1
|
Soliman E, Gudenschwager Basso EK, Ju J, Willison A, Theus MH. Skull bone marrow-derived immune cells infiltrate the injured cerebral cortex and exhibit anti-inflammatory properties. Brain Behav Immun 2024; 123:244-253. [PMID: 39293691 DOI: 10.1016/j.bbi.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024] Open
Abstract
Identifying the origins and contributions of peripheral-derived immune cell populations following brain injury is crucial for understanding their roles in neuroinflammation and tissue repair. This study investigated the infiltration and phenotypic characteristics of skull bone marrow-derived immune cells in the murine brain after traumatic brain injury (TBI). We performed calvarium transplantation from GFP donor mice and subjected the recipients to controlled cortical impact (CCI) injury 14 days post-transplant. Confocal imaging at 3 days post-CCI revealed GFP+ calvarium-derived cells were present in the ipsilateral injured cortex, expressing CD45 and CD11b immune markers. These cells included Ly6G-positive neutrophil or Ccr2-positive monocyte identities. Calvarium-derived GFP+/Iba1+ monocyte/macrophages expressed the efferocytosis receptor MERTK and displayed engulfment of NeuN+ and cleaved caspase 3+ apoptotic cells. Phenotypic analysis showed that greater calvarium-derived monocytes/macrophages disproportionately express the anti-inflammatory arginase-1 marker than pro-inflammatory CD86. To differentiate the responses of blood- and calvarium-derived macrophages, we transplanted GFP calvarium skull bone into tdTomato bone marrow chimeric mice, then performed CCI injury 14 days post-transplant. Calvarium-derived GFP+cells predominantly infiltrated the lesion boundary, while blood-derived tdTomato+ cells dispersed throughout the lesion and peri-lesion. Compared to calvarium-derived cells, more blood-derived cells expressed pro-inflammatory CD86 and displayed altered 3D morphologic traits. These findings uniquely demonstrate that skull bone marrow-derived immune cells infiltrate the brain after injury and contribute to the neuroinflammatory milieu, representing a novel immune cell source that may be further investigated for their causal role in functional outcomes.
Collapse
Affiliation(s)
- Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Andrew Willison
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA; Center for Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
2
|
Javalgekar M, Jupp B, Vivash L, O'Brien TJ, Wright DK, Jones NC, Ali I. Inflammasomes at the crossroads of traumatic brain injury and post-traumatic epilepsy. J Neuroinflammation 2024; 21:172. [PMID: 39014496 PMCID: PMC11250980 DOI: 10.1186/s12974-024-03167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the most debilitating consequences of traumatic brain injury (TBI) and is one of the most drug-resistant forms of epilepsy. Novel therapeutic treatment options are an urgent unmet clinical need. The current focus in healthcare has been shifting to disease prevention, rather than treatment, though, not much progress has been made due to a limited understanding of the disease pathogenesis. Neuroinflammation has been implicated in the pathophysiology of traumatic brain injury and may impact neurological sequelae following TBI including functional behavior and post-traumatic epilepsy development. Inflammasome signaling is one of the major components of the neuroinflammatory response, which is increasingly being explored for its contribution to the epileptogenic mechanisms and a novel therapeutic target against epilepsy. This review discusses the role of inflammasomes as a possible connecting link between TBI and PTE with a particular focus on clinical and preclinical evidence of therapeutic inflammasome targeting and its downstream effector molecules for their contribution to epileptogenesis. Finally, we also discuss emerging evidence indicating the potential of evaluating inflammasome proteins in biofluids and the brain by non-invasive neuroimaging, as potential biomarkers for predicting PTE development.
Collapse
Affiliation(s)
- Mohit Javalgekar
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
| | - Bianca Jupp
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
| | - Lucy Vivash
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
- The University of Melbourne, Parkville, Australia
| | - Terence J O'Brien
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
- The University of Melbourne, Parkville, Australia
| | - David K Wright
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
| | - Nigel C Jones
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia.
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia.
- The University of Melbourne, Parkville, Australia.
| | - Idrish Ali
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia.
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia.
- The University of Melbourne, Parkville, Australia.
| |
Collapse
|
3
|
Soliman E, Basso EKG, Ju J, Willison A, Theus MH. Skull bone marrow-derived immune cells infiltrate the damaged cortex and exhibit anti-inflammatory properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.597827. [PMID: 38948756 PMCID: PMC11213025 DOI: 10.1101/2024.06.21.597827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Identifying the origins and contributions of different immune cell populations following brain injury is crucial for understanding their roles in inflammation and tissue repair. This study investigated the infiltration and phenotypic characteristics of skull bone marrow-derived immune cells in the murine brain after TBI. We performed calvarium transplantation from GFP donor mice and subjected the recipients to controlled cortical impact (CCI) injury 14 days post-transplant. Confocal imaging at 3 days post-CCI revealed GFP+ calvarium-derived cells infiltrating the ipsilateral core lesional area, expressing CD45 and CD11b immune markers. These cells included neutrophil (Ly6G+) and monocyte (Ccr2+) identities. Calvarium-derived GFP+/Iba1+ monocyte/macrophages expressed the efferocytosis receptor MerTK and displayed engulfment of NeuN+ and caspase 3+ apoptotic cells. Phenotypic analysis showed that greater calvarium-derived monocyte/macrophages disproportionately express the anti-inflammatory arginase-1 marker than pro-inflammatory CD86. To differentiate the responses of blood- and calvarium-derived macrophages, we transplanted GFP calvarium skull bone into tdTomato bone marrow chimeric mice, then performed CCI injury 14 days post-transplant. Calvarium-derived GFP+ cells predominantly infiltrated the lesion boundary, while blood-derived TdTomato+ cells dispersed throughout the lesion and peri-lesion. Compared to calvarium-derived cells, more blood-derived cells expressed pro-inflammatory CD86 and displayed altered 3D morphologic traits. These findings uniquely demonstrate that skull bone-derived immune cells infiltrate the brain after injury and contribute to the neuroinflammatory milieu, representing a novel immune cell source that may be further investigated for their causal role in functional outcomes.
Collapse
|
4
|
Choi YK. Detrimental Roles of Hypoxia-Inducible Factor-1α in Severe Hypoxic Brain Diseases. Int J Mol Sci 2024; 25:4465. [PMID: 38674050 PMCID: PMC11050730 DOI: 10.3390/ijms25084465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Hypoxia stabilizes hypoxia-inducible factors (HIFs), facilitating adaptation to hypoxic conditions. Appropriate hypoxia is pivotal for neurovascular regeneration and immune cell mobilization. However, in central nervous system (CNS) injury, prolonged and severe hypoxia harms the brain by triggering neurovascular inflammation, oxidative stress, glial activation, vascular damage, mitochondrial dysfunction, and cell death. Diminished hypoxia in the brain improves cognitive function in individuals with CNS injuries. This review discusses the current evidence regarding the contribution of severe hypoxia to CNS injuries, with an emphasis on HIF-1α-mediated pathways. During severe hypoxia in the CNS, HIF-1α facilitates inflammasome formation, mitochondrial dysfunction, and cell death. This review presents the molecular mechanisms by which HIF-1α is involved in the pathogenesis of CNS injuries, such as stroke, traumatic brain injury, and Alzheimer's disease. Deciphering the molecular mechanisms of HIF-1α will contribute to the development of therapeutic strategies for severe hypoxic brain diseases.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Oladapo A, Jackson T, Menolascino J, Periyasamy P. Role of pyroptosis in the pathogenesis of various neurological diseases. Brain Behav Immun 2024; 117:428-446. [PMID: 38336022 PMCID: PMC10911058 DOI: 10.1016/j.bbi.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Pyroptosis, an inflammatory programmed cell death process, has recently garnered significant attention due to its pivotal role in various neurological diseases. This review delves into the intricate molecular signaling pathways governing pyroptosis, encompassing both caspase-1 dependent and caspase-1 independent routes, while emphasizing the critical role played by the inflammasome machinery in initiating cell death. Notably, we explore the Nucleotide-binding domain leucine-rich repeat (NLR) containing protein family, the Absent in melanoma 2-like receptor family, and the Pyrin receptor family as essential activators of pyroptosis. Additionally, we comprehensively examine the Gasdermin family, renowned for their role as executioner proteins in pyroptosis. Central to our review is the interplay between pyroptosis and various central nervous system (CNS) cell types, including astrocytes, microglia, neurons, and the blood-brain barrier (BBB). Pyroptosis emerges as a significant factor in the pathophysiology of each cell type, highlighting its far-reaching impact on neurological diseases. This review also thoroughly addresses the involvement of pyroptosis in specific neurological conditions, such as HIV infection, drug abuse-mediated pathologies, Alzheimer's disease, and Parkinson's disease. These discussions illuminate the intricate connections between pyroptosis, chronic inflammation, and cell death in the development of these disorders. We also conducted a comparative analysis, contrasting pyroptosis with other cell death mechanisms, thereby shedding light on their unique aspects. This approach helps clarify the distinct contributions of pyroptosis to neuroinflammatory processes. In conclusion, this review offers a comprehensive exploration of the role of pyroptosis in various neurological diseases, emphasizing its multifaceted molecular mechanisms within various CNS cell types. By elucidating the link between pyroptosis and chronic inflammation in the context of neurodegenerative disorders and infections, it provides valuable insights into potential therapeutic targets for mitigating these conditions.
Collapse
Affiliation(s)
- Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Thomas Jackson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Jueliet Menolascino
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
6
|
Gudenschwager Basso EK, Ju J, Soliman E, de Jager C, Wei X, Pridham KJ, Olsen ML, Theus MH. Immunoregulatory and neutrophil-like monocyte subsets with distinct single-cell transcriptomic signatures emerge following brain injury. J Neuroinflammation 2024; 21:41. [PMID: 38310257 PMCID: PMC10838447 DOI: 10.1186/s12974-024-03032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024] Open
Abstract
Monocytes represent key cellular elements that contribute to the neurological sequela following brain injury. The current study reveals that trauma induces the augmented release of a transcriptionally distinct CD115+/Ly6Chi monocyte population into the circulation of mice pre-exposed to clodronate depletion conditions. This phenomenon correlates with tissue protection, blood-brain barrier stability, and cerebral blood flow improvement. Uniquely, this shifted the innate immune cell profile in the cortical milieu and reduced the expression of pro-inflammatory Il6, IL1r1, MCP-1, Cxcl1, and Ccl3 cytokines. Monocytes that emerged under these conditions displayed a morphological and gene profile consistent with a subset commonly seen during emergency monopoiesis. Single-cell RNA sequencing delineated distinct clusters of monocytes and revealed a key transcriptional signature of Ly6Chi monocytes enriched for Apoe and chitinase-like protein 3 (Chil3/Ym1), commonly expressed in pro-resolving immunoregulatory monocytes, as well as granule genes Elane, Prtn3, MPO, and Ctsg unique to neutrophil-like monocytes. The predominate shift in cell clusters included subsets with low expression of transcription factors involved in monocyte conversion, Pou2f2, Na4a1, and a robust enrichment of genes in the oxidative phosphorylation pathway which favors an anti-inflammatory phenotype. Transfer of this monocyte assemblage into brain-injured recipient mice demonstrated their direct role in neuroprotection. These findings reveal a multifaceted innate immune response to brain injury and suggest targeting surrogate monocyte subsets may foster tissue protection in the brain.
Collapse
Affiliation(s)
- Erwin K Gudenschwager Basso
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, 970 Washington Street SW, Life Sciences I, Rm 249 (MC0910), Blacksburg, VA, 24061, USA
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, 970 Washington Street SW, Life Sciences I, Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, 970 Washington Street SW, Life Sciences I, Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Caroline de Jager
- Translational, Biology, Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA, 24016, USA
| | - Xiaoran Wei
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kevin J Pridham
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, 970 Washington Street SW, Life Sciences I, Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, 970 Washington Street SW, Life Sciences I, Rm 249 (MC0910), Blacksburg, VA, 24061, USA.
- Center for Engineered Health, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
7
|
Soliman E, Leonard J, Basso EKG, Gershenson I, Ju J, Mills J, de Jager C, Kaloss AM, Elhassanny M, Pereira D, Chen M, Wang X, Theus MH. Efferocytosis is restricted by axon guidance molecule EphA4 via ERK/Stat6/MERTK signaling following brain injury. J Neuroinflammation 2023; 20:256. [PMID: 37941008 PMCID: PMC10633953 DOI: 10.1186/s12974-023-02940-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Efferocytosis is a process that removes apoptotic cells and cellular debris. Clearance of these cells alleviates neuroinflammation, prevents the release of inflammatory molecules, and promotes the production of anti-inflammatory cytokines to help maintain tissue homeostasis. The underlying mechanisms by which this occurs in the brain after injury remain ill-defined. METHODS We used GFP bone marrow chimeric knockout (KO) mice to demonstrate that the axon guidance molecule EphA4 receptor tyrosine kinase is involved in suppressing MERTK in the brain to restrict efferocytosis of resident microglia and peripheral-derived monocyte/macrophages. RESULTS Single-cell RNAseq identified MERTK expression, the primary receptor involved in efferocytosis, on monocytes, microglia, and a subset of astrocytes in the damaged cortex following brain injury. Loss of EphA4 on infiltrating GFP-expressing immune cells improved functional outcome concomitant with enhanced efferocytosis and overall protein expression of p-MERTK, p-ERK, and p-Stat6. The percentage of GFP+ monocyte/macrophages and resident microglia engulfing NeuN+ or TUNEL+ cells was significantly higher in KO chimeric mice. Importantly, mRNA expression of Mertk and its cognate ligand Gas6 was significantly elevated in these mice compared to the wild-type. Analysis of cell-specific expression showed that p-ERK and p-Stat6 co-localized with MERTK-expressing GFP + cells in the peri-lesional area of the cortex following brain injury. Using an in vitro efferocytosis assay, co-culturing pHrodo-labeled apoptotic Jurkat cells and bone marrow (BM)-derived macrophages, we demonstrate that efferocytosis efficiency and mRNA expression of Mertk and Gas6 was enhanced in the absence of EphA4. Selective inhibitors of ERK and Stat6 attenuated this effect, confirming that EphA4 suppresses monocyte/macrophage efferocytosis via inhibition of the ERK/Stat6 pathway. CONCLUSIONS Our findings implicate the ERK/Stat6/MERTK axis as a novel regulator of apoptotic debris clearance in brain injury that is restricted by peripheral myeloid-derived EphA4 to prevent the resolution of inflammation.
Collapse
Affiliation(s)
- Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - John Leonard
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Ilana Gershenson
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Jatia Mills
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Roanoke, VA, 24001, USA
| | - Alexandra M Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Mohamed Elhassanny
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Daniela Pereira
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michael Chen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA.
- Translational Biology Medicine and Health Graduate Program, Roanoke, VA, 24001, USA.
- Center for Engineered Health, Virginia Tech, Blacksburg, VA, 24061, USA.
- VT-Biomedical Engineering and School of Neuroscience, 970 Washington Street SW, Life Sciences I; Rm 249 (MC0910), Blacksburg, VA, 24061, USA.
| |
Collapse
|
8
|
Panchenko PE, Hippauf L, Konsman JP, Badaut J. Do astrocytes act as immune cells after pediatric TBI? Neurobiol Dis 2023; 185:106231. [PMID: 37468048 PMCID: PMC10530000 DOI: 10.1016/j.nbd.2023.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
Astrocytes are in contact with the vasculature, neurons, oligodendrocytes and microglia, forming a local network with various functions critical for brain homeostasis. One of the primary responders to brain injury are astrocytes as they detect neuronal and vascular damage, change their phenotype with morphological, proteomic and transcriptomic transformations for an adaptive response. The role of astrocytic responses in brain dysfunction is not fully elucidated in adult, and even less described in the developing brain. Children are vulnerable to traumatic brain injury (TBI), which represents a leading cause of death and disability in the pediatric population. Pediatric brain trauma, even with mild severity, can lead to long-term health complications, such as cognitive impairments, emotional disorders and social dysfunction later in life. To date, the underlying pathophysiology is still not fully understood. In this review, we focus on the astrocytic response in pediatric TBI and propose a potential immune role of the astrocyte in response to trauma. We discuss the contribution of astrocytes in the local inflammatory cascades and secretion of various immunomodulatory factors involved in the recruitment of local microglial cells and peripheral immune cells through cerebral blood vessels. Taken together, we propose that early changes in the astrocytic phenotype can alter normal development of the brain, with long-term consequences on neurological outcomes, as described in preclinical models and patients.
Collapse
Affiliation(s)
| | - Lea Hippauf
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| | | | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
9
|
Chen I, Murdaugh LB, Miliano C, Dong Y, Gregus AM, Buczynski MW. NAPE-PLD regulates specific baseline affective behaviors but is dispensable for inflammatory hyperalgesia. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100135. [PMID: 38099275 PMCID: PMC10719515 DOI: 10.1016/j.ynpai.2023.100135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 12/17/2023]
Abstract
N-acyl-ethanolamine (NAEs) serve as key endogenous lipid mediators as revealed by manipulation of fatty acid amide hydrolase (FAAH), the primary enzyme responsible for metabolizing NAEs. Preclinical studies focused on FAAH or NAE receptors indicate an important role for NAE signaling in nociception and affective behaviors. However, there is limited information on the role of NAE biosynthesis in these same behavioral paradigms. Biosynthesis of NAEs has been attributed largely to the enzyme N-acylphosphatidylethanolamine Phospholipase D (NAPE-PLD), one of three pathways capable of producing these bioactive lipids in the brain. In this report, we demonstrate that Nape-pld knockout (KO) mice displayed reduced sucrose preference and consumption, but other baseline anxiety-like or depression-like behaviors were unaltered. Additionally, we observed sex-dependent responses in thermal nociception and other baseline measures in wildtype (WT) mice that were absent in Nape-pld KO mice. In the Complete Freund's Adjuvant (CFA) model of inflammatory arthritis, WT mice exhibited sex-dependent changes in paw edema that were lost in Nape-pld KO mice. However, there was no effect of Nape-pld deletion on arthritic pain-like behaviors (grip force deficit and tactile allodynia) in either sex, indicating that while NAPE-PLD may alter local inflammation, it does not contribute to pain-like behaviors associated with inflammatory arthritis. Collectively, these findings indicate that chronic and systemic NAPE-PLD inactivation will likely be well-tolerated, warranting further pharmacological evaluation of this target in other disease indications.
Collapse
Affiliation(s)
- Irene Chen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Laura B. Murdaugh
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Yuyang Dong
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
10
|
Soliman E, Leonard J, Basso EK, Gershenson I, Ju J, Mills J, Jager C, Kaloss AM, Elhassanny M, Pereira D, Chen M, Wang X, Theus MH. Efferocytosis is restricted by axon guidance molecule EphA4 via ERK/Stat6/Mertk signaling following brain injury. RESEARCH SQUARE 2023:rs.3.rs-3079466. [PMID: 37461720 PMCID: PMC10350120 DOI: 10.21203/rs.3.rs-3079466/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Background Efferocytosis is a process that removes apoptotic cells and cellular debris. Clearance of these cells alleviates neuroinflammation and prevents the release of inflammatory molecules and promotes the production of anti-inflammatory cytokines to help maintain tissue homeostasis. The underlying mechanisms by which this occurs in the brain after injury remains ill-defined. Methods We demonstrate using GFP bone marrow chimeric knockout (KO) mice, that the axon guidance molecule EphA4 receptor tyrosine kinase is involved in suppressing Mertk signaling in the brain to restrict the function of efferocytosis on resident microglia and peripheral-derived monocyte/macrophages. Results Single-cell RNAseq identified Mertk expression, the primary receptor involved in efferocytosis, on monocytes, microglia, and a subset of astrocytes in the damaged cortex following brain injury. Loss of EphA4 on infiltrating GFP-expressing immune cells improved functional outcome concomitant with enhanced efferocytosis, and overall protein expression of p-Mertk, p-ERK, and p-Stat6. The percentage of GFP+ monocyte/macrophages and resident microglia engulfing NeuN+ or TUNEL+ cells was significantly higher in KO chimeric mice. Importantly, mRNA expression of Mertk and its cognate ligand Gas6 was significantly elevated in these mice compared to wild-type. Analysis of cell-specific expression showed that p-ERK and p-Stat6 co-localized with Mertk-expressing GFP + cells in the peri-lesional area of the cortex following brain injury. Using an in vitro efferocytosis assay, co-culturing pHrodo-labeled apoptotic Jurkat cells and bone marrow (BM)-derived macrophages, we demonstrate that efferocytosis efficiency and mRNA expression of Mertk and Gas6 was enhanced in the absence of EphA4. Select inhibitors of ERK and Stat6 attenuated this effect confirming that EphA4 suppresses monocyte/macrophage efferocytosis via inhibition of the ERK/Stat6 pathway. Conclusions Our findings implicate the Mertk/ERK/Stat6 axis as a novel regulator of apoptotic debris clearance in brain injury that is restricted by peripheral myeloid-derived EphA4 to prevent the resolution of inflammation.
Collapse
|
11
|
Zong J, Wang Y, Pan S, Yang Y, Peng J, Li F, Xu L, Li S, Qian W. The Relationship between the Serum NLRP1 Level and Coronary Lesions in Patients with Coronary Artery Disease. Int J Clin Pract 2023; 2023:2250055. [PMID: 37214347 PMCID: PMC10195180 DOI: 10.1155/2023/2250055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Background The pathogenesis of coronary artery disease is complex, and inflammation is one of the regulatory factors. The nucleotide-binding oligomerization domain (NOD)-like receptor protein 1 (NLRP1) plays an important role in the cellular inflammatory response, cell apoptosis, cell death, and autoimmune diseases. Whether the level of NLRP1 is related to the severity of coronary artery stenosis in patients with coronary artery disease (CAD) has not been reported. Objective To test the serum level of NLRP1 in unstable angina (UA) patients and investigate the effect of NLRP1 on coronary stenosis severity of the coronary artery disease (CAD). Methods 307 patients hospitalized in the Department of Cardiology of the Affiliated Hospital of Xuzhou Medical University for coronary angiography from January 1, 2021, to December 31, 2022 were included. We detect the level of NLRP1 in the serum of the included patients. Patients were divided into UA group and control group according to coronary angiography results and other clinical data. We use logistic regression to screen the influencing factors of UA. Then, subgroups were divided according to the Gensini score and the number of coronary artery lesions, and the difference of serum NLRP1 level between the groups was compared. Spearman correlation analysis was used to explore the correlation between the serum NLRP1 level and Gensini score. We analyze the diagnostic value of NLRP1 for UA by drawing ROC curve. Results The median level of serum NLRP1 in patients with UA (n = 257) was 49.71 pg/ml, IQR 30.15, 80.21, and that in patients without UA (n = 50) was 24.75 pg/ml, IQR 13.49, 41.95. Serum NLRP1 levels were significantly different among different subgroups. The patient's Gensini score was correlated with the patient's serum NLRP1 level. Conclusion The serum NLRP1 level is increased in patients with UA, which is increased with the increasing severity of coronary lesions.
Collapse
Affiliation(s)
- Jing Zong
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
- Institute of Cardiovascular Disease, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Yixiao Wang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
- Institute of Cardiovascular Disease, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Siyu Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
- Institute of Cardiovascular Disease, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Yiming Yang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
- Institute of Cardiovascular Disease, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Jingfeng Peng
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
- Institute of Cardiovascular Disease, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Fangfang Li
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
- Institute of Cardiovascular Disease, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Luhong Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
- Institute of Cardiovascular Disease, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Shanshan Li
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Wenhao Qian
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
- Institute of Cardiovascular Disease, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| |
Collapse
|
12
|
Gudenschwager-Basso EK, Shandra O, Volanth T, Patel DC, Kelly C, Browning JL, Wei X, Harris EA, Mahmutovic D, Kaloss AM, Correa FG, Decker J, Maharathi B, Robel S, Sontheimer H, VandeVord PJ, Olsen ML, Theus MH. Atypical Neurogenesis, Astrogliosis, and Excessive Hilar Interneuron Loss Are Associated with the Development of Post-Traumatic Epilepsy. Cells 2023; 12:1248. [PMID: 37174647 PMCID: PMC10177146 DOI: 10.3390/cells12091248] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) remains a significant risk factor for post-traumatic epilepsy (PTE). The pathophysiological mechanisms underlying the injury-induced epileptogenesis are under investigation. The dentate gyrus-a structure that is highly susceptible to injury-has been implicated in the evolution of seizure development. METHODS Utilizing the murine unilateral focal control cortical impact (CCI) injury, we evaluated seizure onset using 24/7 EEG video analysis at 2-4 months post-injury. Cellular changes in the dentate gyrus and hilus of the hippocampus were quantified by unbiased stereology and Imaris image analysis to evaluate Prox1-positive cell migration, astrocyte branching, and morphology, as well as neuronal loss at four months post-injury. Isolation of region-specific astrocytes and RNA-Seq were performed to determine differential gene expression in animals that developed post-traumatic epilepsy (PTE+) vs. those animals that did not (PTE-), which may be associated with epileptogenesis. RESULTS CCI injury resulted in 37% PTE incidence, which increased with injury severity and hippocampal damage. Histological assessments uncovered a significant loss of hilar interneurons that coincided with aberrant migration of Prox1-positive granule cells and reduced astroglial branching in PTE+ compared to PTE- mice. We uniquely identified Cst3 as a PTE+-specific gene signature in astrocytes across all brain regions, which showed increased astroglial expression in the PTE+ hilus. CONCLUSIONS These findings suggest that epileptogenesis may emerge following TBI due to distinct aberrant cellular remodeling events and key molecular changes in the dentate gyrus of the hippocampus.
Collapse
Affiliation(s)
| | - Oleksii Shandra
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Biomedical Engineering, Florida International University, Miami, FL 33199, USA
| | - Troy Volanth
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dipan C. Patel
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Colin Kelly
- Translational Biology Medicine and Health Graduate Program, Blacksburg, VA 24061, USA
| | - Jack L. Browning
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaoran Wei
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
| | - Elizabeth A. Harris
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
| | - Dzenis Mahmutovic
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
| | | | - Jeremy Decker
- Department of Biomedical Engineering and Mechanics, Blacksburg, VA 24061, USA
| | - Biswajit Maharathi
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefanie Robel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Pamela J. VandeVord
- Department of Biomedical Engineering and Mechanics, Blacksburg, VA 24061, USA
| | | | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA (E.A.H.)
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Engineered Health, Viginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
13
|
Mohamadzadeh O, Hajinouri M, Moammer F, Tamehri Zadeh SS, Omid Shafiei G, Jafari A, Ostadian A, Talaei Zavareh SA, Hamblin MR, Yazdi AJ, Sheida A, Mirzaei H. Non-coding RNAs and Exosomal Non-coding RNAs in Traumatic Brain Injury: the Small Player with Big Actions. Mol Neurobiol 2023; 60:4064-4083. [PMID: 37020123 DOI: 10.1007/s12035-023-03321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Nowadays, there is an increasing concern regarding traumatic brain injury (TBI) worldwide since substantial morbidity is observed after it, and the long-term consequences that are not yet fully recognized. A number of cellular pathways related to the secondary injury in brain have been identified, including free radical production (owing to mitochondrial dysfunction), excitotoxicity (regulated by excitatory neurotransmitters), apoptosis, and neuroinflammatory responses (as a result of activation of the immune system and central nervous system). In this context, non-coding RNAs (ncRNAs) maintain a fundamental contribution to post-transcriptional regulation. It has been shown that mammalian brains express high levels of ncRNAs that are involved in several brain physiological processes. Furthermore, altered levels of ncRNA expression have been found in those with traumatic as well non-traumatic brain injuries. The current review highlights the primary molecular mechanisms participated in TBI that describes the latest and novel results about changes and role of ncRNAs in TBI in both clinical and experimental research.
Collapse
Affiliation(s)
- Omid Mohamadzadeh
- Department of Neurological Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsasadat Hajinouri
- Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Moammer
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | | | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Ostadian
- Department of Laboratory Medicine, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | | | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
14
|
Kattan D, Barsa C, Mekhijian S, Shakkour Z, Jammoul M, Doumit M, Zabala MCP, Darwiche N, Eid AH, Mechref Y, Wang KK, de Rivero Vaccari JP, Munoz Pareja JC, Kobeissy F. Inflammasomes as biomarkers and therapeutic targets in traumatic brain injury and related-neurodegenerative diseases: A comprehensive overview. Neurosci Biobehav Rev 2023; 144:104969. [PMID: 36423707 PMCID: PMC9805531 DOI: 10.1016/j.neubiorev.2022.104969] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Given the ambiguity surrounding traumatic brain injury (TBI) pathophysiology and the lack of any Food and Drug Administration (FDA)-approved neurotherapeutic drugs, there is an increasing need to better understand the mechanisms of TBI. Recently, the roles of inflammasomes have been highlighted as both potential therapeutic targets and diagnostic markers in different neurodegenerative disorders. Indeed, inflammasome activation plays a pivotal function in the central nervous system (CNS) response to many neurological conditions, as well as to several neurodegenerative disorders, specifically, TBI. This comprehensive review summarizes and critically discusses the mechanisms that govern the activation and assembly of inflammasome complexes and the major methods used to study inflammasome activation in TBI and its implication for other neurodegenerative disorders. Also, we will review how inflammasome activation is critical in CNS homeostasis and pathogenesis, and how it can impact chronic TBI sequalae and increase the risk of developing neurodegenerative diseases. Additionally, we discuss the recent updates on inflammasome-related biomarkers and the potential to utilize inflammasomes as putative therapeutic targets that hold the potential to better diagnose and treat subjects with TBI.
Collapse
Affiliation(s)
- Dania Kattan
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chloe Barsa
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Sarin Mekhijian
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Program for Interdisciplinary Neuroscience, Department of Child Health, School of Medicine, University of Missouri, USA
| | - Maya Jammoul
- Department of Anatomy, Cell Biology, and Physiology, American University of Beirut, Beirut, Lebanon
| | - Mark Doumit
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Maria Camila Pareja Zabala
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kevin K Wang
- Morehouse School of Medicine, Department of Neurobiology, Atlanta, GA, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Jennifer C Munoz Pareja
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Morehouse School of Medicine, Department of Neurobiology, Atlanta, GA, USA.
| |
Collapse
|
15
|
Bi F, Bai Y, Zhang Y, Liu W. Ligustroflavone exerts neuroprotective activity through suppression of NLRP1 inflammasome in ischaemic stroke mice. Exp Ther Med 2022; 25:8. [PMID: 36561613 PMCID: PMC9748641 DOI: 10.3892/etm.2022.11707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation is thought to play an important role in the pathophysiology of ischaemic stroke, which is a main cause of disability and morbidity worldwide. Inhibition of the NOD-like receptor protein 1 (NLRP1) inflammasome has been reported to alleviate the inflammatory response in cell and animal models. Ligustroflavone (LIG) is a compound derived from Ligustrum lucidum, which shows anti-inflammatory activity and may play a beneficial role in a number of neurological diseases. To date, the potential for LIG to act through NLRP1 as a treatment for ischemic stroke has not been studied. The present study established an ischaemic stroke model by middle cerebral artery occlusion (MCAO). Modified neurological severity scoring, open-field and the Rotarod test were used to assess neurological deficits. Staining with Hoechst 33258 and western blotting were used to evaluate neuronal damage. Expression levels of NLRP1 inflammasome complexes and inflammatory cytokines were determined using western blotting, enzyme-linked immunosorbent assay and reverse transcription-quantitative PCR. Treatment with LIG minimized the impairment of neurological function and blocked neuronal damage in MCAO mice. In addition, treatment with LIG attenuated the upregulation of expression levels of the NLRP1 inflammasome complexes and the inflammatory cytokines TNF-α, IL-18, IL-6 and IL-1β. Overall, LIG played an important role in anti-inflammatory and neuroprotective activity in MCAO models of ischaemic stroke.
Collapse
Affiliation(s)
- Fangfang Bi
- Department of Medicine, Xi'an Peihua University, Xi'an, Shaanxi 710125, P.R. China
| | - Ya Bai
- Department of Neurosurgery, Xijing Hospital, Xi'an, Shaanxi 710032, P.R. China
| | - Yiyong Zhang
- Department of Neurosurgery, Jinan Jiyang District People's Hospital, Jinan, Shandong 251401, P.R. China
| | - Wenbo Liu
- Translational Research Institute of Intensive Care Medicine, College of Anaesthesiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China,Correspondence to: Professor Wenbo Liu, Translational Research Institute of Intensive Care Medicine, College of Anaesthesiology, Weifang Medical University, 7166 Baotong West Street, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
16
|
Kowalski EA, Soliman E, Kelly C, Basso EKG, Leonard J, Pridham KJ, Ju J, Cash A, Hazy A, de Jager C, Kaloss AM, Ding H, Hernandez RD, Coleman G, Wang X, Olsen ML, Pickrell AM, Theus MH. Monocyte proinflammatory phenotypic control by ephrin type A receptor 4 mediates neural tissue damage. JCI Insight 2022; 7:e156319. [PMID: 35737458 PMCID: PMC9462496 DOI: 10.1172/jci.insight.156319] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Circulating monocytes have emerged as key regulators of the neuroinflammatory milieu in a number of neuropathological disorders. Ephrin type A receptor 4 (Epha4) receptor tyrosine kinase, a prominent axon guidance molecule, has recently been implicated in the regulation of neuroinflammation. Using a mouse model of brain injury and a GFP BM chimeric approach, we found neuroprotection and a lack of significant motor deficits marked by reduced monocyte/macrophage cortical infiltration and an increased number of arginase-1+ cells in the absence of BM-derived Epha4. This was accompanied by a shift in monocyte gene profile from pro- to antiinflammatory that included increased Tek (Tie2 receptor) expression. Inhibition of Tie2 attenuated enhanced expression of M2-like genes in cultured Epha4-null monocytes/macrophages. In Epha4-BM-deficient mice, cortical-isolated GFP+ monocytes/macrophages displayed a phenotypic shift from a classical to an intermediate subtype, which displayed reduced Ly6chi concomitant with increased Ly6clo- and Tie2-expressing populations. Furthermore, clodronate liposome-mediated monocyte depletion mimicked these effects in WT mice but resulted in attenuation of phenotype in Epha4-BM-deficient mice. This demonstrates that monocyte polarization not overall recruitment dictates neural tissue damage. Thus, coordination of monocyte proinflammatory phenotypic state by Epha4 is a key regulatory step mediating brain injury.
Collapse
Affiliation(s)
- Elizabeth A. Kowalski
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Colin Kelly
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
- School of Neuroscience, and
| | | | - John Leonard
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Kevin J. Pridham
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Alison Cash
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Amanda Hazy
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Caroline de Jager
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | - Hanzhang Ding
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Raymundo D. Hernandez
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | | | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
| | | | | | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, Virginia, USA
- School of Neuroscience, and
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
- Center for Engineered Health, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
17
|
Mata-Martínez E, Díaz-Muñoz M, Vázquez-Cuevas FG. Glial Cells and Brain Diseases: Inflammasomes as Relevant Pathological Entities. Front Cell Neurosci 2022; 16:929529. [PMID: 35783102 PMCID: PMC9243488 DOI: 10.3389/fncel.2022.929529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation mediated by the innate immune system is a physiopathological response to diverse detrimental circumstances such as microbe infections or tissular damage. The molecular events that underlie this response involve the assembly of multiprotein complexes known as inflammasomes. These assemblages are essentially formed by a stressor-sensing protein, an adapter protein and a non-apoptotic caspase (1 or 11). The coordinated aggregation of these components mediates the processing and release of pro-inflammatory interleukins (IL-β and IL-18) and cellular death by pyroptosis induction. The inflammatory response is essential for the defense of the organism; for example, it triggers tissue repair and the destruction of pathogen microbe infections. However, when inflammation is activated chronically, it promotes diverse pathologies in the lung, liver, brain and other organs. The nervous system is one of the main tissues where the inflammatory process has been characterized, and its implications in health and disease are starting to be understood. Thus, the regulation of inflammasomes in specific cellular types of the central nervous system needs to be thoroughly understood to innovate treatments for diverse pathologies. In this review, the presence and participation of inflammasomes in pathological conditions in different types of glial cells will be discussed.
Collapse
|
18
|
Mi L, Min X, Chai Y, Zhang J, Chen X. NLRP1 Inflammasomes: A Potential Target for the Treatment of Several Types of Brain Injury. Front Immunol 2022; 13:863774. [PMID: 35707533 PMCID: PMC9189285 DOI: 10.3389/fimmu.2022.863774] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/28/2022] [Indexed: 12/28/2022] Open
Abstract
NOD-like receptor (NLR) family pyrin domain-containing 1 (NLRP1) is a member of the NLR family. The NLRP1 inflammasome consists of the NLRP1 protein, the adaptor protein apoptosis-associated speck-like protein containing a CARD domain, and the effector molecule pro-caspase-1. When stimulated, the inflammasome initiates the cleavage of pro-caspase-1 and converts it into its active form, caspase-1; then, caspase-1 facilitates the cleavage of the proinflammatory cytokines interleukin-1β and interleukin-18 into their active and secreted forms. In addition, caspase-1 also mediates the cleavage of gasdermin D, which leads to pyroptosis, an inflammatory form of cell death. Pathological events that damage the brain and result in neuropathological conditions can generally be described as brain injury. Neuroinflammation, especially that driven by NLRP1, plays a considerable role in the pathophysiology of brain injury, such as early brain injury (EBI) of subarachnoid hemorrhage, ischemic brain injury during stroke, and traumatic brain injury (TBI). In this article, a thorough overview of NLRP1 is presented, including its structure, mechanism of activation, and role in neuroinflammation. We also present recent studies on NLRP1 as a target for the treatment of EBI, ischemic brain injury, TBI, and other types of brain injury, thus highlighting the perspective of NLRP1 as an effective mediator of catastrophic brain injury.
Collapse
Affiliation(s)
- Liang Mi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xiaobin Min
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Baodi Clinical College, Tianjin Medical University, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
- *Correspondence: Xin Chen,
| |
Collapse
|
19
|
Du H, Li CH, Gao RB, Cen XQ, Li P. Ablation of GSDMD Attenuates Neurological Deficits and Neuropathological Alterations After Traumatic Brain Injury. Front Cell Neurosci 2022; 16:915969. [PMID: 35669106 PMCID: PMC9164823 DOI: 10.3389/fncel.2022.915969] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022] Open
Abstract
Pyroptosis plays a significant role in neuroinflammation after traumatic brain injury (TBI). However, the role of pyroptosis executor Gasdermin D (GSDMD) in neurological deficits and neuropathological alterations after TBI have not been elucidated. Our results demonstrated that GSDMD-KO exerted striking neuroprotective effects on motor dysfunction and neuropathological alterations (loss of synaptic proteins, microglia activation, astrogliosis, dendrite injury, and neuron death) at 3 days after TBI. GSDMD-KO inhibited the expression and release of pro-inflammatory cytokine releases (IL-1β and TNF-α) while promoting those of anti-inflammatory cytokines (IL-10 and TGF-β1). The temporal pattern of diverse inflammasome signals showed long-lasting elevations of NLRP3, caspase 1, and caspase 1 p20 after TBI, rather than NLRP1, NLRC4 or AIM2, similar to the change in GSDMD postinjury; and NLRP3-KO not only inhibited the expression and cleavage of GSDMD but also attenuated the loss of synaptic proteins and neurological deficits. Notably, RNA sequencing showed both GSDMD-KO and NLRP3-KO reversed the global expression of neuroinflammation- and neuropathology-related genes after TBI. Our findings proved that the inhibition of GSDMD exerts neuroprotective effects after TBI and is mainly driven by the NLRP3 inflammasome. GSDMD serves as a potent therapeutic target for the treatment of TBI.
Collapse
Affiliation(s)
- Hao Du
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chang-Hong Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ruo-Bing Gao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-Qing Cen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery and Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Institute of Brain and Intelligence, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Ping Li
| |
Collapse
|
20
|
Zheng RZ, Lee KY, Qi ZX, Wang Z, Xu ZY, Wu XH, Mao Y. Neuroinflammation Following Traumatic Brain Injury: Take It Seriously or Not. Front Immunol 2022; 13:855701. [PMID: 35392083 PMCID: PMC8981520 DOI: 10.3389/fimmu.2022.855701] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with high mortality and disability, with a substantial socioeconomic burden. With the standardization of the treatment process, there is increasing interest in the role that the secondary insult of TBI plays in outcome heterogeneity. The secondary insult is neither detrimental nor beneficial in an absolute sense, among which the inflammatory response was a complex cascade of events and can thus be regarded as a double-edged sword. Therefore, clinicians should take the generation and balance of neuroinflammation following TBI seriously. In this review, we summarize the current human and animal model studies of neuroinflammation and provide a better understanding of the inflammatory response in the different stages of TBI. In particular, advances in neuroinflammation using proteomic and transcriptomic techniques have enabled us to identify a functional specific delineation of the immune cell in TBI patients. Based on recent advances in our understanding of immune cell activation, we present the difference between diffuse axonal injury and focal brain injury. In addition, we give a figurative profiling of the general paradigm in the pre- and post-injury inflammatory settings employing a bow-tie framework.
Collapse
Affiliation(s)
- Rui-Zhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Kuin-Yu Lee
- Department of Integrative Medicine and Neurobiology, Institute of Integrative Medicine of Fudan University Institute of Brain Science, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ze-Yu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xue-Hai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,National Center for Neurological Disorders, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Neurosurgical Institute of Fudan University, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China.,State Key Laboratory of Medical Neurobiology and Ministry of Education (MOE) Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Fritsch LE, Ju J, Gudenschwager Basso EK, Soliman E, Paul S, Chen J, Kaloss AM, Kowalski EA, Tuhy TC, Somaiya RD, Wang X, Allen IC, Theus MH, Pickrell AM. Type I Interferon Response Is Mediated by NLRX1-cGAS-STING Signaling in Brain Injury. Front Mol Neurosci 2022; 15:852243. [PMID: 35283725 PMCID: PMC8916033 DOI: 10.3389/fnmol.2022.852243] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/02/2022] [Indexed: 01/05/2023] Open
Abstract
Background Inflammation is a significant contributor to neuronal death and dysfunction following traumatic brain injury (TBI). Recent evidence suggests that interferons may be a key regulator of this response. Our studies evaluated the role of the Cyclic GMP-AMP Synthase-Stimulator of Interferon Genes (cGAS-STING) signaling pathway in a murine model of TBI. Methods Male, 8-week old wildtype, STING knockout (−/−), cGAS−/−, and NLRX1−/− mice were subjected to controlled cortical impact (CCI) or sham injury. Histopathological evaluation of tissue damage was assessed using non-biased stereology, which was complemented by analysis at the mRNA and protein level using qPCR and western blot analysis, respectively. Results We found that STING and Type I interferon-stimulated genes were upregulated after CCI injury in a bi-phasic manner and that loss of cGAS or STING conferred neuroprotection concomitant with a blunted inflammatory response at 24 h post-injury. cGAS−/− animals showed reduced motor deficits 4 days after injury (dpi), and amelioration of tissue damage was seen in both groups of mice up to 14 dpi. Given that cGAS requires a cytosolic damage- or pathogen-associated molecular pattern (DAMP/PAMP) to prompt downstream STING signaling, we further demonstrate that mitochondrial DNA is present in the cytosol after TBI as one possible trigger for this pathway. Recent reports suggest that the immune modulator NLR containing X1 (NLRX1) may sequester STING during viral infection. Our findings show that NLRX1 may be an additional regulator that functions upstream to regulate the cGAS-STING pathway in the brain. Conclusions These findings suggest that the canonical cGAS-STING-mediated Type I interferon signaling axis is a critical component of neural tissue damage following TBI and that mtDNA may be a possible trigger in this response.
Collapse
Affiliation(s)
- Lauren E. Fritsch
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Jing Ju
- Molecular and Cellular Biology Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Swagatika Paul
- Biomedical and Veterinary Sciences Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jiang Chen
- Molecular and Cellular Biology Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Alexandra M. Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Elizabeth A. Kowalski
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Taylor C. Tuhy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Rachana Deven Somaiya
- Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle H. Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- *Correspondence: Alicia M. Pickrell Michelle H. Theus
| | - Alicia M. Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- *Correspondence: Alicia M. Pickrell Michelle H. Theus
| |
Collapse
|
22
|
Soliman E, Mills J, Ju J, Kaloss AM, Basso EKG, Groot N, Kelly C, Kowalski EA, Elhassanny M, Chen M, Wang X, Theus MH. Conditional Deletion of EphA4 on Cx3cr1-Expressing Microglia Fails to Influence Histopathological Outcome and Blood Brain Barrier Disruption Following Brain Injury. Front Mol Neurosci 2021; 14:747770. [PMID: 34630039 PMCID: PMC8497746 DOI: 10.3389/fnmol.2021.747770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Erythropoietin-producing human hepatocellular receptors play a major role in central nervous system injury. Preclinical and clinical studies revealed the upregulation of erythropoietin-producing human hepatocellular A4 (EphA4) receptors in the brain after acute traumatic brain injury. We have previously reported that Cx3cr1-expressing cells in the peri-lesion show high levels of EphA4 after the induction of controlled cortical impact (CCI) injury in mice. Cx3cr1 is a fractalkine receptor expressed on both resident microglia and peripheral-derived macrophages. The current study aimed to determine the role of microglial-specific EphA4 in CCI-induced damage. We used Cx3cr1 CreER/+ knock-in/knock-out mice, which express EYFP in Cx3cr1-positive cells to establish microglia, EphA4-deficient mice following 1-month tamoxifen injection. Consistent with our previous findings, induction of CCI in wild-type (WT) Cx3cr1 CreER/+ EphA4 +/+ mice increased EphA4 expression on EYFP-positive cells in the peri-lesion. To distinguish between peripheral-derived macrophages and resident microglia, we exploited GFP bone marrow-chimeric mice and found that CCI injury increased EphA4 expression in microglia (TMEM119+GFP-) using immunohistochemistry. Using Cx3cr1 CreER/+ EphA4 f/f (KO) mice, we observed that the EphA4 mRNA transcript was undetected in microglia but remained present in whole blood when compared to WT. Finally, we found no difference in lesion volume or blood-brain barrier (BBB) disruption between WT and KO mice at 3 dpi. Our data demonstrate a nonessential role of microglial EphA4 in the acute histopathological outcome in response to CCI.
Collapse
Affiliation(s)
- Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Jatia Mills
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Alexandra M Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | | | - Nathalie Groot
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Colin Kelly
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Elizabeth A Kowalski
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Mohamed Elhassanny
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Michael Chen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Xia Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States.,School of Neuroscience, Virginia Tech, Blacksburg, VA, United States.,Center for Engineered Health, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
23
|
Shaheen MJ, Bekdash AM, Itani HA, Borjac JM. Saffron extract attenuates neuroinflammation in rmTBI mouse model by suppressing NLRP3 inflammasome activation via SIRT1. PLoS One 2021; 16:e0257211. [PMID: 34506597 PMCID: PMC8432768 DOI: 10.1371/journal.pone.0257211] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/25/2021] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of morbidity and disability worldwide and a healthcare burden. TBI is an important risk factor for neurodegenerative diseases hallmarked by exacerbated neuroinflammation. Neuroinflammation in the cerebral cortex plays a critical role in secondary injury progression following TBI. The NOD-like receptors (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a key player in initiating the inflammatory response in various central nervous system disorders entailing TBI. This current study aims to investigate the role of NLRP3 in repetitive mild traumatic brain injury (rmTBI) and identify the potential neuroprotective effect of saffron extract in regulating the NLRP3 inflammasome. 24 hours following the final injury, rmTBI causes an upregulation in mRNA levels of NLRP3, caspase-1, the apoptosis-associated speck-like protein containing a CARD (ASC), nuclear factor kappa B (NF-κB), interleukin-1Beta (IL-1β), interleukin 18 (IL-18), nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase 1 (HMOX1). Protein levels of NLRP3, sirtuin 1 (SIRT1), glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1), and neuronal nuclei (Neu N) also increased after rmTBI. Administration of saffron alleviated the degree of TBI, as evidenced by reducing the neuronal damage, astrocyte, and microglial activation. Pretreatment with saffron inhibited the activation of NLRP3, caspase-1, and ASC concurrent to reduced production of the inflammatory cytokines IL-1β and IL-18. Additionally, saffron extract enhanced SIRT1 expression, NRF2, and HMOX1 upregulation. These results suggest that NLRP3 inflammasome activation and the subsequent inflammatory response in the mice cortex are involved in the process of rmTBI. Saffron blocked the inflammatory response and relieved TBI by activating detoxifying genes and inhibiting NLRP3 activation. The effect of saffron on the NLRP3 inflammasome may be SIRT1 and NF-κB dependent in the rmTBI model. Thus, brain injury biomarkers will help in identifying a potential therapeutic target in treating TBI-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Mariam J. Shaheen
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Amira M. Bekdash
- Faculty of Medicine, Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Faculty of Medicine, Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jamilah M. Borjac
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| |
Collapse
|
24
|
Inampudi C, Ciccotosto GD, Cappai R, Crack PJ. Genetic Modulators of Traumatic Brain Injury in Animal Models and the Impact of Sex-Dependent Effects. J Neurotrauma 2021; 37:706-723. [PMID: 32027210 DOI: 10.1089/neu.2019.6955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health problem causing disability and death worldwide. There is no effective treatment, due in part to the complexity of the injury pathology and factors affecting its outcome. The extent of brain injury depends on the type of insult, age, sex, lifestyle, genetic risk factors, socioeconomic status, other co-injuries, and underlying health problems. This review discusses the genes that have been directly tested in TBI models, and whether their effects are known to be sex-dependent. Sex differences can affect the incidence, symptom onset, pathology, and clinical outcomes following injury. Adult males are more susceptible at the acute phase and females show greater injury in the chronic phase. TBI is not restricted to a single sex; despite variations in the degree of symptom onset and severity, it is important to consider both female and male animals in TBI pre-clinical research studies.
Collapse
Affiliation(s)
- Chaitanya Inampudi
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Giuseppe D Ciccotosto
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Postolache TT, Wadhawan A, Can A, Lowry CA, Woodbury M, Makkar H, Hoisington AJ, Scott AJ, Potocki E, Benros ME, Stiller JW. Inflammation in Traumatic Brain Injury. J Alzheimers Dis 2021; 74:1-28. [PMID: 32176646 DOI: 10.3233/jad-191150] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is an increasing evidence that inflammation contributes to clinical and functional outcomes in traumatic brain injury (TBI). Many successful target-engaging, lesion-reducing, symptom-alleviating, and function-improving interventions in animal models of TBI have failed to show efficacy in clinical trials. Timing and immunological context are paramount for the direction, quality, and intensity of immune responses to TBI and the resulting neuroanatomical, clinical, and functional course. We present components of the immune system implicated in TBI, potential immune targets, and target-engaging interventions. The main objective of our article is to point toward modifiable molecular and cellular mechanisms that may modify the outcomes in TBI, and contribute to increasing the translational value of interventions that have been identified in animal models of TBI.
Collapse
Affiliation(s)
- Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| | - Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Saint Elizabeths Hospital, Department of Psychiatry, Washington, DC, USA
| | - Adem Can
- School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Christopher A Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Margaret Woodbury
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, CO, USA.,Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, OH, USA
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Michael E Benros
- Copenhagen Research Center for Mental Health-CORE, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - John W Stiller
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Maryland State Athletic Commission, Baltimore, MD, USA.,Saint Elizabeths Hospital, Neurology Consultation Services, Washington, DC, USA
| |
Collapse
|
26
|
Abstract
Traumatic brain injury leads to cellular damage which in turn results in the rapid release of damage-associated molecular patterns (DAMPs) that prompt resident cells to release cytokines and chemokines. These in turn rapidly recruit neutrophils, which assist in limiting the spread of injury and removing cellular debris. Microglia continuously survey the CNS (central nervous system) compartment and identify structural abnormalities in neurons contributing to the response. After some days, when neutrophil numbers start to decline, activated microglia and astrocytes assemble at the injury site—segregating injured tissue from healthy tissue and facilitating restorative processes. Monocytes infiltrate the injury site to produce chemokines that recruit astrocytes which successively extend their processes towards monocytes during the recovery phase. In this fashion, monocytes infiltration serves to help repair the injured brain. Neurons and astrocytes also moderate brain inflammation via downregulation of cytotoxic inflammation. Depending on the severity of the brain injury, T and B cells can also be recruited to the brain pathology sites at later time points.
Collapse
|
27
|
Greer K, Basso EKG, Kelly C, Cash A, Kowalski E, Cerna S, Ocampo CT, Wang X, Theus MH. Abrogation of atypical neurogenesis and vascular-derived EphA4 prevents repeated mild TBI-induced learning and memory impairments. Sci Rep 2020; 10:15374. [PMID: 32958852 PMCID: PMC7506550 DOI: 10.1038/s41598-020-72380-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023] Open
Abstract
Brain injury resulting from repeated mild traumatic insult is associated with cognitive dysfunction and other chronic co-morbidities. The current study tested the effects of aberrant neurogenesis in a mouse model of repeated mild traumatic brain injury (rmTBI). Using Barnes Maze analysis, we found a significant reduction in spatial learning and memory at 24 days post-rmTBI compared to repeated sham (rSham) injury. Cell fate analysis showed a greater number of BrdU-labeled cells which co-expressed Prox-1 in the DG of rmTBI-injured mice which coincided with enhanced cFos expression for neuronal activity. We then selectively ablated dividing neural progenitor cells using a 7-day continuous infusion of Ara-C prior to rSham or rmTBI. This resulted in attenuation of cFos and BrdU-labeled cell changes and prevented associated learning and memory deficits. We further showed this phenotype was ameliorated in EphA4f./f/Tie2-Cre knockout compared to EphA4f./f wild type mice, which coincided with altered mRNA transcript levels of MCP-1, Cx43 and TGFβ. These findings demonstrate that cognitive decline is associated with an increased presence of immature neurons and gene expression changes in the DG following rmTBI. Our data also suggests that vascular EphA4-mediated neurogenic remodeling adversely affects learning and memory behavior in response to repeated insult.
Collapse
Affiliation(s)
- Kisha Greer
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Colin Kelly
- The Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Alison Cash
- The Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elizabeth Kowalski
- The Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Steven Cerna
- The Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Collin Tanchanco Ocampo
- The Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xia Wang
- The Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michelle H Theus
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, 24061, USA.
- The Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Regenerative Medicine, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA.
- Center for Engineered Health, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
28
|
Overexpression of MicroRNA-9a-5p Ameliorates NLRP1 Inflammasome-mediated Ischemic Injury in Rats Following Ischemic Stroke. Neuroscience 2020; 444:106-117. [DOI: 10.1016/j.neuroscience.2020.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
|
29
|
Irrera N, Russo M, Pallio G, Bitto A, Mannino F, Minutoli L, Altavilla D, Squadrito F. The Role of NLRP3 Inflammasome in the Pathogenesis of Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21176204. [PMID: 32867310 PMCID: PMC7503761 DOI: 10.3390/ijms21176204] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) represents an important problem of global health. The damage related to TBI is first due to the direct injury and then to a secondary phase in which neuroinflammation plays a key role. NLRP3 inflammasome is a component of the innate immune response and different diseases, such as neurodegenerative diseases, are characterized by NLRP3 activation. This review aims to describe NLRP3 inflammasome and the consequences related to its activation following TBI. NLRP3, caspase-1, IL-1β, and IL-18 are significantly upregulated after TBI, therefore, the use of nonspecific, but mostly specific NLRP3 inhibitors is useful to ameliorate the damage post-TBI characterized by neuroinflammation. Moreover, NLRP3 and the molecules associated with its activation may be considered as biomarkers and predictive factors for other neurodegenerative diseases consequent to TBI. Complications such as continuous stimuli or viral infections, such as the SARS-CoV-2 infection, may worsen the prognosis of TBI, altering the immune response and increasing the neuroinflammatory processes related to NLRP3, whose activation occurs both in TBI and in SARS-CoV-2 infection. This review points out the role of NLRP3 in TBI and highlights the hypothesis that NLRP3 may be considered as a potential therapeutic target for the management of neuroinflammation in TBI.
Collapse
Affiliation(s)
- Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy; (N.I.); (M.R.); (G.P.); (A.B.); (F.M.); (L.M.)
| | - Massimo Russo
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy; (N.I.); (M.R.); (G.P.); (A.B.); (F.M.); (L.M.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy; (N.I.); (M.R.); (G.P.); (A.B.); (F.M.); (L.M.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy; (N.I.); (M.R.); (G.P.); (A.B.); (F.M.); (L.M.)
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy; (N.I.); (M.R.); (G.P.); (A.B.); (F.M.); (L.M.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy; (N.I.); (M.R.); (G.P.); (A.B.); (F.M.); (L.M.)
| | - Domenica Altavilla
- Department of Biomedical, Dental, Morphologic and Functional Imaging Sciences, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy;
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, 98,125 Messina, Italy; (N.I.); (M.R.); (G.P.); (A.B.); (F.M.); (L.M.)
- Correspondence:
| |
Collapse
|
30
|
Tupik JD, Nagai-Singer MA, Allen IC. To protect or adversely affect? The dichotomous role of the NLRP1 inflammasome in human disease. Mol Aspects Med 2020; 76:100858. [PMID: 32359693 DOI: 10.1016/j.mam.2020.100858] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/23/2020] [Accepted: 04/11/2020] [Indexed: 01/06/2023]
Abstract
NLRP1 is an inflammasome forming pattern recognition receptor (PRR). When activated by pathogen- and damage- associated molecular patterns (PAMPS/DAMPS), NLRP1 inflammasome formation leads to inflammation through the production of proinflammatory cytokines IL-18 and IL-1β. As with other inflammasome forming NLR family members, NLRP1 also regulates cell death processes, termed pyroptosis. The domain structure of NLRP1 differs between mice and humans, making it possible for the function of the inflammasome to differ between species and adds complexity to the study of this NLR family member. In humans, mutations in both coding and non-coding regions of the NLRP1 gene are linked to a variety of diseases. Likewise, interruption of NLRP1 inhibitors or changes in the prevalence of NLRP1 activators can also impact disease pathobiology. Adding to its complexity, the NLRP1 inflammasome plays a dichotomous role in human diseases, functioning to either attenuate or augment miscellaneous biological processes in a tissue specific manner. For example, NLRP1 plays a protective role in the gastrointestinal tract by modulating the microbiome composition; however, it augments neurological disorders, cardio-pulmonary diseases, and cancer through promoting inflammation. Thus, it is critical that the role of NLRP1 in each of these disease processes be robustly defined. In this review, we summarize the current research landscape to provide a better understanding of the mechanisms associated with NLRP1 function and dysfunction in human disease pathobiology. We propose that a better understanding of these mechanisms will ultimately result in improved insight into immune system dysfunction and therapeutic strategies targeting inflammasome function in multiple human diseases.
Collapse
Affiliation(s)
- Juselyn D Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Margaret A Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
| |
Collapse
|
31
|
Voet S, Srinivasan S, Lamkanfi M, van Loo G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med 2020; 11:emmm.201810248. [PMID: 31015277 PMCID: PMC6554670 DOI: 10.15252/emmm.201810248] [Citation(s) in RCA: 460] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation and neurodegeneration often result from the aberrant deposition of aggregated host proteins, including amyloid‐β, α‐synuclein, and prions, that can activate inflammasomes. Inflammasomes function as intracellular sensors of both microbial pathogens and foreign as well as host‐derived danger signals. Upon activation, they induce an innate immune response by secreting the inflammatory cytokines interleukin (IL)‐1β and IL‐18, and additionally by inducing pyroptosis, a lytic cell death mode that releases additional inflammatory mediators. Microglia are the prominent innate immune cells in the brain for inflammasome activation. However, additional CNS‐resident cell types including astrocytes and neurons, as well as infiltrating myeloid cells from the periphery, express and activate inflammasomes. In this review, we will discuss current understanding of the role of inflammasomes in common degenerative diseases of the brain and highlight inflammasome‐targeted strategies that may potentially treat these diseases.
Collapse
Affiliation(s)
- Sofie Voet
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sahana Srinivasan
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine, Ghent University, Ghent, Belgium .,Janssen Immunosciences, World without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Geert van Loo
- VIB Center for Inflammation Research, Ghent, Belgium .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Agrawal I, Jha S. Comprehensive review of ASC structure and function in immune homeostasis and disease. Mol Biol Rep 2020; 47:3077-3096. [PMID: 32124174 DOI: 10.1007/s11033-020-05345-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/22/2020] [Indexed: 12/17/2022]
Abstract
Apoptosis associated speck like protein containing CARD (ASC) is widely researched and recognized as an adaptor protein participating in inflammasome assembly and pyroptosis. It contains a bipartite structure comprising of a pyrin and a caspase recruitment domain (CARD) domain. These two domains help ASC function as an adaptor molecule. ASC is encoded by the gene PYCARD. ASC plays pivotal role in various diseases as well as different homeostatic processes. ASC plays a regulatory role in different cancers showing differential regulation with respect to tissue and stage of disease. Besides cancer, ASC also plays a central role in sensing, regulation, and/or disease progression in bacterial infections, viral infections and in varied inflammatory diseases. ASC is expressed in different types of immune and non-immune cells. Its localization pattern also varies with different kinds of stimuli encountered by cell. This review will summarize the literature on the structure cellular and tissue expression, localization and disease association of ASC.
Collapse
Affiliation(s)
- Ishan Agrawal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwad, Jodhpur, Rajasthan, 342037, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwad, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
33
|
Peripheral loss of EphA4 ameliorates TBI-induced neuroinflammation and tissue damage. J Neuroinflammation 2019; 16:210. [PMID: 31711546 PMCID: PMC6844068 DOI: 10.1186/s12974-019-1605-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The continuum of pro- and anti-inflammatory response elicited by traumatic brain injury (TBI) is suggested to play a key role in the outcome of TBI; however, the underlying mechanisms remain ill -defined. METHODS Here, we demonstrate that using bone marrow chimeric mice and systemic inhibition of EphA4 receptor shifts the pro-inflammatory milieu to pro-resolving following acute TBI. RESULTS EphA4 expression is increased in the injured cortex as early as 2 h post-TBI and on CX3CR1gfp-positive cells in the peri-lesion. Systemic inhibition or genetic deletion of EphA4 significantly reduced cortical lesion volume and shifted the inflammatory profile of peripheral-derived immune cells to pro-resolving in the damaged cortex. These findings were consistent with in vitro studies showing EphA4 inhibition or deletion altered the inflammatory state of LPS-stimulated monocyte/macrophages towards anti-inflammatory. Phosphoarray analysis revealed that EphA4 may regulate pro-inflammatory gene expression by suppressing the mTOR, Akt, and NF-κB pathways. Our human metadata analysis further demonstrates increased EPHA4 and pro-inflammatory gene expression, which correlates with reduced AKT concurrent with increased brain injury severity in patients. CONCLUSIONS Overall, these findings implicate EphA4 as a novel mediator of cortical tissue damage and neuroinflammation following TBI.
Collapse
|
34
|
Abstract
The mammalian CNS is an intricate and fragile structure, which on one hand is open to change in order to store information, but on the other hand is vulnerable to damage from injury, pathogen invasion or neurodegeneration. During senescence and neurodegeneration, activation of the innate immune system can occur. Inflammasomes are signalling complexes that regulate cells of the immune system, which in the brain mainly includes microglial cells. In microglia, the NLRP3 (NOD-, LRR- and pyrin domain-containing 3) inflammasome becomes activated when these cells sense proteins such as misfolded or aggregated amyloid-β, α-synuclein and prion protein or superoxide dismutase, ATP and members of the complement pathway. Several other inflammasomes have been described in microglia and the other cells of the brain, including astrocytes and neurons, where their activation and subsequent caspase 1 cleavage contribute to disease development and progression.
Collapse
|
35
|
Divergent age-dependent peripheral immune transcriptomic profile following traumatic brain injury. Sci Rep 2019; 9:8564. [PMID: 31189983 PMCID: PMC6561964 DOI: 10.1038/s41598-019-45089-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/22/2019] [Indexed: 11/09/2022] Open
Abstract
The peripheral immune system is a major regulator of the pathophysiology associated with traumatic brain injury (TBI). While age-at-injury influences recovery from TBI, the differential effects on the peripheral immune response remain unknown. Here, we investigated the effects of TBI on gene expression changes in murine whole blood using RNAseq analysis, gene ontology and network topology-based key driver analysis. Genome-wide comparison of CCI-injured peripheral whole blood showed a significant increase in genes involved in proteolysis and oxidative-reduction processes in juvenile compared to adult. Conversely, a greater number of genes, involved in migration, cytokine-mediated signaling and adhesion, were found reduced in CCI-injured juvenile compared to CCI-injured adult immune cells. Key driver analysis also identified G-protein coupled and novel pattern recognition receptor (PRR), P2RY10, as a central regulator of these genes. Lastly, we found Dectin-1, a c-type lectin PRR to be reduced at the protein level in both naïve neutrophils and on infiltrating immune cells in the CCI-injured juvenile cortex. These findings demonstrate a distinct peripheral inflammatory profile in juvenile mice, which may impact the injury and repair response to brain trauma.
Collapse
|
36
|
Morganti-Kossmann MC, Semple BD, Hellewell SC, Bye N, Ziebell JM. The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments. Acta Neuropathol 2019; 137:731-755. [PMID: 30535946 DOI: 10.1007/s00401-018-1944-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 12/01/2018] [Indexed: 12/18/2022]
Abstract
This review recounts the definitions and research evidence supporting the multifaceted roles of neuroinflammation in the injured brain following trauma. We summarise the literature fluctuating from the protective and detrimental properties that cytokines, leukocytes and glial cells play in the acute and chronic stages of TBI, including the intrinsic factors that influence cytokine responses and microglial functions relative to genetics, sex, and age. We elaborate on the pros and cons that cytokines, chemokines, and microglia play in brain repair, specifically neurogenesis, and how such conflicting roles may be harnessed therapeutically to sustain the survival of new neurons. With a brief review of the clinical and experimental findings demonstrating early and chronic inflammation impacts on outcomes, we focus on the clinical conditions that may be amplified by neuroinflammation, ranging from acute seizures to chronic epilepsy, neuroendocrine dysfunction, dementia, depression, post-traumatic stress disorder and chronic traumatic encephalopathy. Finally, we provide an overview of the therapeutic agents that have been tested to reduce inflammation-driven secondary pathological cascades and speculate the future promise of alternative drugs.
Collapse
Affiliation(s)
- Maria Cristina Morganti-Kossmann
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
- Australian New Zealand Intensive Care Research Centre, Melbourne, VIC, Australia.
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Sarah C Hellewell
- Sydney Translational Imaging Laboratory, Charles Perkins Centre, Heart Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Nicole Bye
- Department of Pharmacy, College of Health and Medicine, University of Tasmania, Sandy Bay, TAS, Australia
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
37
|
Kuwar R, Rolfe A, Di L, Xu H, He L, Jiang Y, Zhang S, Sun D. A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. J Neuroinflammation 2019; 16:81. [PMID: 30975164 PMCID: PMC6458637 DOI: 10.1186/s12974-019-1471-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/29/2019] [Indexed: 01/03/2023] Open
Abstract
Background Neuroinflammation is an essential player in many neurological diseases including traumatic brain injury (TBI). Recent studies have identified that inflammasome complexes are responsible for inflammatory responses in many pathological conditions. Inflammasomes are intracellular multiprotein complexes which regulate the innate immune response, activation of caspase-1, production of pro-inflammatory cytokines IL-1β and IL-18, and induction of cell death (pyroptosis). Among inflammasome family members, the nucleotide-binding domain leucine-rich repeats family protein 3 (NLRP3) is the most extensively studied and its activation is induced following TBI. As a novel target, drug development targeting the formation and activation of NLRP3 inflammasome is a prospective therapy for TBI. We have recently developed a small molecule JC124 with specificity on NLRP3 inflammasome. In this study, we explored the therapeutic value of JC124 for TBI treatment. Methods Adult male Sprague-Dawley rats were subjected to a moderate cortical impact injury. Following TBI, animals received 4 doses of JC124 treatment with the first dose starting at 30 min, the second dose at 6 h after TBI, the third and fourth doses at 24 or 30 h following TBI, respectively. Animals were sacrificed at 2 days post-injury. Brain tissues were processed either for ELISA and western blotting analysis for inflammatory response, or for histological examination to assess degenerative neurons, acute inflammatory cell response and lesion volume. Results We found that post-injury treatment with JC124 significantly decreased the number of injury-induced degenerating neurons, inflammatory cell response in the injured brain, and cortical lesion volume. Injured animals treated with JC124 also had significantly reduced protein expression levels of NLRP3, ASC, IL-1 beta, TNFα, iNOS, and caspase-1. Conclusion Our data suggest that our novel NLRP3 inhibitor has a specific anti-inflammatory effect to protect the injured brain following TBI.
Collapse
Affiliation(s)
- Ram Kuwar
- Department of Anatomy and Neurobiology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA
| | - Andrew Rolfe
- Department of Anatomy and Neurobiology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA
| | - Long Di
- Department of Anatomy and Neurobiology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA
| | - Hongyu Xu
- Department of Anatomy and Neurobiology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA
| | - Liu He
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA
| | - Yuqi Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA
| | - Dong Sun
- Department of Anatomy and Neurobiology, School of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, 23298-0709, USA.
| |
Collapse
|
38
|
Siebold L, Obenaus A, Goyal R. Criteria to define mild, moderate, and severe traumatic brain injury in the mouse controlled cortical impact model. Exp Neurol 2018; 310:48-57. [DOI: 10.1016/j.expneurol.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/05/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
|
39
|
Zhang X, Lu X, Yu L, Gu Y, Qu F. Downregulation of NLRP2 inhibits HUVEC viability by inhibiting the MAPK signaling pathway. Mol Med Rep 2018; 19:85-92. [PMID: 30431084 PMCID: PMC6297776 DOI: 10.3892/mmr.2018.9625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptor proteins (NLRPs) are a subfamily of NOD-like receptors (NLRs) that mainly participate in innate immunity. Among the 14 NLRPs, studies on NLRP2 are few and mostly focus on its functions in reproduction and embryonic development. To the best of the authors' knowledge, there has been no research on the function of NLRP2 in human umbilical vein endothelial cells (HUVECs). The present study knockdown the expression of NLRP2 by transfecting a short interfering (si)RNA (siNLRP2) into HUVECs and investigating its effects on HUVECs. It was identified using a Cell Counting kit-8 assay that knockdown of NLRP2 can inhibit cell proliferation in HUVECs. The results of wound healing and Transwell assays indicated that migration and invasion were also suppressed by siNLRP2 transfection in HUVECs. Flow cytometry demonstrated that siNLRP2 induced cell cycle arrest and apoptosis in HUVECs. Western blot analysis revealed that the expression levels of cell cycle and apoptosis-associated proteins were markedly changed. In addition, knockdown of NLRP2 inhibited the mitogen-activated protein kinase (MAPK) signaling pathway by elevating extracellular signal-regulated kinase phosphorylation levels and reducing proto-oncogene serine/threonine-protein kinase expression. Taken together, it was concluded that NLRP2 served an important role in maintaining cell viability, proliferation and motility in HUVECs, mainly by promoting the MAPK signaling pathway.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Laboratory Medicine, Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xinlei Lu
- Department of Cardiology, Weihai Central Hospital, Weihai, Shandong 264200, P.R. China
| | - Limei Yu
- Department of Laboratory Medicine, Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yufeng Gu
- Department of Laboratory Medicine, Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Fuzheng Qu
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| |
Collapse
|
40
|
Angiopoietin/Tie2 Axis Regulates the Age-at-Injury Cerebrovascular Response to Traumatic Brain Injury. J Neurosci 2018; 38:9618-9634. [PMID: 30242049 DOI: 10.1523/jneurosci.0914-18.2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/15/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022] Open
Abstract
Although age-at-injury influences chronic recovery from traumatic brain injury (TBI), the differential effects of age on early outcome remain understudied. Using a male murine model of moderate contusion injury, we investigated the underlying mechanism(s) regulating the distinct response between juvenile and adult TBI. We demonstrate similar biomechanical and physical properties of naive juvenile and adult brains. However, following controlled cortical impact (CCI), juvenile mice displayed reduced cortical lesion formation, cell death, and behavioral deficits at 4 and 14 d. Analysis of high-resolution laser Doppler imaging showed a similar loss of cerebral blood flow (CBF) in the ipsilateral cortex at 3 and 24 h post-CCI, whereas juvenile mice showed enhanced subsequent restoration at 2-4 d compared with adults. These findings correlated with reduced blood-brain barrier (BBB) disruption and increased perilesional vessel density. To address whether an age-dependent endothelial cell (EC) response affects vessel stability and tissue outcome, we magnetically isolated CD31+ ECs from sham and injured cortices and evaluated mRNA expression. Interestingly, we found increased transcripts for BBB stability-related genes and reduced expression of BBB-disrupting genes in juveniles compared with adults. These differences were concomitant with significant changes in miRNA-21-5p and miR-148a levels. Accompanying these findings was robust GFAP immunoreactivity, which was not resolved by day 35. Importantly, pharmacological inhibition of EC-specific Tie2 signaling abolished the juvenile protective effects. These findings shed new mechanistic light on the divergent effects that age plays on acute TBI outcome that are both spatial and temporal dependent.SIGNIFICANCE STATEMENT Although a clear "window of susceptibility" exists in the developing brain that could deter typical developmental trajectories if exposed to trauma, a number of preclinical models have demonstrated evidence of early recovery in younger patients. Our findings further demonstrate acute neuroprotection and improved restoration of cerebral blood flow in juvenile mice subjected to cortical contusion injury compared with adults. We also demonstrate a novel role for endothelial cell-specific Tie2 signaling in this age-related response, which is known to promote barrier stability, is heightened in the injured juvenile vasculature, and may be exploited for therapeutic interventions across the age spectrum following traumatic brain injury.
Collapse
|
41
|
Swanton T, Cook J, Beswick JA, Freeman S, Lawrence CB, Brough D. Is Targeting the Inflammasome a Way Forward for Neuroscience Drug Discovery? SLAS DISCOVERY 2018; 23:991-1017. [PMID: 29969573 DOI: 10.1177/2472555218786210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is becoming increasingly recognized as a critical factor in the pathology of both acute and chronic neurological conditions. Inflammasomes such as the one formed by NACHT, LRR, and PYD domains containing protein 3 (NLRP3) are key regulators of inflammation due to their ability to induce the processing and secretion of interleukin 1β (IL-1β). IL-1β has previously been identified as a potential therapeutic target in a variety of conditions due to its ability to promote neuronal damage under conditions of injury. Thus, inflammasome inhibition has the potential to curtail inflammatory signaling, which could prove beneficial in certain diseases. In this review, we discuss the evidence for inflammasome contributions to the pathology of neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease, epilepsy, and acute degeneration following brain trauma or stroke. In addition, we review the current landscape of drug development targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Tessa Swanton
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James Cook
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - James A Beswick
- 2 Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sally Freeman
- 2 Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Catherine B Lawrence
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Brough
- 1 Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
42
|
Putatunda R, Bethea JR, Hu WH. Potential immunotherapies for traumatic brain and spinal cord injury. Chin J Traumatol 2018; 21:125-136. [PMID: 29759918 PMCID: PMC6033730 DOI: 10.1016/j.cjtee.2018.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury of the central nervous system (CNS) including brain and spinal cord remains a leading cause of morbidity and disability in the world. Delineating the mechanisms underlying the secondary and persistent injury versus the primary and transient injury has been drawing extensive attention for study during the past few decades. The sterile neuroinflammation during the secondary phase of injury has been frequently identified substrate underlying CNS injury, but as of now, no conclusive studies have determined whether this is a beneficial or detrimental role in the context of repair. Recent pioneering studies have demonstrated the key roles for the innate and adaptive immune responses in regulating sterile neuroinflammation and CNS repair. Some promising immunotherapeutic strategies have been recently developed for the treatment of CNS injury. This review updates the recent progress on elucidating the roles of the innate and adaptive immune responses in the context of CNS injury, the development and characterization of potential immunotherapeutics, as well as outstanding questions in this field.
Collapse
Affiliation(s)
- Raj Putatunda
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Wen-Hui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, 3500 N Broad Street, Philadelphia, PA, USA,Corresponding author.
| |
Collapse
|
43
|
Li Y, Liu C, Wan XS, Li SW. NLRP1 deficiency attenuates diabetic retinopathy (DR) in mice through suppressing inflammation response. Biochem Biophys Res Commun 2018; 501:351-357. [PMID: 29571734 DOI: 10.1016/j.bbrc.2018.03.148] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 01/24/2023]
Abstract
Diabetic retinopathy (DR) is the common cause of diabetic vascular complications. The NOD-like receptor (NLR) family, pyrin domain containing 1 (NLRP1), also known as NALP1, inflammasome is the first member of the NLR family to be discovered, playing an important role in inflammatory response. However, its effect on DR development has not been reported. In the study, the wild type (WT) and NLRP1-/- mice were injected with streptozotocin (STZ) to induce DR. The results indicated that NLRP1-/- significantly increased bodyweight reduction and decreased blood glucose levels induced by STZ. WT/DR mice exhibited higher levels of NLRP1 in retinas. NLRP1-/- ameliorated retinal abnormalities in DR mice using H&E staining. In addition, attenuated avascular areas and neovascular tufts were also observed in NLRP1-/-/DR mice. The levels of pro-inflammatory cytokines in serum and retinas were highly induced in WT/DR mice, whereas being markedly reduced by NLRP1-/-. In addition, vascular endothelial growth factor (VEGF) and Iba1 expressions induced by STZ in serum or retinas were significantly down-regulated in NLRP1-/-/DR mice. Consistently, NLRP1-/- attenuated ASC and Caspase-1 expressions in retinas of DR mice. Compared to WT/DR group, NLRP1-/- markedly decreased retina p-nuclear factor-κB (NF-κB), interleukin-1β (IL-1β) and IL-18 levels. And similar results were confirmed in vitro that suppressing NLRP1/ASC inflammasome ameliorated inflammatory response in fructose-treated retinal ganglion cells. The results above indicated that the modulation of NLRP1 inflammasome might be a promising strategy for DR therapy.
Collapse
Affiliation(s)
- Yan Li
- Central South University, Changsha 410083, Hunan Province, China
| | - Chang Liu
- Beijing Aier-Intech Eye Hospital, Panjiayuan Plaza, No.12 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Xin-Shun Wan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Shao-Wei Li
- Central South University, Changsha 410083, Hunan Province, China; Beijing Aier-Intech Eye Hospital, Panjiayuan Plaza, No.12 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China.
| |
Collapse
|
44
|
NLRs as Helpline in the Brain: Mechanisms and Therapeutic Implications. Mol Neurobiol 2018; 55:8154-8178. [DOI: 10.1007/s12035-018-0957-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
|
45
|
Slowik A, Lammerding L, Hoffmann S, Beyer C. Brain inflammasomes in stroke and depressive disorders: Regulation by oestrogen. J Neuroendocrinol 2018; 30. [PMID: 28477436 DOI: 10.1111/jne.12482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/28/2022]
Abstract
Neuroinflammation is a devastating pathophysiological process that results in brain damage and neuronal death. Pathogens, cell fragments and cellular dysfunction trigger inflammatory responses. Irrespective of the cause, inflammasomes are key intracellular multiprotein signalling platforms that sense neuropathological conditions. The activation of inflammasomes leads to the auto-proteolytic cleavage of caspase-1, resulting in the proteolysis of the pro-inflammatory cytokines interleukin (IL)1β and IL18 into their bioactive forms. It also initiates pyroptosis, a type of cell death. The two cytokines contribute to the pathogenesis in acute and chronic brain diseases and also play a central role in human aging and psychiatric disorders. Sex steroids, in particular oestrogens, are well-described neuroprotective agents in the central nervous system. Oestrogens improve the functional outcome after ischaemia and traumatic brain injury, reduce neuronal death in Parkinson's and Alzheimer's disease, as well as in amyotrophic lateral sclerosis, attenuate glutamate excitotoxicity and the formation of radical oxygen species, and lessen the spread of oedema after damage. Moreover, oestrogens alleviate menopause-related depressive symptoms and have a positive influence on depressive disorders probably by influencing growth factor production and serotonergic brain circuits. Recent evidence also suggests that inflammasome signalling affects anxiety- and depressive-like behaviour and that oestrogen ameliorates depression-like behaviour through the suppression of inflammasomes. In the present review, we highlight the most recent findings demonstrating that oestrogens selectively suppress the activation of the neuroinflammatory cascade in the brain in acute and chronic brain disease models. Furthermore, we aim to describe putative regulatory signalling pathways involved in the control of inflammasomes. Finally, we consider that psychiatric disorders such as depression also contain an inflammatory component that could be modulated by oestrogen.
Collapse
Affiliation(s)
- A Slowik
- Medical Faculty, Institute of Neuroanatomy, RWTH Aachen, Aachen, Germany
| | - L Lammerding
- Medical Faculty, Institute of Neuroanatomy, RWTH Aachen, Aachen, Germany
| | - S Hoffmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany
- JARA - Translational Brain Medicine, Aachen, Germany
| | - C Beyer
- Medical Faculty, Institute of Neuroanatomy, RWTH Aachen, Aachen, Germany
- JARA - Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
46
|
Mortezaee K, Khanlarkhani N, Beyer C, Zendedel A. Inflammasome: Its role in traumatic brain and spinal cord injury. J Cell Physiol 2018; 233:5160-5169. [PMID: 29150951 DOI: 10.1002/jcp.26287] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/05/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) and spinal cord injury (SCI) are pathological events that lead to neuropathological conditions which have in consequence the initiation of pro-inflammatory cytokine production. Neuroinflammation plays a key role in the secondary phase of both TBI and SCI after initial cell death. Activation of cytoplasmic inflammasome complexes is regarded as the essential step of neuroinflammation and a key trigger for neuronal death called pyroptosis. Inflammasome complexes are involved in activation of caspase-1 which catalyzes the cleavage of pro-interleukins into their active forms (including interleukin-18 [IL-18] and IL-1β). The focus of this article is to discuss the time-course and regulation of inflammasome assembly and activation during TBI and SCI and their targeting in designing therapeutic approaches. We particularly focus on the inflammasomes NLRP1 and NLRP3 which play a pivotal function during TBI and SCI in the central nervous system (CNS).
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Cordian Beyer
- Instituteof Neuroanatomy, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Adib Zendedel
- Instituteof Neuroanatomy, School of Medicine, RWTH Aachen University, Aachen, Germany.,Giulan Neuroscience Research Center, Department of Anatomical Sciences, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
47
|
Gharagozloo M, Gris KV, Mahvelati T, Amrani A, Lukens JR, Gris D. NLR-Dependent Regulation of Inflammation in Multiple Sclerosis. Front Immunol 2018; 8:2012. [PMID: 29403486 PMCID: PMC5778124 DOI: 10.3389/fimmu.2017.02012] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) associated with inappropriate activation of lymphocytes, hyperinflammatory responses, demyelination, and neuronal damage. In the past decade, a number of biological immunomodulators have been developed that suppress the peripheral immune responses and slow down the progression of the disease. However, once the inflammation of the CNS has commenced, it can cause serious permanent neuronal damage. Therefore, there is a need for developing novel therapeutic approaches that control and regulate inflammatory responses within the CNS. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular regulators of inflammation expressed by many cell types within the CNS. They redirect multiple signaling pathways initiated by pathogens and molecules released by injured tissues. NLR family members include positive regulators of inflammation, such as NLRP3 and NLRC4 and anti-inflammatory NLRs, such as NLRX1 and NLRP12. They exert immunomodulatory effect at the level of peripheral immune responses, including antigen recognition and lymphocyte activation and differentiation. Also, NLRs regulate tissue inflammatory responses. Understanding the molecular mechanisms that are placed at the crossroad of innate and adaptive immune responses, such as NLR-dependent pathways, could lead to the discovery of new therapeutic targets. In this review, we provide a summary of the role of NLRs in the pathogenesis of MS. We also summarize how anti-inflammatory NLRs regulate the immune response within the CNS. Finally, we speculate the therapeutic potential of targeting NLRs in MS.
Collapse
Affiliation(s)
- Marjan Gharagozloo
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Katsiaryna V. Gris
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tara Mahvelati
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Abdelaziz Amrani
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - John R. Lukens
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Denis Gris
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
48
|
Abstract
Traumatic injury as one of the world's most relevant but neglected health concerns results in modulated inflammasome activity, which is closely linked to the development of post-injury complications. Cytokine-producing capacity of cells is important for the appropriate immune response to trauma and requires not only synthesis and transcription of inflammasome components but also their activation. Unfortunately, the precise role of inflammasome in trauma is still largely unknown. However, in the following chapter, we provide an overview on the best described inflammasomes in the various settings of trauma, introducing the recent findings on the up-to-date best described NLRP inflammasomes and underlying cytokines in the inflammatory response to trauma.
Collapse
Affiliation(s)
- Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
| | | |
Collapse
|
49
|
Theus MH, Brickler T, Meza AL, Coutermarsh-Ott S, Hazy A, Gris D, Allen IC. Loss of NLRX1 Exacerbates Neural Tissue Damage and NF-κB Signaling following Brain Injury. THE JOURNAL OF IMMUNOLOGY 2017; 199:3547-3558. [PMID: 28993512 DOI: 10.4049/jimmunol.1700251] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/07/2017] [Indexed: 12/21/2022]
Abstract
Traumatic and nontraumatic brain injury results from severe disruptions in the cellular microenvironment leading to massive loss of neuronal populations and increased neuroinflammation. The progressive cascade of secondary events, including ischemia, inflammation, excitotoxicity, and free-radical release, contribute to neural tissue damage. NLRX1 is a member of the NLR family of pattern recognition receptors and is a potent negative regulator of several pathways that significantly modulate many of these events. Thus, we hypothesized that NLRX1 limits immune system signaling in the brain following trauma. To evaluate this hypothesis, we used Nlrx1-/- mice in a controlled cortical impact (CCI) injury murine model of traumatic brain injury (TBI). In this article, we show that Nlrx1-/- mice exhibited significantly larger brain lesions and increased motor deficits following CCI injury. Mechanistically, our data indicate that the NF-κB signaling cascade is significantly upregulated in Nlrx1-/- animals. This upregulation is associated with increased microglia and macrophage populations in the cortical lesion. Using a mouse neuroblastoma cell line (N2A), we also found that NLRX1 significantly reduced apoptosis under hypoxic conditions. In human patients, we identify 15 NLRs that are significantly dysregulated, including significant downregulation of NLRX1 in brain injury following aneurysm. We further demonstrate a concurrent increase in NF-κB signaling that is correlated with aneurysm severity in these human subjects. Together, our data extend the function of NLRX1 beyond its currently characterized role in host-pathogen defense and identify this highly novel NLR as a significant modulator of brain injury progression.
Collapse
Affiliation(s)
- Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061;
| | - Thomas Brickler
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Armand L Meza
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061.,Department of Neuroscience, Virginia Tech, Blacksburg, VA 24061; and
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Amanda Hazy
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Denis Gris
- Programme d'Immunologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061;
| |
Collapse
|
50
|
Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron 2017; 95:1246-1265. [PMID: 28910616 DOI: 10.1016/j.neuron.2017.07.010] [Citation(s) in RCA: 467] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and disability, with a considerable socioeconomic burden. Heterogeneity of pathoanatomical subtypes and diversity in the pathogenesis and extent of injury contribute to differences in the course and outcome of TBI. Following the primary injury, extensive and lasting damage is sustained through a complex cascade of events referred to as "secondary injury." Neuroinflammation is proposed as an important manipulable aspect of secondary injury in animal and human studies. Because neuroinflammation can be detrimental or beneficial, before developing immunomodulatory therapies, it is necessary to better understand the timing and complexity of the immune responses that follow TBI. With a rapidly increasing body of literature, there is a need for a clear summary of TBI neuroimmunology. This review presents our current understanding of the immune response to TBI in a chronological and compartment-based manner, highlighting early changes in gene expression and initial signaling pathways that lead to activation of innate and adaptive immunity. Based on recent advances in our understanding of innate immune cell activation, we propose a new paradigm to study innate immune cells following TBI that moves away from the existing M1/M2 classification of activation states toward a stimulus- and disease-specific understanding of polarization state based on transcriptomic and proteomic profiling.
Collapse
|