1
|
Ononiwu CP, Joshua PE, Amah CC, Asomadu RO, Okorigwe EM, Nnemolisa CS, Ezeorba TPC, Nwanelo VO, Iyidiegwu FC, Duru JO, Okeke PN, Adiele OB. Cleistopholis patens root bark extract exerts cardioprotective effect against doxorubicin-induced myocardial toxicity in rats. Lab Anim Res 2024; 40:39. [PMID: 39551811 PMCID: PMC11572060 DOI: 10.1186/s42826-024-00225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/17/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Myocardial Infarction still persists as the most prevalent cardiovascular disease and is a top cause of morbidity and mortality in doxorubicin treated cancer patients. This study evaluated the prophylactic effect of the ethanol root bark extract of Cleistopholis patens (ERBECP) against doxorubicin-induced myocardial infarction in wistar rats. Extraction, preliminary phytochemical analysis, acute toxicity study and body weight (b.w.) of ERBECP were achieved using standard methods. Phyto-constituents in ERBECP were indentified using Gas Chromatography-Mass Spectrometry (GC-MS) technique. Thirty (30) male albino Wistar rats of average b.w. ranging between 100 and 130 g were divided into six groups of five rats each. Groups I, II and III served as normal, doxorubicin (DOX) and standard (Vasoprin 150 mg/kg b.w) controls respectively, while groups IV, V and VI were orally pre-treated with the extract (200, 400 and 600 mg/kgb.w) for two weeks prior to intraperitoneal induction of cardiotoxicity with DOX (20 mg/kg bw) on day 14. RESULTS Disturbances in serum cardiac function bio-markers such as; Cardiac Troponin-I (CTnI), Creatine Kinase (CK), Lactate Dehydrogenase (LDH), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT). Lipid profile markers such as; Total cholesterol (TC), Triacylglycerol (TAG), Low Density Lipoprotein (LDL), High Density Lipoprotein (HDL). Oxidative stress markers such as; Malondialdehyde (MDA), Superoxide Dismutase (SOD), Catalase (CAT), Glutathione (GSH) confirmed the induction of myocardial infarction. Histological assessment of heart tissues was performed to validate biochemical results. The GC-MS analysis of ERBECP identified a total of 69 compounds. Safety profile of the aqueous extract was safe for the animals up to the highest dose of 5000 mg/kg b.w. Pre-treatment of DOX group with ERBECP could significantly increase the b.w. compared to the DOX-treated group during the experimental period of 2 weeks. There were significant (p < 0.05) alterations in the levels of CTnI, CK, LDH, AST, ALT and lipid profile indices in the DOX control rats. Also, significant (p < 0.05) increase was observed in MDA and decrease in SOD, CAT and GSH in the DOX control rats. However, administration of the extract significantly (p < 0.05) normalized these alterations and reversed the architectural changes in the heart. The 69 compounds were screened against the target protein (CBR1); we identified seven hits based on the docking score and interactions with the active site residues. All the C. patens constituents had MW (g/mol) less than 500, HBA < 10 and HBD not more than 5. Apart, 9-Octadecenoic acid (Z)-, 2,3-dihydroxy propyl ester and Estra-1,3,5(10)-trien-17. beta. -ol, all the constituents had LD50 lower than 2000 mg/kg. CONCLUSIONS The findings reveals ERBECP demonstrated promising potential and can be exploited in the development novel cardiac therapeutic agents.
Collapse
Affiliation(s)
- Chidinma Pamela Ononiwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Parker Elijah Joshua
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Christian Chijioke Amah
- Department of Biochemistry, Faculty of Natural and Applied Sciences, State University of Medical and Applied Sciences Igbo-Eno, Nsukka, Enugu State, Nigeria.
| | - Rita Onyekachukwu Asomadu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Ekezie Matthew Okorigwe
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | | | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
- Department of Molecular Biotechnology, School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | | | - Favour Chinagorom Iyidiegwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Justin Onuawuchi Duru
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Peace Nkiruka Okeke
- Department of Biotechnology, School of Medicine, 3900 University Blvd., Tyler, TX, 75799, USA
| | - Onyinyechi Becky Adiele
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| |
Collapse
|
2
|
Li K, Chen W, Ma L, Yan L, Wang B. Approaches for reducing chemo/radiation-induced cardiotoxicity by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 244:117264. [PMID: 37776941 DOI: 10.1016/j.envres.2023.117264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Nanoparticles are fascinating and encouraging carriers for cancer treatment due to their extraordinary properties and potential applications in targeted drug delivery, treatment, and diagnosis. Experimental studies including in vitro and in vivo examinations show that nanoparticles can cause a revolution in different aspects of cancer therapy. Normal tissue toxicity and early and late consequences are the major limitations of cancer therapy by radiotherapy and chemotherapy. However, the delivery of drugs into tumors or reducing the accumulation of drugs in normal tissues can permit a more satisfactory response of malignancies to therapy with more inferior side effects. Cardiac toxicity is one of the major problems for chemotherapy and radiotherapy. Therefore, several experimental studies have been performed to minimize the degenerative impacts of cancer treatment on the heart and also enhance the influences of radiotherapy and chemotherapy agents in cancers. This review article emphasizes the benefits of nanoparticle-based drug delivery techniques, including minimizing the exposure of the heart to anticancer drugs, enhancing the accumulation of drugs in cancers, and expanding the effectiveness of radiotherapy. The article also discusses the challenges and problems accompanied with nanoparticle-based drug delivery techniques such as toxicity, which need to be addressed through further research. Moreover, the article emphasizes the importance of developing safe and effective nanoparticle-based therapies that can be translated into clinical practice.
Collapse
Affiliation(s)
- Ketao Li
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing, 400051, China
| | - Liping Ma
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Laixing Yan
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Bing Wang
- Department of Cardiology, Zouping People's Hospital, Zouping, shandong, 256299, China.
| |
Collapse
|
3
|
Ibrahim AA, Nsairat H, Al-Sulaibi M, El-Tanani M, Jaber AM, Lafi Z, Barakat R, Abuarqoub DA, Mahmoud IS, Obare SO, Aljabali AAA, Alkilany AM, Alshaer W. Doxorubicin conjugates: a practical approach for its cardiotoxicity alleviation. Expert Opin Drug Deliv 2024; 21:399-422. [PMID: 38623735 DOI: 10.1080/17425247.2024.2343882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/29/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Doxorubicin (DOX) emerges as a cornerstone in the arsenal of potent chemotherapeutic agents. Yet, the clinical deployment of DOX is tarnished by its proclivity to induce severe cardiotoxic effects, culminating in heart failure and other consequential morbidities. In response, a panoply of strategies has undergone rigorous exploration over recent decades, all aimed at attenuating DOX's cardiotoxic impact. The advent of encapsulating DOX within lipidic or polymeric nanocarriers has yielded a dual triumph, augmenting DOX's therapeutic efficacy while mitigating its deleterious side effects. AREAS COVERED Recent strides have spotlighted the emergence of DOX conjugates as particularly auspicious avenues for ameliorating DOX-induced cardiotoxicity. These conjugates entail the fusion of DOX through physical or chemical bonds with diminutive natural or synthetic moieties, polymers, biomolecules, and nanoparticles. This spectrum encompasses interventions that impinge upon DOX's cardiotoxic mechanism, modulate cellular uptake and localization, confer antioxidative properties, or refine cellular targeting. EXPERT OPINION The endorsement of DOX conjugates as a compelling stratagem to mitigate DOX-induced cardiotoxicity resounds from this exegesis, amplifying safety margins and the therapeutic profile of this venerated chemotherapeutic agent. Within this ambit, DOX conjugates stand as a beacon of promise in the perpetual pursuit of refining chemotherapy-induced cardiac compromise.
Collapse
Affiliation(s)
- Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mazen Al-Sulaibi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Rahmeh Barakat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Duaa Azmi Abuarqoub
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Ismail Sami Mahmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Sherine O Obare
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | | | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Li L, Vijayalakshmi A. Protective effect of Pueraria lobata leaves on doxorubicin-induced myocardial infarction in experimental Wistar rats. Biotechnol Appl Biochem 2023; 70:1641-1651. [PMID: 36950801 DOI: 10.1002/bab.2462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/28/2023] [Accepted: 03/12/2023] [Indexed: 03/24/2023]
Abstract
The present study intended to explore the preventive effects of Pueraria lobata leaves against doxorubicin (DOX)-induced myocardial infarction (MI) in Wistar rats. The rats were separated into four groups, with each group containing six rats. Group I control rats; group II received DOX-alone in six equivalent injections for 2 weeks; group III received DOX as abovementioned with P. lobata oral administration for 2 weeks; group IV received P. lobata alone for 2 weeks. At the end of the experiment, postcervical dislocation and MI induced by DOX were determined on the basis of the variations in the animal body and heart weight and further instabilities in cardiac marker enzymes aspartate transaminase, lactate dehydrogenase, creatine kinase, creatine kinase-myoglobin binding, and cardiac troponin I in the serum. At the same time, for group III animals, which were exposed to P. lobata, all the above-denoted marker levels were maintained. Levels of some crucial heart-binding proteins like heart fatty acid binding protein, monocyte chemoattractant protein-1, and transforming growth factor beta were elevated in DOX-alone treated rats. Additionally, group III animals treated with P. lobata showed some preventive downregulated expressions of these binding proteins. Histopathological observations also revealed the preventive effect of P. lobata. Ultimately proteins tangled in the phosphoinositide 3-kinase/protein kinase B pathway were studied by Western blot. P. lobata treatment downregulated the inflammatory markers. The findings suggest that P. lobata exhibits cardioprotective effect on MI.
Collapse
Affiliation(s)
- Lei Li
- Department of Cardiovascular, The First People's Hospital of Xianyang, Xianyang, Shaanxi, P. R. China
| | - Annamalai Vijayalakshmi
- Department of Biochemistry, Rabiammal Ahamed Maideen College for Women, Thiruvarur, Tamil Nadu, India
| |
Collapse
|
5
|
Wang T, Wu S, Ibrahim IAA, Fan L. Cardioprotective Role of Swertiamarin, a Plant Glycoside Against Experimentally Induced Myocardial Infarction via Antioxidant and Anti-inflammatory Functions. Appl Biochem Biotechnol 2023; 195:5394-5408. [PMID: 35960488 DOI: 10.1007/s12010-022-04094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 12/07/2022]
Abstract
The study examined the protective effects of swertiamarin on rats with experimentally induced myocardial infarction. Three to six week-old male albino Wistar rats were used in this study and experimental myocardial infarction (MI) was induced using isoproterenol. Our results showed that swertiamarin restored the alteration in heart weight, body weight, and heart weight/tibia length ratio of MI-induced rats to basal levels significantly (p < 0.05). Swertiamarin significantly (p < 0.05) restored the levels of cardiac pathophysiological marker creatine kinase (CKMB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine transaminase (ALT), and cardiac troponin I (cTn-1) to near normalcy in MI-induced rats. Levels of oxidative stress markers malondialdehyde (MDA), protein carbonyls (PC), and levels of Vitamin C and Vitamin E were significantly (p < 0.05) reverted to near basal levels in MI-induced rats by swertiamarin. Levels of the antioxidant glutathione (GSH) and antioxidant enzymes which include superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-s-transferase (GST), glutathione reductase (GR), and plasma total antioxidant capacity (TAC) were (p < 0.05) brought to near normalcy in MI-induced rats by swertiamarin. Levels of sodium (Na), potassium (k), and calcium (Ca) ATPases were significantly (p < 0.05) restored to near normalcy in MI-induced rats by swertiamarin. Status of pro-inflammatory cytokines including tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and histological aberrations were also significantly (p < 0.05) restored to near normalcy in MI-induced rats by swertiamarin. Together, our results concluded that swertiamarin exerts significant cardioprotective functions in experimental MI in rats.
Collapse
Affiliation(s)
- Tao Wang
- Department of Cardiology, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, Shandong, China
| | - Shubin Wu
- Department of Cardiology, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, Shandong, China
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Leilei Fan
- Department of Cardiology, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, Shandong, China.
| |
Collapse
|
6
|
Monteiro-Alfredo T, dos Santos JM, Antunes KÁ, Cunha J, da Silva Baldivia D, Pires AS, Marques I, Abrantes AM, Botelho MF, Monteiro L, Gonçalves AC, Botelho WH, Paula de Araújo Boleti A, Cabral C, Oliveira PJ, Lucas dos Santos E, Matafome P, de Picoli Souza K. Acrocomia aculeata associated with doxorubicin: cardioprotection and anticancer activity. Front Pharmacol 2023; 14:1223933. [PMID: 37654604 PMCID: PMC10466431 DOI: 10.3389/fphar.2023.1223933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic agent widely used in the clinic, whose side effects include cardiotoxicity, associated with decreased antioxidant defenses and increased oxidative stress. The association of Dox with natural antioxidants can extend its use if not interfering with its pharmacological potential. In this study, we aimed to understand the effects and mechanisms of the aqueous extract of Acrocomia aculeata leaves (EA-Aa) in cancer cells and the co-treatment with Dox, in in vitro and in vivo models. It was found that EA-Aa showed a relevant decrease in the viability of cancer cells (K562 and MCF-7) and increased apoptosis and death. The Dox cytotoxic effect in co-treatment with EA-Aa was increased in cancer cells. The therapeutic association also promoted a change in cell death, leading to a higher rate of apoptosis compared to the Dox group, which induced necrosis. In addition, in non-cancer cells, EA-Aa enhanced red blood cell (RBC) redox state with lower hemolysis and malondialdehyde (MDA) content and had no in vitro nor in vivo toxicity. Furthermore, EA-Aa showed antioxidant protection against Dox-induced cytotoxicity in H9c2 cells (cardiomyoblast), partially mediated by the NRF2 pathway. In vivo, EA-Aa treatment showed a relevant decrease in MDA levels in the heart, kidney, and brain, evaluated in C57Bl/6 mice induced to cardiotoxicity by Dox. Together, our results proved the effectiveness of EA-Aa in potentiating Dox anticancer effects, with antioxidant and cardioprotective activity, suggesting EA-Aa as a potential Dox pharmacological adjuvant.
Collapse
Affiliation(s)
- Tamaeh Monteiro-Alfredo
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Jéssica Maurino dos Santos
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Kátia Ávila Antunes
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Janielle Cunha
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Debora da Silva Baldivia
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Ana Salomé Pires
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Inês Marques
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Ana Margarida Abrantes
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Maria Filomena Botelho
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Lúcia Monteiro
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
| | - Wellington Henrique Botelho
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Ana Paula de Araújo Boleti
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Célia Cabral
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Paulo J. Oliveira
- CNC—Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Paulo Matafome
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| |
Collapse
|
7
|
Chen D, Wang H, Cai X. Curcumin interferes with sepsis-induced cardiomyocyte apoptosis via TLR1 inhibition. Rev Port Cardiol 2023; 42:209-221. [PMID: 36702348 DOI: 10.1016/j.repc.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Sepsis-induced cardiomyopathy is the leading cause of death in sepsis and is characterized by reversible myocardial depression. However, the specific mechanisms responsible for myocardial injury in sepsis are not known. The present study used bioinformatic analysis to explore the possible mechanisms of sepsis-induced myocardial injury and the therapeutic potential of curcumin. METHODS The GSE125042 microarray gene expression matrix was obtained from the Gene Expression Omnibus database, which includes 10 septic cardiomyocyte samples from cecum ligation perforation constructs and 10 sham-operated groups cardiomyocyte samples. Background correction and matrix data normalization were performed using the robust multiarray average algorithm. Differentially expressed genes (DEGs) screening was performed using the Limma R package expression matrix, and whole gene analysis was performed using the weighted gene co-expression network analysis R package to construct gene networks and identify modules. Enrichment analysis and gene set enrichment analysis was performed on the genes to be selected. Construct cellular and animal models of myocardial injury in sepsis were assessed and the effects of curcumin on a rat or cardiac myocytes were observed. RESULTS A total of 2876 DEGs were screened based on the GSE125042 chip, of which 1424 genes were upregulated and 1452 genes were down regulated. WGCNA analysis of the whole genes was also performed and a total of 20 gene modules were generated. Among them, the selected TLR1 gene was present in the most strongly correlated Brown module. Enrichment analysis of the upregulated DEGs with the Brown module showed that they were significantly enriched in biological processes related to ribosomal protein complex generation, cellular components related to phagocytic vesicles and molecular functions related to Toll-like receptor binding, affecting cardiomyocyte survival as a target for molecular intervention in septic cardiomyopathy. Animal experiments showed that curcumin reduced inflammation levels, improved cardiac function and increased survival in rats with septic myocardial injury. Cellular experiments showed that curcumin increased the survival rate of lipopolysaccharide-treated cardiomyocytes and down regulated TLR1 expression and inhibited NF-κB phosphorylation in cells in a dose-dependent manner. Molecular docking analysis revealed that curcumin interacted with TLR1 by hydrogen bonding and could be stably bound to inhibit the biological function of TLR1. CONCLUSION Our study shows that curcumin attenuates myocardial injury in sepsis by inhibiting TLR1 expression, which provides a molecular theoretical basis for clinical treatment.
Collapse
Affiliation(s)
- Dandan Chen
- Department of Critical Care Medicine, Haikou Hospital, Xiangya Medical College, Central South University, China
| | - Hongwu Wang
- Department of Critical Care Medicine, Haikou Hospital, Xiangya Medical College, Central South University, China
| | - Xingjun Cai
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, China.
| |
Collapse
|
8
|
Granieri MC, Rocca C, De Bartolo A, Nettore IC, Rago V, Romeo N, Ceramella J, Mariconda A, Macchia PE, Ungaro P, Sinicropi MS, Angelone T. Quercetin and Its Derivative Counteract Palmitate-Dependent Lipotoxicity by Inhibiting Oxidative Stress and Inflammation in Cardiomyocytes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3492. [PMID: 36834186 PMCID: PMC9958705 DOI: 10.3390/ijerph20043492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Cardiac lipotoxicity plays an important role in the pathogenesis of obesity-related cardiovascular disease. The flavonoid quercetin (QUE), a nutraceutical compound that is abundant in the "Mediterranean diet", has been shown to be a potential therapeutic agent in cardiac and metabolic diseases. Here, we investigated the beneficial role of QUE and its derivative Q2, which demonstrates improved bioavailability and chemical stability, in cardiac lipotoxicity. To this end, H9c2 cardiomyocytes were pre-treated with QUE or Q2 and then exposed to palmitate (PA) to recapitulate the cardiac lipotoxicity occurring in obesity. Our results showed that both QUE and Q2 significantly attenuated PA-dependent cell death, although QUE was effective at a lower concentration (50 nM) when compared with Q2 (250 nM). QUE decreased the release of lactate dehydrogenase (LDH), an important indicator of cytotoxicity, and the accumulation of intracellular lipid droplets triggered by PA. On the other hand, QUE protected cardiomyocytes from PA-induced oxidative stress by counteracting the formation of malondialdehyde (MDA) and protein carbonyl groups (which are indicators of lipid peroxidation and protein oxidation, respectively) and intracellular ROS generation, and by improving the enzymatic activities of catalase and superoxide dismutase (SOD). Pre-treatment with QUE also significantly attenuated the inflammatory response induced by PA by reducing the release of key proinflammatory cytokines (IL-1β and TNF-α). Similar to QUE, Q2 (250 nM) also significantly counteracted the PA-provoked increase in intracellular lipid droplets, LDH, and MDA, improving SOD activity and decreasing the release of IL-1β and TNF-α. These results suggest that QUE and Q2 could be considered potential therapeutics for the treatment of the cardiac lipotoxicity that occurs in obesity and metabolic diseases.
Collapse
Affiliation(s)
- Maria Concetta Granieri
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Immacolata Cristina Nettore
- Dipartimento di Medicina Clinica e Chirurgia, Scuola di Medicina, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Naomi Romeo
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Paolo Emidio Macchia
- Dipartimento di Medicina Clinica e Chirurgia, Scuola di Medicina, Università degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Paola Ungaro
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale (IEOS) “Gaetano Salvatore”, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, 87036 Rende, Italy
- National Institute of Cardiovascular Research (INRC), 40126 Bologna, Italy
| |
Collapse
|
9
|
Humeniuk E, Adamczuk G, Kubik J, Adamczuk K, Józefczyk A, Korga-Plewko A. Cardioprotective Effect of Centaurea castriferrei Borbás & Waisb Extract against Doxorubicin-Induced Cardiotoxicity in H9c2 Cells. Molecules 2023; 28:420. [PMID: 36615632 PMCID: PMC9824364 DOI: 10.3390/molecules28010420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Doxorubicin (DOX) is one of the most used chemotherapeutic agents in the treatment of various types of cancer. However, a continual problem that is associated with its application in therapeutic regimens is the development of dose-dependent cardiotoxicity. The progression of this process is associated with a range of different mechanisms, but especially with the high level of oxidative stress. The aim of the study was to evaluate the effects of the water and methanol-water extracts from the plant Centaurea castriferrei (CAS) obtained by the ultrasound-assisted extraction method on the DOX-induced cardiotoxicity in the rat embryonic cardiomyocyte cell line H9c2. The H9c2 cells were treated for 48 h with the DOX and water or methanol-water extracts, or a combination (DOX + CAS H2O/CAS MeOH). The MTT assay, cell cycle analysis, and apoptosis detection revealed that both the tested extracts significantly abolished the cytotoxic effect caused by DOX. Moreover, the detection of oxidative stress by the CellROX reagent, the evaluation of the number of AP sites, and the expressions of the genes related to the oxidative stress defense showed substantial reductions in the oxidative stress levels in the H9c2 cells treated with the combination of DOX and CAS H2O/CAS MeOH compared with the DOX administered alone. The tested extracts did not affect the cytotoxic effect of DOX on the MCF-7 breast cancer cell line. The obtained results constitute the basis for further research in the context of the application of C. castriferrei extracts as adjuvants in the therapy regiments of cancer patients treated with DOX.
Collapse
Affiliation(s)
- Ewelina Humeniuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewski Street, 20-093 Lublin, Poland
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewski Street, 20-093 Lublin, Poland
| | - Joanna Kubik
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewski Street, 20-093 Lublin, Poland
| | - Kamila Adamczuk
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, 20-090 Lublin, Poland
| | - Aleksandra Józefczyk
- Department of Pharmacognosy with Medicinal Plant Laboratory, Faculty of Pharmacy, Medical University of Lublin, 1 Chodzki Street, 20-090 Lublin, Poland
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewski Street, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Akter R, Rahman MA, Rafi MKJ, Siddique TA, Bithy FY, Akter S, Nisa FY, Khan MAN, Sultana F. The Protective Effect of Lasia spinosa (Linn.) Dissipates Chemical-Induced Cardiotoxicity in an Animal Model. Cardiovasc Toxicol 2023; 23:32-45. [PMID: 36626070 DOI: 10.1007/s12012-022-09775-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
Lasia spinosa (L.) Thwaites is a medicinal plant of enormous traditional use with insufficient scientific evidence. This research screened the antioxidative effect of L. spinosa extracts by measuring the total phenolic content, total flavonoid content, DPPH free radical scavenging activity, ABTS scavenging activity, Iron-chelating activity, and Ferric reducing power followed by an evaluation of in vivo cardioprotective effect in doxorubicin-induced Wistar Albino rats. Phytochemical characterization was made by Gas Chromatography-Mass Spectroscopic analysis. L. spinosa showed an excellent antioxidative effect while methanol leaf extract (LSM) was found to be more potent than ethyl acetate leaf extract (LSE) in scavenging the free radicals. Intraperitoneal injection of doxorubicin caused a significant (P < 0.001) increase in lactate dehydrogenase (LDH), creatine kinase (CK-MB), C-reactive protein (CRP), and Cardiac troponin I. Pretreatment with orally administrated (LSM100 and LSM200 mg/kg b.w.) daily for 10 days showed a decrease in the cardiac markers, lipid profiles, especially triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and an increase of high-density lipoprotein (HDL) compared to the disease control group. LSM200 was found to significantly (P < 0.05) decrease the levels of CK-MB and LDH. It also restored TC, TG, and LDL levels compared to the doxorubicin-induced cardiac control group. The protective role of LSM was further confirmed by histopathological examination. This study thus demonstrates that L. spinosa methanol extract could be approached as an alternative supplement for cardiotoxicity, especially in the chemical-induced toxicity of cardiac tissues.
Collapse
Affiliation(s)
- Rasheda Akter
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md Atiar Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh.
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| | - Md Khalid Juhani Rafi
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Tanvir Ahmed Siddique
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Farhana Yesmin Bithy
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Sumaiya Akter
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Fatema Yasmin Nisa
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md Asif Nadim Khan
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Farjana Sultana
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, 4331, Bangladesh
| |
Collapse
|
11
|
Malik A, Khan A, Mahmood Q, Nawaz Marth MM, Riaz M, Tabassum T, Rasool G, Rehman MFU, Batool AI, Kanwal F, Cai R. In Vivo and In Silico Assessment of the Cardioprotective Effect of Thymus linearis Extract against Ischemic Myocardial Injury. ACS OMEGA 2022; 7:43635-43646. [PMID: 36506215 PMCID: PMC9730472 DOI: 10.1021/acsomega.2c04544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Myocardial infarction is irreversible cardiac tissue necrosis due to the blockage of one of the arteries. It leads to an insufficient supply of oxygen and nutrients, creating muscular damage in the affected regions. In the present study, aqueous methanolic extract of Thymus linearis was prepared to evaluate its activity against ischemic stress due to free radical production. GC-MS analysis was performed to evaluate the phytochemicals present in the plant extract. A chemical database of 30 compounds was virtually screened against NF-κB, COX2, and MCL, where γ-cadinene, β-bisabolene, and β-caryophyllene were found to be the best interacting ligands. To systematically assess cardioprotective activity against ischemia, isoproterenol and doxorubicin were used to induce cardiotoxicity in rats. The prepared extract of T. linearis (100 mg/kg) was given daily to animals for 21 days before injecting isoproterenol (85 mg/kg of animal weight) subcutaneously in two doses on the 20th and 21st days. In the case of doxorubicin, cardiotoxicity was induced in rats by a single injection (15 mg/kg) on the seventh day, and the extract was given to animals for 10 consecutive days. Animals' blood samples were used to monitor cardiac, liver, and other marker enzymes, including LDH, CPK, and AST. Superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were also assayed in blood plasma to determine the degree of oxidative stress. H&E staining was performed to evaluate cardioprotection by plant extract, showing significant preventive effects in reducing cardiac injury induced by isoproterenol and doxorubicin.
Collapse
Affiliation(s)
- Abdul Malik
- Department
of Pharmacology, College of Pharmacy, University
of Sargodha, Sargodha 40100, Pakistan
| | - Ajmal Khan
- Department
of Pharmacology, College of Pharmacy, University
of Sargodha, Sargodha 40100, Pakistan
| | - Qaisar Mahmood
- Department
of Pharmacology, College of Pharmacy, University
of Sargodha, Sargodha 40100, Pakistan
- Mukabbir
College of Pharmacy, Gujrat 50700, Pakistan
| | | | - Muhammad Riaz
- Department
of Allied Health Sciences, University of
Sargodha, Sargodha 40100, Pakistan
| | - Tahira Tabassum
- Department
of Pathology, Sargodha Medical College, Sargodha 40100, Pakistan
| | - Ghulam Rasool
- Department
of Allied Health Sciences, University of
Sargodha, Sargodha 40100, Pakistan
| | | | - Aima Iram Batool
- Department
of Zoology, University of Sargodha, Sargodha 40100, Pakistan
| | - Fariha Kanwal
- Department
of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Rujie Cai
- Shanghai
Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
12
|
Lalsangpuii F, Rokhum SL, Nghakliana F, Fakawmi L, Ruatpuia JVL, Laltlanmawii E, Lalfakzuala R, Siama Z. Green Synthesis of Silver Nanoparticles Using Spilanthes acmella Leaf Extract and its Antioxidant-Mediated Ameliorative Activity against Doxorubicin-Induced Toxicity in Dalton's Lymphoma Ascites (DLA)-Bearing Mice. ACS OMEGA 2022; 7:44346-44359. [PMID: 36506147 PMCID: PMC9730486 DOI: 10.1021/acsomega.2c05970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Green synthesis of metal nanoparticles is a rapidly growing research area in the field of nanotechnology because of their biomedical applications. This study describes the synthesis of silver nanoparticles (AgNPs) using Spilanthes acmella leaf extract and its ameliorative effects against doxorubicin-induced toxicity. The formation of AgNPs was confirmed by a ultraviolet-visible (UV-vis) spectrum that revealed an absorption band at 430 nm. A shift in the absorption bands in Fourier-transform infrared spectroscopy (FT-IR) confirmed the bioactive molecules of S. acmella leaf extract that acted as a reducing and capping agent. The spherical shape of AgNPs was confirmed by scanning electron microscope (SEM) analysis, and the presence of elemental silver was indicated by energy dispersive X-ray spectroscopy (EDS) analysis. X-ray diffraction (XRD) analysis revealed that the crystalline size of the synthesized AgNPs was 6.702 nm. Treatment of Dalton's lymphoma ascites (DLA) mice with 20 mg/kg of doxorubicin (DOX) significantly increased the activities of serum toxicity markers including aspartate amino-transferase (AST), alanine amino-transferase (ALT), and lactate dehydrogenase (LDH). However, compared to DOX alone treatment, the coadministration of DOX and AgNPs reduced AST, ALT, and LDH activities. DOX alone treatment reduced glutathione (GSH) contents and decreased the activities of glutathione-s-transferase (GST) and superoxide dismutase (SOD) in DLA mice. However, the administration of AgNPs to DOX-treated DLA mice increased GSH content and the activities of GST and SOD. Consistently, biosynthesized AgNPs were found to possess significantly higher free-radical scavenging activities when compared to the S. acmella leaf extract, as measured by ABTS, DPPH, and O2 •- assays. The biosynthesized AgNPs also showed significant inhibitory activities against erythrocyte hemolysis and lipid peroxidation in the liver homogenate.
Collapse
Affiliation(s)
- Fanai Lalsangpuii
- Department
of Botany, Mizoram University, Aizawl796004, Mizoram, India
| | | | - Fanai Nghakliana
- Department
of Zoology, Mizoram University, Aizawl796004, Mizoram, India
| | - Lal Fakawmi
- Department
of Zoology, Mizoram University, Aizawl796004, Mizoram, India
| | - Joseph V. L. Ruatpuia
- Department
of Chemistry, National Institute of Technology
Silchar, Silchar788010, Assam, India
| | | | - Ralte Lalfakzuala
- Department
of Botany, Mizoram University, Aizawl796004, Mizoram, India
| | - Zothan Siama
- Department
of Zoology, Mizoram University, Aizawl796004, Mizoram, India
| |
Collapse
|
13
|
Wang Z, Chen Y, Gu M, Wu Z, Ding B, Yang W, Wu X, Wang C, Gao X, Yang Y, Yin G. Protective effects and mechanisms of lycorine against adriamycin-induced cardiotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154178. [PMID: 35617889 DOI: 10.1016/j.phymed.2022.154178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Adriamycin (ADR), a high-efficiency, broad-spectrum anthraquinone chemotherapeutic agent, is currently used to treat various malignant tumors and can lead to cumulative, dose-dependent, and irreversible cardiotoxicity. Lycorine (LYC) is a benzyl phenethylamine alkaloid that exerts remarkable therapeutic effects on cancers and sepsis. PURPOSE However, researchers have not yet elucidated whether LYC exerts protective effects against cardiotoxicity induced by ADR and the possible molecular mechanisms. DESIGN This study established ADR injury models in vitro and in vivo to explore the effects of LYC against cardiotoxicity induced by ADR. The effects of LYC on blood biochemical parameters, cardiac parameters and structure, ADR-related pathophysiological processes, and the SIRT1/PPARγ signal pathway in ADR-injured models, were analyzed using a series of experimental methods. RESULTS LYC significantly improved survival rate, blood biochemical parameters (LDH, CK, and BUN), cardiac parameters (SV and CO), mitochondrial dysfunction, and ameliorated oxidative stress, apoptosis, and myocardial fibrosis in ADR-injured mice (p<0.05). Moreover, LYC obviously increased cell viability and reduced oxidative stress, apoptosis, and mitochondrial dysfunction in ADR-injured cells (p<0.05). Furthermore, this study confirmed that the protective effect of LYC on ADR-induced cardiotoxicitymight be mediated by the SIRT1/PPARγ signaling pathway. These results revealed that the beneficial role of LYC on cardiotoxicity induced by ADR were mediated via regulating SIRT1/PPARγ signaling for the first time. CONCLUSION These discoveries may provide a theoretical basis for the exploitation of LYC as a potential cardioprotective drug candidate due to its multiple biological functions to reduce ADR-induced cardiotoxicity, but further preclinical and clinical studies are still needed.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan 430070, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Mingming Gu
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan 430070, China
| | - Zhen Wu
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine , Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Baoping Ding
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine , Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Wenwen Yang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine , Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xue Wu
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine , Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Changyu Wang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine , Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xuhui Gao
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan 430070, China
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, School of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine , Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Guilin Yin
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan 430070, China.
| |
Collapse
|
14
|
Akinloye OA, Sulaimon LA, Adewale AO, Mubaraq T, Salami O, Abiola O. Allium vineale methanol extract attenuated oxidative stress and inflammation induced by doxorubicin in Sprague Dawley Rats. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Hydroxytyrosol Prevents Doxorubicin-Induced Oxidative Stress and Apoptosis in Cardiomyocytes. Antioxidants (Basel) 2022; 11:antiox11061087. [PMID: 35739984 PMCID: PMC9220035 DOI: 10.3390/antiox11061087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (Dox) is a highly effective chemotherapeutic agent employed in the handling of hematological and solid tumors. The effective use of Dox in cancer therapy has been seriously limited due to its well-known cardiotoxic side effects, mainly mediated by oxidative damage. Therefore, the identification of an effective and safe antagonist against Dox-induced cardiotoxicity remains a challenge. In this respect, as plant polyphenols have attracted considerable interest due to their antioxidant properties and good safety profile, hydroxytyrosol (HT), the major phenolic compound in olive oil, could be a potential candidate due to its remarkable antioxidant and anticancer powers. In this study, the effect of HT was tested on Dox-induced cardiotoxicity by using a combination of biochemical and cellular biology techniques. Interestingly, HT was able to counteract Dox-induced cytotoxicity in cardiomyocytes by acting on the SOD2 level and the oxidative response, as well as on apoptotic mechanisms mediated by Bcl-2/Bax. At the same time, HT did not to interfere with the antitumorigenic properties of Dox in osteosarcoma cells. This study identifies new, beneficial properties for HT and suggests that it might be a promising molecule for the development of additional therapeutic approaches aimed at preventing anthracycline-related cardiotoxicity and improving long-term outcomes in antineoplastic treatments.
Collapse
|
16
|
De Luca F, Di Chio C, Zappalà M, Ettari R. Dihydrochalcones as antitumor agents. Curr Med Chem 2022; 29:5042-5061. [PMID: 35430969 DOI: 10.2174/0929867329666220415113219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022]
Abstract
Dihydrochalcones are a class of secondary metabolites, possessing several biological properties such as antitumor, antioxidant, antibacterial, antidiabetic, estrogenic, anti-inflammatory, antithrombotic, antiviral, neuroprotective and immunomodulator properties; therefore, they are currently considered promising candidates in the drug discovery process. This review intend to debate their pharmacological actions with a particular attention to their antitumor activity against a panel of cancer cell-lines and to the description of the inhibition mechanisms of cell proliferation such as the regulation of angiogenesis, apoptosis, etc etc.
Collapse
Affiliation(s)
- Fabiola De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, Italy
| |
Collapse
|
17
|
Yahyazadeh R, Baradaran Rahimi V, Yahyazadeh A, Mohajeri SA, Askari VR. Promising effects of gingerol against toxins: A review article. Biofactors 2021; 47:885-913. [PMID: 34418196 DOI: 10.1002/biof.1779] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Ginger is a medicinal and valuable culinary plant. Gingerols, as an active constituent in the fresh ginger rhizomes of Zingiber officinale, exhibit several promising pharmacological properties. This comprehensive literature review was performed to assess gingerol's protective and therapeutic efficacy against the various chemical, natural, and radiational stimuli. Another objective of this study was to investigate the mechanism of anti-inflammatory, antioxidant, and antiapoptotic properties of gingerol. It should be noted that the data were gathered from in vivo and in vitro experimental studies. Gingerols can exert their protective activity through different mechanisms and cell signaling pathways. For example, these are mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-kB), Wnt/β-catenin, nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), transforming growth factor beta1/Smad3 (TGF-β1/Smad3), and extracellular signal-related kinase/cAMP-response element-binding protein (ERK/CREB). We hope that more researchers can benefit from this review to conduct preclinical and clinical studies, treat cancer, inflammation, and attenuate the side effects of drugs and industrial pollutants.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Abdelghffar EA, Obaid WA, Elgamal AM, Daoud R, Sobeh M, El Raey MA. Pea (Pisum sativum) peel extract attenuates DOX-induced oxidative myocardial injury. Biomed Pharmacother 2021; 143:112120. [PMID: 34649330 DOI: 10.1016/j.biopha.2021.112120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023] Open
Abstract
The goal of this work aimed to evaluate the protective effects of pea (Pisum sativum) peels extract versus doxorubicin-induced oxidative myocardial injury in male mice. The mice were divided into seven groups (n = 7): (I) control group; (II) P. sativum 250 group; (III) P. sativum 500 group; (IV) DOX (3 times alternately of 2.5 mg/kg/week, i.p. for a continuous two-week period) group; (V) Vit. E 100 + DOX group; (VI) P. sativum 250 + DOX group, and (VII) P. sativum 500 + DOX group). Twenty polyphenolic compounds, mainly flavonoid glycosides such as quercetin, kaempferol apigenin, and phenolics compounds were characterized by LC-MS/MS analysis in the examined extract. DOX administration elevated the activities of serum biomarkers of myocardial dysfunction (ALT, AST, ALP, LDH, troponin, CPK, and CK-MB), lipid profile, and proinflammatory cytokines. Also, it decreased cardiac antioxidants (GSH, SOD, GPX, CAT) and increased myocardial markers of oxidative stress (NO and MDA) and inflammatory marker (MPO). As well as it downregulated and upregulated the Bcl-2 (anti-apoptotic gene) and the Bax (pro-apoptotic gene) expressions, respectively. Pre-treatment of DOX-exposed mice with P. sativum or vitamin E (as a reference protective antioxidant) alleviated the changes dose-dependently via DOX-induced cardiotoxicity. These data show that P. sativum has a cardio-protective impact against DOX-induced cardiomyocyte damage in mice via boosting endogenous antioxidants, decreasing inflammation, and regulating BcL-2 and Bax apoptosis pathway, which might be related to the presence of flavonoid glycosides. P. sativum peels are a by-product that could be suggested for further screening as a possible new candidate for therapeutic use.
Collapse
Affiliation(s)
- Eman A Abdelghffar
- Biology Department, College of Science, Taibah University, Saudi Arabia; Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Wael A Obaid
- Biology Department, College of Science, Taibah University, Saudi Arabia
| | - Abdelbaset M Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Rachid Daoud
- African Genome Center, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Mohamed A El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
19
|
Sandamali JAN, Hewawasam RP, Jayatilaka KAPW, Mudduwa LKB. Cinnamomum zeylanicum Blume (Ceylon cinnamon) bark extract attenuates doxorubicin induced cardiotoxicity in Wistar rats. Saudi Pharm J 2021; 29:820-832. [PMID: 34408544 PMCID: PMC8363100 DOI: 10.1016/j.jsps.2021.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/13/2021] [Indexed: 01/02/2023] Open
Abstract
Anti-tumour efficacy of doxorubicin is hindered by the cumulative dose-dependent cardiotoxicity induced by reactive oxygen species during its metabolism. As Cinnamomum zeylanicum has proven antioxidant potential, objective of this study was to investigate the cardioprotective activity of Cinnamomum bark extract against doxorubicin induced cardiotoxicity in Wistar rats. Physicochemical and phytochemical analysis was carried out and dose response effect and the cardioprotective activity of Cinnamomum were determined in vivo. 180 mg/kg dexrazoxane was used as the positive control. Plant extracts were free of heavy metals and toxic phytoconstituents. In vivo study carried out in Wistar rats revealed a significant increase (p < 0.05) in cardiac troponin I, NT-pro brain natriuretic peptide, AST and LDH concentrations in the doxorubicin control group (18 mg/kg) compared to the normal control. Rats pre-treated with the optimum dosage of Cinnmamomum (2.0 g/kg) showed a significant reduction (p < 0.05) in all above parameters compared to the doxorubicin control. A significant reduction was observed in the total antioxidant capacity, reduced glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase activity while the lipid peroxidation and myeloperoxidase activity were significantly increased in the doxorubicin control group compared to the normal control (p < 0.05). Pre-treatment with Cinnamomum bark showed a significant decrease in lipid peroxidation, myeloperoxidase activity and significant increase in rest of the parameters compared to the doxorubicin control (p < 0.05). Histopathological analysis revealed a preserved appearance of the myocardium and lesser degree of cellular changes of necrosis in rats pre-treated with Cinnamomum extract. In conclusion, Cinnamomum bark extract has the potential to significantly reduce doxorubicin induced oxidative stress and inflammation in Wistar rats.
Collapse
Key Words
- ABEC, Aqueous bark extract of Cinnamomum zeylanicum
- ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
- AST, Aspartate aminotransferase
- Antioxidant effect
- Cardiotoxicity
- Cinnamomum zeylanicum bark extract
- DNA, Deoxyribonucleic acid
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- Doxorubicin
- ELISA, Enzyme-linked immunosorbent assay
- FRAP, Ferric reducing antioxidant power
- GPx, Glutathione peroxidase
- GR, Glutathione reductase
- GSH, Reduced glutathione
- H & E, Haematoxylin and eosin
- IP, Intraperitoneal
- LDH, Lactate dehydrogenase
- MDA, Malondialdehyde
- MPO, Myeloperoxidase
- Myeloperoxidase
- NADPH, Nicotinamide adenine dinucleotide phosphate hydrogen
- NO, Nitric oxide
- NT-pro BNP, N terminal- pro brain natriuretic peptide
- Oxidative-stress
- PBS, Phosphate buffered saline
- ROS, Reactive oxygen species
- SOD, Superoxide dismutase
- USA, United States of America
- WHO, World Health Organization
- cTnI, Cardiac troponin I
Collapse
|
20
|
Zhu J, Yi X, Ding H, Zhong L, Fang L. Integrated Transcriptomics and Reverse Pharmacophore Mapping-based Network Pharmacology to Explore the Mechanisms of Natural Compounds against Doxorubicin-induced Cardiotoxicity. Comb Chem High Throughput Screen 2021; 25:1707-1721. [PMID: 34397328 DOI: 10.2174/1386207324666210816122629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/08/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Doxorubicin-induced cardiotoxicity (DIC) has greatly limited the clinical benefits of this frontline drug in oncotherapy. Drug combination with natural compounds (NCs) that possess potency against DIC is considered as a promising intervention strategy. However, the mechanisms of action (MoAs) underlying such drug interactions remain poorly understood. The aim of this study was to systematically pursuit of the molecular mechanisms of NCs against DIC. METHODS First, the gene expression signatures of DIC were characterized from transcriptomics datasets with doxorubicin-treated and untreated cardiomyocytes using differentially expressed gene identification, functional enrichment analysis, and protein-protein interaction network analysis. Secondly, reverse pharmacophore mapping-based network pharmacology was employed to illustrate the MoAs of 82 publicly reported NCs with anti-DIC potency. Cluster analysis based on their enriched pathways was performed to gain systematic insights into the anti-DIC mechanisms of the NCs. Finally, the typical compounds were validated using gene set enrichment analysis (GSEA) of the relevant gene expression profiles from a public gene expression database. RESULTS Based on their anti-DIC MoAs, the 82 NCs could be divided into four groups, which corresponded to ten MoA clusters. GSEA and literature evidence on these compounds were provided to validate the MoAs identified through this bioinformatics analysis. The results suggested that NCs exerted potency against DIC through both common and different MoAs. CONCLUSION This strategy integrating different types of bioinformatics approaches is expected to create new insights for elucidating the MoAs of NCs against DIC.
Collapse
Affiliation(s)
- Junfeng Zhu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiaojiao Yi
- Department of Pharmacy, Xixi Hospital of Hangzhou, Hangzhou 310023, China
| | - Haiying Ding
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Like Zhong
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Luo Fang
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
21
|
The Multifaceted Role of Flavonoids in Cancer Therapy: Leveraging Autophagy with a Double-Edged Sword. Antioxidants (Basel) 2021; 10:antiox10071138. [PMID: 34356371 PMCID: PMC8301186 DOI: 10.3390/antiox10071138] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Flavonoids are considered as pleiotropic, safe, and readily obtainable molecules. A large number of recent studies have proposed that flavonoids have potential in the treatment of tumors by the modulation of autophagy. In many cases, flavonoids suppress cancer by stimulating excessive autophagy or impairing autophagy flux especially in apoptosis-resistant cancer cells. However, the anti-cancer activity of flavonoids may be attenuated due to the simultaneous induction of protective autophagy. Notably, flavonoids-triggered protective autophagy is becoming a trend for preventing cancer in the clinical setting or for protecting patients from conventional therapeutic side effects in normal tissues. In this review, focusing on the underlying autophagic mechanisms of flavonoids, we hope to provide a new perspective for clinical application of flavonoids in cancer therapy. In addition, we highlight new research ideas for the development of new dosage forms of flavonoids to improve their various pharmacological effects, establishing flavonoids as ideal candidates for cancer prevention and therapy in the clinic.
Collapse
|
22
|
Arunachalam S, Nagoor Meeran MF, Azimullah S, Sharma C, Goyal SN, Ojha S. Nerolidol Attenuates Oxidative Stress, Inflammation, and Apoptosis by Modulating Nrf2/MAPK Signaling Pathways in Doxorubicin-Induced Acute Cardiotoxicity in Rats. Antioxidants (Basel) 2021; 10:984. [PMID: 34205494 PMCID: PMC8235529 DOI: 10.3390/antiox10060984] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The clinical usage of doxorubicin (DOX), a potent anthracycline antineoplastic drug, is often limited by its cardiotoxic effects. Thus, for improving usage of DOX, the aim of this study was to assess the cardioprotective effects of nerolidol (NERO) in a rat model of DOX-induced acute cardiotoxicity and examine underlying molecular mechanisms that contribute to these effects. To induce acute cardiotoxicity male albino Wistar rats were injected with single dose intraperitoneal DOX (12.5 mg/kg). The rats were treated with NERO (50 mg/kg, orally) for five days. DOX-injected rats showed elevated levels of cardiac marker enzymes and enhanced oxidative stress markers along with altered Nrf2/Keap1/HO-1 signaling pathways. DOX administration also induced the activation of NF-κB/MAPK signaling and increased the levels and expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) as well as expression of inflammatory mediators (iNOS and COX-2) in the heart. DOX also triggered DNA damage and apoptotic cell death in the myocardium. Additionally, histological studies revealed structural alterations of the myocardium. NERO treatment exhibited protection against the deleterious results of DOX on myocardium, as evidenced by the restoration of altered biochemical parameters, mitigated oxidative stress, inflammation, and apoptosis. The findings of the present study demonstrate that NERO provides cardioprotective effects against DOX-induced acute cardiotoxicity attributed to its potent antioxidant, anti-inflammatory, and antiapoptotic activities through modulating cellular signaling pathways.
Collapse
Affiliation(s)
- Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (S.A.); (M.F.N.M.); (S.A.)
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (S.A.); (M.F.N.M.); (S.A.)
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (S.A.); (M.F.N.M.); (S.A.)
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, India;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates; (S.A.); (M.F.N.M.); (S.A.)
| |
Collapse
|
23
|
Afrostyrax lepidophyllus Mildbr. and Monodora myristica (Gaertn.) Dunal Extracts Decrease Doxorubicin Cytotoxicity on H9c2 Cardiomyoblasts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8858165. [PMID: 33688366 PMCID: PMC7920721 DOI: 10.1155/2021/8858165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 11/17/2022]
Abstract
Materials and Methods Bark extracts of these plants (1 and 25 µg/mL) were added 3 hours before coincubating H9c2 cardiomyoblasts with Dox (0.5 and 1 µM) for 24 hours more. We measured cell mass and metabolic viability, mitochondrial transmembrane potential, superoxide anion content, and activity-like of caspase-3 and caspase-9 following treatment with the extracts and/or Dox. Also, selenium and vitamin C contents were measured in the plant extracts. Results The results confirmed that Dox treatment decreased cell mass, mitochondrial membrane potential and metabolic viability, increased mitochondrial superoxide anion, and stimulated caspase-3 and caspase-9-like activities. Pretreatment of the cells with the plant extracts significantly inhibited Dox cytotoxicity, with more significant results at the higher concentration. Measurements of selenium and vitamin C in the extracts revealed higher concentration of both when compared with other Cameroonian spices. Conclusion Both extracts of A. lepidophyllus and M. myristica were effective against Dox-induced cytotoxicity, most likely due to their content in antioxidants.
Collapse
|
24
|
African Vegetables ( Clerodendrum volibile Leaf and Irvingia gabonensis Seed Extracts) Effectively Mitigate Trastuzumab-Induced Cardiotoxicity in Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9535426. [PMID: 33178389 PMCID: PMC7644299 DOI: 10.1155/2020/9535426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Trastuzumab (TZM) is a humanized monoclonal antibody that has been approved for the clinical management of HER2-positive metastatic breast and gastric cancers but its use is limited by its cumulative dose and off-target cardiotoxicity. Unfortunately, till date, there is no approved antidote to this off-target toxicity. Therefore, an acute study was designed at investigating the protective potential and mechanism(s) of CVE and IGE in TZM-induced cardiotoxicity utilizing cardiac enzyme and oxidative stress markers and histopathological endpoints. 400 mg/kg/day CVE and IGE dissolved in 5% DMSO in sterile water were investigated in Wistar rats injected with 2.25 mg/kg/day/i.p. route of TZM for 7 days, using serum cTnI and LDH, complete lipid profile, cardiac tissue oxidative stress markers assays, and histopathological examination of TZM-intoxicated heart tissue. Results showed that 400 mg/kg/day CVE and IGE profoundly attenuated increases in the serum cTnI and LDH levels but caused no significant alterations in the serum lipids and weight gain pattern in the treated rats. CVE and IGE profoundly attenuated alterations in the cardiac tissue oxidative stress markers' activities while improving TZM-associated cardiac histological lesions. These results suggest that CVE and IGE could be mediating its cardioprotection via antioxidant, free radical scavenging, and antithrombotic mechanisms, thus, highlighting the therapeutic potentials of CVE and IGE in the management of TZM-mediated cardiotoxicity.
Collapse
|
25
|
Liu C, Ma X, Zhuang J, Liu L, Sun C. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? Pharmacol Res 2020; 160:105062. [DOI: 10.1016/j.phrs.2020.105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
|
26
|
Amalraj A, Jacob J, Varma K, Gopi S. Preparation and Characterization of Liposomal β-Caryophyllene (Rephyll) by Nanofiber Weaving Technology and Its Effects on Delayed Onset Muscle Soreness (DOMS) in Humans: A Randomized, Double-Blinded, Crossover-Designed, and Placebo-Controlled Study. ACS OMEGA 2020; 5:24045-24056. [PMID: 32984726 PMCID: PMC7513359 DOI: 10.1021/acsomega.0c03456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/26/2020] [Indexed: 05/08/2023]
Abstract
Delayed onset muscle soreness (DOMS) is a complex spreading out, which is related to swelling of muscles, tenderness, rigidity, pain, disruption of muscle fiber, alteration in the kinematics of joint, acute tissue damage, and reduction in power and strength. β-Caryophyllene (BCP), a potent phytocannabinoid, could play an important role in managing DOMS because of its wide diversity of biological activities, particularly its anti-inflammatory activity; however, its poor stability in light, temperature, high volatility, and insolubility can restrict the medical practices. In this study, liposomal β-caryophyllene (Rephyll) was designed and established in powder form constructed by the nanofiber weaving technology to improve the bioavailability of BCP with improved stability. Rephyll was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and differential scanning calorimetry studies. Encapsulation efficiency, loading capacity, and in vitro release studies revealed that Rephyll can be an auspicious drug delivery arrangement for BCP. The effects of Rephyll were evaluated by a randomized, double-blinded, crossover-designed, placebo-controlled study. The oral consumption of Rephyll significantly reduced the pain visual assessment score, revealing that Rephyll effectively reduced DOMS with improved recovery without any side effects due to the bioavailable form of the phytocannabinoid BCP in the liposomal powder formulation.
Collapse
|
27
|
Lalmuansangi C, Zosangzuali M, Lalremruati M, Tochhawng L, Siama Z. Evaluation of the protective effects of Ganoderma applanatum against doxorubicin-induced toxicity in Dalton’s Lymphoma Ascites (DLA) bearing mice. Drug Chem Toxicol 2020; 45:1243-1253. [DOI: 10.1080/01480545.2020.1812630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- C. Lalmuansangi
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | - Mary Zosangzuali
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| | | | | | - Zothan Siama
- Department of Zoology, Mizoram University, Aizawl, Mizoram, India
| |
Collapse
|
28
|
Sirangelo I, Sapio L, Ragone A, Naviglio S, Iannuzzi C, Barone D, Giordano A, Borriello M. Vanillin Prevents Doxorubicin-Induced Apoptosis and Oxidative Stress in Rat H9c2 Cardiomyocytes. Nutrients 2020; 12:2317. [PMID: 32752227 PMCID: PMC7468857 DOI: 10.3390/nu12082317] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (doxo) is an effective anticancer compound in several tumor types. However, as a consequence of oxidative stress induction and ROS overproduction, its high cardiotoxicity demands urgent attention. Vanillin possesses antioxidant, antiproliferative, antidepressant and anti-glycating properties. Therefore, we investigated the potential vanillin protective effects against doxo-induced cardiotoxicity in H9c2 cells. Using multiparametric approach, we demonstrated that vanillin restored both cell viability and damage in response to doxo exposure. Contextually, vanillin decreased sub-G1 appearance and caspase-3 and PARP1 activation, reducing the doxo-related apoptosis induction. From a mechanistic point of view, vanillin hindered doxo-induced ROS accumulation and impaired the ERK phosphorylation. Notably, besides the cardioprotective effects, vanillin did not counteract the doxo effectiveness in osteosarcoma cells. Taken together, our results suggest that vanillin ameliorates doxo-induced toxicity in H9c2 cells, opening new avenues for developing alternative therapeutic approaches to prevent the anthracycline-related cardiotoxicity and to improve the long-term outcome of antineoplastic treatment.
Collapse
Affiliation(s)
- Ivana Sirangelo
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Luigi Sapio
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Angela Ragone
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Silvio Naviglio
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Clara Iannuzzi
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Margherita Borriello
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| |
Collapse
|
29
|
Hagag AA, Badraia IM, El-Shehaby WA, Mabrouk MM. Protective role of black seed oil in doxorubicin-induced cardiac toxicity in children with acute lymphoblastic leukemia. J Oncol Pharm Pract 2020; 26:1397-1406. [PMID: 31964219 DOI: 10.1177/1078155219897294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Leukemia is the most common pediatric malignancy. It affects bone marrow cells especially lymphoid cell precursor. Leukemia is treated mainly by chemotherapy. Doxorubicin is a well-established chemotherapeutic agent included in treatment protocols of acute lymphoblastic leukemia. Its efficacy is often limited by its cardiotoxic side effects. Many studies are directed to overcome this problem. Black seed oil was found to have a potent cardioprotective effect.Aim of the study: To assess the protective role of black seed oil against doxorubicin-induced cardiotoxicity in children with acute lymphoblastic leukemia. SUBJECTS AND METHODS This study was carried out on 40 children with acute lymphoblastic leukemia including 20 patients under doxorubicin therapy and black seed oil 80 mg/kg/dose divided into 3 doses starting at the same moment of beginning of doxorubicin infusion therapy and continued for 1 week after each doxorubicin dose [group I] and 20 patients under doxorubicin and placebo for 1 week after each doxorubicin dose [group II]. They underwent conventional echo-Doppler measures of left ventricular systolic and diastolic functions and pulsed wave tissue Doppler of lateral mitral annulus. RESULTS No significant differences were found in parameters of electrocardiograph including S-T segment and Q-T interval either before or after doxorubicin therapy. No significant differences in echocardiographic parameters were found between group I and group II before therapy. Non-significant changes in parameters of diastolic function [E/A ratio or e/a ratio] were found after doxorubicin therapy in group I and II, but there were significant reduction in parameters of systolic function [EF, FS and s wave] after doxorubicin therapy more in group II than group I.Conclusion and recommendation: From this study, we concluded that: Black seed oil improves some cardiac side effects of doxorubicin as shown by better systolic functions in children with acute lymphoblastic leukemia who were treated with Doxorubicin and black seed (group I) than in children with acute lymphoblastic leukemia who were treated with doxorubicin alone with no black seeds (group II), and therefore multi center studies is recommended to be done before we can recommend the use of black seed oil as an adjuvant therapy in patients with acute lymphoblastic leukemia under doxorubicin-based treatment protocol.
Collapse
Affiliation(s)
- Adel A Hagag
- Pediatric Department, Tanta University, Tanta, Egypt
| | | | | | | |
Collapse
|
30
|
Sun N, Li D, Chen X, Wu P, Lu YJ, Hou N, Chen WH, Wong WL. New Applications of Oleanolic Acid and its Derivatives as Cardioprotective Agents: A Review of their Therapeutic Perspectives. Curr Pharm Des 2019; 25:3740-3750. [DOI: 10.2174/1381612825666191105112802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 01/14/2023]
Abstract
Oleanolic acid is an analogue of pentacyclic triterpenoids. It has been used as a hepatic drug for over
20 years in China. Currently, there are only five approved drugs derived from pentacyclic triterpenoids, including
oleanolic acid (liver diseases), asiaticoside (wound healing), glycyrrhizinate (liver diseases), isoglycyrrhizinate
(liver disease) and sodium aescinate (hydrocephalus). To understand more about the bioactivity and functional
mechanisms of oleanolic acid, it can be developed as a potent therapeutic agent, in particular, for the prevention
and treatment of heart diseases that are the leading cause of death for people worldwide. The primary aim of this
mini-review is to summarize the new applications of oleanolic acid and its derivatives as cardioprotective agents
reported in recent years and to highlight their therapeutic perspectives in cardiovascular diseases.
Collapse
Affiliation(s)
- Ning Sun
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiaoqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yu-Jing Lu
- Goldenhealth Biotechnology Co. Ltd, Foshan 528000, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
31
|
Berberine Ameliorates Doxorubicin-Induced Cardiotoxicity via a SIRT1/p66Shc-Mediated Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2150394. [PMID: 31885776 PMCID: PMC6918936 DOI: 10.1155/2019/2150394] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022]
Abstract
Doxorubicin- (DOX-) induced cardiotoxicity is associated with oxidative stress and cardiomyocyte apoptosis. The adaptor protein p66Shc regulates the cellular redox status and determines cell susceptibility to apoptosis. This study is aimed at investigating the involvement of sirtuin 1- (SIRT1-) mediated p66Shc inhibition in DOX-induced redox signalling and exploring the possible protective mechanisms of berberine (Ber) against DOX-triggered cardiac injury in rats and a cultured H9c2 cell line. Our results showed that the Ber pretreatment markedly increased CAT, SOD, and GSH-PX activities, decreased the levels of MDA, and improved the electrocardiogram and histopathological changes in the myocardium in DOX-treated rats (in vivo). Furthermore, Ber significantly ameliorated the DOX-induced oxidative insult and mitochondrial damage by adjusting the levels of intracellular ROS, ΔΨm, and [Ca2+]m in H9c2 cells (in vitro). Importantly, the Ber pretreatment increased SIRT1 expression following DOX exposure but downregulated p66Shc. Consistent with the results demonstrating the SIRT1-mediated inhibition of p66Shc expression, the Ber pretreatment inhibited DOX-triggered cardiomyocyte apoptosis and mitochondrial dysfunction. After exposing H9c2 cells to DOX, the increased SIRT1 expression induced by Ber was abrogated by a SIRT1-specific inhibitor (EX527) or the use of siRNA against SIRT1. Accordingly, SIRT1 inhibition significantly abrogated the suppression of p66Shc expression and protection of Ber against DOX-induced oxidative stress and apoptosis. These results suggest that Ber protects the heart from DOX injury through SIRT1-mediated p66Shc suppression, offering a novel mechanism responsible for the protection of Ber against DOX-induced cardiomyopathy.
Collapse
|
32
|
Inulin Supplementation Reduces Systolic Blood Pressure in Women with Breast Cancer Undergoing Neoadjuvant Chemotherapy. Cardiovasc Ther 2019; 2019:5707150. [PMID: 31772611 PMCID: PMC6739761 DOI: 10.1155/2019/5707150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/05/2019] [Accepted: 05/12/2019] [Indexed: 01/14/2023] Open
Abstract
Introduction Breast cancer is the most frequently diagnosed malignancy in women, and comorbidities like hypertension and obesity diminish their quality of life and negatively affect their response to chemotherapy. Furthermore, inulin supplementation is associated with the reduction of cardiovascular diseases (CVD) risk. Objective To determine whether inulin supplementation prevents the elevation of blood pressure in women with breast cancer undergoing neoadjuvant therapy with cyclophosphamide and doxorubicin. Methods This was a randomized, double-blind placebo controlled trial which included women with early-stage breast cancer undergoing neoadjuvant therapy (n=38). Patients were randomly assigned to participate in two different groups to receive either 15 g of inulin or 15 g of placebo (maltodextrin) for 21 days. Body composition and blood pressure were evaluated before and after the supplementation period. Results Women in the inulin group showed a lower systolic blood pressure (SBP) after the supplementation (-4.21 mmHg, p<0.001). However, SBP increased in the placebo supplemented group. Diastolic blood pressure (DBP) nonsignificantly decreased in the inulin group. Inulin supplementation also increased BMI (p<0.001) but reduced BFP (p=0.288). Furthermore, confounding variables, such as BMI, baseline fasting glucose, age, menopause status, vomiting, constipation, and chronic medication did not have a statistical influence over the inulin effect on SBP. Conclusion Inulin supplementation reduces SBP and prevents increases in DBP in women with breast cancer. This could be an innovative nutraceutical approach to prevent hypertension present in women with this type of cancer at an early stage and may improve the quality of life of the patients and their prognostic development through chemotherapy. Trial Registration Number This trial is registered with ACTRN12616001532493.
Collapse
|
33
|
Zhang L, Wu P, Zhang L, SreeHarsha N, Mishra A, Su X. Ameliorative effect of rosiglitazone, a peroxisome proliferator gamma agonist on adriamycin-induced cardio toxicity via suppressing oxidative stress and apoptosis. IUBMB Life 2019; 72:607-615. [PMID: 31660680 DOI: 10.1002/iub.2190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022]
Abstract
We investigated the rosiglitazone (RSG) effect on adriamycin (ADM)-induced cardio toxicity in experimental animals. Forty adult Wistar male rats were separated into four groups as follows: normal control; RSG (10 mg/kg)-treated; ADM (10 mg/kg)-administered; and ADM (10 mg/kg) + RSG (10 mg/kg)-treated. Serum lipid level, different biochemical biomarkers, histological analysis, and nuclear factor erythroid 2-related factor/heme oxygenase-1 (Nrf2/HO-1), Caspase 3, B-cell lymphoma 2 (Bcl-2), and Bax gene expression were assessed in serum and cardiac tissue samples. Our results show that RSG treatment in ADM-administered animals significantly diminished low-density lipoprotein cholesterol, triglyceride, and total cholesterol, and increases high-density lipoprotein cholesterol (HDL-c) in comparison with the ADM group. RSG treatment reduced the effect of ADM administration on cardiac dysfunction markers such as cardiac troponin T Creatine Kinase-MB, aspartate aminotransferase, and lactate dehydrogenase, showing the amelioration of cardio toxicity in ADM-administered rats. Additionally, RSG treatment significantly decreased the level of malondialdehyde and nitric oxide in cardiovascular tissue. RSG-treated rats in combination with ADM likewise showed a significant increase in reduced glutathione, superoxide dismutase, catalase content, and the activity of glutathione peroxidase (GPx) as compared with ADM group. Moreover, RSG treatment in ADM rats significantly increased an Nrf2 and HO-1 expression in comparison with ADM group. While in apoptosis parameters, RSG treatment in ADM rats significantly diminished a cleaved caspase-3 and Bax expression as well as expanded Bcl-2 expression when contrasted with ADM group of rats. In conclusion, RSG is capable of protecting heart toxicity in ADM-treated animals through defensive effects on oxidative stress and biochemical markers.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Cardiology, Binzhou People's Hospital, Binzhou, China
| | - Ping Wu
- Department Rear-Service, Binzhou People's Hospital, Binzhou, China
| | - Luyan Zhang
- Department of Oncology, Binzhou People's Hospital, Binzhou, China
| | - Nagaraja SreeHarsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Anurag Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Xinyou Su
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
34
|
Zhang WC, Yang JH, Liu GH, Yang F, Gong JL, Jia MG, Zhang MJ, Zhao LS. miR-34b/c regulates doxorubicin-induced myocardial cell injury through ITCH. Cell Cycle 2019; 18:3263-3274. [PMID: 31627713 DOI: 10.1080/15384101.2019.1673618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Objective: To determine the underlying mechanism of miR-34b/c in regulating doxorubicin (Dox)-induced myocardial cell injury.Methods: The viability of mouse myocardial cells HL-1 was detected by MTT assay. The apoptosis of HL-1 cells was detected by TUNEL assay. mRNA expressions of ITCH, TNF-α and IL-6 were measured by qRT-PCR. Protein levels of ITCH, NF-κB, TNF-α and IL-6 were measured by western blot. Dual luciferase assay was performed to detect the regulation of miR-34b/c on ITCH. Mouse model of cardiomyopathy was induced by intraperitoneal injection of Dox.Results: Dox reduced HL-1 cell viability and activated NF-κB pathway in HL-1 cells. miR-34b/c expressions were gradually up-regulated and ITCH expression was gradually down-regulated in Dox-treated HL-1 cells. miR-34b/c expression had negative correlation with the mRNA expression of ITCH. Besides, ITCH was a target of miR-34b/c. miR-34b/c mimic reduced cell viability, suppressed ITCH expression, increased TNF-α and IL-6 level, and promoted NF-κB expression in nucleus and cytoplasm of HL-1 cells. Whereas silencing miR-34 protected HL-1 cells through regulating ITCH. Finally, we demonstrated miR-34 antagomir-protected myocardial cells in mouse model of cardiomyopathy.Conclusion: miR-34b/c decreased HL-1 cell viability and promoted the secretion of proinflammatory cytokines in Dox-induced myocardial cells through ITCH/NF-κB pathway.
Collapse
Affiliation(s)
- Wen-Cai Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jin-Hua Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guang-Hui Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fan Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun-Long Gong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-Ge Jia
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng-Juan Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Luo-Sha Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
35
|
3,4-dimethoxybenzyl isothiocyanate enhances doxorubicin efficacy in LoVoDX doxorubicin-resistant colon cancer and attenuates its toxicity in vivo. Life Sci 2019; 231:116530. [DOI: 10.1016/j.lfs.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 01/16/2023]
|
36
|
Afsar T, Razak S, Almajwal A, Shabbir M, Khan MR. Evaluating the protective potency of Acacia hydaspica R. Parker on histological and biochemical changes induced by Cisplatin in the cardiac tissue of rats. Altern Ther Health Med 2019; 19:182. [PMID: 31337380 PMCID: PMC6651963 DOI: 10.1186/s12906-019-2575-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/24/2019] [Indexed: 12/30/2022]
Abstract
Background Increase oxidative trauma is the main cause behind Cisplatin (CP) induced cardiotoxicity which restricts its clinical application as anti-neoplastic prescription. Acacia hydaspica is a natural shrub with diverse bioactivities. Acacia hydaspica ethyl acetate extract (AHE) ameliorated drug-induced cardiotoxicity in animals with anti-oxidative mechanisms. Current study aimed to evaluate the protective potential of A. hydaspica against cisplatin-induced myocardial injury. Methods Rats were indiscriminately distributed into six groups (n = 6). Group 1: control; Groups 2: Injected with CP (7.5 mg/kg bw, i.p, single dose) on day 16; Group 3: Treated for 21 days with AHE (400 mg/kg b.w, oral); Group 4: Received CP injection on day 16 and treated with AHE for 5 days post injection; Group 5: Received AHE (400 mg/kg b.w/day, p.o.) for 21 days and CP (7.5 mg/kg b.w., i.p.) on day 16; Group 6: Treated with silymarin (100 mg/kg b.w., p.o.) after 1 day interval for 21 days and CP injection (7.5 mg/kg b.w., i.p.) on day 16. On 22nd day, the animals were sacrificed and their heart tissues were removed. Cisplatin induced cardiac toxicity and the influence of AHE were evaluated by examination of serum cardiac function markers, cardiac tissue antioxidant enzymes, oxidative stress markers and histology. Results CP inoculation considerably altered cardiac function biomarkers in serum and diminished the antioxidant enzymes levels, while increased oxidative stress biomarkers in cardiac tissues AHE treatment attenuated CP-induced deteriorations in creatine kinase (CK), Creatine kinase isoenzymes MB (CK-MB), cardiac Troponin I (cTNI) and lactate dehydrogenase (LDH) levels and ameliorated cardiac oxidative stress markers as evidenced by decreasing lipid peroxidation, H2O2 and NO content along with augmentation in phase I and phase II antioxidant enzymes. Additionally, CP inoculation also induced morphological alterations which were ameliorated by AHE. In pretreatment group more significant protection was observed compared to post-treatment group indicating preventive potential of AHE. The protective potency of AHE was comparable to silymarin. Conclusion Results demonstrate that AHE attenuated CP induce cardiotoxicity. The polyphenolic metabolites and antioxidant properties of AHE might be responsible for its protective influence.
Collapse
|
37
|
Lin H, Zhang J, Ni T, Lin N, Meng L, Gao F, Luo H, Liu X, Chi J, Guo H. Yellow Wine Polyphenolic Compounds prevents Doxorubicin-induced cardiotoxicity through activation of the Nrf2 signalling pathway. J Cell Mol Med 2019; 23:6034-6047. [PMID: 31225944 PMCID: PMC6714138 DOI: 10.1111/jcmm.14466] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/08/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
Doxorubicin (DOX) is considered as the major culprit in chemotherapy‐induced cardiotoxicity. Yellow wine polyphenolic compounds (YWPC), which are full of polyphenols, have beneficial effects on cardiovascular disease. However, their role in DOX‐induced cardiotoxicity is poorly understood. Due to their antioxidant property, we have been suggested that YWPC could prevent DOX‐induced cardiotoxicity. In this study, we found that YWPC treatment (30 mg/kg/day) significantly improved DOX‐induced cardiac hypertrophy and cardiac dysfunction. YWPC alleviated DOX‐induced increase in oxidative stress levels, reduction in endogenous antioxidant enzyme activities and inflammatory response. Besides, administration of YWPC could prevent DOX‐induced mitochondria‐mediated cardiac apoptosis. Mechanistically, we found that YWPC attenuated DOX‐induced reactive oxygen species (ROS) and down‐regulation of transforming growth factor beta 1 (TGF‐β1)/smad3 pathway by promoting nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) nucleus translocation in cultured H9C2 cardiomyocytes. Additionally, YWPC against DOX‐induced TGF‐β1 up‐regulation were abolished by Nrf2 knockdown. Further studies revealed that YWPC could inhibit DOX‐induced cardiac fibrosis through inhibiting TGF‐β/smad3‐mediated ECM synthesis. Collectively, our results revealed that YWPC might be effective in mitigating DOX‐induced cardiotoxicity by Nrf2‐dependent down‐regulation of the TGF‐β/smad3 pathway.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China.,The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jie Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou, China
| | - Na Lin
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Feidan Gao
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangqi Luo
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xiatian Liu
- Department of Ultrasound, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| |
Collapse
|
38
|
Verma VK, Malik S, Narayanan SP, Mutneja E, Sahu AK, Bhatia J, Arya DS. Role of MAPK/NF-κB pathway in cardioprotective effect of Morin in isoproterenol induced myocardial injury in rats. Mol Biol Rep 2019; 46:1139-1148. [PMID: 30666500 DOI: 10.1007/s11033-018-04575-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/13/2018] [Indexed: 01/24/2023]
Abstract
Oxidative stress plays a major role in myocardial injury. Morin, a bioflavonoid has known to possess various biological activities in previous studies. Hence, this study evaluated the cardioprotective mechanism(s) of Morin against isoproterenol induced myocardial necrosis in rats. Male albino Wistar rats were divided into five groups (n = 8) i.e., I (normal), II (ISO-control), III, IV and V (morin 20, 40 and 80 mg/kg respectively). Groups III, IV and V were treated orally with daily doses of Morin accordingly for 28 days. On 26th and 27th day, a single injection of isoproterenol was injected (85 mg/kg s.c.) at 24 h interval to induce myocardial necrosis in group II, III, IV and V. On 28th day, hemodynamic parameters were evaluated, animals were euthanised and heart was excised for measurement of various parameters. In ISO-control rats, there was deterioration of hemodynamic parameters, decreased anti-oxidants levels, increased cardiac injury markers and pro-inflammatory cytokines (TNF-α and IL-6). Also, there was increased level of Bax, Caspase-3, p-JNK, p-38 and NF-κB and decreased expression of Bcl-2 and p-ERK1/2 in ISO-C group. Morin dose-dependently improved hemodynamic profile, increased anti-oxidant levels, normalized myocardial architecture and reduced inflammatory markers and apoptosis. Furthermore, immunoblot analysis of MAPK pathway proteins demonstrated the mechanism responsible for anti-apoptotic and anti-inflammatory potential of morin. Thus, this study substantiated the beneficial effect of Morin by virtue of its modulation of MAPK pathway in myocardial injury.
Collapse
Affiliation(s)
- Vipin Kumar Verma
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Salma Malik
- Department of Pharmacology, Army College of Medical Sciences, New Delhi, India
| | - Susrutha P Narayanan
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ekta Mutneja
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Anil Kumar Sahu
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jagriti Bhatia
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dharamvir Singh Arya
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
39
|
Shabalala SC, Dludla PV, Muller CJF, Nxele X, Kappo AP, Louw J, Johnson R. Aspalathin ameliorates doxorubicin-induced oxidative stress in H9c2 cardiomyoblasts. Toxicol In Vitro 2018; 55:134-139. [PMID: 30576852 DOI: 10.1016/j.tiv.2018.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/28/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
Abstract
Aspalathin (ASP) is a C-dihydrochalcone abundantly found in Aspalathus linearis. While we have provide evidence that ASP can protect H9c2 cardiomyoblasts against doxorubicin (Dox)-induced apoptosis through regulation of autophagy, the complete mechanism involved in the cardioprotective effect of this dihydrochalcone remains to be explored. Here we provide evidence that ASP reverses Dox-induced apoptosis through the amelioration of oxidative stress in H9c2 cardiomyoblasts. Cultured cells were treated with 0.2 μM Dox or co-treated with either 20 μM dexrazoxane (Dexra) or 0.2 μM ASP daily for five days, to a final dose of 1 μM Dox, 100 μM Dexra and 1 μM ASP, respectively. Superoxide dismutase, catalase, glutathione, malondialdehyde and dichloro-dihydro-fluorescein diacetate fluorescence were used as end-point measurements for oxidative stress, while JC-1 and TUNEL labeling were performed to assess mitochondria depolarization and apoptosis. Co-treatment with ASP attenuated Dox-induced cardiotoxicity by improving endogenous antioxidant levels and mitochondrial membrane potential, while inhibiting reactive oxygen species production and cellular apoptosis. These findings suggested that ASP can prevent Dox-induced oxidative stress and apoptosis and needs further assessment to confirm its therapeutic potential to prevent Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Samukelisiwe C Shabalala
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, Kwadlangezwa 3886, South Africa; Department of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Xolisa Nxele
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville 7535, South Africa
| | - Abidemi P Kappo
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg 7505, South Africa; Department of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
40
|
Zhang D, Xu Q, Wang N, Yang Y, Liu J, Yu G, Yang X, Xu H, Wang H. A complex micellar system co-delivering curcumin with doxorubicin against cardiotoxicity and tumor growth. Int J Nanomedicine 2018; 13:4549-4561. [PMID: 30127606 PMCID: PMC6091483 DOI: 10.2147/ijn.s170067] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Dose-dependent irreversible cardiac toxicity of doxorubicin (DOX) becomes a major obstacle for the clinical use. Nowadays much attention is being paid to combination therapy with DOX and antioxidant agents, which would improve the clinical efficacy by protecting from cardiotoxicity along with the maintained performance as an antitumor drug. With the assistance of nanoscience and polymer engineering, herein a complex polymeric micellar system was developed for co-loading DOX and a premium natural antioxidant curcumin (CUR), and we investigated whether this new formulation for DOX delivery could achieve such a goal. Methods The dually loaded micelles co-encapsulating DOX and CUR (CPMDC) were prepared through thin-film rehydration by using the amphiphilic diblock copolymer monomethoxy poly(ethylene glycol) (mPEG)–poly(ε-caprolactone) (PCL)–N-t-butoxycarbonyl-phenylalanine (BP) synthesized by end-group modification of mPEG–PCL with BP. Quantitative analysis was conducted by HPLC methods for drugs in micelles or biosamples. Molecular dynamics simulation was performed using HyperChem software to illustrate interactions among copolymer and active pharmaceutical ingredients. The safety and antitumor efficacy were evaluated by in vitro viability of H9C2 cells, and tumor growth inhibition in tumor-bearing mice respectively. The protection effects against DOX-induced cardiotoxicity were investigated according to several physiological, histopathological and biochemical markers concerning systemic and cardiac toxicity. Results CPMDC were obtained with favorable physicochemical properties meeting the clinical demand, including uniform particle size, fairly high encapsulation efficiency and drug loadings, as well as good drug release profiles and colloidal stability. The result from molecular dynamics simulation indicated a great impact of the interactions among copolymer and small molecules on the ratiometrical co-encapsulation of both drugs. MTT assay of in vitro H9C2 cells viability demonstrated good safety of the CPMDC formulation, which also showed definite signs of decrease in xenograft tumor growth. The studies on pharmacokinetics and tissue distribution further revealed that DOX delivered by CPMDC could result in prolonged systemic circulation and increased DOX accumulation in tumor but decreased level of the toxic metabolite doxorubicinol in heart tissue compared to free DOX alone or the cocktail combination. Conclusion The findings from present study substantiated that such a complex micellar system codelivering DOX with CUR does produce the effect of killing two birds with one stone via distinctive nanocarrier-modified drug-drug interactions.
Collapse
Affiliation(s)
- Di Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Qian Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Ning Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Yanting Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Guohua Yu
- Department of Pathology, Yantai Yuhuangding Hospital, Yantai, People's Republic of China
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, People's Republic of China
| | - Hui Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, People's Republic of China, ;
| |
Collapse
|
41
|
Shi W, Deng H, Zhang J, Zhang Y, Zhang X, Cui G. Mitochondria-Targeting Small Molecules Effectively Prevent Cardiotoxicity Induced by Doxorubicin. Molecules 2018; 23:E1486. [PMID: 29921817 PMCID: PMC6099719 DOI: 10.3390/molecules23061486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic agent widely used for the treatment of numerous cancers. However, the clinical use of Dox is limited by its unwanted cardiotoxicity. Mitochondrial dysfunction has been associated with Dox-induced cardiotoxicity. To mitigate Dox-related cardiotoxicity, considerable successful examples of a variety of small molecules that target mitochondria to modulate Dox-induced cardiotoxicity have appeared in recent years. Here, we review the related literatures and discuss the evidence showing that mitochondria-targeting small molecules are promising cardioprotective agents against Dox-induced cardiac events.
Collapse
Affiliation(s)
- Wei Shi
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Hongkuan Deng
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Jianyong Zhang
- Pharmacy School, Zunyi Medical University, Zunyi 563003, China.
| | - Ying Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Xiufang Zhang
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| |
Collapse
|
42
|
Anti-hypotensive drug induced cardiotoxicity: an in vitro study. In Vitro Cell Dev Biol Anim 2018; 54:92-98. [PMID: 29322358 DOI: 10.1007/s11626-017-0222-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
Abstract
Cardiotoxic side effects of broad range of drugs have emerged as an important cause of developing cardiovascular complications, as patients recover from one disease but develop another. Both cardiovascular and non-cardiovascular drugs may lead to the toxicity in the heart. Many drugs were initially not screened for cardiotoxicity, which is now an essential concern for drug discovery. Levophed is used for treating hypotension in critical care patients. Being a neurotransmitter, its concentration increases significantly in stress conditions and administration of this drug to patients' results in developing acute as well as persistent cardiac complications. Therefore, understanding its concentration-mediated effects and identifying the toxic concentration will serve as a platform to develop interventions to prevent adverse drug effects. In the present study, concentration and time-dependent effects of Levophed in H9C2 cardiomyoblasts were studied in detail by various cytotoxicity assays. Norepinephrine as a Levophed substitute was used and apoptotic cellular death was characterized by Annexin V and TUNEL DNA fragmentation assays. Morphological alterations, growth inhibition, and cellular death were also studied in detail. We observed that Levophed induces concentration-mediated deleterious effects in cardiomyoblasts. In-depth analysis of these effects will help in designing strategies in near future to combat and reduce this drug-induced cardiac toxicity.
Collapse
|
43
|
Afsar T, Razak S, Batoo KM, Khan MR. Acacia hydaspica R. Parker prevents doxorubicin-induced cardiac injury by attenuation of oxidative stress and structural Cardiomyocyte alterations in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:554. [PMID: 29284479 PMCID: PMC5747129 DOI: 10.1186/s12906-017-2061-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 12/15/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND The use of doxorubicin (DOX) an anthracycline antineoplastic agent is withdrawn due to its cardio-toxic side effects. Oxidative stress has been recognized as the primary cause of DOX induced cardiotoxicity. We have investigated whether polyphenol rich ethyl acetate extract of Acacia hydaspica (AHE) can attenuate doxorubicin-induced cardiotoxicity via inhibition of oxidative stress. METHODS AHE was administered orally to rats once daily for 6 weeks at doses of 200 and 400 mg/kg b.w. DOX (3 mg/kg b.w. i.p., single dose/week) was administered for 6 weeks (chronic model). The parameters studied to evaluate cardioprotective potential were the serum cardiac function biomarkers (CK, CKMB, AST and LDH), hematological parameters, cardiac tissue antioxidant enzymatic status and oxidative stress markers, and histopathological analysis to validate biochemical findings. RESULTS Chronic 6 week treatment of DOX significantly deteriorated cardiac function biomarkers and decreased the activities of antioxidant enzymes, whereas significant increase in oxidative stress biomarkers was noticed in comparison to control group. AHE dose dependently protected DOX-induced leakage of cardiac enzymes in serum and ameliorated DOX-induced oxidative stress; as evidenced by decreasing lipid peroxidation, H2O2 and NO content with increase in phase I and phase II antioxidant enzymes. Doxorubicin treatment produced severe morphological lesions, leucopenia, decrease in red blood cell counts and hemoglobin concentrations. AHE co-treatment protected the heart and blood elements from the toxic effects of doxorubicin as indicated by the recovery of hematological parameters to normal values and prevention of myocardial injuries in a dose dependent way. The protective potency of AHE (400 mg/kg b.w) was equivalent to silymarin. CONCLUSION Results revealed that AHE showed protective effects against DOX induce cardiotoxicity. The protective effect might attribute to its polyphenolic constituents and antioxidant properties. AHE might be helpful in combination therapies as safer and efficient.
Collapse
|
44
|
Afsar T, Razak S, Khan MR, Almajwal A. Acacia hydaspica ethyl acetate extract protects against cisplatin-induced DNA damage, oxidative stress and testicular injuries in adult male rats. BMC Cancer 2017; 17:883. [PMID: 29268699 PMCID: PMC5740854 DOI: 10.1186/s12885-017-3898-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 12/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background Cisplatin (CP), an effective anticancer agent, carries the risk of impairing testicular function leading to infertility. The present study aimed at evaluating the protective effect of A. hydaspica ethyl acetate extract (AHE) against CP-induced oxidative stress and testicular injuries in rats. Methods Rats were divided into six groups (n = 6). Group I (control), group II (CP single dose on day 16). Group III received AHE for 21 days. Group IV (CP + AHE; post- treatment group). Group V (AHE + CP; pre-treatment group) and group VI (CP + Sily). Results CP treatment reduced serum testosterone (T), LH and FSH, decreased the activity level of antioxidant enzymes while increased the concentration of oxidative stress markers, i.e. thiobarbituric acid reactive substances (TBARS), H2O2 and nitric oxide (NO) along with corresponding DNA damages. Furthermore, CP induced adverse morphological changes in testis of rats including reduced epithelial height and tubular diameter, increased luminal diameter with impaired spermatogenesis. Pre and post-treatment with AHE reduced the side effects of CP in testis tissues through improvement in the reproductive hormonal secretions, enzymatic activities, histological and DNA damage parameters. Pretreatment seems to be more effective and equivalent to silymarin group in reversing the CP deleterious effects as compared to post-treatment. Conclusion The results demonstrated that A. hydaspica treatment in CP-induced testicular toxicity augments the antioxidants defense mechanism, reverted the level of fertility hormones, suppressed the histomorphological alterations and DNA damages and thus provides the evidence that it may have a therapeutic role in free radical mediated diseases.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Suhail Razak
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan. .,Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, KSA, Saudi Arabia.
| | | | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, KSA, Saudi Arabia
| |
Collapse
|
45
|
Tang F, Zhou X, Wang L, Shan L, Li C, Zhou H, Lee SMY, Hoi MPM. A novel compound DT-010 protects against doxorubicin-induced cardiotoxicity in zebrafish and H9c2 cells by inhibiting reactive oxygen species-mediated apoptotic and autophagic pathways. Eur J Pharmacol 2017; 820:86-96. [PMID: 29229534 DOI: 10.1016/j.ejphar.2017.12.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/03/2017] [Accepted: 12/08/2017] [Indexed: 01/25/2023]
Abstract
Doxorubicin (Dox) is an effective anti-cancer agent but limited by its cardiotoxicity, thus the search for pharmacological agents for enhancing anti-cancer activities and protecting against cardiotoxicity has been a subject of great interest. We have previously reported the synergistic anti-cancer effects of a novel compound DT-010. In the present study, we further investigated the cardioprotective effects of DT-010 in zebrafish embryos in vivo and the molecular underlying mechanisms in H9c2 cardiomyocytes in vitro. We showed that DT-010 prevented the Dox-induced morphological distortions in the zebrafish heart and the associated cardiac impairments, and especially improved ventricular functions. By using H9c2 cells model, we showed that DT-010 directly inhibited the generation of reactive oxygen species by Dox and protected cell death and cellular damage. We further observed that DT-010 protected against Dox-induced myocardiopathy via inhibiting downstream molecular pathways in response to oxidative stress, including reactive oxygen species-mediated MAPK signaling pathways ERK and JNK, and apoptotic pathways involving the activation of caspase 3, caspase 7, and PARP signaling. Recent studies also suggest the importance of alterations in cardiac autophagy in Dox cardiotoxicity. We further showed that DT-010 could inhibit the induction of autophagosomes formation by Dox via regulating the upstream Akt/AMPK/mTOR signaling. Since Dox-induced cardiotoxicity is multifactorial, our results suggest that multi-functional agent such as DT-010 might be an effective therapeutic agent for combating cardiotoxicity associated with chemotherapeutic agents such as Dox.
Collapse
Key Words
- Anti-apoptosis
- Anti-oxidative stress
- Autophagy regulation
- Cardioprotection
- DT-010, 4-(3,5,6-trimethylpyrazin-2-yl) hepta-1,6-dien-4-yl (R)-3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate
- Danshensu (PubChem CID: 11600642),(R)-3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid
- Doxorubicin (PubChem CID: 443939),(7S,9S)-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl] oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dione
- H9c2 cardiomyocytes
- Tetramethylpyrazine (PubChem CID: 14296),2,3,5,6-tetramethylpyrazine
- Zebrafish cardiotoxicity
Collapse
Affiliation(s)
- Fan Tang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Xinhua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Liang Wang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Luchen Shan
- Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chuwen Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Hefeng Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau.
| | - Maggie Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
46
|
Helmy SA, El-Mesery M, El-Karef A, Eissa LA, El Gayar AM. Chloroquine upregulates TRAIL/TRAILR2 expression and potentiates doxorubicin anti-tumor activity in thioacetamide-induced hepatocellular carcinoma model. Chem Biol Interact 2017; 279:84-94. [PMID: 29133031 DOI: 10.1016/j.cbi.2017.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023]
Abstract
Impaired apoptosis and systemic toxicity of chemotherapeutic drugs make cancer treatment suboptimal. Thus, there is urgency for drug repurposing which facilitates discovery of safe and effective combination therapy. This study aimed to evaluate chloroquine's (CQ) ability to trigger TRAIL/TRAILR2 apoptotic pathway in thioacetamide (TAA)-induced hepatocellular carcinoma (HCC) either alone or in combination with doxorubicin (DOX). Moreover, its ability to attenuate DOX-induced cardiotoxicity was investigated. TAA was injected in male Sprague Dawely rats (200 mg/kg; ip; 2 times/week) for 16 weeks. After the 16th week, rats were further divided into different groups (n = 10) and treated for 7 weeks. CQ group (received CQ 25 mg/kg/day; orally), DOX group (received DOX 1 mg/kg; ip; 2 times/week) and CQ/DOX group. Liver function biomarkers, AFP, hepatic levels of MDA and GSH, serum CK-MB and LDH enzymes activity were measured. Quantitative, Real-Time PCR was used to measure TRAIL, TRAILR2, caspase-8, caspase-9, caspase-3, BCL-2 and TGF-β1 genes expression levels. Necroinflammation and fibrosis were scored by histopathological examination. CQ improved liver functions, reduced AFP level and attenuated HCC progression. CQ induced apoptosis via upregulation of TRAIL/TRAILR2, caspase-8, caspase-3 and caspase-8 genes and downregulation of BCL-2 gene. Moreover, CQ/DOX showed marked decrease in hepatic MDA level, serum CK-MB, LDH enzymes activity, as well as marked increase in hepatic GSH level. In conclusion, this work assess the in vivo efficacy of CQ/DOX combination therapy in this HCC model that not only has enhanced anti-tumor activity but it also protects against DOX-induced cardiotoxicity. Nevertheless, more studies should be performed to illustrate the molecular mechanism of CQ's cardioprotective effect.
Collapse
Affiliation(s)
- Sahar A Helmy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Amro El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Amal M El Gayar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
47
|
Cappetta D, De Angelis A, Sapio L, Prezioso L, Illiano M, Quaini F, Rossi F, Berrino L, Naviglio S, Urbanek K. Oxidative Stress and Cellular Response to Doxorubicin: A Common Factor in the Complex Milieu of Anthracycline Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1521020. [PMID: 29181122 PMCID: PMC5664340 DOI: 10.1155/2017/1521020] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
The production of reactive species is a core of the redox cycling profile of anthracyclines. However, these molecular characteristics can be viewed as a double-edged sword acting not only on neoplastic cells but also on multiple cellular targets throughout the body. This phenomenon translates into anthracycline cardiotoxicity that is a serious problem in the growing population of paediatric and adult cancer survivors. Therefore, better understanding of cellular processes that operate within but also go beyond cardiomyocytes is a necessary step to develop more effective tools for the prevention and treatment of progressive and often severe cardiomyopathy experienced by otherwise successfully treated oncologic patients. In this review, we focus on oxidative stress-triggered cellular events such as DNA damage, senescence, and cell death implicated in anthracycline cardiovascular toxicity. The involvement of progenitor cells of cardiac and extracardiac origin as well as different cardiac cell types is discussed, pointing to molecular signals that impact on cell longevity and functional competence.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigi Sapio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucia Prezioso
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michela Illiano
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Silvio Naviglio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
48
|
Cardioprotective effects of fibroblast growth factor 21 against doxorubicin-induced toxicity via the SIRT1/LKB1/AMPK pathway. Cell Death Dis 2017; 8:e3018. [PMID: 28837153 PMCID: PMC5596591 DOI: 10.1038/cddis.2017.410] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Doxorubicin (DOX) is a highly effective antineoplastic anthracycline drug; however, the adverse effect of the cardiotoxicity has limited its widespread application. Fibroblast growth factor 21 (FGF21), as a well-known regulator of glucose and lipid metabolism, was recently shown to exert cardioprotective effects. The aim of this study was to investigate the possible protective effects of FGF21 against DOX-induced cardiomyopathy. We preliminarily established DOX-induced cardiotoxicity models in H9c2 cells, adult mouse cardiomyocytes, and 129S1/SyImJ mice, which clearly showed cardiac dysfunction and myocardial collagen accumulation accompanying by inflammatory, oxidative stress, and apoptotic damage. Treatment with FGF21 obviously attenuated the DOX-induced cardiac dysfunction and pathological changes. Its effective anti-inflammatory activity was revealed by downregulation of inflammatory factors (tumor necrosis factor-α and interleukin-6) via the IKK/IκBα/nuclear factor-κB pathway. The anti-oxidative stress activity of FGF21 was achieved via reduced generation of reactive oxygen species through regulation of nuclear transcription factor erythroid 2-related factor 2 transcription. Its anti-apoptotic activity was shown by reductions in the number of TUNEL-positive cells and DNA fragments along with a decreased ratio of Bax/Bcl-2 expression. In a further mechanistic study, FGF21 enhanced sirtuin 1 (SIRT1) binding to liver kinase B1 (LKB1) and then decreased LKB1 acetylation, subsequently inducing AMP-activated protein kinase (AMPK) activation, which improved the cardiac inflammation, oxidative stress, and apoptosis. These alterations were significantly prohibited by SIRT1 RNAi. The present work demonstrates for the first time that FGF21 obviously prevented DOX-induced cardiotoxicity via the suppression of oxidative stress, inflammation, and apoptosis through the SIRT1/LKB1/AMPK signaling pathway.
Collapse
|
49
|
Korga A, Józefczyk A, Zgórka G, Homa M, Ostrowska M, Burdan F, Dudka J. Evaluation of the phytochemical composition and protective activities of methanolic extracts of Centaurea borysthenica and Centaurea daghestanica (Lipsky) Wagenitz on cardiomyocytes treated with doxorubicin. Food Nutr Res 2017; 61:1344077. [PMID: 28747863 PMCID: PMC5510226 DOI: 10.1080/16546628.2017.1344077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
Centaurea L. is a genus of the family Asteraceae that comprises over 600 taxa. Representatives of the Centaurea genus were used as natural medications for many diseases. Methanolic-aqueous extracts from aerial parts of two Centaurea species: C. borysthenica Gruner and C. daghestanica (Lipsky) Wagenitz were studied for their polyphenolic composition and potential protective effect on cardiomyocytes treated with doxorubicin. Effectiveness of doxorubicin in cancer therapy is limited by a dose-dependent cardiotoxicity. Oxidative stress is a widely recognized mechanism of this phenomenon. One of the most important strategies has been an application of drug together with antioxidant agents. A cardioprotective effect of selected extracts of Centaurea species was suspected in this study. Cell viability, oxidative stress, and mitochondrial membrane potential analyses showed protective activity of the methanolic extract of C. borysthenica and C. daghestanica on rat cardiomyocytes treated with doxorubicin. Although C. borysthenica is more effective as a cardiomyocyte protective agent, in higher concentrations it weakened the drug activity. C. daghestanica extract did not change the doxorubicin efficacy in the evaluated experiment. Interestingly, both tested extracts were cytotoxic for myeloma cells. The detected antioxidant activity of the studied extracts can be used in the prevention of doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Agnieszka Korga
- Independent Medical Biology Unit, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Józefczyk
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Lublin, Poland
| | - Grażyna Zgórka
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Lublin, Poland
| | - Mateusz Homa
- Independent Medical Biology Unit, Medical University of Lublin, Lublin, Poland
| | - Marta Ostrowska
- Department of Toxicology, Medical University of Lublin, Lublin, Poland
| | - Franciszek Burdan
- Department of Human Anatomy, Medical University of Lublin, Lublin, Poland
| | - Jarosław Dudka
- Independent Medical Biology Unit, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
50
|
Shabalala S, Muller C, Louw J, Johnson R. Polyphenols, autophagy and doxorubicin-induced cardiotoxicity. Life Sci 2017; 180:160-170. [DOI: 10.1016/j.lfs.2017.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/07/2023]
|