1
|
Xinliang Z, Achkasov EE, Gavrikov LK, Yuchen L, Zhang C, Dudnik EN, Rumyantseva O, Beeraka NM, Glazachev OS. Assessing the importance and safety of hypoxia conditioning for patients with occupational pulmonary diseases: A recent clinical perspective. Biomed Pharmacother 2024; 178:117275. [PMID: 39126774 DOI: 10.1016/j.biopha.2024.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Occupational pulmonary diseases (OPDs) pose a significant global health challenge, contributing to high mortality rates. This review delves into the pathophysiology of hypoxia and the safety of intermittent hypoxic conditioning (IHC) in OPD patients. By examining sources such as PubMed, Relemed, NLM, Scopus, and Google Scholar, the review evaluates the efficacy of IHC in clinical outcomes for OPD patients. It highlights the complexities of cardiovascular and respiratory regulation dysfunctions in OPDs, focusing on respiratory control abnormalities and the impact of intermittent hypoxic exposures. Key areas include the physiological effects of hypoxia, the role of hypoxia-inducible factor-1 alpha (HIF-1α) in occupational lung diseases, and the links between brain ischemia, stroke, and OPDs. The review also explores the interaction between intermittent hypoxic exposures, mitochondrial energetics, and lung physiology. The potential of IHE to improve clinical manifestations and underlying pathophysiology in OPD patients is thoroughly examined. This comprehensive analysis aims to benefit molecular pathologists, pulmonologists, clinicians, and physicians by enhancing understanding of IHE's clinical benefits, from research to patient care, and improving clinical outcomes for OPD patients.
Collapse
Affiliation(s)
- Zhang Xinliang
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Eugeny E Achkasov
- Chair of Sports Medicine and Rehabilitation, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Leonid K Gavrikov
- Volgograd State Medical University, 1, Pavshikh Bortsov Sq., Volgograd 400131, Russia.
| | - Li Yuchen
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Chen Zhang
- Chair of Epidemiology and Modern Technologies of Vaccination, Institute of Professional Education, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia
| | - Elena N Dudnik
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| | - Olga Rumyantseva
- Izmerov Research Institute of Occupational Health, 31 Budeynniy Avenye, Moscow 105275, Russia.
| | - Narasimha M Beeraka
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut Street, R4-168, Indianapolis, IN 46202, USA; Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India.
| | - Oleg S Glazachev
- Co-Chair of Normal Physiology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia.
| |
Collapse
|
2
|
Hernández-Serda MA, Alarcón-López AY, Vázquez-Valadez VH, Briseño-Lugo P, Martínez-Soriano PA, Leguízamo V, Torres N, González-Terán R, Cárdenas-Granados LA, Sánchez Muñoz F, Rodríguez E, Lerma C, Zúñiga Muñoz AM, Ángeles E, Carbó R. Hypoxic Cardioprotection by New Antihypertensive Compounds in High Salt-Diet Hypertensive Rats: Glucose Transport Participation and Its Possible Pathway. Int J Mol Sci 2024; 25:8812. [PMID: 39201496 PMCID: PMC11354541 DOI: 10.3390/ijms25168812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Hypertension (HP) is a health condition that overloads the heart and increases the risk of heart attack and stroke. In an infarction, the lack of oxygen causes an exclusive use of glycolysis, which becomes a crucial source of ATP for the heart with a higher glucose uptake mediated by glucose transporters (GLUTs). Due to the unpleasant effects of antihypertensives, new drugs need to be researched to treat this disease. This study aimed to evaluate the cardioprotective effect of three novel antihypertensive compounds (LQMs, "Laboratorio de Química Medicinal") synthesized from Changrolin under hypoxic conditions with the participation of two primary cardiac GLUT1 and GLUT4 using a high-salt diet HP model. The model used a diet with 10% salt to increase arterial blood pressure in Wistar rats. In isolated cardiomyocytes from these rats, glucose uptake was measured during hypoxia, evaluating the participation of GLUTs with or without the animals' previous treatment with LQM312, 319, and 345 compounds. In silico calculations were performed to understand the affinity of the compounds for the trafficking of GLUTs. Results: Control cells do shift to glucose uptake exclusively in hypoxia (from 1.84 ± 0.09 µg/g/h to 2.67 ± 0.1 µg/g/h). Meanwhile, HP does not change its glucose uptake (from 2.38 ± 0.24 µg/g/h to 2.33 ± 0.26 µg/g/h), which is associated with cardiomyocyte damage. The new compounds lowered the systolic blood pressure (from 149 to 120 mmHg), but only LQM312 and LQM319 improved the metabolic state of hypoxic cardiomyocytes mediated by GLUT1 and GLUT4. In silico studies suggested that Captopril and LQM312 may mimic the interaction with the AMPK γ-subunit. Therefore, these compounds could activate AMPK, promoting the GLUT4 trafficking signaling pathway. These compounds are proposed to be cardioprotective during hypoxia under HP.
Collapse
Affiliation(s)
- Manuel A. Hernández-Serda
- Departamento de Ciencias Químicas FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (M.A.H.-S.); (A.Y.A.-L.)
| | - Aldo Y. Alarcón-López
- Departamento de Ciencias Químicas FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (M.A.H.-S.); (A.Y.A.-L.)
| | - Víctor H. Vázquez-Valadez
- Departamento de Ciencias Biológicas, FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (V.H.V.-V.); (P.B.-L.); (V.L.); (N.T.); (R.G.-T.)
- QSAR Analytics SA de CV. Tempano 10, Colonia Atlanta, Cuautitlán Izcalli 54740, Estado de México, Mexico
| | - Paola Briseño-Lugo
- Departamento de Ciencias Biológicas, FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (V.H.V.-V.); (P.B.-L.); (V.L.); (N.T.); (R.G.-T.)
| | - Pablo A. Martínez-Soriano
- Laboratorio de Química Medicinal y Teórica, Departamento de Ciencias Químicas, FESC, UNAM, Av. 1° de Mayo, Col. Sta. María las Torres, Cuautitlán Izcalli 54740, Estado de México, Mexico; (P.A.M.-S.); (L.A.C.-G.); (E.Á.)
| | - Viridiana Leguízamo
- Departamento de Ciencias Biológicas, FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (V.H.V.-V.); (P.B.-L.); (V.L.); (N.T.); (R.G.-T.)
| | - Nalleli Torres
- Departamento de Ciencias Biológicas, FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (V.H.V.-V.); (P.B.-L.); (V.L.); (N.T.); (R.G.-T.)
| | - Rodrigo González-Terán
- Departamento de Ciencias Biológicas, FES Cuautitlán, UNAM, Av. 1° de Mayo S/N, Santa María las Torres, Campo Uno, Cuautitlán Izcalli 54740, Estado de México, Mexico; (V.H.V.-V.); (P.B.-L.); (V.L.); (N.T.); (R.G.-T.)
| | - Luis A. Cárdenas-Granados
- Laboratorio de Química Medicinal y Teórica, Departamento de Ciencias Químicas, FESC, UNAM, Av. 1° de Mayo, Col. Sta. María las Torres, Cuautitlán Izcalli 54740, Estado de México, Mexico; (P.A.M.-S.); (L.A.C.-G.); (E.Á.)
| | - Fausto Sánchez Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Emma Rodríguez
- Laboratorio de Medicina Traslacional UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Claudia Lerma
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Alejandra María Zúñiga Muñoz
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Enrique Ángeles
- Laboratorio de Química Medicinal y Teórica, Departamento de Ciencias Químicas, FESC, UNAM, Av. 1° de Mayo, Col. Sta. María las Torres, Cuautitlán Izcalli 54740, Estado de México, Mexico; (P.A.M.-S.); (L.A.C.-G.); (E.Á.)
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| |
Collapse
|
3
|
Corbett J, Tipton MJ, Perissiou M, James T, Young JS, Newman A, Cummings M, Montgomery H, Grocott MPW, Shepherd AI. Effect of different levels of acute hypoxia on subsequent oral glucose tolerance in males with overweight: A balanced cross-over pilot feasibility study. Physiol Rep 2023; 11:e15623. [PMID: 37144546 PMCID: PMC10161207 DOI: 10.14814/phy2.15623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 05/06/2023] Open
Abstract
Previous research has shown that ≤60 min hypoxic exposure improves subsequent glycaemic control, but the optimal level of hypoxia is unknown and data are lacking from individuals with overweight. We undertook a cross-over pilot feasibility study investigating the effect of 60-min prior resting exposure to different inspired oxygen fractions (CON FI O2 = 0.209; HIGH FI O2 = 0.155; VHIGH FI O2 = 0.125) on glycaemic control, insulin sensitivity, and oxidative stress during a subsequent oral glucose tolerance test (OGTT) in males with overweight (mean (SD) BMI = 27.6 (1.3) kg/m2 ; n = 12). Feasibility was defined by exceeding predefined withdrawal criteria for peripheral blood oxygen saturation (SpO2 ), partial pressure of end-tidal oxygen or carbon dioxide and acute mountain sickness (AMS), and dyspnoea symptomology. Hypoxia reduced SpO2 in a stepwise manner (CON = 97(1)%; HIGH = 91(1)%; VHIGH = 81(3)%, p < 0.001), but did not affect peak plasma glucose concentration (CON = 7.5(1.8) mmol∙L-1 ; HIGH = 7.7(1.1) mmol∙L-1 ; VHIGH = 7.7(1.1) mmol∙L-1 ; p = 0.777; η2 = 0.013), plasma glucose area under the curve, insulin sensitivity, or metabolic clearance rate of glucose (p > 0.05). We observed no between-conditions differences in oxidative stress (p > 0.05), but dyspnoea and AMS symptoms increased in VHIGH (p < 0.05), with one participant meeting the withdrawal criteria. Acute HIGH or VHIGH exposure prior to an OGTT does not influence glucose homeostasis in males with overweight, but VHIGH is associated with adverse symptomology and reduced feasibility.
Collapse
Affiliation(s)
- Jo Corbett
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Michael J Tipton
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Maria Perissiou
- Clinical, Health and Rehabilitation Team, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Thomas James
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
- Clinical, Health and Rehabilitation Team, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - John S Young
- National Horizons Centre, Teesside University, Middlesbrough, UK
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Alexander Newman
- National Horizons Centre, Teesside University, Middlesbrough, UK
| | - Michael Cummings
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Hugh Montgomery
- Centre for Sport Exercise and Health, Dept Medicine, University College London, London, UK
| | - Michael P W Grocott
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, UK
| | - Anthony I Shepherd
- Clinical, Health and Rehabilitation Team, School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| |
Collapse
|
4
|
The role of exercise and hypoxia on glucose transport and regulation. Eur J Appl Physiol 2023; 123:1147-1165. [PMID: 36690907 DOI: 10.1007/s00421-023-05135-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Muscle glucose transport activity increases with an acute bout of exercise, a process that is accomplished by the translocation of glucose transporters to the plasma membrane. This process remains intact in the skeletal muscle of individuals with insulin resistance and type 2 diabetes mellitus (T2DM). Exercise training is, therefore, an important cornerstone in the management of individuals with T2DM. However, the acute systemic glucose responses to carbohydrate ingestion are often augmented during the early recovery period from exercise, despite increased glucose uptake into skeletal muscle. Accordingly, the first aim of this review is to summarize the knowledge associated with insulin action and glucose uptake in skeletal muscle and apply these to explain the disparate responses between systemic and localized glucose responses post-exercise. Herein, the importance of muscle glycogen depletion and the key glucoregulatory hormones will be discussed. Glucose uptake can also be stimulated independently by hypoxia; therefore, hypoxic training presents as an emerging method for enhancing the effects of exercise on glucose regulation. Thus, the second aim of this review is to discuss the potential for systemic hypoxia to enhance the effects of exercise on glucose regulation.
Collapse
|
5
|
Tee CCL, Cooke MB, Chong MC, Yeo WK, Camera DM. Mechanisms for Combined Hypoxic Conditioning and Divergent Exercise Modes to Regulate Inflammation, Body Composition, Appetite, and Blood Glucose Homeostasis in Overweight and Obese Adults: A Narrative Review. Sports Med 2023; 53:327-348. [PMID: 36441492 PMCID: PMC9877079 DOI: 10.1007/s40279-022-01782-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
Obesity is a major global health issue and a primary risk factor for metabolic-related disorders. While physical inactivity is one of the main contributors to obesity, it is a modifiable risk factor with exercise training as an established non-pharmacological treatment to prevent the onset of metabolic-related disorders, including obesity. Exposure to hypoxia via normobaric hypoxia (simulated altitude via reduced inspired oxygen fraction), termed hypoxic conditioning, in combination with exercise has been increasingly shown in the last decade to enhance blood glucose regulation and decrease the body mass index, providing a feasible strategy to treat obesity. However, there is no current consensus in the literature regarding the optimal combination of exercise variables such as the mode, duration, and intensity of exercise, as well as the level of hypoxia to maximize fat loss and overall body compositional changes with hypoxic conditioning. In this narrative review, we discuss the effects of such diverse exercise and hypoxic variables on the systematic and myocellular mechanisms, along with physiological responses, implicated in the development of obesity. These include markers of appetite regulation and inflammation, body conformational changes, and blood glucose regulation. As such, we consolidate findings from human studies to provide greater clarity for implementing hypoxic conditioning with exercise as a safe, practical, and effective treatment strategy for obesity.
Collapse
Affiliation(s)
- Chris Chow Li Tee
- Division of Research and Innovation, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Matthew B Cooke
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Mee Chee Chong
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Wee Kian Yeo
- Division of Research and Innovation, National Sports Institute of Malaysia, Kuala Lumpur, Malaysia
| | - Donny M Camera
- Sport and Exercise Medicine Group, Swinburne University, Room SPW224, Mail H21, PO Box 218, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
6
|
Takasawa S, Shobatake R, Itaya‐Hironaka A, Makino M, Uchiyama T, Sakuramoto‐Tsuchida S, Takeda Y, Ota H, Yamauchi A. Upregulation of IL-8, osteonectin, and myonectin mRNAs by intermittent hypoxia via OCT1- and NRF2-mediated mechanisms in skeletal muscle cells. J Cell Mol Med 2022; 26:6019-6031. [PMID: 36457269 PMCID: PMC9753449 DOI: 10.1111/jcmm.17618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 12/04/2022] Open
Abstract
Sleep apnoea syndrome is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]) and is a risk factor for insulin resistance/Type 2 diabetes. The induction of insulin resistance in skeletal muscle is a key phenomenon to develop diabetes. However, the mechanisms linking IH stress and insulin resistance remain elusive. We exposed human RD and mouse C2C12 muscle cells to normoxia or IH and measured their mRNA levels by real-time RT-PCR. We found that IH significantly increased the mRNA and protein levels of muscle-derived insulin resistance-factors (myokines) such as IL-8, osteonectin (ON), and myonectin (MN) in muscle cells. We further analysed the IH-induced expression mechanisms of IL-8, ON, and MN genes in muscle cells. Deletion analyses of the human myokine promoter(s) revealed that the regions -152 to -151 in IL-8, -105 to -99 in ON, and - 3741 to -3738 in MN promoters were responsible for the activation by IH in RD cells. The promoters contain consensus transcription factor binding sequences for OCT1 in IL-8 and MN promoters, and for NRF2 in ON promoter, respectively. The introduction of siRNA for OCT1 abolished the IH-induced expression(s) of IL-8 and MN and siRNA for NRF2 abolished the IH-induced expression of ON.
Collapse
Affiliation(s)
- Shin Takasawa
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Ryogo Shobatake
- Department of BiochemistryNara Medical UniversityNaraJapan,Department of NeurologyNara Medical UniversityNaraJapan,Department of NeurologyNara City HospitalNaraJapan
| | | | - Mai Makino
- Department of BiochemistryNara Medical UniversityNaraJapan
| | - Tomoko Uchiyama
- Department of BiochemistryNara Medical UniversityNaraJapan,Department of Diagnostic PathologyNara Medical UniversityNaraJapan
| | | | | | - Hiroyo Ota
- Department of BiochemistryNara Medical UniversityNaraJapan,Department of Respiratory MedicineNara Medical UniversityNaraJapan
| | - Akiyo Yamauchi
- Department of BiochemistryNara Medical UniversityNaraJapan
| |
Collapse
|
7
|
Tessema B, Sack U, König B, Serebrovska Z, Egorov E. Effects of Intermittent Hypoxia in Training Regimes and in Obstructive Sleep Apnea on Aging Biomarkers and Age-Related Diseases: A Systematic Review. Front Aging Neurosci 2022; 14:878278. [PMID: 35677200 PMCID: PMC9168371 DOI: 10.3389/fnagi.2022.878278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Several studies have assessed the effects of intermittent hypoxia-normoxia training (IHNT), intermittent hypoxia-hyperoxia training (IHHT), and obstructive sleep apnea (OSA) on aging and age-related diseases in humans; however, the results remain contradictory. Therefore, this review aims to systematically summarize the available studies on the effects of IHNT, IHHT, and OSA on aging and age-related diseases. Relevant studies were searched from PubMed, Google Scholar, Cochrane Library databases, and through manual searching from reference lists of eligible studies. A total of 38 eligible studies were included in this systematic review. IHHT and IHNT provide positive effects on several age-related parameters including quality of life, cognitive and physical functions, plasma level of glucose and cholesterol/LDL, systolic blood pressure, red blood cells, and inflammation. Moreover, moderate intermittent hypoxia induces telomerase reverse transcriptase (TERT) activity and telomere stabilization, delays induction of senescence-associated markers expression and senescence-associated β-galactosidase, upregulates pluripotent marker (Oct4), activates a metabolic shift, and raises resistance to pro-apoptotic stimuli. On the contrary, intermittent hypoxia in OSA causes hypertension, metabolic syndrome, vascular function impairment, quality of life and cognitive scores reduction, advanced brain aging, increase in insulin resistance, plasma hydrogen peroxide, GSH, IL-6, hsCRP, leptin, and leukocyte telomere shortening. Thus, it can be speculated that the main factor that determines the direction of the intermittent hypoxia action is the intensity and duration of exposure. There is no direct study to prove that IHNT/IHHT actually increases life expectancy in humans. Therefore, further study is needed to investigate the actual effect of IHNT/IHHT on aging in humans.Systematic Review Registrationwww.crd.york.ac.uk/prospero, identifier CRD42022298499.
Collapse
Affiliation(s)
- Belay Tessema
- Institute of Clinical Immunology, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- *Correspondence: Belay Tessema, ,
| | - Ulrich Sack
- Institute of Clinical Immunology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Brigitte König
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Zoya Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Egor Egorov
- IPAM Institute for Preventive and Anti-Aging Medicine, Berlin, Germany
| |
Collapse
|
8
|
Koh HCE, van Vliet S, Cao C, Patterson BW, Reeds DN, Laforest R, Gropler RJ, Ju YES, Mittendorfer B. Effect of obstructive sleep apnea on glucose metabolism. Eur J Endocrinol 2022; 186:457-467. [PMID: 35118996 PMCID: PMC9172969 DOI: 10.1530/eje-21-1025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is prevalent in people with obesity and is a major risk factor for type 2 diabetes (T2D). The effect of OSA on metabolic function and the precise mechanisms (insulin resistance, β-cell dysfunction, or both) responsible for the increased T2D risk in people with OSA are unknown. DESIGN AND METHODS We used a two-stage hyperinsulinemic-euglycemic clamp procedure in conjunction with stable isotopically labeled glucose and palmitate tracer infusions and 18F-fluorodeoxyglucose injection and positron emission tomography to quantify multi-organ insulin action and oral and intravenous tolerance tests to evaluate glucose-stimulated insulin secretion in fifteen people with obesity and OSA and thirteen people with obesity without OSA. RESULTS OSA was associated with marked insulin resistance of adipose tissue triglyceride lipolysis and glucose uptake into both skeletal muscles and adipose tissue, whereas there was no significant difference between the OSA and control groups in insulin action on endogenous glucose production, basal insulin secretion, and glucose-stimulated insulin secretion during both intravenous and oral glucose tolerance tests. CONCLUSIONS These data demonstrate that OSA is a key determinant of insulin sensitivity in people with obesity and underscore the importance of taking OSA status into account when evaluating metabolic function in people with obesity. These findings may also have important clinical implications because disease progression and the risk of diabetes-related complications vary by T2D subtype (i.e. severe insulin resistance vs insulin deficiency). People with OSA may benefit most from the targeted treatment of peripheral insulin resistance and early screening for complications associated with peripheral insulin resistance.
Collapse
Affiliation(s)
| | | | - Chao Cao
- Center for Human Nutrition, St. Louis, MO 63110, USA
| | | | | | | | | | - Yo-El S. Ju
- Department of Neurology, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders at Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
9
|
van Hulten V, van Meijel RLJ, Goossens GH. The impact of hypoxia exposure on glucose homeostasis in metabolically compromised humans: A systematic review. Rev Endocr Metab Disord 2021; 22:471-483. [PMID: 33851320 PMCID: PMC8087568 DOI: 10.1007/s11154-021-09654-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Humans living at a higher altitude are less prone to suffer from impaired glucose homeostasis and type 2 diabetes mellitus (T2DM), which might at least partly be explained by lower oxygen availability at higher altitudes. The present systematic review aimed to provide an overview of the current literature on the effects of hypoxia exposure on glucose homeostasis in metabolically compromised humans. Several databases were searched up to August 10th, 2020. The search strategy identified 368 unique records. Following assessment for eligibility based on the selection criteria, 16 studies were included in this review. Six studies (2 controlled studies; 4 uncontrolled studies) demonstrated beneficial effects of hypoxia exposure on glucose homeostasis, while 10 studies (8 controlled studies; 2 uncontrolled studies) reported no improvement in glucose homeostasis following hypoxia exposure. Notably, passive hypoxia exposure seemed to improve glucose homeostasis, whereas hypoxic exercise training (2-8 weeks) appeared to have no additional/synergistic effects on glucose homeostasis compared to normoxia exposure. Due to the heterogeneity in study populations and intervention duration (acute studies / 2-8 wks training), it is difficult to indicate which factors may explain conflicting study outcomes. Moreover, these results should be interpreted with some caution, as several studies did not include a control group. Taken together, hypoxia exposure under resting and exercise conditions might provide a novel therapeutic strategy to improve glucose homeostasis in metabolically compromised individuals, but more randomized controlled trials are warranted before strong conclusions on the effects of hypoxia exposure on glucose homeostasis can be drawn.
Collapse
Affiliation(s)
- Veerle van Hulten
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Pharmacology and Toxicology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Rens L J van Meijel
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gijs H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
10
|
Kim SW, Jung WS, Chung S, Park HY. Exercise intervention under hypoxic condition as a new therapeutic paradigm for type 2 diabetes mellitus: A narrative review. World J Diabetes 2021; 12:331-343. [PMID: 33889283 PMCID: PMC8040082 DOI: 10.4239/wjd.v12.i4.331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/25/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
This review aims to summarize the health benefits of exposure to hypoxic conditions during exercise in patients with type 2 diabetes mellitus (T2DM). Exposure to hypoxic conditions during exercise training positively changes the physiological response in healthy subjects. Exposure to hypoxic conditions during exercise could markedly increase skeletal muscle glucose uptake compared to that in normoxic conditions. Furthermore, post-exercise insulin sensitivity of T2DM patients increases more when exercising under hypoxic than under normoxic conditions. Regular exercise under short-term hypoxic conditions can improve blood glucose control at lower workloads than in normoxic conditions. Additionally, exercise training under short-term hypoxic conditions can maximize weight loss in overweight and obese patients. Previous studies on healthy subjects have reported that regular exercise under hypoxic conditions had a more positive effect on vascular health than exercising under normoxic conditions. However, currently, evidence indicating that exposure to hypoxic conditions could positively affect T2DM patients in the long-term is lacking. Therefore, further evaluations of the beneficial effects of exercise under hypoxic conditions on the human body, considering different cycle lengths, duration of exposures, sessions per day, and the number of days, are necessary. In this review, we conclude that there is evidence that exercise under hypoxic conditions can yield health benefits, which is potentially valuable in terms of clinical care as a new intervention for T2DM patients.
Collapse
Affiliation(s)
- Sung-Woo Kim
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, South Korea
| | - Won-Sang Jung
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, South Korea
| | - Sochung Chung
- Department of Pediatrics, Konkuk University Medical Center, Research Institute of Medical Science, Konkuk University, School of Medicine, Seoul 05029, South Korea
| | - Hun-Young Park
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, South Korea
- Department of Sports Science and Medicine, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
11
|
De Groote E, Britto FA, Balan E, Warnier G, Thissen JP, Nielens H, Sylow L, Deldicque L. Effect of hypoxic exercise on glucose tolerance in healthy and prediabetic adults. Am J Physiol Endocrinol Metab 2021; 320:E43-E54. [PMID: 33103453 DOI: 10.1152/ajpendo.00263.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aimed to investigate the mechanisms known to regulate glucose homeostasis in human skeletal muscle of healthy and prediabetic subjects exercising in normobaric hypoxia. Seventeen healthy (H; 28.8 ± 2.4 yr; maximal oxygen consumption (V̇O2max): 45.1 ± 1.8 mL·kg-1·min-1) and 15 prediabetic (P; 44.6 ± 3.9 yr; V̇O2max: 30.8 ± 2.5 mL·kg-1·min-1) men were randomly assigned to two groups performing an acute exercise bout (heart rate corresponding to 55% V̇O2max) either in normoxic (NE) or in hypoxic (HE; fraction of inspired oxygen [Formula: see text] 14.0%) conditions. An oral glucose tolerance test (OGTT) was performed in a basal state and after an acute exercise bout. Muscle biopsies from m. vastus lateralis were taken before and after exercise. Venous blood samples were taken at regular intervals before, during, and after exercise. The two groups exercising in hypoxia had a larger area under the curve of blood glucose levels during the OGTT after exercise compared with baseline (H: +11%; P: +4%). Compared with pre-exercise, an increase in p-TBC1D1 Ser237 and in p-AMPK Thr172 was observed postexercise in P NE (+95%; +55%, respectively) and H HE (+91%; +43%, respectively). An increase in p-ACC Ser212 was measured after exercise in all groups (H NE: +228%; P NE: +252%; H HE: +252%; P HE: +208%). Our results show that an acute bout of exercise in hypoxia reduces glucose tolerance in healthy and prediabetic subjects. At a molecular level, some adaptations regulating glucose transport in muscle were found in all groups without associations with glucose tolerance after exercise. The results suggest that hypoxia negatively affects glucose tolerance postexercise through unidentified mechanisms.NEW & NOTEWORTHY The molecular mechanisms involved in glucose tolerance after acute exercise in hypoxia have not yet been elucidated in human. Due to the reversible character of their status, prediabetic individuals are of particular interest for preventing the development of type 2 diabetes. The present study is the first to investigate muscle molecular mechanisms during exercise and glucose metabolism after exercise in prediabetic and healthy subjects exercising in normoxia and normobaric hypoxia.
Collapse
Affiliation(s)
- Estelle De Groote
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Florian A Britto
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Estelle Balan
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Geoffrey Warnier
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Paul Thissen
- Departement of Diabetology and Nutrition, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Henri Nielens
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Moderation of mitochondrial respiration mitigates metabolic syndrome of aging. Proc Natl Acad Sci U S A 2020; 117:9840-9850. [PMID: 32303655 DOI: 10.1073/pnas.1917948117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Deregulation of mitochondrial dynamics leads to the accumulation of oxidative stress and unhealthy mitochondria; consequently, this accumulation contributes to premature aging and alterations in mitochondria linked to metabolic complications. We postulate that restrained mitochondrial ATP synthesis might alleviate age-associated disorders and extend healthspan in mammals. Herein, we prepared a previously discovered mitochondrial complex IV moderate inhibitor in drinking water and orally administered to standard-diet-fed, wild-type C57BL/6J mice every day for up to 16 mo. No manifestation of any apparent toxicity or deleterious effect on studied mouse models was observed. The impacts of an added inhibitor on a variety of mitochondrial functions were analyzed, such as respiratory activity, mitochondrial bioenergetics, and biogenesis, and a few age-associated comorbidities, including reactive oxygen species (ROS) production, glucose abnormalities, and obesity in mice. It was found that mitochondrial quality, dynamics, and oxidative metabolism were greatly improved, resulting in lean mice with a specific reduction in visceral fat plus superb energy and glucose homeostasis during their aging period compared to the control group. These results strongly suggest that a mild interference in ATP synthesis through moderation of mitochondrial activity could effectively up-regulate mitogenesis, reduce ROS production, and preserve mitochondrial integrity, thereby impeding the onset of metabolic syndrome. We conclude that this inhibitory intervention in mitochondrial respiration rectified the age-related physiological breakdown in mice by protecting mitochondrial function and markedly mitigated certain undesired primary outcomes of metabolic syndrome, such as obesity and type 2 diabetes. This intervention warrants further research on the treatment of metabolic syndrome of aging in humans.
Collapse
|
13
|
Mbagwu IS, Akah PA, Ajaghaku DL. Newbouldia laevis improved glucose and fat homeostasis in a TYPE-2 diabesity mice model. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112555. [PMID: 31926312 DOI: 10.1016/j.jep.2020.112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Newbouldia laevis (P. Beauv) has a long-standing ethnomedicinal use in the management of diabetes mellitus. However, no scientific evidence has established its potentials in the management of obesity dependent diabetes. AIM This study aimed at filling the gap in knowledge about the antidiabetic activity of the leaf extract of N. laevis in a type-2 diabesity mice model. MATERIALS AND METHOD The ethanol leaf extract was subjected to liquid-liquid partitioning successively with n-hexane, ethyl acetate and butanol to obtain respective fractions soluble in these solvents. The butanol (most active) fraction at 302 and 604 mg/kg was further tested on high-fat diet STZ-NAD induced type-2 diabetic mice for 10 weeks with glibenclamide (10 mg/kg) and pioglitazone (30 mg/kg) as standards. The effect on food intake, body weight, fasting blood glucose, oral glucose tolerance test (OGTT), oral fat tolerance test (OFTT), insulin secretion, insulin resistance and lipid profile were determined prior to treatment, mid-way and at the end of 10 weeks treatment. RESULTS Higher food consumption was recorded in diabetic (D) animals on high-fat diet (HFD) compared to the normal diet (ND)-fed groups. Treatment of these diabetic mice on HFD with 604 mg/kg of butanol fraction produced significant (p < 0.05) reduction in body weights of these animals from the 2nd week to the 9th week. Ten weeks treatment with butanol fraction achieved a marked decrease in blood glucose and also an increase in fat clearance. Just like pioglitazone, treatment with butanol fraction at both 302 and 604 mg/kg doses produced significant (p < 0.05) decrease in HFD mediated elevation of serum insulin and a non-significant (p > 0.05) increase in STZ-NAD mediated depletion of serum insulin. Butanol fraction at 604 mg/kg also produced reduction in insulin resistance as indicated by significant (p < 0.05) decrease in HOMA-IR value on the 5th and 10th week just like pioglitazone (30 mg/kg). CONCLUSION N. laevis exhibited wide actions in the regulation of glucose and fat homeostasis making it a potential novel agent for the management of diabetes, obesity and their likely associated complications.
Collapse
Affiliation(s)
- Ikechukwu Sonne Mbagwu
- Department of Pharmacology/Toxicology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University Awka, Nigeria
| | - Peter Achunike Akah
- Department of Pharmacology/Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka, Nigeria
| | - Daniel Lotanna Ajaghaku
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Enugu State University of Sciences and Technology, Enugu State, Nigeria.
| |
Collapse
|
14
|
Serebrovska TV, Grib ON, Portnichenko VI, Serebrovska ZO, Egorov E, Shatylo VB. Intermittent Hypoxia/Hyperoxia Versus Intermittent Hypoxia/Normoxia: Comparative Study in Prediabetes. High Alt Med Biol 2019; 20:383-391. [DOI: 10.1089/ham.2019.0053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Oksana N. Grib
- D.F. Chebotarev State Institute of Gerontology, Kiev, Ukraine
| | | | | | - Egor Egorov
- CellAir Construction GmbH, Stuttgart, Germany
| | | |
Collapse
|
15
|
Serebrovska TV, Portnychenko AG, Portnichenko VI, Xi L, Egorov E, Antoniuk-Shcheglova I, Naskalova S, Shatylo VB. Effects of intermittent hypoxia training on leukocyte pyruvate dehydrogenase kinase 1 (PDK-1) mRNA expression and blood insulin level in prediabetes patients. Eur J Appl Physiol 2019; 119:813-823. [PMID: 30701312 DOI: 10.1007/s00421-019-04072-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE Intermittent hypoxia training/treatment (IHT) is an emerging therapeutic approach to alleviate chronic diseases, such as diabetes. The present study investigated the effects of IHT on blood leucocyte pyruvate dehydrogenase kinase 1 (PDK-1) mRNA expression and its relationship with the changes in blood insulin level. METHODS Seven adult healthy volunteers and 11 prediabetic patients participated in this study. A 3-week course of IHT consisted of a 40-min session of 4 cycles of 5-min 12% O2 and 5-min room air breathing per day, 3 sessions per week for 3 weeks (i.e., total 9 sessions of IHT). Plasma insulin levels and leukocyte PDK-1 mRNA expression were determined at various time points either under fasting condition or following oral glucose tolerance test (OGTT). Correlation between the IHT-induced changes in PDK-1 mRNA and insulin or glucose levels in the same serological samples was analyzed. RESULTS At pre-IHT baseline, PDK-1 mRNA expression was two times higher in prediabetes than control subjects. IHT resulted in significant augmentation in PDK-1 mRNA expression (> twofold) in prediabetes at the end of 3-week IHT and remained elevated 1 month after IHT, which was correlated with a significantly reduced insulin release and lower blood glucose after glucose loading with OGTT. CONCLUSION IHT can trigger beneficial effects in normalizing blood insulin levels in prediabetic patients under oral glucose load, which were closely correlated with an enhanced mRNA expression of PDK-1 in leukocytes. Further clinical trials are warranted to validate the utility of IHT as a non-invasive complementary therapy against diabetes-associated pathologies.
Collapse
Affiliation(s)
| | - Alla G Portnychenko
- Bogomoletz Institute of Physiology, Kiev, 01024, Ukraine
- ICAMER, National Academy of Sciences of Ukraine, Kiev, 03680, Ukraine
| | - Vladimir I Portnichenko
- Bogomoletz Institute of Physiology, Kiev, 01024, Ukraine
- ICAMER, National Academy of Sciences of Ukraine, Kiev, 03680, Ukraine
| | - Lei Xi
- Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7-020C, Richmond, VA, 23298, USA.
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China.
| | - Egor Egorov
- CELLGYM Technologies GmbH, 10623, Berlin, Germany
| | | | | | - Valeriy B Shatylo
- D.F. Chebotarev State Institute of Gerontology, Kiev, 04114, Ukraine
| |
Collapse
|
16
|
Wang Y, Wen L, Zhou S, Zhang Y, Wang XH, He YY, Davie A, Broadbent S. Effects of four weeks intermittent hypoxia intervention on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, and Akt activity in skeletal muscle of obese mice with type 2 diabetes. PLoS One 2018; 13:e0203551. [PMID: 30199540 PMCID: PMC6130870 DOI: 10.1371/journal.pone.0203551] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/22/2018] [Indexed: 01/03/2023] Open
Abstract
AIMS The aims of this study were to determine the effects of four weeks of intermittent exposure to a moderate hypoxia environment (15% oxygen), and compare with the effects of exercise in normoxia or hypoxia, on glucose homeostasis, insulin sensitivity, GLUT4 translocation, insulin receptor phosphorylation, Akt-dependent GSK3 phosphorylation and Akt activity in skeletal muscle of obese mice with type 2 diabetes. METHODS C57BL/6J mice that developed type 2 diabetes with a high-fat-diet (55% fat) (fasting blood glucose, FBG = 13.9 ± 0.69 (SD) mmol/L) were randomly allocated into diabetic control (DC), rest in hypoxia (DH), exercise in normoxia (DE), and exercise in hypoxia (DHE) groups (n = 7, each), together with a normal-diet (4% fat) control group (NC, FBG = 9.1 ± 1.11 (SD) mmol/L). The exercise groups ran on a treadmill at intensities of 75-90% VO2max. The interventions were applied one hour per day, six days per week for four weeks. Venous blood samples were analysed for FBG, insulin (FBI) and insulin sensitivity (QUICKI) pre and post the intervention period. The quadriceps muscle samples were collected 72 hours post the last intervention session for analysis of GLUT4 translocation, insulin receptor phosphorylation, Akt expression and phosphorylated GSK3 fusion protein by western blot. Akt activity was determined by the ratio of the phosphorylated GSK3 fusion protein to the total Akt protein. RESULTS The FBG of the DH, DE and DHE groups returned to normal level (FBG = 9.4 ± 1.50, 8.86 ± 0.94 and 9.0 ± 1.13 (SD) mmol/L for DH, DE and DHE respectively, P < 0.05), with improved insulin sensitivity compared to DC (P < 0.05), after the four weeks treatment, while the NC and DC showed no significant changes, as analysed by general linear model with repeated measures. All three interventions resulted in a significant increase of GLUT4 translocation to cell membrane compared to the DC group (P < 0.05). The DE and DH showed a similar level of insulin receptor phosphorylation compared with NC that was significantly lower than the DC (P < 0.05) post intervention. The DH and DHE groups showed a significantly higher Akt activity compared to the DE, DC and NC (P < 0.05) post intervention, as analysed by one-way ANOVA. CONCLUSIONS This study produced new evidence that intermittent exposure to mild hypoxia (0.15 FiO2) for four weeks resulted in normalisation of FBG, improvement in whole body insulin sensitivity, and a significant increase of GLUT4 translocation in the skeletal muscle, that were similar to the effects of exercise intervention during the same time period, in mice with diet-induced type 2 diabetes. However, exercise in hypoxia for four weeks did not have additive effects on these responses. The outcomes of the research may contribute to the development of effective, alternative and complementary interventions for management of hyperglycaemia and type 2 diabetes, particularly for individuals with limitations in participation of physical activity.
Collapse
Affiliation(s)
- Yun Wang
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| | - Li Wen
- Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Shi Zhou
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| | - Yong Zhang
- Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Xin-Hao Wang
- Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - You-Yu He
- Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Allan Davie
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| | - Suzanne Broadbent
- School of Health and Human Sciences, Southern Cross University, Lismore, Australia
| |
Collapse
|
17
|
Zhao X, Yu XH, Zhang GY, Zhang HY, Liu WW, Zhang CK, Sun YJ, Ling JY. Aqueous Extracts of Cordyceps kyushuensis Kob Induce Apoptosis to Exert Anticancer Activity. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8412098. [PMID: 30175146 PMCID: PMC6106948 DOI: 10.1155/2018/8412098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/25/2018] [Indexed: 11/17/2022]
Abstract
Cancer has become the leading cause of mortality since 2010 in China. Despite the remarkable advances in cancer therapy, a low survival rate is still a burden to the society. The antineoplastic activity of aqueous extracts of Cordyceps kyushuensis Kob (AECK) was measured in this study. Results showed that AECK can significantly inhibit the proliferation and viability of U937 and K562 when treated with different concentrations of AECK, and the IC50 values of U937 and K562 were 31.23 μg/ml and 62.5 μg/ml, respectively. Hoechst 33258 staining showed that AECK could cause cell shrinkage, chromatin, condensation, and cytoplasmic blebbing, and DNA ladder experiment revealed the evident feature of DNA fragmentation which showed that AECK could induce cell apoptosis. Moreover, AECK gave rise to intrinsic apoptosis through increasing the amount of Ca2+ and downregulating the expression of Bcl-2. Meanwhile, the level of Fas death receptor was elevated which indicated that AECK could lead to exogenous apoptosis in U937. The expressions of oncogene c-Myc and c-Fos were suppressed which manifested that AECK could negatively regulate the growth, proliferation, and tumorigenesis of U937 cells. This research presented the primary antitumor activity of AECK which would contribute to the widely use of Cordyceps kyushuensis Kob as a functional food and medicine.
Collapse
Affiliation(s)
- Xuan Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xing-hui Yu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Guo-ying Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | | | - Wei-wei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Chang-kai Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Ying-jie Sun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Jian-ya Ling
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| |
Collapse
|
18
|
Siques P, Brito J, Flores K, Ordenes S, Arriaza K, Pena E, León-Velarde F, López de Pablo ÁL, Gonzalez MC, Arribas S. Long-Term Chronic Intermittent Hypobaric Hypoxia Induces Glucose Transporter (GLUT4) Translocation Through AMP-Activated Protein Kinase (AMPK) in the Soleus Muscle in Lean Rats. Front Physiol 2018; 9:799. [PMID: 30002630 PMCID: PMC6031730 DOI: 10.3389/fphys.2018.00799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/07/2018] [Indexed: 11/20/2022] Open
Abstract
Background: In chronic hypoxia (CH) and short-term chronic intermittent hypoxia (CIH) exposure, glycemia and insulin levels decrease and insulin sensitivity increases, which can be explained by changes in glucose transport at skeletal muscles involving GLUT1, GLUT4, Akt, and AMPK, as well as GLUT4 translocation to cell membranes. However, during long-term CIH, there is no information regarding whether these changes occur similarly or differently than in other types of hypoxia exposure. This study evaluated the levels of AMPK and Akt and the location of GLUT4 in the soleus muscles of lean rats exposed to long-term CIH, CH, and normoxia (NX) and compared the findings. Methods: Thirty male adult rats were randomly assigned to three groups: a NX (760 Torr) group (n = 10), a CIH group (2 days hypoxia/2 days NX; n = 10) and a CH group (n = 10). Rats were exposed to hypoxia for 30 days in a hypobaric chamber set at 428 Torr (4,600 m). Feeding (10 g daily) and fasting times were accurately controlled. Measurements included food intake (every 4 days), weight, hematocrit, hemoglobin, glycemia, serum insulin (by ELISA), and insulin sensitivity at days 0 and 30. GLUT1, GLUT4, AMPK levels and Akt activation in rat soleus muscles were determined by western blot. GLUT4 translocation was measured with confocal microscopy at day 30. Results: (1) Weight loss and increases in hematocrit and hemoglobin were found in both hypoxic groups (p < 0.05). (2) A moderate decrease in glycemia and plasma insulin was found. (3) Insulin sensitivity was greater in the CIH group (p < 0.05). (4) There were no changes in GLUT1, GLUT4 levels or in Akt activation. (5) The level of activated AMPK was increased only in the CIH group (p < 0.05). (6) Increased GLUT4 translocation to the plasma membrane of soleus muscle cells was observed in the CIH group (p < 0.05). Conclusion: In lean rats experiencing long-term CIH, glycemia and insulin levels decrease and insulin sensitivity increases. Interestingly, there is no increase of GLUT1 or GLUT4 levels or in Akt activation. Therefore, cellular regulation of glucose seems to primarily involve GLUT4 translocation to the cell membrane in response to hypoxia-mediated AMPK activation.
Collapse
Affiliation(s)
- Patricia Siques
- Institute of Health Studies, University Arturo Prat, Iquique, Chile
| | - Julio Brito
- Institute of Health Studies, University Arturo Prat, Iquique, Chile
| | - Karen Flores
- Institute of Health Studies, University Arturo Prat, Iquique, Chile
| | - Stefany Ordenes
- Institute of Health Studies, University Arturo Prat, Iquique, Chile
| | - Karem Arriaza
- Institute of Health Studies, University Arturo Prat, Iquique, Chile
| | - Eduardo Pena
- Institute of Health Studies, University Arturo Prat, Iquique, Chile
| | - Fabiola León-Velarde
- Department of Biological and Physiological Sciences, Facultad de Ciencias y Filosofía/IIA, Cayetano Heredia University, Lima, Peru
| | - Ángel L López de Pablo
- Department of Physiology, Faculty of Medicine, University Autonoma of Madrid, Madrid, Spain
| | - M C Gonzalez
- Department of Physiology, Faculty of Medicine, University Autonoma of Madrid, Madrid, Spain
| | - Silvia Arribas
- Department of Physiology, Faculty of Medicine, University Autonoma of Madrid, Madrid, Spain
| |
Collapse
|
19
|
HONDA J, KIMURA T, SAKAI S, MARUYAMA H, TAJIRI K, MURAKOSHI N, HOMMA S, MIYAUCHI T, AONUMA K. The Glucagon-Like Peptide-1 Receptor Agonist Liraglutide Improves Hypoxia-Induced Pulmonary Hypertension in Mice Partly via Normalization of Reduced ETB Receptor Expression. Physiol Res 2018; 67:S175-S184. [DOI: 10.33549/physiolres.933822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) agonist liraglutide is an incretin hormone mimetic used in the treatment of diabetes. However, the effects of liraglutide on pulmonary hypertension (PH) and pulmonary endothelin (ET) system are unknown. Eight-week-old C57BL6/J mice were injected liraglutide or vehicle for 5 weeks. One week after injection, the mice were exposed to either room air (normoxia) or chronic hypoxia (10 % O2) for 4 weeks. The right ventricular systolic pressure (RVSP) was significantly higher in hypoxia + vehicle group than in normoxia + vehicle group. ET-1 mRNA expression in the lungs was comparable among all the groups. ETB mRNA and protein expression in the lungs was significantly lower in hypoxia + vehicle group than in normoxia + vehicle group. The above changes were normalized by liraglutide treatment. The expression of phospho-eNOS and phospho-AMPK proteins in the lungs was significantly higher in hypoxia + liraglutide group than in normoxia + vehicle group. We demonstrated for the first time that liraglutide effectively improved RVSP and RV hypertrophy in hypoxia-induced PH mice by activating eNOS through normalization of impaired ETB pathway and augmentation of AMPK pathway. Therefore, GLP-1R agonists can be promising therapeutic agents for PH.
Collapse
Affiliation(s)
| | - T. KIMURA
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Naufahu J, Elliott B, Markiv A, Dunning-Foreman P, McGrady M, Howard D, Watt P, Mackenzie RWA. High-Intensity Exercise Decreases IP6K1 Muscle Content and Improves Insulin Sensitivity (SI2*) in Glucose-Intolerant Individuals. J Clin Endocrinol Metab 2018; 103:1479-1490. [PMID: 29300979 DOI: 10.1210/jc.2017-02019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
CONTEXT Insulin resistance (IR) in skeletal muscle contributes to whole body hyperglycemia and the secondary complications associated with type 2 diabetes. Inositol hexakisphosphate kinase-1 (IP6K1) may inhibit insulin-stimulated glucose transport in this tissue type. OBJECTIVE Muscle and plasma IP6K1 were correlated with two-compartment models of glucose control in insulin-resistant hyperinsulinemic individuals. Muscle IP6K1 was also compared after two different exercise trials. DESIGN Nine prediabetic [hemoglobin A1c; 6.1% (0.2%)] patients were recruited to take part in a resting control, a continuous exercise (90% of lactate threshold), and a high-intensity exercise trial (6 30-second sprints). Muscle biopsies were drawn before and after each 60-minute trial. A labeled ([6,62H2]glucose) intravenous glucose tolerance test was performed immediately after the second muscle sample. RESULTS Fasting muscle IP6K1 content did not correlate with insulin sensitivity (SI2*) (P = 0.961). High-intensity exercise reduced IP6K1 muscle protein and messenger RNA expression (P = 0.001). There was no effect on protein IP6K1 content after continuous exercise. Akt308 phosphorylation of was significantly greater after high-intensity exercise. Intermittent exercise reduced hepatic glucose production after the same trial. The same intervention also increased SI2*, and this effect was significantly greater compared with the effect of continuous exercise improvements. Our in vitro experiment demonstrated that the chemical inhibition of IP6K1 increased insulin signaling in C2C12 myotubes. CONCLUSIONS The in vivo and in vitro approaches used in the current study suggest that a decrease in muscle IP6K1 may be linked to whole body increases in SI2*. In addition, high-intensity exercise reduces hepatic glucose production in insulin-resistant individuals.
Collapse
Affiliation(s)
- Jane Naufahu
- Faculty of Science and Technology, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Bradley Elliott
- Faculty of Science and Technology, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Anatoliy Markiv
- Biosciences Education, King's College London, London, United Kingdom
| | - Petra Dunning-Foreman
- Faculty of Science and Technology, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - Maggie McGrady
- Faculty of Science and Technology, Department of Life Sciences, University of Westminster, London, United Kingdom
| | - David Howard
- Department of Oncology, Charing Cross Hospital, Imperial NHS Trust Hospitals, London, United Kingdom
| | - Peter Watt
- Centre for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom
| | | |
Collapse
|
21
|
Serebrovska TV, Portnychenko AG, Drevytska TI, Portnichenko VI, Xi L, Egorov E, Gavalko AV, Naskalova S, Chizhova V, Shatylo VB. Intermittent hypoxia training in prediabetes patients: Beneficial effects on glucose homeostasis, hypoxia tolerance and gene expression. Exp Biol Med (Maywood) 2017; 242:1542-1552. [PMID: 28758418 DOI: 10.1177/1535370217723578] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The present study aimed at examining beneficial effects of intermittent hypoxia training (IHT) under prediabetic conditions. We investigate the effects of three-week IHT on blood glucose level, tolerance to acute hypoxia, and leukocyte mRNA expression of hypoxia inducible factor 1α (HIF-1α) and its target genes, i.e. insulin receptor, facilitated glucose transporter-solute carrier family-2, and potassium voltage-gated channel subfamily J. Seven healthy and 11 prediabetic men and women (44-70 years of age) were examined before, next day and one month after three-week IHT (3 sessions per week, each session consisting 4 cycles of 5-min 12% O2 and 5-min room air breathing). We found that IHT afforded beneficial effects on glucose homeostasis in patients with prediabetes reducing fasting glucose and during standard oral glucose tolerance test. The most pronounced positive effects were observed at one month after IHT termination. IHT also significantly increased the tolerance to acute hypoxia (i.e. SaO2 level at 20th min of breathing with 12% O2) and improved functional parameters of respiratory and cardiovascular systems. IHT stimulated HIF-1α mRNA expression in blood leukocytes in healthy and prediabetic subjects, but in prediabetes patients the maximum increase was lagged. The greatest changes in mRNA expression of HIF-1α target genes occurred a month after IHT and coincided with the largest decrease in blood glucose levels. The higher expression of HIF-1α was positively associated with higher tolerance to hypoxia and better glucose homeostasis. In conclusion, our results suggest that IHT may be useful for preventing the development of type 2 diabetes. Impact statement The present study investigated the beneficial effects of intermittent hypoxia training (IHT) in humans under prediabetic conditions. We found that three-week moderate IHT induced higher HIF-1α mRNA expressions as well as its target genes, which were positively correlated with higher tolerance to acute hypoxia and better glucose homeostasis in both middle-aged healthy and prediabetic subjects. This small clinical trial has provided new data suggesting a potential utility of IHT for management of prediabetes patients.
Collapse
Affiliation(s)
| | - Alla G Portnychenko
- 1 Bogomoletz Institute of Physiology, Kiev 01024, Ukraine.,2 ICAMER, National Academy of Sciences of Ukraine, Kiev 03680, Ukraine
| | - Tetiana I Drevytska
- 1 Bogomoletz Institute of Physiology, Kiev 01024, Ukraine.,2 ICAMER, National Academy of Sciences of Ukraine, Kiev 03680, Ukraine
| | - Vladimir I Portnichenko
- 1 Bogomoletz Institute of Physiology, Kiev 01024, Ukraine.,2 ICAMER, National Academy of Sciences of Ukraine, Kiev 03680, Ukraine
| | - Lei Xi
- 3 Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.,4 School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Egor Egorov
- 5 CELLGYM Technologies GmbH, Berlin 10623, Germany
| | - Anna V Gavalko
- 6 D.F. Chebotarev State Institute of Gerontology, Kiev 04114, Ukraine
| | | | | | - Valeriy B Shatylo
- 6 D.F. Chebotarev State Institute of Gerontology, Kiev 04114, Ukraine
| |
Collapse
|
22
|
Brinkmann C, Bloch W, Brixius K. Exercise during short-term exposure to hypoxia or hyperoxia - novel treatment strategies for type 2 diabetic patients?! Scand J Med Sci Sports 2017. [PMID: 28649714 DOI: 10.1111/sms.12937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Both hypoxia (decreased oxygen availability) and hyperoxia (increased oxygen availability) have been shown to alter exercise adaptations in healthy subjects. This review aims to clarify the possible benefits of exercise during short-term exposure to hypoxia or hyperoxia for patients with type 2 diabetes mellitus (T2DM). There is evidence that exercise during short-term exposure to hypoxia can acutely increase skeletal muscle glucose uptake more than exercise in normoxia, and that post-exercise insulin sensitivity in T2DM patients is more increased when exercise is performed under hypoxic conditions. Furthermore, interventional studies show that glycemic control can be improved through regular physical exercise in short-term hypoxia at a lower workload than in normoxia, and that exercise training in short-term hypoxia can contribute to increased weight loss in overweight/obese (insulin-resistant) subjects. While numerous studies involving healthy subjects report that regular exercise in hypoxia can increase vascular health (skeletal muscle capillarization and vascular dilator function) to a higher extent than exercise training in normoxia, there is no convincing evidence yet that hypoxia has such additive effects in T2DM patients in the long term. Some studies indicate that the use of hyperoxia during exercise can decrease lactate concentrations and subjective ratings of perceived exertion. Thus, there are interesting starting points for future studies to further evaluate possible beneficial effects of exercise in short-term hypoxia or hyperoxia at different oxygen concentrations and exposure durations. In general, exposure to hypoxia/hyperoxia should be considered with caution. Possible health risks-especially for T2DM patients-are also analyzed in this review.
Collapse
Affiliation(s)
- C Brinkmann
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany.,Institute of Cardiovascular Research and Sport Medicine, Department of Preventive and Rehabilitative Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - W Bloch
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - K Brixius
- Institute of Cardiovascular Research and Sport Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|