential new drugs, seeking further understanding (or possible markers) of drug performance at the molecular level.
Collapse
Affiliation(s)
- Ana S. Martins
- CICECO—Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal;
| | - Ana L. M. Batista de Carvalho
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal;
| | - Maria P. M. Marques
- Unidade de I&D Química-Física Molecular, Department of Chemistry, University of Coimbra, Rua Larga, 300-535 Coimbra, Portugal;
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana M. Gil
- CICECO—Aveiro Institute of Materials (CICECO/UA), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| |
Collapse
|
27
|
Effects of Inositol Hexaphosphate and Myo-Inositol Administration in Breast Cancer Patients during Adjuvant Chemotherapy. J Pers Med 2021; 11:jpm11080756. [PMID: 34442400 PMCID: PMC8400775 DOI: 10.3390/jpm11080756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/20/2023] Open
Abstract
Background: Treatment of breast cancer (BC) includes locoregional and systemic therapies depending on tumor and patient’s characteristics. Inositol hexaphosphate (IP6) is known as a strong antioxidant agent, able to improve local (i.e., breast region) side effects, functional status and quality-of-life. We investigated some potential beneficial effects, including hematological and local, of the combined therapy with oral myo-inositol administration and topical IP6 application in patients undergoing surgery for BC and eligible to adjuvant chemotherapy. Methods: We considered BC patients randomly assigned to the Inositol Group (oral myo-inositol + IP6 local application for the entire neoadjuvant treatment period) and to the Control Group (standard of care). The EORTC QLQ-BR23 and QLQ-C30 questionnaires were administered to both groups and blood parameters were assessed as per clinical routine practice at baseline (before starting adjuvant chemotherapy), T1 (after the first two doses of epirubicin-cyclophosphamide regimen), T2 (at the end of epirubicin-cyclophosphamide regimen), T3 (after the first six doses of paclitaxel regimen), and T4 (at the end of the paclitaxel treatment). Results: A total of 36 BC patients were considered, 18 in the Inositol Group and 18 in the Control Group. The Inositol Group showed a lower decrease in red blood cells, hemoglobin levels and white blood cells with respect to controls (p ≤ 0.02), as well as amelioration in scores related to breast and arm local symptoms (p ≤ 0.02), body image (p = 0.04) and quality-of-life related symptoms (p ≤ 0.04). Conclusions: In our cohort of BC patients, a combined treatment with oral myo-inositol + IP6 local application was able to improve local symptoms and quality-of-life related symptoms which represent clinically relevant aspects associated with patient’s prognosis.
Collapse
|
28
|
Wang W, Fan Y, Huang X, Li L, Wang S, Xue Z, Ouyang H, He J. Metabolomics study on the periplocin-induced cardiotoxicity and the compatibility of periplocin and Panax notoginseng saponins in reducing cardiotoxicity in rats by GC-MS. J Sep Sci 2021; 44:2785-2797. [PMID: 33961332 DOI: 10.1002/jssc.202001262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/01/2021] [Accepted: 05/02/2021] [Indexed: 12/11/2022]
Abstract
Periplocin, as one of the components of cardiac glycosides in Cortex periplocae, exhibited cardiotonic effects. Orally ingesting periplocin in high doses or over prolonged periods would cause serious adverse reactions, especially cardiotoxicity, which limits the applications of periplocin in clinical therapy. It has been reported that Panax notoginseng saponins could be used in compatibility with periplocin to reduce the cardiotoxicity of periplocin. To clarify the mechanisms of periplocin-induced cardiotoxicity and compatibility-pairing in reducing cardiotoxicity, the gas chromatography-mass spectrometry method was used to detect and analyze the metabolic profiles of rat plasma and urine samples after oral administration of periplocin, Panax notoginseng saponins, and the different compatibility ratios of periplocin and Panax notoginseng saponins. The multivariate statistical analysis method was used to screen and identify the biomarkers. A total of 49 potential biomarkers (28 in plasma and 21 in urine) associated with periplocin-induced cardiotoxicity were identified. Seven pathways were found through metabolomic pathway analysis. Moreover, the levels of 42 biomarkers (22 in plasma and 20 in urine) were close to normal after compatibility pairing. By analyzing the relative metabolic pathways, Panax notoginseng saponins could effectively reduce the cardiotoxicity of periplocin by affecting the tricarboxylic acid cycle, energy metabolism, and arachidonic acid metabolism.
Collapse
Affiliation(s)
- Wei Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yuqi Fan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xuhua Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Li Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Songrui Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Zixiang Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Huizi Ouyang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
29
|
Zaher DM, Ramadan WS, El-Awady R, Omar HA, Hersi F, Srinivasulu V, Hachim IY, Al-Marzooq FI, Vazhappilly CG, Merali S, Merali C, Soares NC, Schilf P, Ibrahim SM, Al-Tel TH. A Novel Benzopyrane Derivative Targeting Cancer Cell Metabolic and Survival Pathways. Cancers (Basel) 2021; 13:cancers13112840. [PMID: 34200264 PMCID: PMC8201054 DOI: 10.3390/cancers13112840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/03/2023] Open
Abstract
(1) Background: Today, the discovery of novel anticancer agents with multitarget effects and high safety margins represents a high challenge. Drug discovery efforts indicated that benzopyrane scaffolds possess a wide range of pharmacological activities. This spurs on building a skeletally diverse library of benzopyranes to identify an anticancer lead drug candidate. Here, we aim to characterize the anticancer effect of a novel benzopyrane derivative, aiming to develop a promising clinical anticancer candidate. (2) Methods: The anticancer effect of SIMR1281 against a panel of cancer cell lines was tested. In vitro assays were performed to determine the effect of SIMR1281 on GSHR, TrxR, mitochondrial metabolism, DNA damage, cell cycle progression, and the induction of apoptosis. Additionally, SIMR1281 was evaluated in vivo for its safety and in a xenograft mice model. (3) Results: SIMR1281 strongly inhibits GSHR while it moderately inhibits TrxR and modulates the mitochondrial metabolism. SIMR1281 inhibits the cell proliferation of various cancers. The antiproliferative activity of SIMR1281 was mediated through the induction of DNA damage, perturbations in the cell cycle, and the inactivation of Ras/ERK and PI3K/Akt pathways. Furthermore, SIMR1281 induced apoptosis and attenuated cell survival machinery. In addition, SIMR1281 reduced the tumor volume in a xenograft model while maintaining a high in vivo safety profile at a high dose. (4) Conclusions: Our findings demonstrate the anticancer multitarget effect of SIMR1281, including the dual inhibition of glutathione and thioredoxin reductases. These findings support the development of SIMR1281 in preclinical and clinical settings, as it represents a potential lead compound for the treatment of cancer.
Collapse
Affiliation(s)
- Dana M. Zaher
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wafaa S. Ramadan
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Raafat El-Awady
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A. Omar
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatema Hersi
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
| | - Ibrahim Y. Hachim
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Farah I. Al-Marzooq
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Cijo G. Vazhappilly
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- School of Arts and Sciences, American University of Ras Al Khaimah, P.O. Box 10021, Ras Al Khaimah 10021, United Arab Emirates
| | - Salim Merali
- School of Pharmacy, Temple University, 3307 N Broad Street, Room 552, Philadelphia, PA 19140, USA; (S.M.); (C.M.)
| | - Carmen Merali
- School of Pharmacy, Temple University, 3307 N Broad Street, Room 552, Philadelphia, PA 19140, USA; (S.M.); (C.M.)
| | - Nelson C. Soares
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Paul Schilf
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany;
| | - Saleh M. Ibrahim
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany;
| | - Taleb H. Al-Tel
- Sharjah Institute for Medical Researches, University of Sharjah, Sharjah 27272, United Arab Emirates; (D.M.Z.); (W.S.R.); (R.E.-A.); (H.A.O.); (F.H.); (V.S.); (I.Y.H.); (F.I.A.-M.); (C.G.V.); (N.C.S.); (S.M.I.)
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6505-7417
| |
Collapse
|
30
|
Geyer T, Rübenthaler J, Alunni-Fabbroni M, Schinner R, Weber S, Mayerle J, Schiffer E, Höckner S, Malfertheiner P, Ricke J. NMR-Based Lipid Metabolite Profiles to Predict Outcomes in Patients Undergoing Interventional Therapy for a Hepatocellular Carcinoma (HCC): A Substudy of the SORAMIC Trial. Cancers (Basel) 2021; 13:cancers13112787. [PMID: 34205110 PMCID: PMC8199928 DOI: 10.3390/cancers13112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary A hepatocellular carcinoma (HCC) is the most common cause of death in patients suffering from chronic liver diseases. In order to improve the prediction of outcomes in HCC patients, there is a need for new biomarkers. This pilot study aimed at identifying serum metabolites for the prediction of outcomes of HCC patients using nuclear magnetic resonance (NMR) spectroscopy. This analysis revealed that high serum concentrations of myo-inositol or dimethylamine were associated with an improved overall survival. In contrast, high concentrations of total cholesterol, LDL-cholesterol and LDL particles (LDL-P) were associated with a decreased overall survival. The identification of novel biomarkers using this NMR-based technology holds promise for opening new directions in the conduction of interventional trials in HCCs. Abstract Background: This exploratory study aimed to evaluate lipidomic and metabolomic profiles in patients with early and advanced HCCs and to investigate whether certain metabolic parameters may predict the overall survival in these patients. Methods: A total of 60 patients from the prospective, randomized-controlled, multicenter phase II SORAMIC trial were included in this substudy; among them were 30 patients with an early HCC who underwent radiofrequency ablation combined with sorafenib or a placebo and 30 patients with an advanced HCC who were treated with a selective internal radiation therapy (SIRT) plus sorafenib vs. sorafenib alone. The blood serum of these patients was analyzed using a standardized nuclear magnetic resonance (NMR) platform. All tested metabolites were correlated with the overall survival. Results: The overall survival (OS) was significantly higher in patients with an early HCC (median OS: 34.0 months) compared with patients with an advanced HCC (median OS: 12.0 months) (p < 0.0001). Patients with high serum concentrations of myo-inositol (MI) had a higher overall survival compared with patients with low concentrations (21.6 vs. 13.8 months) with a Pearson correlation coefficient of 0.331 (p = 0.011). Patients with high serum concentrations of dimethylamine had a higher overall survival compared with patients with low concentrations (25.1 vs. 19.7 months) with a Pearson correlation coefficient of 0.279 (p = 0.034). High concentrations of total cholesterol, LDL-cholesterol and LDL particles (LDL-P) were associated with a decreased overall survival. Conclusions: NMR-based lipidomic and metabolomic profiling has the potential to identify individual metabolite biomarkers that predict the outcome of patients with an HCC exposed to non-invasive therapeutic management.
Collapse
Affiliation(s)
- Thomas Geyer
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (J.R.); (M.A.-F.); (R.S.); (P.M.); (J.R.)
- Correspondence: ; Tel.: +49-89-4400-73620
| | - Johannes Rübenthaler
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (J.R.); (M.A.-F.); (R.S.); (P.M.); (J.R.)
| | - Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (J.R.); (M.A.-F.); (R.S.); (P.M.); (J.R.)
| | - Regina Schinner
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (J.R.); (M.A.-F.); (R.S.); (P.M.); (J.R.)
| | - Sabine Weber
- Department of Medicine II, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (S.W.); (J.M.)
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (S.W.); (J.M.)
| | - Eric Schiffer
- Numares AG, Am BioPark 9, 93053 Regensburg, Germany; (E.S.); (S.H.)
| | | | - Peter Malfertheiner
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (J.R.); (M.A.-F.); (R.S.); (P.M.); (J.R.)
- Department of Medicine II, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (S.W.); (J.M.)
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; (J.R.); (M.A.-F.); (R.S.); (P.M.); (J.R.)
| |
Collapse
|
31
|
Markiewicz LH, Ogrodowczyk AM, Wiczkowski W, Wróblewska B. Phytate and Butyrate Differently Influence the Proliferation, Apoptosis and Survival Pathways in Human Cancer and Healthy Colonocytes. Nutrients 2021; 13:1887. [PMID: 34072741 PMCID: PMC8230256 DOI: 10.3390/nu13061887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
The colonic epithelium is never exposed to a single factor, therefore studies on the effect of combinations of factors naturally and persistently present in the intestines are of special importance for understanding the phenomena occurring at this place. The aim of the study was to investigate the combined effect of 1 mM phytate and 1 mM butyrate (PA1B1) on cell lines derived from cancer (HCT116 and HT-29) and healthy (NCM460D) human colonic epithelium. Colorimetric and flow cytometry methods were used to determine the proliferation rate, cell cycle, and apoptosis. Selected markers of proliferation, inflammatory, and survival pathways were investigated at the mRNA and/or protein level. The combination of phytate and butyrate disturbed the cell cycle and triggered apoptosis and/or death in both studied cancer colonocytes to a higher extent compared to healthy colonocytes. Moreover, in healthy colonocytes, phytate activated the survival pathway without stimulation of inflammatory response. This may indicate that the response of healthy colonocytes to phytate protects colonic epithelium from the loss of integrity and tightness that would occur if inflammation developed. Based on the obtained results we postulate that studies on both cancer and/or healthy colonocytes should be carried out in the presence of butyrate as the permanent component of colonic contents. This should be of special importance when anti-proliferative/pro-apoptotic activity or inflammatory status of colonocytes is to be investigated.
Collapse
Affiliation(s)
- Lidia Hanna Markiewicz
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (A.M.O.); (B.W.)
| | - Anna Maria Ogrodowczyk
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (A.M.O.); (B.W.)
| | - Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (A.M.O.); (B.W.)
| |
Collapse
|
32
|
Waidha K, Anto NP, Jayaram DR, Golan-Goldhirsh A, Rajendran S, Livneh E, Gopas J. 6,6'-Dihydroxythiobinupharidine (DTBN) Purified from Nuphar lutea Leaves Is an Inhibitor of Protein Kinase C Catalytic Activity. Molecules 2021; 26:molecules26092785. [PMID: 34066895 PMCID: PMC8125885 DOI: 10.3390/molecules26092785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/28/2022] Open
Abstract
Water lily (Nuphar) bioactive extracts have been widely used in traditional medicine owing to their multiple applications against human ailments. Phyto-active Nuphar extracts and their purified and synthetic derivatives have attracted the attention of ethnobotanists and biochemists. Here, we report that 6,6'-dihydroxythiobinupharidine (DTBN), purified from extracts of Nuphar lutea (L.) Sm. leaves, is an effective inhibitor of the kinase activity of members of the protein kinase C (PKC) family using in vitro and in silico approaches. We demonstrate that members of the conventional subfamily of PKCs, PKCα and PKCγ, were more sensitive to DTBN inhibition as compared to novel or atypical PKCs. Molecular docking analysis demonstrated the interaction of DTBN, with the kinase domain of PKCs depicting the best affinity towards conventional PKCs, in accordance with our in vitro kinase activity data. The current study reveals novel targets for DTBN activity, functioning as an inhibitor for PKCs kinase activity. Thus, this and other data indicate that DTBN modulates key cellular signal transduction pathways relevant to disease biology, including cancer.
Collapse
Affiliation(s)
- Kamran Waidha
- Defence Institute of High Altitude Research (DIHAR), Defence Research and Development Organisation (DRDO) Leh, Ladakh UT-194101, India;
| | - Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8400501, Israel; (N.P.A.); (D.R.J.)
| | - Divya Ram Jayaram
- The Shraga Segal Department of Microbiology, Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8400501, Israel; (N.P.A.); (D.R.J.)
| | - Avi Golan-Goldhirsh
- The Jacob Blaustein Institutes for Desert Research (BIDR), Sede Boqer Campus, French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheva 8499000, Israel
- Correspondence: (A.G.-G.); (S.R.); (E.L.); (J.G.)
| | - Saravanakumar Rajendran
- Chemistry Division, Vellore Institute of Technology Chennai Campus, School of Advanced Sciences, Chennai 600127, India
- Correspondence: (A.G.-G.); (S.R.); (E.L.); (J.G.)
| | - Etta Livneh
- The Shraga Segal Department of Microbiology, Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8400501, Israel; (N.P.A.); (D.R.J.)
- Correspondence: (A.G.-G.); (S.R.); (E.L.); (J.G.)
| | - Jacob Gopas
- The Shraga Segal Department of Microbiology, Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8400501, Israel; (N.P.A.); (D.R.J.)
- Department of Oncology, Soroka University Medical Center, Beer Sheva 8400501, Israel
- Correspondence: (A.G.-G.); (S.R.); (E.L.); (J.G.)
| |
Collapse
|
33
|
Badodi S, Pomella N, Zhang X, Rosser G, Whittingham J, Niklison-Chirou MV, Lim YM, Brandner S, Morrison G, Pollard SM, Bennett CD, Clifford SC, Peet A, Basson MA, Marino S. Inositol treatment inhibits medulloblastoma through suppression of epigenetic-driven metabolic adaptation. Nat Commun 2021; 12:2148. [PMID: 33846320 PMCID: PMC8042111 DOI: 10.1038/s41467-021-22379-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Deregulation of chromatin modifiers plays an essential role in the pathogenesis of medulloblastoma, the most common paediatric malignant brain tumour. Here, we identify a BMI1-dependent sensitivity to deregulation of inositol metabolism in a proportion of medulloblastoma. We demonstrate mTOR pathway activation and metabolic adaptation specifically in medulloblastoma of the molecular subgroup G4 characterised by a BMI1High;CHD7Low signature and show this can be counteracted by IP6 treatment. Finally, we demonstrate that IP6 synergises with cisplatin to enhance its cytotoxicity in vitro and extends survival in a pre-clinical BMI1High;CHD7Low xenograft model.
Collapse
Affiliation(s)
- Sara Badodi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nicola Pomella
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Xinyu Zhang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gabriel Rosser
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - John Whittingham
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Maria Victoria Niklison-Chirou
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy & Pharmacology, University of Bath, Bath, UK
| | - Yau Mun Lim
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sebastian Brandner
- UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Gillian Morrison
- Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Christopher D Bennett
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Women and Children's Hospital, Birmingham, UK
| | - Steven C Clifford
- Newcastle University Centre for Cancer, Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Andrew Peet
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Women and Children's Hospital, Birmingham, UK
| | - M Albert Basson
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
34
|
Ghini V, Senzacqua T, Massai L, Gamberi T, Messori L, Turano P. NMR reveals the metabolic changes induced by auranofin in A2780 cancer cells: evidence for glutathione dysregulation. Dalton Trans 2021; 50:6349-6355. [PMID: 33885689 DOI: 10.1039/d1dt00750e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
NMR metabolomics represents a powerful tool to characterize the cellular effects of drugs and gain detailed insight into their mode of action. Here, we have exploited NMR metabolomics to illustrate the changes in the metabolic profile of A2780 ovarian cancer cells elicited by auranofin (AF), a clinically approved gold drug now repurposed as an anticancer agent. An early and large increase in intracellular glutathione is highlighted as the main effect of the treatment accompanied by small but significant changes in the levels of a few additional metabolites; the general implications of these findings are discussed in the frame of the current mechanistic knowledge of AF.
Collapse
Affiliation(s)
- Veronica Ghini
- Center of Magnetic Resonance, University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Firenze, Italy. and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Tommaso Senzacqua
- Center of Magnetic Resonance, University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Lara Massai
- Department of Chemistry, University of Florence, via della Lastruccia 3-13, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, viale Morgagni 50, Firenze, Italy
| | - Luigi Messori
- Department of Chemistry, University of Florence, via della Lastruccia 3-13, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Paola Turano
- Center of Magnetic Resonance, University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Firenze, Italy. and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Firenze, Italy and Department of Chemistry, University of Florence, via della Lastruccia 3-13, 50019, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
35
|
Weinberg SE, Sun LY, Yang AL, Liao J, Yang GY. Overview of Inositol and Inositol Phosphates on Chemoprevention of Colitis-Induced Carcinogenesis. Molecules 2020; 26:E31. [PMID: 33374769 PMCID: PMC7796135 DOI: 10.3390/molecules26010031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic inflammation is one of the most common and well-recognized risk factors for human cancer, including colon cancer. Inflammatory bowel disease (IBD) is defined as a longstanding idiopathic chronic active inflammatory process in the colon, including ulcerative colitis and Crohn's disease. Importantly, patients with IBD have a significantly increased risk for the development of colorectal carcinoma. Dietary inositol and its phosphates, as well as phospholipid derivatives, are well known to benefit human health in diverse pathologies including cancer prevention. Inositol phosphates including InsP3, InsP6, and other pyrophosphates, play important roles in cellular metabolic and signal transduction pathways involved in the control of cell proliferation, differentiation, RNA export, DNA repair, energy transduction, ATP regeneration, and numerous others. In the review, we highlight the biologic function and health effects of inositol and its phosphates including the nature and sources of these molecules, potential nutritional deficiencies, their biologic metabolism and function, and finally, their role in the prevention of colitis-induced carcinogenesis.
Collapse
Affiliation(s)
- Samuel E. Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA; (S.E.W.); (L.Y.S.); (J.L.)
| | - Le Yu Sun
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA; (S.E.W.); (L.Y.S.); (J.L.)
| | - Allison L. Yang
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 1293 York Avenue, New York, NY 10065, USA;
| | - Jie Liao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA; (S.E.W.); (L.Y.S.); (J.L.)
| | - Guang Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL 60611, USA; (S.E.W.); (L.Y.S.); (J.L.)
| |
Collapse
|
36
|
Vucenik I, Druzijanic A, Druzijanic N. Inositol Hexaphosphate (IP6) and Colon Cancer: From Concepts and First Experiments to Clinical Application. Molecules 2020; 25:E5931. [PMID: 33333775 PMCID: PMC7765177 DOI: 10.3390/molecules25245931] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple human health-beneficial effects have been related to highly phosphorylated inositol hexaphosphate (IP6). This naturally occurring carbohydrate and its parent compound, myo-inositol (Ins), are abundantly present in plants, particularly in certain high-fiber diets, but also in mammalian cells, where they regulate important cellular functions. However, the striking and broad-spectrum anticancer activity of IP6, consistently demonstrated in different experimental models, has been in a spotlight of the scientific community dealing with the nutrition and cancer during the last several decades. First experiments were performed in colon cancer 30 years ago. Since then, it has been shown that IP6 reduces cell proliferation, induces apoptosis and differentiation of malignant cells with reversion to normal phenotype, affecting several critical molecular targets. Enhanced immunity and antioxidant properties also contribute to the tumor cell destruction. Although Ins possesses a modest anticancer potential, the best anticancer results were obtained from the combination of IP6 + Ins. Here we review the first experimental steps in colon cancer, when concepts and hypotheses were put together almost without real knowledge and present clinical studies, that were initiated in colon cancer patients. Available as a dietary supplement, IP6 + Ins has been shown to enhance the anticancer effect of conventional chemotherapy, controls cancer metastases, and improves quality of life in cancer patients. Emerging clinical and still vast amount of experimental data suggest its role either as an adjuvant or as an "alternative" to current chemotherapy for cancer.
Collapse
Affiliation(s)
- Ivana Vucenik
- Department of Medical and Research Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Ana Druzijanic
- Department of Oral Medicine and Periodontology, School of Medicine, Dental Medicine, University of Split, 21000 Split, Croatia;
| | - Nikica Druzijanic
- Department of Surgery, University Hospital Split, School of Medicine, University of Split, 21000 Split, Croatia;
| |
Collapse
|
37
|
Pani A, Giossi R, Menichelli D, Fittipaldo VA, Agnelli F, Inglese E, Romandini A, Roncato R, Pintaudi B, Del Sole F, Scaglione F. Inositol and Non-Alcoholic Fatty Liver Disease: A Systematic Review on Deficiencies and Supplementation. Nutrients 2020; 12:nu12113379. [PMID: 33153126 PMCID: PMC7694137 DOI: 10.3390/nu12113379] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Liver lipid accumulation is a hallmark of non-alcoholic fatty liver disease (NAFLD), broadly associated with insulin resistance. Inositols (INS) are ubiquitous polyols implied in many physiological functions. They are produced endogenously, are present in many foods and in dietary supplements. Alterations in INS metabolism seems to play a role in diseases involving insulin resistance such as diabetes and polycystic ovary syndrome. Given its role in other metabolic syndromes, the hypothesis of an INS role as a supplement in NAFLD is intriguing. We performed a systematic review of the literature to find preclinical and clinical evidence of INS supplementation efficacy in NAFLD patients. We retrieved 10 studies on animal models assessing Myoinosiol or Pinitol deficiency or supplementation and one human randomized controlled trial (RCT). Overall, INS deficiency was associated with increased fatty liver in animals. Conversely, INS supplementation in animal models of fatty liver reduced hepatic triglycerides and cholesterol accumulation and maintained a normal ultrastructural liver histopathology. In the one included RCT, Pinitol supplementation obtained similar results. Pinitol significantly reduced liver fat, post-prandial triglycerides, AST levels, lipid peroxidation increasing glutathione peroxidase activity. These results, despite being limited, indicate the need for further evaluation of INS in NAFLD in larger clinical trials.
Collapse
Affiliation(s)
- Arianna Pani
- Department of Oncology and Hemato-oncology, Postgraduate School of Clinical Pharmacology, University of Milan, 20129 Milan, Italy; (A.P.); (R.G.); (A.R.); (R.R.); (F.S.)
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S., Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Riccardo Giossi
- Department of Oncology and Hemato-oncology, Postgraduate School of Clinical Pharmacology, University of Milan, 20129 Milan, Italy; (A.P.); (R.G.); (A.R.); (R.R.); (F.S.)
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S., Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Danilo Menichelli
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Atherothrombosis Center, I Medical Clinic l, Sapienza University of Rome, 00161 Rome, Italy;
- Correspondence:
| | | | - Francesca Agnelli
- Internal Medicine Department, ASST Great Metropolitan Hospital Niguarda, 20162 Milan, Italy;
| | - Elvira Inglese
- Department of Laboratory Medicine, ASST Great Metropolitan Hospital Niguarda, 20162 Milan, Italy;
| | - Alessandra Romandini
- Department of Oncology and Hemato-oncology, Postgraduate School of Clinical Pharmacology, University of Milan, 20129 Milan, Italy; (A.P.); (R.G.); (A.R.); (R.R.); (F.S.)
| | - Rossana Roncato
- Department of Oncology and Hemato-oncology, Postgraduate School of Clinical Pharmacology, University of Milan, 20129 Milan, Italy; (A.P.); (R.G.); (A.R.); (R.R.); (F.S.)
- Experimental & Clinical Pharmacology Unit, Oncology Referral Center (CRO), IRCCS, 33081 Aviano, Italy
| | - Basilio Pintaudi
- SSD Diabetes Unit, ASST Great Metropolitan Hospital Niguarda, 20162 Milan, Italy;
| | - Francesco Del Sole
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Atherothrombosis Center, I Medical Clinic l, Sapienza University of Rome, 00161 Rome, Italy;
| | - Francesco Scaglione
- Department of Oncology and Hemato-oncology, Postgraduate School of Clinical Pharmacology, University of Milan, 20129 Milan, Italy; (A.P.); (R.G.); (A.R.); (R.R.); (F.S.)
- Department of Laboratory Medicine, ASST Great Metropolitan Hospital Niguarda, 20162 Milan, Italy;
| |
Collapse
|
38
|
Role of Inositols and Inositol Phosphates in Energy Metabolism. Molecules 2020; 25:molecules25215079. [PMID: 33139672 PMCID: PMC7663797 DOI: 10.3390/molecules25215079] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, inositols, especially myo-inositol and inositol hexakisphosphate, also known as phytic acid or IP6, with their biological activities received much attention for their role in multiple health beneficial effects. Although their roles in cancer treatment and prevention have been extensively reported, interestingly, they may also have distinctive properties in energy metabolism and metabolic disorders. We review inositols and inositol phosphate metabolism in mammalian cells to establish their biological activities and highlight their potential roles in energy metabolism. These molecules are known to decrease insulin resistance, increase insulin sensitivity, and have diverse properties with importance from cell signaling to metabolism. Evidence showed that inositol phosphates might enhance the browning of white adipocytes and directly improve insulin sensitivity through adipocytes. In addition, inositol pyrophosphates containing high-energy phosphate bonds are considered in increasing cellular energetics. Despite all recent advances, many aspects of the bioactivity of inositol phosphates are still not clear, especially their effects on insulin resistance and alteration of metabolism, so more research is needed.
Collapse
|
39
|
Minini M, Senni A, Unfer V, Bizzarri M. The Key Role of IP 6K: A Novel Target for Anticancer Treatments? Molecules 2020; 25:molecules25194401. [PMID: 32992691 PMCID: PMC7583815 DOI: 10.3390/molecules25194401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Inositol and its phosphate metabolites play a pivotal role in several biochemical pathways and gene expression regulation: inositol pyrophosphates (PP-IPs) have been increasingly appreciated as key signaling modulators. Fluctuations in their intracellular levels hugely impact the transfer of phosphates and the phosphorylation status of several target proteins. Pharmacological modulation of the proteins associated with PP-IP activities has proved to be beneficial in various pathological settings. IP7 has been extensively studied and found to play a key role in pathways associated with PP-IP activities. Three inositol hexakisphosphate kinase (IP6K) isoforms regulate IP7 synthesis in mammals. Genomic deletion or enzymic inhibition of IP6K1 has been shown to reduce cell invasiveness and migration capacity, protecting against chemical-induced carcinogenesis. IP6K1 could therefore be a useful target in anticancer treatment. Here, we summarize the current understanding that established IP6K1 and the other IP6K isoforms as possible targets for cancer therapy. However, it will be necessary to determine whether pharmacological inhibition of IP6K is safe enough to begin clinical study. The development of safe and selective inhibitors of IP6K isoforms is required to minimize undesirable effects.
Collapse
Affiliation(s)
- Mirko Minini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| | - Alice Senni
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Department of Surgery ‘P. Valdoni’, Sapienza University of Rome, 00161 Rome, Italy
| | - Vittorio Unfer
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- Systems Biology Group Lab, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.M.); (M.B.)
| |
Collapse
|
40
|
Hussain J, Chhabria D, Kirubakaran S. Design, synthesis and biological evaluation of new Myo-inositol derivatives as potential RAS inhibitors. Bioorg Med Chem Lett 2020; 30:127290. [PMID: 32631512 DOI: 10.1016/j.bmcl.2020.127290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
Ras is a small family of GTPases that control numerous cellular functions like cell proliferation, growth, survival, gene expression, and is closely engaged in cancer pathogenesis. The ras-targeted methodology entails a holy grail in oncology. Nevertheless, there are no specific molecules reported targeting the same, although it is a known oncogene for more than three decades. In this study, we have designed and synthesized new phosphate derivatives of Myo-inositol to inhibit the oncogenic KRAS pathway in breast cancer cells, which has been validated by cellular and theoretical studies. The synthesized compound 1b (C2-O-phosphate derivative of Myo-inositol 1,3,5-orthobenzoate) inhibited the downstream signaling pathway of oncogenic KRAS, RAF/MEK/ERK. Furthermore, we also found that this compound induced necrosis/apoptosis and causes cell cycle arrest. This class of molecules may work as a potential inhibitor of breast cancer caused by a mutation in KRAS and its downstream proteins. Though the efficacy of the molecules is in the micromolar scale, they have not been explored previously for RAS inhibition. Impressive preliminary results are presented in this article which could be further explored for its detailed biological studies to get better candidates as RAS inhibitors.
Collapse
Affiliation(s)
- Javeena Hussain
- Discipline of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Dimple Chhabria
- Discipline of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar 382355, India
| | | |
Collapse
|
41
|
Chemoprotective effects of inositol hexaphosphate against cyclophosphamide-induced testicular damage in rats. Sci Rep 2020; 10:12599. [PMID: 32724173 PMCID: PMC7387554 DOI: 10.1038/s41598-020-68608-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/22/2020] [Indexed: 11/08/2022] Open
Abstract
Cyclophosphamide (CP) is commonly used as an anticancer agent but has been associated with high toxicity in several animal organs, including the testes. Inositol hexaphosphate (IP6) is a polyphosphorylated carbohydrate that is present in foods with high fibre contents and has a wide range of essential physiological and pathological activities. Thus, we estimated the defensive effects of IP6 against CP-related testicular toxicity in rats. Sperm counts, motilities, viabilities and abnormalities and levels of testosterone, luteinising hormone and follicle-stimulating hormone were evaluated. Testicle specimens were also processed for histological and biochemical analyses, including determinations of malondialdehyde, nitric oxide, total antioxidant capacity, alkaline phosphatase, acid phosphatase, gamma glutamyl transferase, ß-glucuronidase, c-reactive protein, monocyte chemoattractant protein and leukotriene-4 and in comet assays. CP treatments were associated with deleterious histopathological, biochemical and genetic changes in rat testicles, and these were ameliorated by IP6 supplements in drinking water.
Collapse
|
42
|
Efficacy and Safety of Tracnil™ Administration in Patients with Dermatological Manifestations of PCOS: An Open-Label Single-Arm Study. Dermatol Res Pract 2020; 2020:7019126. [PMID: 32256563 PMCID: PMC7128037 DOI: 10.1155/2020/7019126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/22/2020] [Indexed: 11/30/2022] Open
Abstract
Myo-inositol's role in improving acne by reducing hyperandrogenism has been demonstrated in PCOS patients. Inositol and associated molecules display inhibitory properties against 5-α reductase, COX-2, and lipase enzymes in addition to their antimicrobial and anti-inflammatory properties. However, the role of myo-inositol is not well established in women patients with normal hormone levels but with clinical manifestations of PCOS. In this study, we evaluate the efficacy of Tracnil™, a combination of myo-inositol with folic acid and vitamin D3, in resolving acne in overweight women of menstruation age displaying normal hormone levels. It is a single-arm study conducted at 2 centers including 33 women with acne, hirsutism, and menstrual irregularities. Acne and hirsutism were assessed by manual lesion count, modified Cook's scale, and modified Ferriman–Gallwey hirsutism score (mFGHS). Hormone levels and safety parameters were assessed throughout the study. Our results show that Tracnil™ monotherapy could drastically reduce acne-related lesions of both inflammatory and noninflammatory types as quickly as 8 weeks. Additionally, it improves hirsutism and menstrual irregularities. Adverse reactions were negligible during the whole study period with no drastic side effects reflected by a modulatory effect on hormone levels. Despite the subjects having normal hormone levels, the acne treatment with myo-inositol and vitamin D3 shows improvement in hirsutism and regularization of menstrual cycle. Therefore, we attribute the mechanism of action of Tracnil™ to modulation of receptor sensitivity to sex hormones or other downstream processing events. Tracnil™ may be considered as a first-line treatment for dermatological manifestations of PCOS even in the absence of significant hormonal abnormalities. This treatment is practically implementable in a dermatologists's office practise.
Collapse
|
43
|
Vucenik I. Anticancer Properties of Inositol Hexaphosphate and Inositol: An Overview. J Nutr Sci Vitaminol (Tokyo) 2020; 65:S18-S22. [PMID: 31619624 DOI: 10.3177/jnsv.65.s18] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inositol hexaphosphate (IP6) and its parent compound myo-inositol (Ins) are active compounds from rice and other grains, with a broad spectrum of biological activities important in health and diseases. However, the most striking is the anticancer effect of IP6 and Ins that has been actively investigated during the last decades. A consistent and reproducible anticancer action of IP6 has been demonstrated in various experimental models. IP6 reduces cell proliferation, induces apoptosis and differentiation of malignant cells via PI3K, MAPK, PKC, AP-1 and NF-kappaB. Very few clinical studies in humans and case reports have indicated that IP6 is able to enhance the anticancer effect of conventional chemotherapy, control cancer metastases, and improve quality of life. Reduced burden of chemotherapy side-effects in patients receiving IP6 alone or in combination with Ins has been reported. Because of the highly promising preclinical and emerging clinical data, large clinical trials and further mechanistic studies are warranted.
Collapse
Affiliation(s)
- Ivana Vucenik
- Department of Medical and Research Technology and Department of Pathology, University of Maryland School of Medicine
| |
Collapse
|
44
|
Shen Q, Lu C, Yang H, Ge MX, Xia WX, Kong QP, Li GH, Gu YH. Glycerophosphodiester phosphodiesterase 1 (GDE1) acts as a potential tumor suppressor and is a novel therapeutic target for non-mucin-producing colon adenocarcinoma. PeerJ 2020; 8:e8421. [PMID: 32095326 PMCID: PMC7020812 DOI: 10.7717/peerj.8421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
Colon adenocarcinoma (COAD) represents a major public health issue due to its high incidence and mortality. As different histological subtypes of COAD are related to various survival outcomes and different therapies, finding specific targets and treatments for different subtypes is one of the major demands of individual disease therapy. Interestingly, as these different subtypes show distinct metabolic profiles, it may be possible to find specific targets related to histological typing by targeting COAD metabolism. In this study, the differential expression patterns of metabolism-related genes between COAD (n = 289) and adjacent normal tissue (n = 41) were analyzed by one-way ANOVA. We then used weighted gene co-expression network analysis (WGCNA) to further identify metabolism-related gene connections. To determine the critical genes related to COAD metabolism, we obtained 2,114 significantly differentially expressed genes (DEGs) and 12 modules. Among them, we found the hub module to be significantly associated with histological typing, including non-mucin-producing colon adenocarcinoma and mucin-producing colon adenocarcinoma. Combining survival analysis, we identified glycerophosphodiester phosphodiesterase 1 (GDE1) as the most significant gene associated with histological typing and prognosis. This gene displayed significantly lower expression in COAD compared with normal tissues and was significantly correlated with the prognosis of non-mucin-producing colon adenocarcinoma (p = 0.0017). Taken together, our study showed that GDE1 exhibits considerable potential as a novel therapeutic target for non-mucin-producing colon adenocarcinoma.
Collapse
Affiliation(s)
- Qiu Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chao Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oncology, Jiangyin People's Hospital, Wuxi, Jiangsu, China
| | - Hua Yang
- The Third People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ming-Xia Ge
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wang-Xiao Xia
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yan-Hong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
45
|
Bizzarri M, Giuliani A, Cucina A, Minini M. Redifferentiation therapeutic strategies in cancer. Drug Discov Today 2020; 25:731-738. [PMID: 32027971 DOI: 10.1016/j.drudis.2020.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/10/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
The widely recognized problems of pharmacological strategies based on killing cancer cells demand a rethink of therapeutic approaches. Tumor reversion strategies that aim to shift cancer cells to a healthy differentiated state are a promising alternative. Although many studies have firmly demonstrated the possibility of reverting cancer to a normal differentiated state, we are still unable (with the exception of retinoic acid in a form of leukemia) to revert cancer cells to a stable differentiated healthy state. Here, we review the main biological bases of redifferentiation strategies and provide a description of the most promising research avenues.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; Systems Biology Group Lab, Sapienza University, Rome, Italy.
| | | | - Alessandra Cucina
- Department of Surgery 'Pietro Valdoni', Sapienza University of Rome, 00161 Rome, Italy; Azienda Policlinico Umberto I, 00161 Rome, Italy
| | - Mirko Minini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; Department of Surgery 'Pietro Valdoni', Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
46
|
Vazquez-Levin M, Verón G. Myo‐inositol in health and disease: its impact on semen parameters and male fertility. Andrology 2019; 8:277-298. [DOI: 10.1111/andr.12718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Affiliation(s)
- M.H. Vazquez-Levin
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer Instituto de Biología y Medicina Experimental (IBYME)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐ Fundación IBYME (FIBYME) Ciudad Autónoma de Buenos Aires Argentina
| | - G.L. Verón
- Laboratorio de Estudios de Interacción Celular en Reproducción y Cáncer Instituto de Biología y Medicina Experimental (IBYME)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐ Fundación IBYME (FIBYME) Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
47
|
Regulation of MicroRNA-155 and Its Related Genes Expression by Inositol Hexaphosphate in Colon Cancer Cells. Molecules 2019; 24:molecules24224153. [PMID: 31744065 PMCID: PMC6891702 DOI: 10.3390/molecules24224153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Inositol hexaphosphate (IP6), a natural dietary component, has been found as an antitumor agent by stimulating apoptosis and inhibiting cancer cell proliferation, their migration, and metastasis in diverse cancers including colon cancer. However, molecular mechanisms of its action have not been well understood. In recent years, microRNAs (miRNAs) have been reported to play important roles in a broad range of biologic processes, such as cell growth, proliferation, apoptosis, or autophagy. These small noncoding molecules regulate post-transcriptional expression of targets genes via degradation of transcript or inhibition of protein synthesis. Aberrant expression and/or dysregulation of miRNAs have been characterized during tumor development and progression, thus, they are potential molecular targets for cancer prevention. The aim of this study was to investigate the effect of IP6 on the miRNAs expression profile in Caco-2 colon cancer cells. 84 miRNAs were analyzed in Caco-2 cells treated with 2.5 mM and 5 mM IP6 by the use of PCR (Polymerase Chain Reaction) array. The effect of 5 mM IP6 on selected potential miR-155 targets was determined by real-time (RT)-qPCR and ELISA (quantitative Polymerase Chain Reaction and Enzyme-Linked Immunosorbent Assay )method. The results indicated alteration in the specific 10 miRNA expression in human colon cancer cells following their treatment with 5 mM IP6. It down-regulated 8 miRNAs (miR-155, miR-210, miR-144, miR-194, miR-26b, miR-126, miR-302c, and miR-29a) and up-regulated 2 miRNAs (miR-223 and miR-196b). In silico analysis revealed that FOXO3a, HIF-1α, and ELK3 mRNAs are those of predicted targets of miR-155. IP6 at the concentration of 5 mM markedly induced FOXO3a and HIF-1a genes’ expression at both mRNA and protein level and decreased the amount of ELK3 mRNA as well as protein concentration in comparison to the control. In conclusion, the present study indicates that one of the mechanisms of antitumor potential of IP6 is down-regulation of the miR-155 expression in human colon cancer cells. Moreover, the expression of genes that are targeted by miRNA are also modulated by IP6.
Collapse
|
48
|
Eylem CC, Yilmaz M, Derkus B, Nemutlu E, Camci CB, Yilmaz E, Turkoglu MA, Aytac B, Ozyurt N, Emregul E. Untargeted multi-omic analysis of colorectal cancer-specific exosomes reveals joint pathways of colorectal cancer in both clinical samples and cell culture. Cancer Lett 2019; 469:186-194. [PMID: 31669517 DOI: 10.1016/j.canlet.2019.10.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022]
Abstract
Exosomes are naturally secreted nano-vesicles consisting of biochemical molecules including RNAs, metabolites, lipids, and proteins, that emerge as diagnostic tools and disease-specific reporters. Here we offer a systematic and integrative approach for the simultaneous analysis of altered molecules namely metabolites, lipids, and proteins. These components tend to augment the discovery of low abundance signature components, and assist in explanation of molecular basis of colorectal cancer (CRC). In order to investigate CRC-derived exosomes, we selected mi-R19a, miR-21, miR-92a, and miR-1246 positive exosomes for downstream experiments. The overall multi-omic changes were investigated comparatively in cell culture and serum samples. Following a systematic multi-omic study, 37 (cell culture) and 31 (serum) metabolites; 130 (cell culture) and 56 (serum) lipids; 9 (cell culture) and 13 (serum) proteins were seen to be differentially expressed (p < 0.05), enabling discrimination between CRC and control. By using these enriched components, we demonstrated that the joint pathways mainly involving fatty acid and amino acid metabolism related pathways changed in CRC significantly. We conclude that this study increases our understanding of molecular basis of CRC, and provides potential exosomal biomarkers for the non-invasive detection, and discrimination of CRC.
Collapse
Affiliation(s)
- Cemil Can Eylem
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, 06230, Ankara, Turkey
| | - Mehmet Yilmaz
- Department of Chemistry, Science Faculty, Ankara University, 06560, Ankara, Turkey
| | - Burak Derkus
- Biomedical Engineering Department, Faculty of Engineering, Eskisehir Osmangazi University, 26040, Eskisehir, Turkey.
| | - Emirhan Nemutlu
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, 06230, Ankara, Turkey
| | - Can Berk Camci
- Department of Chemistry, Science Faculty, Ankara University, 06560, Ankara, Turkey
| | - Erkan Yilmaz
- Biotechnology Institute, Ankara University, 06560, Ankara, Turkey
| | - Mehmet Akif Turkoglu
- Department of General Surgery, Faculty of Medicine, Gazi University, 06560, Ankara, Turkey
| | - Bulent Aytac
- Department of General Surgery, Faculty of Medicine, Gazi University, 06560, Ankara, Turkey
| | - Neslihan Ozyurt
- Medical Oncology, School of Medicine, Ankara University, 06590, Ankara, Turkey
| | - Emel Emregul
- Department of Chemistry, Science Faculty, Ankara University, 06560, Ankara, Turkey
| |
Collapse
|
49
|
Predicting drug-target interaction network using deep learning model. Comput Biol Chem 2019; 80:90-101. [PMID: 30939415 DOI: 10.1016/j.compbiolchem.2019.03.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/23/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Traditional methods for drug discovery are time-consuming and expensive, so efforts are being made to repurpose existing drugs. To find new ways for drug repurposing, many computational approaches have been proposed to predict drug-target interactions (DTIs). However, due to the high-dimensional nature of the data sets extracted from drugs and targets, traditional machine learning approaches, such as logistic regression analysis, cannot analyze these data sets efficiently. To overcome this issue, we propose LASSO (Least absolute shrinkage and selection operator)-based regularized linear classification models and a LASSO-DNN (Deep Neural Network) model based on LASSO feature selection to predict DTIs. These methods are demonstrated for repurposing drugs for breast cancer treatment. METHODS We collected drug descriptors, protein sequence data from Drugbank and protein domain information from NCBI. Validated DTIs were downloaded from Drugbank. A new similarity-based approach was developed to build the negative DTIs. We proposed multiple LASSO models to integrate different combinations of feature sets to explore the prediction power and predict DTIs. Furthermore, building on the features extracted from the LASSO models with the best performance, we also introduced a LASSO-DNN model to predict DTIs. The performance of our newly proposed DNN model (LASSO-DNN) was compared with the LASSO, standard logistic (SLG) regression, support vector machine (SVM), and standard DNN models. RESULTS Experimental results showed that the LASSO-DNN over performed the SLG, LASSO, SVM and standard DNN models. In particular, the LASSO models with protein tripeptide composition (TC) features and domain features were superior to those that contained other protein information, which may imply that TC and domain information could be better representations of proteins. Furthermore, we showed that the top ranked DTIs predicted using the LASSO-DNN model can potentially be used for repurposing existing drugs for breast cancer based on risk gene information. CONCLUSIONS In summary, we demonstrated that the efficient representations of drug and target features are key for building learning models for predicting DTIs. The disease-associated risk genes identified from large-scale genomic studies are the potential drug targets, which can be used for drug repurposing.
Collapse
|
50
|
Navy Beans Impact the Stool Metabolome and Metabolic Pathways for Colon Health in Cancer Survivors. Nutrients 2018; 11:nu11010028. [PMID: 30583518 PMCID: PMC6356708 DOI: 10.3390/nu11010028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the United States and emerging evidence supports that increased consumption of legumes, such as navy beans, can reduce risk. Navy bean consumption was previously shown to modulate host and microbiome metabolism, and this investigation was performed to assess the impact on the human stool metabolome, which includes the presence of navy bean metabolites. This 4-week, randomized-controlled trial with overweight and obese CRC survivors involved consumption of 1 meal and 1 snack daily. The intervention contained 35 g of cooked navy bean or macronutrient matched meals and snacks with 0 g of navy beans for the control group (n = 18). There were 30 statistically significant metabolite differences in the stool of participants that consumed navy bean at day 28 compared to the participants’ baseline (p ≤ 0.05) and 26 significantly different metabolites when compared to the control group. Of the 560 total metabolites identified from the cooked navy beans, there were 237 possible navy bean-derived metabolites that were identified in the stool of participants consuming navy beans, such as N-methylpipecolate, 2-aminoadipate, piperidine, and vanillate. The microbial metabolism of amino acids and fatty acids were also identified in stool after 4 weeks of navy bean intake including cadaverine, hydantoin-5 propionic acid, 4-hydroxyphenylacetate, and caprylate. The stool relative abundance of ophthalmate increased 5.25-fold for navy bean consumers that can indicate glutathione regulation, and involving cancer control mechanisms such as detoxification of xenobiotics, antioxidant defense, proliferation, and apoptosis. Metabolic pathways involving lysine, and phytochemicals were also modulated by navy bean intake in CRC survivors. These metabolites and metabolic pathways represent an acute response to increased navy bean intake, which merit further investigation for improving colonic health after long-term consumption.
Collapse
|