1
|
Pandey R, Tiziani S. Advances in Chiral Metabolomic Profiling and Biomarker Discovery. Methods Mol Biol 2025; 2855:85-101. [PMID: 39354302 DOI: 10.1007/978-1-0716-4116-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Chiral metabolomics entails the enantioselective measurement of the metabolome present in a biological system. Over recent years, it has garnered significant interest for its potential in discovering disease biomarkers and aiding clinical diagnostics. D-Amino acids and D-hydroxy acids, traditionally overlooked as unnatural, are now emerging as novel signaling molecules and potential biomarkers for a range of metabolic disorders, brain diseases, kidney disease, diabetes, and cancer. Despite their significance, simultaneous measurements of multiple classes of chiral metabolites in a biological system remain challenging. Hence, limited information is available regarding the metabolic pathways responsible for synthesizing D-amino/hydroxy acid and their associated pathophysiological mechanisms in various diseases. Capitalizing on recent advancements in sensitive analytical techniques, researchers have developed various targeted chiral metabolomic methods for the analysis of chiral biomarkers. Here, we highlight the pivotal role of chiral metabolic profiling studies in disease diagnosis, prognosis, and therapeutic interventions. Furthermore, we describe cutting-edge chromatographic and mass spectrometry methods that enable enantioselective analysis of chiral metabolites. These advanced techniques are instrumental in unraveling the complexities of disease biomarkers, contributing to the ongoing efforts in disease biomarker discovery.
Collapse
Affiliation(s)
- Renu Pandey
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA.
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Dell Medical School; LIVESTRONG Cancer Institutes, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
McDonough J, Singhal NK, Getsy PM, Knies K, Knauss ZT, Mueller D, Bates JN, Damron DS, Lewis SJ. The epigenetic signatures of opioid addiction and physical dependence are prevented by D-cysteine ethyl ester and betaine. Front Pharmacol 2024; 15:1416701. [PMID: 39281282 PMCID: PMC11392886 DOI: 10.3389/fphar.2024.1416701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
We have reported that D,L-thiol esters, including D-cysteine ethyl ester (D-CYSee), are effective at overcoming opioid-induced respiratory depression (OIRD) in rats. Our on-going studies reveal that co-injections of D-CYSee with multi-day morphine injections markedly diminish spontaneous withdrawal that usually occurs after cessation of multiple injections of morphine in rats. Chronically administered opioids are known (1) to alter cellular redox status, thus inducing an oxidative state, and (2) for an overall decrease in DNA methylation, therefore resulting in the transcriptional activation of previously silenced long interspersed elements (LINE-1) retrotransposon genes. The first objective of the present study was to determine whether D-CYSee and the one carbon metabolism with the methyl donor, betaine, would maintain redox control and normal DNA methylation levels in human neuroblastoma cell cultures (SH-SY5Y) under overnight challenge with morphine (100 nM). The second objective was to determine whether D-CYSee and/or betaine could diminish the degree of physical dependence to morphine in male Sprague Dawley rats. Our data showed that overnight treatment with morphine reduced cellular GSH levels, induced mitochondrial damage, decreased global DNA methylation, and increased LINE-1 mRNA expression. These adverse effects by morphine, which diminished the reducing capacity and compromised the maintenance of the membrane potential of SH-SY5Y cells, was prevented by concurrent application of D-CYSee (100 µM) or betaine (300 µM). Furthermore, our data demonstrated that co-injections of D-CYSee (250 μmol/kg, IV) and to a lesser extent, betaine (250 μmol/kg, IV), markedly diminished the development of physical dependence induced by multi-day morphine injections (escalating daily doses of 10-30 mg/kg, IV), as assessed by the lesser number of withdrawal phenomena elicited by the injection of the opioid receptor antagonist, naloxone (1.5 mg/kg, IV). These findings provide evidence that D-CYSee and betaine prevent the appearance of redox alterations and epigenetic signatures commonly seen in neural cells involved in opioid physical dependence/addiction, and lessen development of physical dependence to morphine.
Collapse
Affiliation(s)
- Jennifer McDonough
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Naveen K Singhal
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Katherine Knies
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Zackery T Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - James N Bates
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Derek S Damron
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Stephen J Lewis
- Department of Biological Sciences, Kent State University, Kent, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Mishra N, Gutheil WG. Stereoselective Amine-omics Using Heavy Atom Isotope Labeled l- and d-Marfey's Reagents. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1217-1226. [PMID: 38683793 PMCID: PMC11160435 DOI: 10.1021/jasms.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Biological amines and amino acids play essential roles in many biochemical processes. The chemical complexity of biological samples is challenging, and the selective identification and quantification of amines and amino acid stereoisomers would be very useful for amine-focused "amino-omics" studies. Many amines and amino acids are chiral, and their stereoisomers cannot be resolved on achiral media without chiral derivatization. In prior studies, we demonstrated the use of Marfey's reagent─a chiral derivatization reagent for amines and phenolic OH groups─for the LC-MS/MS resolution and quantification of amines and amino acid stereoisomers. In this study, a heavy atom isotope labeled Marfey's reagent approach for the stereoselective detection and quantification of amines and amino acids was developed. Heavy (13C2) l-Marfey's (Hl-Mar) and heavy (2H3) d-Marfey's (Hd-Mar) were synthesized from 13C2-l-Ala and 2H3-d-Ala, respectively. Both light and heavy Marfey's reagents were used to derivatize standard amine mixtures, which were analyzed by LC-QToF-HRMS. Aligned peak lists were comparatively analyzed by light vs heavy Mar mass differences to identify mono-, di-, and tri-Marfey's adducts and then by the retention time difference between l- and d-Mar derivatives to identify stereoisomers. This approach was then applied to identify achiral and chiral amine and amino acid components in a methicillin-resistant Staphylococcus aureus (MRSA) extract. This approach shows high analytical selectivity and reproducibility.
Collapse
Affiliation(s)
- Nitish
R. Mishra
- Division of Pharmacology
and Pharmaceutical Sciences, School of Pharmacy, University of Missouri—Kansas City, Kansas City, Missouri 64108, United States
| | - William G. Gutheil
- Division of Pharmacology
and Pharmaceutical Sciences, School of Pharmacy, University of Missouri—Kansas City, Kansas City, Missouri 64108, United States
| |
Collapse
|
4
|
Wang F, Qi H, Li H, Ma X, Gao X, Li C, Lu F, Mao S, Qin HM. State-of-the-art strategies and research advances for the biosynthesis of D-amino acids. Crit Rev Biotechnol 2024; 44:495-513. [PMID: 37160372 DOI: 10.1080/07388551.2023.2193861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/09/2023] [Indexed: 05/11/2023]
Abstract
D-amino acids (D-AAs) are the enantiomeric counterparts of L-amino acids (L-AAs) and important functional factors with a wide variety of physiological activities and applications in the food manufacture industry. Some D-AAs, such as D-Ala, D-Leu, and D-Phe, have been favored by consumers as sweeteners and fragrances because of their unique flavor. The biosynthesis of D-AAs has attracted much attention in recent years due to their unique advantages. In this review, we comprehensively analyze the structure-function relationships, biosynthesis pathways, multi-enzyme cascade and whole-cell catalysis for the production of D-AAs. The state-of-the-art strategies, including immobilization, protein engineering, and high-throughput screening, are summarized. Future challenges and perspectives of strategies-driven by bioinformatics technologies and smart computing technologies, as well as enzyme immobilization, are also discussed. These new approaches will promote the commercial production and application of D-AAs in the food industry by optimizing the key enzymes for industrial biocatalysts.
Collapse
Affiliation(s)
- Fenghua Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hongbin Qi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Huimin Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xuanzhen Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xin Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Chao Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Shuhong Mao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hui-Min Qin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| |
Collapse
|
5
|
Takahashi T, Kidachi K, Yukawa M, Hachinohe T, Takashima Y, Fujimura M, Saito A, Soga D, Ota C, Niizuma E, Sato K, Ogasawara H, Kurose Y. D-aspartate stimulates growth hormone secretion in wethers. J Anim Sci 2024; 102:skae318. [PMID: 39432441 PMCID: PMC11630845 DOI: 10.1093/jas/skae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
Growth hormone (GH) is an essential factor in enhancing the productivity of animals. In ruminants, L-aspartate (L-Asp) stimulates the secretion of GH; however, the effect of D-Asp on GH remains unknown. Here, we examined the effect of D-Asp on GH secretion in wethers. Blood GH, insulin, adrenaline, noradrenaline, non-esterified fatty acid (NEFA), and glucose concentrations were evaluated in response to the intravenous infusion of a high-dose (0.1 mmol/kg/min) of D-Asp for 20 min. Further, concentrations of these biomolecules were evaluated when a low-dose (0.05 mmol/kg/min) of D-Asp was continuously infused intravenously for 20 min. Finally, the direct effect of D-Asp on GH secretion was determined using cultured sections of the anterior pituitary tissue from wethers. Infusion of the high-dose of D-Asp markedly increased blood GH concentrations (P < 0.05), resulting in an increase in the area under the curve (AUC). Plasma GH concentrations and AUC also increased in response to infusion of a low D-Asp dose. Infusion of a high and low D-Asp dose caused a prolonged reduction in plasma insulin concentrations, and the AUC was lower (P < 0.05). Plasma NEFA concentrations gradually increased after the end of D-Asp infusion, with a low D-Asp dose infusion resulting in significantly higher concentrations at 90 min (P < 0.05). Plasma adrenaline, noradrenaline, and glucose concentrations did not show significant changes despite differences in the dose of D-Asp. Although D-Asp treatments stimulated GH secretion in the cultured sections of pituitary tissues, the effect was not significant. These results suggest that D-Asp stimulates the secretion of GH in wethers through not only a direct action on the pituitary gland but also through another pathway of GH stimulation.
Collapse
Affiliation(s)
- Tatsuyuki Takahashi
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Kyosuke Kidachi
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Mikiko Yukawa
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Tomoki Hachinohe
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Yuina Takashima
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Mao Fujimura
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Atsuko Saito
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Daichi Soga
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Chihiro Ota
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Eri Niizuma
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | - Katsuyoshi Sato
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Hideki Ogasawara
- Field Science Center, School of Veterinary Medicine, Kitasato University, Hokkaido, Japan
| | - Yohei Kurose
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| |
Collapse
|
6
|
Lee C, Lee DK, Wei IA, Qiu TA, Rubakhin SS, Roper MG, Sweedler JV. Relations between Glucose and d-Amino Acids in the Modulation of Biochemical and Functional Properties of Rodent Islets of Langerhans. ACS OMEGA 2023; 8:47723-47734. [PMID: 38144114 PMCID: PMC10733910 DOI: 10.1021/acsomega.3c05983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/26/2023]
Abstract
The cell-to-cell signaling role of d-amino acids (d-AAs) in the mammalian endocrine system, particularly in the islets of Langerhans, has drawn growing interest for their potential involvement in modulating glucose metabolism. Previous studies found colocalization of serine racemase [produces d-serine (d-Ser)] and d-alanine (d-Ala) within insulin-secreting beta cells and d-aspartate (d-Asp) within glucagon-secreting alpha cells. Expressed in the islets, functional N-methyl-d-aspartate receptors are involved in the modulation of glucose-stimulated insulin secretion and have binding sites for several d-AAs. However, knowledge of the regulation of d-AA levels in the islets during glucose stimulation as well as the response of islets to different levels of extracellular d-AAs is limited. In this study, we determined the intracellular and extracellular levels of d-Ser, d-Ala, and d-Asp in cultures of isolated rodent islets exposed to different levels of extracellular glucose. We found that the intracellular levels of the enantiomers demonstrated large variability and, in general, were not affected by extracellular glucose levels. However, significantly lower levels of extracellular d-Ser and d-Ala were observed in the islet media supplemented with 20 mM concentration of glucose compared to the control condition utilizing 3 mM glucose. Glucose-induced oscillations of intracellular free calcium concentration ([Ca2+]i), a proxy for insulin secretion, were modulated by the exogenous application of d-Ser and d-Ala but not by their l-stereoisomers. Our results provide new insights into the roles of d-AAs in the biochemistry and function of pancreatic islets.
Collapse
Affiliation(s)
- Cindy
J. Lee
- Department
of Chemistry and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Dong-Kyu Lee
- Department
of Chemistry and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - I-An Wei
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
| | - Tian A. Qiu
- Department
of Chemistry and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S. Rubakhin
- Department
of Chemistry and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael G. Roper
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
| | - Jonathan V. Sweedler
- Department
of Chemistry and the Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Chahkandi B, Chahkandi M. An accurate DFT study within conformational survey of the D-form serine-alanine protected dipeptide. BMC Chem 2023; 17:138. [PMID: 37828563 PMCID: PMC10571400 DOI: 10.1186/s13065-023-01051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
The conformational analysis of N-formyl-D-serine-D-alanine-NH2 dipeptide was studied using density functional theory methods at B3LYP, B3LYP‒D3, and M06‒2X levels using 6‒311 + G (d,p) basis set in the gas and water phases. 87 conformers of 243 stable ones were located and the rest of them were migrated to the more stable geometries. Migration pattern suggests the more stable dipeptide model bears serine in βL, γD, γL and the alanine in γL and γD configurations. The investigation of side‒chain‒backbone interactions revealed that the most stable conformer, γD-γL, is in the β‒turn region of Ramachandran map; therefore, serine-alanine dipeptide model should be adopted with a β‒turn conformation. Intramolecular hydrogen bonding in β‒turns consideration by QTAIM disclosed γD-γL includes three hydrogen bonds. The computed UV‒Vis spectrum alongside of NBO calculation showed the five main electronic transition bands derived of n → n* of intra‒ligand alanine moiety of dipeptide structure.
Collapse
Affiliation(s)
- Behzad Chahkandi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Mohammad Chahkandi
- Department of Chemistry, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran
| |
Collapse
|
8
|
Roychaudhuri R. Mammalian D-Cysteine: A new addition to the growing family of biologically relevant D-amino acids. Chirality 2023; 35:535-539. [PMID: 36890664 DOI: 10.1002/chir.23555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023]
Abstract
Mammalian D-Cysteine is racemized from L-cysteine by serine racemase, a pyridoxal phosphate (PLP)-dependent enzyme. Endogenous D-Cysteine plays a role in neural development by inhibiting proliferation of neural progenitor cells (NPCs) via protein kinase B (AKT) signaling mediated by the FoxO family of transcription factors. D-Cysteine binds to Myristoylated Alanine Rich C Kinase Substrate (MARCKS) and alters phosphorylation at Ser 159/163 and its translocation from the membrane. By racemizing serine and cysteine, mammalian serine racemase may play important roles in neural development highlighting its importance in psychiatric disorders.
Collapse
Affiliation(s)
- Robin Roychaudhuri
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Birth Defects, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Guebel DV. Human hippocampal astrocytes: Computational dissection of their transcriptome, sexual differences and exosomes across ageing and mild-cognitive impairment. Eur J Neurosci 2023; 58:2677-2707. [PMID: 37427765 DOI: 10.1111/ejn.16081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/20/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023]
Abstract
The role of astrocytes in Alzheimer's disease is often disregarded. Hence, characterization of astrocytes along their early evolution toward Alzheimer would be greatly beneficial. However, due to their exquisite responsiveness, in vivo studies are difficult. So public microarray data of hippocampal homogenates from (healthy) young, (healthy) elder and elder with mild cognitive impairment (MCI) were subjected to re-analysis by a multi-step computational pipeline. Ontologies and pathway analyses were compared after determining the differential genes that, belonging to astrocytes, have splice forms. Likewise, the subset of molecules exportable to exosomes was also determined. The results showed that astrocyte's phenotypes changed significantly. While already 'activated' astrocytes were found in the younger group, major changes occurred during ageing (increased vascular remodelling and response to mechanical stimulus, diminished long-term potentiation and increased long-term depression). MCI's astrocytes showed some 'rejuvenated' features, but their sensitivity to shear stress was markedly lost. Importantly, most of the changes showed to be sex biassed. Men's astrocytes are enriched in a type 'endfeet-astrocytome', whereas women's astrocytes appear close to the 'scar-forming' type (prone to endothelial dysfunction, hypercholesterolemia, loss of glutamatergic synapses, Ca+2 dysregulation, hypoxia, oxidative stress and 'pro-coagulant' phenotype). In conclusion, the computational dissection of the networks based on the hippocampal gene isoforms provides a relevant proxy to in vivo astrocytes, also revealing the occurrence of sexual differences. Analyses of the astrocytic exosomes did not provide an acceptable approximation to the overall functioning of astrocytes in the hippocampus, probably due to the selective cellular mechanisms which charge the cargo molecules.
Collapse
|
10
|
D-Amino Acids and Cancer: Friends or Foes? Int J Mol Sci 2023; 24:ijms24043274. [PMID: 36834677 PMCID: PMC9962368 DOI: 10.3390/ijms24043274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
α-amino acids exist in two configurations, named D-(dextro) and L-(levo) enantiomers. L-amino acids are used in protein synthesis and play a central role in cell metabolism. The effects of the L-amino acid composition of foods and the dietary modifications of this composition on the efficacy of cancer therapies have been widely investigated in relation to the growth and reproduction of cancerous cells. However, less is known about the involvement of D-amino acids. In recent decades, D-amino acids have been identified as natural biomolecules that play interesting and specific roles as common components of the human diet. Here, we focus on recent investigations showing altered D-amino acid levels in specific cancer types and on the various roles proposed for these biomolecules related to cancer cell proliferation, cell protection during therapy, and as putative, innovative biomarkers. Notwithstanding recent progress, the relationship between the presence of D-amino acids, their nutritional value, and cancer cell proliferation and survival represents an underrated scientific issue. Few studies on human samples have been reported to date, suggesting a need for routine analysis of D-amino acid content and an evaluation of the enzymes involved in regulating their levels in clinical samples in the near future.
Collapse
|
11
|
Dalesandro BE, Pires MM. Immunotargeting of Gram-Positive Pathogens via a Cell Wall Binding Tick Antifreeze Protein. J Med Chem 2023; 66:503-515. [PMID: 36563000 DOI: 10.1021/acs.jmedchem.2c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunological agents that supplement or modulate the host immune response have proven to have powerful therapeutic potential, although this modality is less explored against bacterial pathogens. We describe the application of a bacterial binding protein to re-engage the immune system toward pathogenic bacteria. More specifically, a hapten was conjugated to a protein expressed by Ixodes scapularis ticks, called I. scapularis antifreeze glycoprotein (IAFGP), that has high affinity for the d-alanine residue on the bacterial peptidoglycan. We showed that a fragment of this protein retained high surface binding affinity. Moreover, conjugation of a hapten to this peptide led to the display of haptens on the cell surface of vancomycin-resistant Enterococcus faecalis. Hapten display then induced the recruitment of antibodies and promoted uptake of bacterial pathogens by immune cells. These results demonstrate the feasibility in using cell wall binding agents as the basis of a class of bacterial immunotherapies.
Collapse
Affiliation(s)
- Brianna E Dalesandro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
12
|
Starr AM, Zabet-Moghaddam M, San Francisco M. Identification of a novel secreted metabolite cyclo(phenylalanyl-prolyl) from Batrachochytrium dendrobatidis and its effect on Galleria mellonella. BMC Microbiol 2022; 22:293. [PMID: 36482304 PMCID: PMC9730576 DOI: 10.1186/s12866-022-02680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The fungus, Batrachochytrium dendrobatidis, is the causative agent of chytridiomycosis and a leading cause of global decline in amphibian populations. The first stages of chytridiomycosis include: inflammation, hyperkeratosis, lethargy, loss of righting reflex, and disruption of internal electrolyte levels leading to eventual death of the host. Previous work indicates that B. dendrobatidis can produce immunomodulatory compounds and other secreted molecules that regulate the growth of the fungus. In this study, filtrates of the fungus grown in media and water were subjected to ultra-performance liquid chromatography-mass spectrometry and analyzed using Compound Discoverer 3.0. RESULTS Identification of cyclo(phenylalanyl-prolyl), chitobiose, and S-adenosylmethionine were verified by their retention times and fragmentation patterns from B. dendrobatidis supernatants. Previous studies have analyzed the effects of B. dendrobatidis on amphibian models, in vitro, or in cell culture. We studied the effects of live B. dendrobatidis cells, spent culture filtrates containing secreted metabolites, and cyclo(pheylalanyl-prolyl) on wax moth larvae (Galleria mellonella). Concentrated filtrates caused melanization within 24 h, while live B. dendrobatidis caused melanization within 48 h. CONCLUSIONS Here we show B. dendrobatidis produces secreted metabolites previously unreported. The impacts of these chemicals were tested on an alternate non-amphibian model system that has been used for other fungi to study pathogenicity traits in this fungus.
Collapse
Affiliation(s)
- Amanda M. Starr
- grid.462127.4Bryant & Stratton College, 8141 Hull Street Road, Richmond, VA 23235 USA ,grid.264784.b0000 0001 2186 7496Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131 USA
| | | | - Michael San Francisco
- grid.264784.b0000 0001 2186 7496Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131 USA
| |
Collapse
|
13
|
Nasyrova RF, Khasanova AK, Altynbekov KS, Asadullin AR, Markina EA, Gayduk AJ, Shipulin GA, Petrova MM, Shnayder NA. The Role of D-Serine and D-Aspartate in the Pathogenesis and Therapy of Treatment-Resistant Schizophrenia. Nutrients 2022; 14:5142. [PMID: 36501171 PMCID: PMC9736950 DOI: 10.3390/nu14235142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia (Sch) is a severe and widespread mental disorder. Antipsychotics (APs) of the first and new generations as the first-line treatment of Sch are not effective in about a third of cases and are also unable to treat negative symptoms and cognitive deficits of schizophrenics. This explains the search for new therapeutic strategies for a disease-modifying therapy for treatment-resistant Sch (TRS). Biological compounds are of great interest to researchers and clinicians, among which D-Serine (D-Ser) and D-Aspartate (D-Asp) are among the promising ones. The Sch glutamate theory suggests that neurotransmission dysfunction caused by glutamate N-methyl-D-aspartate receptors (NMDARs) may represent a primary deficiency in this mental disorder and play an important role in the development of TRS. D-Ser and D-Asp are direct NMDAR agonists and may be involved in modulating the functional activity of dopaminergic neurons. This narrative review demonstrates both the biological role of D-Ser and D-Asp in the normal functioning of the central nervous system (CNS) and in the pathogenesis of Sch and TRS. Particular attention is paid to D-Ser and D-Asp as promising components of a nutritive disease-modifying therapy for TRS.
Collapse
Affiliation(s)
- Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Aiperi K. Khasanova
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| | - Kuanysh S. Altynbekov
- Republican Scientific and Practical Center of Mental Health, Almaty 050022, Kazakhstan
- Department of Psychiatry and Narcology, S.D. Asfendiarov Kazakh National Medical University, Almaty 050022, Kazakhstan
| | - Azat R. Asadullin
- Department of Psychiatry and Addiction, The Bashkir State Medical University, 450008 Ufa, Russia
| | - Ekaterina A. Markina
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - Arseny J. Gayduk
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, 125993 Moscow, Russia
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks Management, 119121 Moscow, Russia
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| |
Collapse
|
14
|
Ji R, Shen J. Chirality Transformation in Metathesis Reactions of Salicylaldehyde/Pyridoxal‐Based Imines. ChemistrySelect 2022. [DOI: 10.1002/slct.202201332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rui‐Xue Ji
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing College of Materials Science and Engineering Huaqiao University Xiamen 361021 China
| | - Jiang‐Shan Shen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing College of Materials Science and Engineering Huaqiao University Xiamen 361021 China
| |
Collapse
|
15
|
Kiriyama Y, Nochi H. Physiological Role of Bile Acids Modified by the Gut Microbiome. Microorganisms 2021; 10:68. [PMID: 35056517 PMCID: PMC8777643 DOI: 10.3390/microorganisms10010068] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BAs) are produced from cholesterol in the liver and are termed primary BAs. Primary BAs are conjugated with glycine and taurine in the liver and then released into the intestine via the gallbladder. After the deconjugation of glycine or taurine by the gut microbiome, primary BAs are converted into secondary BAs by the gut microbiome through modifications such as dehydroxylation, oxidation, and epimerization. Most BAs in the intestine are reabsorbed and transported to the liver, where both primary and secondary BAs are conjugated with glycine or taurine and rereleased into the intestine. Thus, unconjugated primary Bas, as well as conjugated and unconjugated secondary BAs, have been modified by the gut microbiome. Some of the BAs reabsorbed from the intestine spill into the systemic circulation, where they bind to a variety of nuclear and cell-surface receptors in tissues, whereas some of the BAs are not reabsorbed and bind to receptors in the terminal ileum. BAs play crucial roles in the physiological regulation of various tissues. Furthermore, various factors, such as diet, age, and antibiotics influence BA composition. Here, we review recent findings regarding the physiological roles of BAs modified by the gut microbiome in the metabolic, immune, and nervous systems.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan;
- Laboratory of Neuroendocrinology, Institute of Neuroscience, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan;
| |
Collapse
|
16
|
Safarnejad A, Reza Hormozi-Nezhad M, Abdollahi H. Radial basis function-artificial neural network (RBF-ANN) for simultaneous fluorescent determination of cysteine enantiomers in mixtures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120029. [PMID: 34098477 DOI: 10.1016/j.saa.2021.120029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The determination of chiral compounds is critically important in chemical and pharmaceutical sciences. Cysteine amino acid is one of the important chiral compounds where each enantiomer (L and D) has different effects on fundamental physiological processes. The unique optical properties of nanoparticles make them a suitable probe for the determination of different analytes. In this work, the water-soluble thioglycolic acid (TGA)-capped cadmium-telluride (CdTe) quantum dots (QDs) were applied as optical nanoprobe for the simultaneous determination of cysteine enantiomers. The difference in the kinetics of the interactions between L- and D-cysteine with CdTe QDs is used for multivariate quantitative analysis. Multivariate methods are superior to univariate methods in determining the concentration of each enantiomer in the mixture without the information about the total chiral analyte concentration. As a nonlinear calibration method the radial basis function -artificial neural network (RBF-ANN) model was more successful in predicting L-and D-cysteine concentrations than the linear partial least squares regression (PLS) model.
Collapse
Affiliation(s)
- Azam Safarnejad
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - M Reza Hormozi-Nezhad
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| | - Hamid Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| |
Collapse
|
17
|
Gui Y, Ji B, Yi G, Li X, Zhang K, Fu Q. Polydopamine-Assisted Rapid One-Step Immobilization of L-Arginine in Capillary as Immobilized Chiral Ligands for Enantioseparation of Dansyl Amino Acids by Chiral Ligand Exchange Capillary Electrochromatography. Molecules 2021; 26:molecules26061800. [PMID: 33806847 PMCID: PMC8004743 DOI: 10.3390/molecules26061800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 01/27/2023] Open
Abstract
Herein, a novel L-arginine (L-Arg)-modified polydopamine (PDA)-coated capillary (PDA/L-Arg@capillary) was firstly fabricated via the basic amino-acid-induced PDA co-deposition strategy and employed to constitute a new chiral ligand exchange capillary electrochromatography (CLE-CEC) method for the high-performance enantioseparation of D,L-amino acids (D,L-AAs) with L-Arg as the immobilized chiral ligand coordinating with the central metal ion Zn(II) as running buffer. Assisted by hydrothermal treatment, the robust immobilization of L-Arg on the capillary inner wall could be facilely achieved within 1 h, prominently improving the synthesis efficiency and simplifying the preparation procedure. The successful preparation of PDA/L-Arg coatings in the capillary was systematically characterized and confirmed using several methods. In comparison with bare and PDA-functionalized capillaries, the enantioseparation capability of the presented CLE-CEC system was significantly enhanced. Eight D,L-AAs were completely separated and three pairs were partially separated under the optimal conditions. The prepared PDA/L-Arg@capillary showed good repeatability and stability. The potential mechanism of the greatly enhanced enantioseparation performance obtained by PDA/L-Arg@capillary was also explored. Moreover, the proposed method was further utilized for studying the enzyme kinetics of L-glutamic dehydrogenase, exhibiting its promising prospects in enzyme assays and other related applications.
Collapse
Affiliation(s)
- Yuanqi Gui
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.G.); (B.J.); (G.Y.); (K.Z.)
| | - Baian Ji
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.G.); (B.J.); (G.Y.); (K.Z.)
| | - Gaoyi Yi
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.G.); (B.J.); (G.Y.); (K.Z.)
| | - Xiuju Li
- School of Pharmacy, Tongren Polytechnic College, Tongren 554300, China
- Correspondence: (X.L.); (Q.F.); Tel.: +86-856-6909046 (X.L.); +86-830-3161291 (Q.F.)
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.G.); (B.J.); (G.Y.); (K.Z.)
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (Y.G.); (B.J.); (G.Y.); (K.Z.)
- Correspondence: (X.L.); (Q.F.); Tel.: +86-856-6909046 (X.L.); +86-830-3161291 (Q.F.)
| |
Collapse
|
18
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
19
|
Wang Y, Tian J, Zhao F, Chen Y, Huo B, Yu S, Yu X, Pu L. Highly chemoselective and enantioselective recognition of serine by a fluorescent probe. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
A chiral GC-MS method for analysis of secondary amino acids after heptafluorobutyl chloroformate & methylamine derivatization. Amino Acids 2021; 53:347-358. [PMID: 33586043 DOI: 10.1007/s00726-021-02949-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
L-amino acids (L-AAs) play different important roles in the physiology of all living organisms. Their chiral counterparts, D-amino acids (D-AAs) are increasingly being recognized as essential molecules in many biological systems. Secondary amino acids with cyclic structures, such as prolines, exhibit conformational rigidity and thus unique properties in the structural and protein folding. Despite their widespread occurrence, much less attention was paid to their chiral analysis, particularly when the minor, typically D-enantiomer, is present in low amounts in a complex biological matrix. In this paper, a cost-effective, chiral GC-MS method is described for capillary Chirasil-L-Val separation of nine cyclic secondary amino acid enantiomers with four-, five-, and six-membered rings, involving azetidine-2-carboxylic acid, pipecolic acid, nipecotic acid, proline, isomeric cis/trans 3-hydroxy, 4-hydroxyproline, and cis/trans-5-hydroxy-L-pipecolic acid in the excess of its enantiomeric antipode. The sample preparation involves in-situ derivatization with heptafluorobutyl chloroformate, simultaneous liquid-liquid micro-extraction into isooctane followed by amidation of the arising low-polar derivatives with methylamine, an evaporation step, re-dissolution, and final GC-MS analysis. The developed method was used for analyses of human biofluids, biologically active peptides containing chiral proline constituents, and collagen.
Collapse
|
21
|
Renick PJ, Mulgaonkar A, Co CM, Wu CY, Zhou N, Velazquez A, Pennington J, Sherwood A, Dong H, Castellino L, Öz OK, Tang L, Sun X. Imaging of Actively Proliferating Bacterial Infections by Targeting the Bacterial Metabolic Footprint with d-[5- 11C]-Glutamine. ACS Infect Dis 2021; 7:347-361. [PMID: 33476123 DOI: 10.1021/acsinfecdis.0c00617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since most d-amino acids (DAAs) are utilized by bacterial cells but not by mammalian eukaryotic hosts, recently DAA-based molecular imaging strategies have been extensively explored for noninvasively differentiating bacterial infections from the host's inflammatory responses. Given glutamine's pivotal role in bacterial survival, cell growth, biofilm formation, and even virulence, here we report a new positron emission tomography (PET) imaging approach using d-5-[11C]glutamine (d-[5-11C]-Gln) for potential clinical assessment of bacterial infection through a comparative study with its l-isomer counterpart, l-[5-11C]-Gln. In both control and infected mice, l-[5-11C]-Gln had substantially higher uptake levels than d-[5-11C]-Gln in most organs except the kidneys, showing the expected higher use of l-[5-11C]-Gln by mammalian tissues and more efficient renal excretion of d-[5-11C]-Gln. Importantly, our work demonstrates that PET imaging with d-[5-11C]-Gln is capable of detecting infections induced by both Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) in a dual-infection murine myositis model with significantly higher infection-to-background contrast than with l-[5-11C]-Gln (in E. coli, 1.64; in MRSA, 2.62, p = 0.0004). This can be attributed to the fact that d-[5-11C]-Gln is utilized by bacteria while being more efficiently cleared from the host tissues. We confirmed the bacterial infection imaging specificity of d-[5-11C]-Gln by comparing its uptake in active bacterial infections versus sterile inflammation and with 2-deoxy-2-[18F]fluoroglucose ([18F]FDG). These results together demonstrate the translational potential of PET imaging with d-[5-11C]-Gln for the noninvasive detection of bacterial infectious diseases in humans.
Collapse
|
22
|
Leong SX, Koh CSL, Sim HYF, Lee YH, Han X, Phan-Quang GC, Ling XY. Enantiospecific Molecular Fingerprinting Using Potential-Modulated Surface-Enhanced Raman Scattering to Achieve Label-Free Chiral Differentiation. ACS NANO 2021; 15:1817-1825. [PMID: 33399441 DOI: 10.1021/acsnano.0c09670] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chiral differentiation is critical in diverse fields ranging from pharmaceutics to chiral synthesis. While surface-enhanced Raman scattering (SERS) offers molecule-specific vibrational information with high detection sensitivity, current strategies rely on indirect detection using additional selectors and cannot exploit SERS' key advantages for univocal and generic chiral differentiation. Here, we achieve direct, label-free SERS sensing of biologically important enantiomers by synergizing asymmetric nanoporous gold (NPG) nanoparticles with electrochemical-SERS to generate enantiospecific molecular fingerprints. Experimental and in silico studies reveal that chiral recognition is two pronged. First, the numerous surface atomic defects in NPG provide the necessary localized asymmetric environment to induce enantiospecific molecular adsorptions and interaction affinities. Concurrently, the applied potential drives and orients the enantiomers close to the NPG surface for maximal analyte-surface interactions. Notably, our strategy is versatile and can be readily extended to detect various enantiomers. Furthermore, we can achieve multiplex quantification of enantiomeric ratios with excellent predictive performance. Our combinatorial approach thus offers an important paradigm shift from current approaches to achieve label-free chiral SERS sensing of various enantiomers.
Collapse
Affiliation(s)
- Shi Xuan Leong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Charlynn Sher Lin Koh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Howard Yi Fan Sim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yih Hong Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xuemei Han
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gia Chuong Phan-Quang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
23
|
Chen S, Li T, Deng D, Zhang X, Ji Y, Li R. Gold nanoparticles in situ generated on carbon dots grafted paper: application in enantioselective fluorescence sensing of d-alanine. NEW J CHEM 2021. [DOI: 10.1039/d1nj03733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The proposed PCD/AuNPs possesses good biocompatibility and was applied to detect d-Ala in serum, simulated gastric fluid, and cancer cells.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Tingting Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Donglian Deng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Xiaoyue Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009, China
| |
Collapse
|
24
|
Lee CJ, Qiu TA, Sweedler JV. d-Alanine: Distribution, origin, physiological relevance, and implications in disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140482. [DOI: 10.1016/j.bbapap.2020.140482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023]
|
25
|
Violi JP, Bishop DP, Padula MP, Steele JR, Rodgers KJ. Considerations for amino acid analysis by liquid chromatography-tandem mass spectrometry: A tutorial review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Optimization and validation of a chiral CE-LIF method for quantitation of aspartate, glutamate and serine in murine osteocytic and osteoblastic cells. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122259. [DOI: 10.1016/j.jchromb.2020.122259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023]
|
27
|
Amino Acids in Health and Endocrine Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:97-109. [PMID: 32761572 DOI: 10.1007/978-3-030-45328-2_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Dietary amino acids play an important role in maintaining health. Branched chain amino acids can adversely increase blood pressure whereas arginine and citrulline can reduce it. D-amino acids play important roles in several cell types including testis, the nervous system and adrenal glands. Several amino acids also can have dramatic effects on diabetes; branched chain amino acids, phenylalanine and tyrosine have been implicated while others, namely arginine and citrulline can improve outcomes. Leucine has been shown to play important roles in muscle primarily through the mTOR pathway though this effect does not translate across every population. Glutamine, arginine and D-aspartate also exert their muscle effects through mTOR. Relationships between amino acids and endocrine function include that of glucocorticoids, thyroid function, glucagon-like peptide 1 (GLP-1), ghrelin, insulin-like growth factor-1 (IGF-1) and leptin. Leucine, for example, can alleviate the effect of dexamethasone on muscle protein accretion. Interestingly, amino acid transporters play an important role in thyroid function. Several amino acids have been shown to increase GLP-1 levels in non-diabetics when administered orally. Similarly, several amino acids increase ghrelin levels in different species while cysteine can decrease it in mice. There is evidence to suggest that the arginine/NO pathway may be involved in modulating some of the effects of ghrelin on cells. In regard to IGF-1, branched chain amino acids can increase levels in adults while tryptophan and phenylalanine have been shown to increase levels in infants. Finally, leptin levels can be elevated by branched chain amino acids while restricting leucine in high fat diets can increase leptin sensitivity.
Collapse
|
28
|
Idrees M, Mohammad AR, Karodia N, Rahman A. Multimodal Role of Amino Acids in Microbial Control and Drug Development. Antibiotics (Basel) 2020; 9:E330. [PMID: 32560458 PMCID: PMC7345125 DOI: 10.3390/antibiotics9060330] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Amino acids are ubiquitous vital biomolecules found in all kinds of living organisms including those in the microbial world. They are utilised as nutrients and control many biological functions in microorganisms such as cell division, cell wall formation, cell growth and metabolism, intermicrobial communication (quorum sensing), and microbial-host interactions. Amino acids in the form of enzymes also play a key role in enabling microbes to resist antimicrobial drugs. Antimicrobial resistance (AMR) and microbial biofilms are posing a great threat to the world's human and animal population and are of prime concern to scientists and medical professionals. Although amino acids play an important role in the development of microbial resistance, they also offer a solution to the very same problem i.e., amino acids have been used to develop antimicrobial peptides as they are highly effective and less prone to microbial resistance. Other important applications of amino acids include their role as anti-biofilm agents, drug excipients, drug solubility enhancers, and drug adjuvants. This review aims to explore the emerging paradigm of amino acids as potential therapeutic moieties.
Collapse
Affiliation(s)
- Muhammad Idrees
- Faculty of Science and Technology, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (M.I.); (N.K.)
| | | | - Nazira Karodia
- Faculty of Science and Technology, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (M.I.); (N.K.)
| | - Ayesha Rahman
- Faculty of Science and Technology, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (M.I.); (N.K.)
| |
Collapse
|
29
|
Barkia I, Ketata Bouaziz H, Sellami Boudawara T, Aleya L, Gargouri AF, Saari N. Acute oral toxicity study on Wistar rats fed microalgal protein hydrolysates from Bellerochea malleus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19087-19094. [PMID: 30612348 DOI: 10.1007/s11356-018-4007-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Protein hydrolysates and bioactive peptides from various protein sources have demonstrated their effectiveness for the prevention of illness and the improvement of symptoms from several diseases. In particular, the use of microalgae to generate bioactive peptides has received a growing interest because of their potential to be cultivated on non-arable land and high nutritional value. However, scant research is available on the toxicity of peptide-based preparations. The present study aims to evaluate the toxicity of microalgal protein hydrolysates (MPH) from one marine species of microalgae (Bellerochea malleus) to determine the feasibility of their use for functional food applications. Results showed that the oral administration of MPH at three doses (D1, 100 mg kg-1 BW; D2, 400 mg kg-1 BW; and D3, 2000 mg kg-1 BW) to male Wistar rats did not induce any adverse effects or mortality up to13 days of treatment. Data analysis of relative organ weights and biochemical and hematological parameters did not show any significant differences between control and treated groups at the three doses investigated. Data from histopathological observations did not reveal any signs of major toxicity at the doses D1 and D2. However, mild signs of inflammation and necrosis were observed in the kidney of rats fed MPH at D3. All together, these results reveal the overall safety of MPH and provide new evidence for advocating their use for functional food or nutraceutical applications.
Collapse
Affiliation(s)
- Ines Barkia
- Department of Food Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hanen Ketata Bouaziz
- Animal Physiology Laboratory, Faculty of Sciences, University of Sfax,, 3000, Sfax, Tunisia
| | | | - Lotfi Aleya
- Laboratoire Chrono-Environnement, UMR 6249 CNRS, Besançon, France.
| | - Ali Faouzi Gargouri
- Laboratory of Molecular Biotechnology of Eucaryotes, Centre of Biotechnology of Sfax (CBS), CHU Habib Bourguiba,, 3029, Sfax, Tunisia
| | - Nazamid Saari
- Department of Food Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
30
|
Restu WK, Yamamoto S, Nishida Y, Ienaga H, Aoi T, Maruyama T. Hydrogel formation by short D-peptide for cell-culture scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110746. [PMID: 32279773 DOI: 10.1016/j.msec.2020.110746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/27/2020] [Accepted: 02/14/2020] [Indexed: 10/25/2022]
Abstract
The present study reports that a short oligopeptide D-P1, consisting of only five D-amino acids, self-assembled into entangled nanofibers to form a hydrogel that functioned as a scaffold for cell cultures. D-P1 (Ac-D-Phe-D-Phe-D-Phe-Gly-D-Lys) gelated aqueous buffer solution and water at a minimum gelation concentration of 0.5 wt%. The circular dichroism (CD) measurements demonstrated the formation of a β-sheet structure in the self-assembly of D-P1. We investigated the gelation properties and CD spectra of both the D- and L-forms of the oligopeptide, and found only a minimal difference between them. The D-P1 hydrogel was resistant to a protease, whereas the L-P1 hydrogel was rapidly degraded. Both oligopeptides exhibited nontoxic properties to human cancer cells and embryoid bodies (EBs) derived from human-induced pluripotent stem cells. Additionally, we succeeded in forming spheroids of HeLa cells on the D-P1 hydrogel, which indicates the potential of this hydrogel for 3-dimensional cell culture.
Collapse
Affiliation(s)
- Witta Kartika Restu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan Puspiptek Serpong, Tangerang Selatan, Banten 15314, Indonesia
| | - Shota Yamamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Yuki Nishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Hirotoshi Ienaga
- Department of iPS cell Applications, Graduate School of Medicine, Kobe University, 7-5-1 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan
| | - Takashi Aoi
- Department of iPS cell Applications, Graduate School of Medicine, Kobe University, 7-5-1 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
31
|
Thanzeel FY, Sripada A, Wolf C. Quantitative Chiroptical Sensing of Free Amino Acids, Biothiols, Amines, and Amino Alcohols with an Aryl Fluoride Probe. J Am Chem Soc 2019; 141:16382-16387. [PMID: 31564090 DOI: 10.1021/jacs.9b07588] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The comprehensive determination of the absolute configuration, enantiomeric ratio, and total amount of standard amino acids by optical methods adaptable to high-throughput screening with modern plate readers has remained a major challenge to date. We now present a small-molecular probe that smoothly reacts with amino acids and biothiols in aqueous solution and thereby generates distinct chiroptical responses to accomplish this task. The achiral sensor is readily available, inexpensive, and suitable for chiroptical analysis of each of the 19 standard amino acids, biothiols, aliphatic, and aromatic amines and amino alcohols. The sensing method is operationally simple, and data collection and processing are straightforward. The utility and practicality of the assay are demonstrated with the accurate analysis of 10 aspartic acid samples covering a wide concentration range and largely varying enantiomeric compositions. Accurate er sensing of 85 scalemic samples of Pro, Met, Cys, Ala, methylpyrrolidine, 1-(2-naphthyl)amine, and mixtures thereof is also presented.
Collapse
Affiliation(s)
- F Yushra Thanzeel
- Department of Chemistry , Georgetown University , 37th and O Streets , Washington , D.C. 20057 , United States
| | - Archita Sripada
- Department of Chemistry , Georgetown University , 37th and O Streets , Washington , D.C. 20057 , United States
| | - Christian Wolf
- Department of Chemistry , Georgetown University , 37th and O Streets , Washington , D.C. 20057 , United States
| |
Collapse
|
32
|
Bastings JJ, van Eijk HM, Olde Damink SW, Rensen SS. d-amino Acids in Health and Disease: A Focus on Cancer. Nutrients 2019; 11:nu11092205. [PMID: 31547425 PMCID: PMC6770864 DOI: 10.3390/nu11092205] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023] Open
Abstract
d-amino acids, the enantiomeric counterparts of l-amino acids, were long considered to be non-functional or not even present in living organisms. Nowadays, d-amino acids are acknowledged to play important roles in numerous physiological processes in the human body. The most commonly studied link between d-amino acids and human physiology concerns the contribution of d-serine and d-aspartate to neurotransmission. These d-amino acids and several others have also been implicated in regulating innate immunity and gut barrier function. Importantly, the presence of certain d-amino acids in the human body has been linked to several diseases including schizophrenia, amyotrophic lateral sclerosis, and age-related disorders such as cataract and atherosclerosis. Furthermore, increasing evidence supports a role for d-amino acids in the development, pathophysiology, and treatment of cancer. In this review, we aim to provide an overview of the various sources of d-amino acids, their metabolism, as well as their contribution to physiological processes and diseases in man, with a focus on cancer.
Collapse
Affiliation(s)
- Jacco J.A.J. Bastings
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Hans M. van Eijk
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
| | - Steven W. Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
- Department of General, Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Sander S. Rensen
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands (H.M.v.E.); (S.W.O.D.)
- Correspondence:
| |
Collapse
|
33
|
The Biosynthesis, Signaling, and Neurological Functions of Bile Acids. Biomolecules 2019; 9:biom9060232. [PMID: 31208099 PMCID: PMC6628048 DOI: 10.3390/biom9060232] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BA) are amphipathic steroid acids synthesized from cholesterol in the liver. They act as detergents to expedite the digestion and absorption of dietary lipids and lipophilic vitamins. BA are also considered to be signaling molecules, being ligands of nuclear and cell-surface receptors, including farnesoid X receptor and Takeda G-protein receptor 5. Moreover, BA also activate ion channels, including the bile acid-sensitive ion channel and epithelial Na+ channel. BA regulate glucose and lipid metabolism by activating these receptors in peripheral tissues, such as the liver and brown and white adipose tissue. Recently, 20 different BA have been identified in the central nervous system. Furthermore, BA affect the function of neurotransmitter receptors, such as the muscarinic acetylcholine receptor and γ-aminobutyric acid receptor. BA are also known to be protective against neurodegeneration. Here, we review recent findings regarding the biosynthesis, signaling, and neurological functions of BA.
Collapse
|
34
|
Evans K, Wang X, Roper MG. Chiral micellar electrokinetic chromatographic separation for determination of L- and D-primary amines released from murine islets of Langerhans. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:1276-1283. [PMID: 31073338 PMCID: PMC6502259 DOI: 10.1039/c8ay02471e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
D-amino acids have been located in various tissues including the endocrine portion of the pancreas, the islets of Langerhans. D-Serine (D-Ser), is of particular interest since it is an agonist for the ionotropic N-methyl-D-aspartate receptors. To examine the potential release of D-Ser and other D-amino acids from islets, a chiral micellar electrokinetic chromatography method was developed by derivatizing primary amines with 2,3-naphthalenedicarboxaldehyde and to achieve resolution of the enantiomers, two surfactants were used in the separation, sodium dodecyl sulfate and sodium deoxycholate. With the optimized conditions, 7 of 13 enantiomeric pairs that were tested had greater than baseline resolution, while the resolution of numerous other L-amino acids and small molecules were maintained. For the 17 compounds that were fully resolved, limits of detection were less than 10 nM. The resulting optimized separation method produced high efficiency peaks, with an average of 300,000 theoretical plates per peak and a peak capacity of 120. The method was used to examine the release of small molecules from groups of 50 murine islets of Langerhans. A peak was detected from islets incubated with 20 mM glucose that co-migrated with a D-Ser standard, although its level was below the quantifiable limit.
Collapse
Affiliation(s)
- Kimberly Evans
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306
| | - Xue Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306
| |
Collapse
|
35
|
Ayon NJ, Sharma AD, Gutheil WG. LC-MS/MS-Based Separation and Quantification of Marfey's Reagent Derivatized Proteinogenic Amino Acid DL-Stereoisomers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:448-458. [PMID: 30421361 PMCID: PMC6417927 DOI: 10.1007/s13361-018-2093-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 05/31/2023]
Abstract
D-Amino acids are important biological molecules. Improved analytical methods for their resolution and quantification remain of keen interest. In this study, we investigated the use of Marfey's reagent (chiral) derivatization coupled with LC-MS/MS-based separation and detection of the resulting diastereomers for quantification of the 19 common L- and D-amino acids and glycine. Standard formic acid (pH 2)-based separations on reverse phase media were unable to separate all 19 amino acid DL pairs. In contrast, a water/acetonitrile/ammonium acetate (pH 6.5) solvent system allowed all 19 amino acid DL pairs to be chromatographically resolved on a 30 min gradient, with negative mode detection at pH 6.5 giving good sensitivity. Derivatization reaction rates between amino acids varied substantially, with overnight derivatization required for some amino acids. Chromatography at pH 6.5 combined with MS/MS quantification in negative mode demonstrated good linearity over a wide concentration range for all 20 amino acids. Matrix effects, assessed with an MRSA extract, were negligible. Marfey's derivatized analytes were stable for 24 h at room temperature. This method was demonstrated by determining the levels of these analytes in mid-log phase MRSA extracts. This approach provides for the chromatographic resolution and MS/MS-based quantification of all 20 common L- and D-amino acids in complex matrices. Graphical Abstract.
Collapse
Affiliation(s)
- Navid J Ayon
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Amar Deep Sharma
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - William G Gutheil
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
36
|
Melnikov SV, Khabibullina NF, Mairhofer E, Vargas-Rodriguez O, Reynolds NM, Micura R, Söll D, Polikanov YS. Mechanistic insights into the slow peptide bond formation with D-amino acids in the ribosomal active site. Nucleic Acids Res 2019; 47:2089-2100. [PMID: 30520988 PMCID: PMC6393236 DOI: 10.1093/nar/gky1211] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/24/2022] Open
Abstract
During protein synthesis, ribosomes discriminate chirality of amino acids and prevent incorporation of D-amino acids into nascent proteins by slowing down the rate of peptide bond formation. Despite this phenomenon being known for nearly forty years, no structures have ever been reported that would explain the poor reactivity of D-amino acids. Here we report a 3.7Å-resolution crystal structure of a bacterial ribosome in complex with a D-aminoacyl-tRNA analog bound to the A site. Although at this resolution we could not observe individual chemical groups, we could unambiguously define the positions of the D-amino acid side chain and the amino group based on chemical restraints. The structure reveals that similarly to L-amino acids, the D-amino acid binds the ribosome by inserting its side chain into the ribosomal A-site cleft. This binding mode does not allow optimal nucleophilic attack of the peptidyl-tRNA by the reactive α-amino group of a D-amino acid. Also, our structure suggests that the D-amino acid cannot participate in hydrogen-bonding with the P-site tRNA that is required for the efficient proton transfer during peptide bond formation. Overall, our work provides the first mechanistic insight into the ancient mechanism that helps living cells ensure the stereochemistry of protein synthesis.
Collapse
Affiliation(s)
- Sergey V Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Nelli F Khabibullina
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Elisabeth Mairhofer
- Institute of Organic Chemistry at Leopold Franzens University, A-6020 Innsbruck, Austria
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ronald Micura
- Institute of Organic Chemistry at Leopold Franzens University, A-6020 Innsbruck, Austria
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
37
|
Raboni S, Marchetti M, Faggiano S, Campanini B, Bruno S, Marchesani F, Margiotta M, Mozzarelli A. The Energy Landscape of Human Serine Racemase. Front Mol Biosci 2019; 5:112. [PMID: 30687716 PMCID: PMC6333871 DOI: 10.3389/fmolb.2018.00112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Human serine racemase is a pyridoxal 5′-phosphate (PLP)-dependent dimeric enzyme that catalyzes the reversible racemization of L-serine and D-serine and their dehydration to pyruvate and ammonia. As D-serine is the co-agonist of the N-methyl-D-aspartate receptors for glutamate, the most abundant excitatory neurotransmitter in the brain, the structure, dynamics, function, regulation and cellular localization of serine racemase have been investigated in detail. Serine racemase belongs to the fold-type II of the PLP-dependent enzyme family and structural models from several orthologs are available. The comparison of structures of serine racemase co-crystallized with or without ligands indicates the presence of at least one open and one closed conformation, suggesting that conformational flexibility plays a relevant role in enzyme regulation. ATP, Mg2+, Ca2+, anions, NADH and protein interactors, as well as the post-translational modifications nitrosylation and phosphorylation, finely tune the racemase and dehydratase activities and their relative reaction rates. Further information on serine racemase structure and dynamics resulted from the search for inhibitors with potential therapeutic applications. The cumulative knowledge on human serine racemase allowed obtaining insights into its conformational landscape and into the mechanisms of cross-talk between the effector binding sites and the active site.
Collapse
Affiliation(s)
- Samanta Raboni
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Council, Pisa, Italy
| | | | - Stefano Bruno
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Andrea Mozzarelli
- Department of Food and Drug, University of Parma, Parma, Italy.,Institute of Biophysics, National Research Council, Pisa, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
38
|
Amino Acids in Life: A Prebiotic Division of Labor. J Mol Evol 2019; 87:1-3. [DOI: 10.1007/s00239-018-9879-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 11/25/2022]
|
39
|
MacKay MAB, Kravtsenyuk M, Thomas R, Mitchell ND, Dursun SM, Baker GB. D-Serine: Potential Therapeutic Agent and/or Biomarker in Schizophrenia and Depression? Front Psychiatry 2019; 10:25. [PMID: 30787885 PMCID: PMC6372501 DOI: 10.3389/fpsyt.2019.00025] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/15/2019] [Indexed: 11/17/2022] Open
Abstract
D-Serine is a potent co-agonist at the NMDA glutamate receptor and has been the object of many preclinical studies to ascertain the nature of its metabolism, its regional and cellular distribution in the brain, its physiological functions and its possible clinical relevance. The enzymes involved in its formation and catabolism are serine racemase (SR) and D-amino acid oxidase (DAAO), respectively, and manipulations of the activity of those enzymes have been useful in developing animal models of schizophrenia and in providing clues to the development of potential new antipsychotic strategies. Clinical studies have been conducted in schizophrenia patients to evaluate body fluid levels of D-serine and/or to use D-serine alone or in combination with antipsychotics to determine its effectiveness as a therapeutic agent. D-serine has also been used in combination with DAAO inhibitors in preclinical investigations, and interesting results have been obtained. Genetic studies and postmortem brain studies have also been conducted on D-serine and the enzymes involved in its metabolism. It is also of considerable interest that in recent years clinical and preclinical investigations have suggested that D-serine may also have antidepressant properties. Clinical studies have also shown that D-serine may be a biomarker for antidepressant response to ketamine. Relevant to both schizophrenia and depression, preclinical and clinical studies with D-serine indicate that it may be effective in reducing cognitive dysfunction.
Collapse
Affiliation(s)
- Mary-Anne B MacKay
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Maryana Kravtsenyuk
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Rejish Thomas
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Nicholas D Mitchell
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
40
|
Nakade Y, Iwata Y, Furuichi K, Mita M, Hamase K, Konno R, Miyake T, Sakai N, Kitajima S, Toyama T, Shinozaki Y, Sagara A, Miyagawa T, Hara A, Shimizu M, Kamikawa Y, Sato K, Oshima M, Yoneda-Nakagawa S, Yamamura Y, Kaneko S, Miyamoto T, Katane M, Homma H, Morita H, Suda W, Hattori M, Wada T. Gut microbiota-derived D-serine protects against acute kidney injury. JCI Insight 2018; 3:97957. [PMID: 30333299 DOI: 10.1172/jci.insight.97957] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota-derived metabolites play important roles in health and disease. D-amino acids and their L-forms are metabolites of gut microbiota with distinct functions. In this study, we show the pathophysiologic role of D-amino acids in association with gut microbiota in humans and mice with acute kidney injury (AKI). In a mouse kidney ischemia/reperfusion model, the gut microbiota protected against tubular injury. AKI-induced gut dysbiosis contributed to the altered metabolism of D-amino acids. Among the D-amino acids, only D-serine was detectable in the kidney. In injured kidneys, the activity of D-amino acid oxidase was decreased. Conversely, the activity of serine racemase was increased. The oral administration of D-serine mitigated the kidney injury in B6 mice and D-serine-depleted mice. D-serine suppressed hypoxia-induced tubular damage and promoted posthypoxic tubular cell proliferation. Finally, the D-serine levels in circulation were significantly correlated with the decrease in kidney function in AKI patients. These results demonstrate the renoprotective effects of gut-derived D-serine in AKI, shed light on the interactions between the gut microbiota and the kidney in both health and AKI, and highlight D-serine as a potential new therapeutic target and biomarker for AKI.
Collapse
Affiliation(s)
| | - Yasunori Iwata
- Division of Infection Control.,Division of Nephrology, and
| | - Kengo Furuichi
- Division of Nephrology, and.,Division of Blood Purification, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Ryuichi Konno
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shuichi Kaneko
- Department of System Biology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tetsuya Miyamoto
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Masumi Katane
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hiroshi Homma
- Laboratory of Biomolecular Science, Graduate School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hidetoshi Morita
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka, Okayama, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masahira Hattori
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, Shinjyuku-ku, Tokyo, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine.,Division of Nephrology, and
| |
Collapse
|
41
|
Szilágyi B, Ferenczy GG, Keserű GM. Drug discovery strategies and the preclinical development of D-amino-acid oxidase inhibitors as antipsychotic therapies. Expert Opin Drug Discov 2018; 13:973-982. [DOI: 10.1080/17460441.2018.1524459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Bence Szilágyi
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
42
|
Fleisher RC, Cornish VW, Gonzalez RL. d-Amino Acid-Mediated Translation Arrest Is Modulated by the Identity of the Incoming Aminoacyl-tRNA. Biochemistry 2018; 57:4241-4246. [PMID: 29979035 DOI: 10.1021/acs.biochem.8b00595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A complete understanding of the determinants that restrict d-amino acid incorporation by the ribosome, which is of interest to both basic biologists and the protein engineering community, remains elusive. Previously, we demonstrated that d-amino acids are successfully incorporated into the C-terminus of the nascent polypeptide chain. Ribosomes carrying the resulting peptidyl-d-aminoacyl-tRNA (peptidyl-d-aa-tRNA) donor substrate, however, partition into subpopulations that either undergo translation arrest through inactivation of the ribosomal peptidyl-transferase center (PTC) or remain translationally competent. The proportion of each subpopulation is determined by the identity of the d-amino acid side chain. Here, we demonstrate that the identity of the aminoacyl-tRNA (aa-tRNA) acceptor substrate that is delivered to ribosomes carrying a peptidyl-d-aa-tRNA donor further modulates this partitioning. Our discovery demonstrates that it is the pairing of the peptidyl-d-aa-tRNA donor and the aa-tRNA acceptor that determines the activity of the PTC. Moreover, we provide evidence that both the amino acid and tRNA components of the aa-tRNA acceptor contribute synergistically to the extent of arrest. The results of this work deepen our understanding of the mechanism of d-amino acid-mediated translation arrest and how cells avoid this precarious obstacle, reveal similarities to other translation arrest mechanisms involving the PTC, and provide a new route for improving the yields of engineered proteins containing d-amino acids.
Collapse
Affiliation(s)
- Rachel C Fleisher
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Virginia W Cornish
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Ruben L Gonzalez
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
43
|
Moldovan RC, Bodoki E, Servais AC, Chankvetadze B, Crommen J, Oprean R, Fillet M. Capillary electrophoresis-mass spectrometry of derivatized amino acids for targeted neurometabolomics - pH mediated reversal of diastereomer migration order. J Chromatogr A 2018; 1564:199-206. [PMID: 29910088 DOI: 10.1016/j.chroma.2018.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 01/08/2023]
Abstract
A targeted CE-MS approach was developed for the chiral analysis of biologically relevant amino acids in artificial cerebrospinal fluid (aCSF). In order to achieve chiral resolution, the five amino acids (Ser, Asn, Asp, Gln and Glu) were derivatized with (+)-1-(9-fluorenyl)ethyl chloroformate ((+)-FLEC). The diastereoselectivity was found to be highly dependent on pH for all analytes and the optimized background electrolyte (BGE) consisted of 150 mM acetic acid, adjusted to pH 3.7 with NH4OH. Furthermore, a reversal of the migration order of Asp derivatives was observed. This phenomenon seems to be caused by intra-molecular interactions affecting the pKa of the second ionizable group (the side chain carboxyl). The applicability of this method was evaluated using aCSF. A solid phase extraction (SPE) protocol was developed for the selective extraction of the FLEC derivatives. A full evaluation of the matrix effect and extraction yield was performed concluding that the matrix effect is marginal and the recoveries are between 46 and 92%. The method offers adequate sensitivity (limits of detection below 1 μM).
Collapse
Affiliation(s)
- Radu-Cristian Moldovan
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium; Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 4 Louis Pasteur street, 400349, Cluj-Napoca, Romania
| | - Ede Bodoki
- Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 4 Louis Pasteur street, 400349, Cluj-Napoca, Romania
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, Tbilisi, Georgia
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium
| | - Radu Oprean
- Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 4 Louis Pasteur street, 400349, Cluj-Napoca, Romania
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium.
| |
Collapse
|
44
|
Aliashkevich A, Alvarez L, Cava F. New Insights Into the Mechanisms and Biological Roles of D-Amino Acids in Complex Eco-Systems. Front Microbiol 2018; 9:683. [PMID: 29681896 PMCID: PMC5898190 DOI: 10.3389/fmicb.2018.00683] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/22/2018] [Indexed: 01/22/2023] Open
Abstract
In the environment bacteria share their habitat with a great diversity of organisms, from microbes to humans, animals and plants. In these complex communities, the production of extracellular effectors is a common strategy to control the biodiversity by interfering with the growth and/or viability of nearby microbes. One of such effectors relies on the production and release of extracellular D-amino acids which regulate diverse cellular processes such as cell wall biogenesis, biofilm integrity, and spore germination. Non-canonical D-amino acids are mainly produced by broad spectrum racemases (Bsr). Bsr’s promiscuity allows it to generate high concentrations of D-amino acids in environments with variable compositions of L-amino acids. However, it was not clear until recent whether these molecules exhibit divergent functions. Here we review the distinctive biological roles of D-amino acids, their mechanisms of action and their modulatory properties of the biodiversity of complex eco-systems.
Collapse
Affiliation(s)
- Alena Aliashkevich
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Laura Alvarez
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
45
|
Zemková H, Stojilkovic SS. Neurotransmitter receptors as signaling platforms in anterior pituitary cells. Mol Cell Endocrinol 2018; 463:49-64. [PMID: 28684290 PMCID: PMC5752632 DOI: 10.1016/j.mce.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023]
Abstract
The functions of anterior pituitary cells are controlled by two major groups of hypothalamic and intrapituitary ligands: one exclusively acts on G protein-coupled receptors and the other activates both G protein-coupled receptors and ligand-gated receptor channels. The second group of ligands operates as neurotransmitters in neuronal cells and their receptors are termed as neurotransmitter receptors. Most information about pituitary neurotransmitter receptors was obtained from secretory studies, RT-PCR analyses of mRNA expression and immunohistochemical and biochemical analyses, all of which were performed using a mixed population of pituitary cells. However, recent electrophysiological and imaging experiments have characterized γ-aminobutyric acid-, acetylcholine-, and ATP-activated receptors and channels in single pituitary cell types, expanding this picture and revealing surprising differences in their expression between subtypes of secretory cells and between native and immortalized pituitary cells. The main focus of this review is on the electrophysiological and pharmacological properties of these receptors and their roles in calcium signaling and calcium-controlled hormone secretion.
Collapse
Affiliation(s)
- Hana Zemková
- Department of Cellular and Molecular Neuroendocrinology, Institute of Physiology, ASCR, Prague, Czech Republic.
| | - Stanko S Stojilkovic
- Sections on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
46
|
Han M, Xie M, Han J, Yuan D, Yang T, Xie Y. Development and validation of a rapid, selective, and sensitive LC-MS/MS method for simultaneous determination of D- and L-amino acids in human serum: application to the study of hepatocellular carcinoma. Anal Bioanal Chem 2018; 410:2517-2531. [PMID: 29492623 DOI: 10.1007/s00216-018-0883-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/25/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023]
Abstract
A validated liquid chromatography-tandem mass spectrometry method was developed for the simultaneous determination of D- and L-amino acids in human serum. Under the optimum conditions, except for DL-proline, L-glutamine, and D-lysine, the enantioseparation of the other 19 enantiomeric pairs of proteinogenic amino acids and nonchiral glycine was achieved with a CROWNPAK CR-I(+) chiral column within 13 min. The lower limits of quantitation for L-amino acids (including glycine) and D-amino acids were 5-56.25 μM and 0.625-500 nM, respectively, in human serum. The intraday precision and interday precision for all the analytes were less than 15%, and the accuracy ranged from -12.84% to 12.37% at three quality control levels. The proposed method, exhibiting high rapidity, enantioresolution, and sensitivity, was successfully applied to the quantification of D- and L-amino acid levels in serum from hepatocellular carcinoma patients and healthy individuals. The serum concentrations of L-arginine, L-isoleucine, L-aspartate, L-tryptophan, L-alanine, L-methionine, L-serine, glycine, L-valine, L-leucine, L-phenylalanine, L-threonine, D-isoleucine, D-alanine, D-glutamate, D-glutamine, D-methionine, and D-threonine were significantly reduced in the hepatocellular carcinoma patients compared with the healthy individuals (P < 0.01). D-Glutamate and D-glutamine were identified as the most downregulated serum markers (fold change greater than 1.5), which deserves further attention in hepatocellular carcinoma research. Graphical abstract Simultaneous determination of D- and L-amino acids in human serum from hepatocellular carcinoma patients and healthy individuals. AA amino acid, HCC hepatocellular carcinoma, LC liquid chromatography, MS/MS tandem mass spectrometry, NC normal control, TIC total ion chromatogram.
Collapse
Affiliation(s)
- Minlu Han
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Shanghai, 200025, China
| | - Mengyu Xie
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Shanghai, 200025, China
| | - Jun Han
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Daoyi Yuan
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Shanghai, 200025, China
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Ying Xie
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, No. 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|