1
|
Choi Y, Kim J, Bang G, Kim N, Thirugnanasambantham K, Lee S, Kim KH, Bharanidharan R. Effect of sodium formate and lactic acid bacteria treated rye silage on methane yield and energy balance in Hanwoo steers. PeerJ 2024; 12:e17920. [PMID: 39247542 PMCID: PMC11380838 DOI: 10.7717/peerj.17920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/23/2024] [Indexed: 09/10/2024] Open
Abstract
This study was performed to evaluate the effects of rye silage treated with sodium formate (Na-Fa) and lactic acid bacteria (LAB) inoculants on the ruminal fermentation characteristics, methane yield and energy balance in Hanwoo steers. Forage rye was harvested in May 2019 and ensiled without additives (control) or with either a LAB inoculant or Na-Fa. The LAB (Lactobacillus plantarum) were inoculated at 1.5 × 1010 CFU/g fresh matter, and the inoculant was sprayed onto the forage rye during wrapping at a rate of 4 L/ton of fresh rye forage. Sixteen percent of the Na-Fa solution was sprayed at a rate of approximately 6.6 L/ton. Hanwoo steers (body weight 275 ± 8.4 kg (n = 3, group 1); average body weight 360 ± 32.1 kg (n = 3, group 2)) were allocated into two pens equipped with individual feeding gates and used in duplicated 3 × 3 Latin square design. The experimental diet was fed twice daily (09:00 and 18:00) during the experimental period. Each period comprised 10 days for adaptation to the pen and 9 days for measurements in a direct respiratory chamber. The body weights of the steers were measured at the beginning and at the end of the experiment. Feces and urine were collected for 5 days after 1 day of adaptation to the chamber, methane production was measured for 2 days, and ruminal fluid was collected on the final day. In the LAB group, the ratio of acetic acid in the rumen fluid was significantly lower (p = 0.044) and the ratio of propionic acid in the rumen fluid was significantly higher (p = 0.017). Methane production per DDMI of the Na-FA treatment group was lower than that of the other groups (p = 0.052), and methane production per DNDFI of the LAB treatment group was higher than that of the other groups (p = 0.056). The use of an acid-based additive in silage production has a positive effect on net energy and has the potential to reduce enteric methane emissions in ruminants.
Collapse
Affiliation(s)
- Yongjun Choi
- School of Animal Life Convergence Science, Hankyung National University, Anseong, Gyeonggi-do, South Korea
| | - Jayeon Kim
- Cargill Agri Purina Inc., Pyeongtaek, Gyeonggi-do, South Korea
| | - Geumhwi Bang
- Farmsco Co., Ltd., Anseong, Gyeonggi-do, South Korea
| | - Nayeon Kim
- Asia Pacific Ruminant Institute, Icheon, Gyeonggi-do, South Korea
| | - Krishnaraj Thirugnanasambantham
- Pondicherry Centre for Biological Science and Educational Trust, Puducherry, India
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Sangrak Lee
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Kyoung Hoon Kim
- Department of International Agricultural Technology, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gwangwon-do, South Korea
- Department of Eco-friendly Livestock Science, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gwangwon-do, South Korea
| | - Rajaraman Bharanidharan
- Department of Eco-friendly Livestock Science, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gwangwon-do, South Korea
| |
Collapse
|
2
|
Scott CJR, McGregor NGS, Leadbeater DR, Oates NC, Hoßbach J, Abood A, Setchfield A, Dowle A, Overkleeft HS, Davies GJ, Bruce NC. Parascedosporium putredinis NO1 tailors its secretome for different lignocellulosic substrates. Microbiol Spectr 2024; 12:e0394323. [PMID: 38757984 PMCID: PMC11218486 DOI: 10.1128/spectrum.03943-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Parascedosporium putredinis NO1 is a plant biomass-degrading ascomycete with a propensity to target the most recalcitrant components of lignocellulose. Here we applied proteomics and activity-based protein profiling (ABPP) to investigate the ability of P. putredinis NO1 to tailor its secretome for growth on different lignocellulosic substrates. Proteomic analysis of soluble and insoluble culture fractions following the growth of P. putredinis NO1 on six lignocellulosic substrates highlights the adaptability of the response of the P. putredinis NO1 secretome to different substrates. Differences in protein abundance profiles were maintained and observed across substrates after bioinformatic filtering of the data to remove intracellular protein contamination to identify the components of the secretome more accurately. These differences across substrates extended to carbohydrate-active enzymes (CAZymes) at both class and family levels. Investigation of abundant activities in the secretomes for each substrate revealed similar variation but also a high abundance of "unknown" proteins in all conditions investigated. Fluorescence-based and chemical proteomic ABPP of secreted cellulases, xylanases, and β-glucosidases applied to secretomes from multiple growth substrates for the first time confirmed highly adaptive time- and substrate-dependent glycoside hydrolase production by this fungus. P. putredinis NO1 is a promising new candidate for the identification of enzymes suited to the degradation of recalcitrant lignocellulosic feedstocks. The investigation of proteomes from the biomass bound and culture supernatant fractions provides a more complete picture of a fungal lignocellulose-degrading response. An in-depth understanding of this varied response will enhance efforts toward the development of tailored enzyme systems for use in biorefining.IMPORTANCEThe ability of the lignocellulose-degrading fungus Parascedosporium putredinis NO1 to tailor its secreted enzymes to different sources of plant biomass was revealed here. Through a combination of proteomic, bioinformatic, and fluorescent labeling techniques, remarkable variation was demonstrated in the secreted enzyme response for this ascomycete when grown on multiple lignocellulosic substrates. The maintenance of this variation over time when exploring hydrolytic polysaccharide-active enzymes through fluorescent labeling, suggests that this variation results from an actively tailored secretome response based on substrate. Understanding the tailored secretomes of wood-degrading fungi, especially from underexplored and poorly represented families, will be important for the development of effective substrate-tailored treatments for the conversion and valorization of lignocellulose.
Collapse
Affiliation(s)
- Conor J R Scott
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Nicholas G S McGregor
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, United Kingdom
| | - Daniel R Leadbeater
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Nicola C Oates
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Janina Hoßbach
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Amira Abood
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Alexander Setchfield
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Adam Dowle
- Bioscience Technology Facility, Department of Biology, University of York, York, United Kingdom
| | | | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York, United Kingdom
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
3
|
Pamungkas D, Hernaman I, Istianto M, Ayuningsih B, Ginting SP, Solehudin S, Paat PC, Mariyono M, Tresia GE, Ariyanti R, Fitriawaty F, Yusriani Y. Enhancing the nutritional quality and digestibility of citronella waste ( Cymbopogon nardus) for ruminant feed through ammoniation and fermentation techniques. Vet World 2024; 17:1603-1610. [PMID: 39185056 PMCID: PMC11344114 DOI: 10.14202/vetworld.2024.1603-1610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim Citronella grass (Cymbopogon nardus) waste, produced by distilling citronella to produce essential oil, has a high potential for use as animal feed. However, the presence of high lignin content could limit its digestibility, prompting the need for treatment to improve its quality. This study aimed to improve the nutritional value and in vitro digestibility of ammoniated and fermented citronella waste (CW). Materials and Methods The treatments of CW included CW without treatment as a control (T0), ammoniation of CW with urea (T1), fermentation of CW with Trichoderma harzianum (T2), and a combination of ammoniation and fermentation (amofer) of CW (T3). This study employed a randomized block design with five replicates for each of the four treatments. If there was a significant effect (p < 0.05), a post hoc Duncan's multiple range test was performed to analyze the variance of the data. Results The process of ammoniation and fermentation led to a notable increase in crude protein (2%-6%) while decreasing crude fiber (2%-6%), neutral detergent fiber (NDF) (5%-14%), acid detergent fiber (ADF) (5%-9%), lignin (4%-9%), and cellulose (2%-10%). The treatments enhanced the digestibility of dry matter, organic matter (OM), NH3, and total volatile fatty acid by 4%-12%, 6%-19%, 0.9-10 mM, and 35-142 mM, respectively. The decrease in NDF, ADF, acid detergent lignin (ADL), and cellulose fractions was accompanied by an improvement in dry matter and OM digestibility in CW. Ammoniated-fermented (amofer) CW, followed by fermentation with T. harzianum and ammoniated urea treatment, significantly enhanced the nutritional content and in vitro digestibility. The decrease in NDF, ADF, ADL, and cellulose fractions led to an improvement in dry matter and OM digestibility in CW. Conclusion The application of amofer treatment with T. harzianum maximizes CW's nutritional value and digestibility, making it the most efficient preservation method. Research is needed to explore the potential use of Aspergillus spp. and Pleurotus spp. for fermenting CW as ruminant fodder.
Collapse
Affiliation(s)
- Dicky Pamungkas
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of The Republic of Indonesia, Bogor, Indonesia
| | - Iman Hernaman
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry, Padjadjaran University, Sumedang, Indonesia
| | - Mizu Istianto
- Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency of The Republic of Indonesia, Bogor, Indonesia
| | - Budi Ayuningsih
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry, Padjadjaran University, Sumedang, Indonesia
| | - Simon Petrus Ginting
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of The Republic of Indonesia, Bogor, Indonesia
| | - Solehudin Solehudin
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of The Republic of Indonesia, Bogor, Indonesia
| | - Paulus Cornelius Paat
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of The Republic of Indonesia, Bogor, Indonesia
| | - Mariyono Mariyono
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of The Republic of Indonesia, Bogor, Indonesia
| | - Gresy Eva Tresia
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of The Republic of Indonesia, Bogor, Indonesia
| | - Rina Ariyanti
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of The Republic of Indonesia, Bogor, Indonesia
| | - Fitriawaty Fitriawaty
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of The Republic of Indonesia, Bogor, Indonesia
| | - Yenni Yusriani
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of The Republic of Indonesia, Bogor, Indonesia
| |
Collapse
|
4
|
Qiu C, Yang K, Diao X, Zhang W, Lv R, He L. Effects of kinds of additives on fermentation quality, nutrient content, aerobic stability, and microbial community of the mixed silage of king grass and rice straw. Front Microbiol 2024; 15:1420022. [PMID: 38933036 PMCID: PMC11199393 DOI: 10.3389/fmicb.2024.1420022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
To investigate the effects of kinds of additives on silage quality, the mixture of king grass and rice straw was ensiled with addition of sucrose, citric acid and malic acid at the levels of 0, 1 and 2%, being blank control (CK), citric acid groups (CA1, CA2), malic acid groups (MA1, MA2), citric acid + malic acid groups (CM1, CM2), sucrose groups (SU1, SU2), mainly focusing on fermentation quality, nutrient content, aerobic stability and microbial community of the silages. The results showed that the addition of sucrose decreased (p < 0.05) pH and increased the content of water soluble carbohydrate (p < 0.05). The sucrose groups and mixed acid groups also had a lower (p < 0.01) neutral detergent fiber content. The addition of citric acid and the mixed acid increased (p < 0.01) the aerobic stability of the silage, reduced the abundance of Acinetobacter, and the addition of citric acid also increased the abundance of Lactiplantibacillus. It is inferred that citric acid and malic acid could influence fermentation quality by inhibiting harmful bacteria and improve aerobic stability, while sucrose influenced fermentation quality by by promoting the generation of lactic acid. It is suggested that the application of citric acid, malic acid and sucrose would achieve an improvement effect on fermentation quality of the mixed silage.
Collapse
Affiliation(s)
- Chenchen Qiu
- Sanya Institute of China Agricultural University, Sanya, Hainan, China
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kaili Yang
- Sanya Institute of China Agricultural University, Sanya, Hainan, China
| | - Xiaogao Diao
- Sanya Institute of China Agricultural University, Sanya, Hainan, China
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Zhang
- Sanya Institute of China Agricultural University, Sanya, Hainan, China
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Renlong Lv
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Liwen He
- Sanya Institute of China Agricultural University, Sanya, Hainan, China
- State Key Laboratory of Animal Nutrition and Feeding, SKLANF, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Abo-Donia FM, Elsheikh HA, Esh AMH, El-Shora MAH, Eldiahy YMM. Co-ensiled rice straw with whole sugar beet and its effect on the performance of lactating cows. Trop Anim Health Prod 2024; 56:173. [PMID: 38780716 PMCID: PMC11116191 DOI: 10.1007/s11250-024-03945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/01/2024] [Indexed: 05/25/2024]
Abstract
This study investigated the effect of co-ensiled rice straw (RS) with whole sugar beet (SB) on lactating cows' performance. Ensiled rice straw (ERS) as control (CGS) was incorporated with immersed corn grains (CG) for 24 h, while the 2nd and 3rd ensiled RS (LSB and HSB) contained SB substituted of 50 and 100% of CG on an energy basis (total digestible nutrients, TDN), respectively. In the experimental diets, D1, D2, and D3, which include CGS, LSB, and HSB provided ad-libitum, respectively, while a concentrated feed mixture (2% of body weight) was offered. The population of lactic acid bacteria was slightly higher with fed HSB, relative to LSB and CGS. The OM, CP, EE, NFC, and TCH contents of CGS were slightly higher than LSB and HSB, while the opposite happened with the aNDFom, and ADFom contents. The digestibility of DM, OM, aNDFom, and ADFom of the D3 group was higher (P < 0.05) than in D1 and D2. The D3 recorded the highest values (P < 0.05) of silage consumption, and palatability. Milk production, fat-corrected milk (FCM), and energy-corrected milk (ECM) were (P < 0.05) higher for cows fed D3 compared with D1 and D2. Fat, protein, lactose, and total solids were trending on the same track. The feed conversion ratio (FCR) of cows fed diet D3 was better than cows fed D1 diet. The level of glucose in the blood increased (P < 0.05) significantly with feeding on HSB than LSB, which was significantly (P < 0.05) higher compared to CGS. In conclusion, co-ensiling of RS with the whole SB plant consider a good method to improve its nutritional value.
Collapse
Affiliation(s)
- Fawzy Mohamed Abo-Donia
- By-product Utilization Research Department, Agriculture Research Center (ARC), Animal Production Research Institute (APRI), Nadi El-Said St, Dokki, Giza, 12611, Egypt.
| | - Hanim Abdelrahman Elsheikh
- By-product Utilization Research Department, Agriculture Research Center (ARC), Animal Production Research Institute (APRI), Nadi El-Said St, Dokki, Giza, 12611, Egypt
| | - Ayman Mohamed Hosny Esh
- Biotechnology Dept, Sugar Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Mohamed Ahmed Hassan El-Shora
- By-product Utilization Research Department, Agriculture Research Center (ARC), Animal Production Research Institute (APRI), Nadi El-Said St, Dokki, Giza, 12611, Egypt
| | | |
Collapse
|
6
|
Dakhem M, Ghanati F, Afshar Mohammadian M, Sharifi M. Effective biosorption of Al ions from drinking water by lignocellulosic biomass rice straw. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1087-1098. [PMID: 38093655 DOI: 10.1080/15226514.2023.2289588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
High concentration of aluminum (Al) in drinking water is a major intake source of it and can result in serious diseases. Rice straw (RS) as lignocellulosic biomasses has great potential to peak up metal ions from aqueous environment, however, feasibility of Al3+ removal by RS has not been investigated yet. The present study aimed to evaluate the capacity of RS as a novel biosorbent for Al3+ from drinking water. Biosorption characteristics of RS were surveyed through several biological and physiochemical techniques. Additionally, isotherm, kinetic and thermodynamic studies were evaluated using various common models. BET profiles revealed the presence of textural mesoporosity on heterogeneous surface, which leading to improve the biosorption capacity. SEM-EDS analysis confirmed the morphological changes as irregularly particles of Al3+ on external surface via physical mechanism. The results of bioassays and FTIR analysis showed carboxylic and hydroxyl groups in lignin and pectin as the main Al3+ binding site. The batch experimental results showed the maximum biosorption capacity of 283.09 mg/g and removal efficiency of 94.86% for Al3+ at biosorbent dosage of 0.05 g/100 mL, contact time of 50 min, pH 7.5, and temperature of 30 °C. The Freundlich model has the best match and suggests the biosorption process as a multi-layer. According to the results of free activation energy, biosorption process was also physical. As thermodynamic result, the biosorption behavior was found spontaneous and endothermic. Consequently, results showed RS as an economical biosorbent for reducing Al3+ of drinking water. Meanwhile, it can be considered as one of the most appropriate methods for management of rice paddies waste.
Collapse
Affiliation(s)
- Masoomeh Dakhem
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University (TMU), Tehran, Iran
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University (TMU), Tehran, Iran
| | | | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University (TMU), Tehran, Iran
| |
Collapse
|
7
|
Lei X, Na B, Zhou T, Qian Y, Xie Y, Zheng Y, Cheng Q, Li P, Chen C, Sun H. Effects of Dried Tea Residues of Different Processing Techniques on the Nutritional Parameters, Fermentation Quality, and Bacterial Structure of Silaged Alfalfa. Microorganisms 2024; 12:889. [PMID: 38792719 PMCID: PMC11123680 DOI: 10.3390/microorganisms12050889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The effects of dried tea residues on the nutritional parameters and fermentation quality, microbial community, and in vitro digestibility of alfalfa silage were investigated. In this study, dried tea residues generated from five different processing techniques (green tea, G; black tea, B; white tea, W; Pu'er raw tea, Z; Pu'er ripe tea, D) were added at two addition levels (5% and 10% fresh weight (FW)) to alfalfa and fermented for 90 days. The results showed that the tea residues increased the crude protein (CP) content (Z10: 23.85%), true protein nitrogen (TPN) content, DPPH, and ABST radical scavenging capacity, total antioxidant capacity (T-AOC), and in vitro dry matter digestibility (IVDMD) of the alfalfa silage. Moreover, the pH, ammonia-N (NH3-N) content, and acetic acid (AA) content decreased (p < 0.05). The effects of tea residues were promoted on these indicators with increasing tea residue addition. In addition, this study revealed that the influence of dried tea residues on the nutritional quality of alfalfa silage was greater than that on fermentation quality. Based on the nutrient composition, the addition of B or G to alfalfa silage can improve its silage quality, and these tea byproducts have the potential to be used as silage additives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hong Sun
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.L.); (B.N.); (T.Z.); (Y.Q.); (Y.X.); (Y.Z.); (Q.C.); (P.L.); (C.C.)
| |
Collapse
|
8
|
Esen S, Koç F, Işık R. Effect of sodium diacetate on fermentation, aerobic stability, and microbial diversity of alfalfa silage. 3 Biotech 2024; 14:10. [PMID: 38084302 PMCID: PMC10710396 DOI: 10.1007/s13205-023-03853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/12/2023] [Indexed: 01/19/2024] Open
Abstract
Alfalfa (Medicago sativa L.) is a vital source of forage protein for ruminants, yet its ensiling poses challenges due to high buffering capacity and low water-soluble carbohydrates (WSC). This study investigated the impact of sodium diacetate (SDA) on alfalfa silage quality and aerobic stability. SDA was applied at four different rates to wilted alfalfa on a fresh basis: 0 g/kg, 3 g/kg, 5 g/kg, and 7 g/kg, and silages were ensiled in laboratory-scale silos for 45 days, followed by 7 days of aerobic exposure. A 16S rRNA gene sequencing assay using GenomeLab™ GeXP was performed to determine the relationship between dominant isolated lactic acid bacteria species and fermentation characteristics and aerobic stability on silage. The results showed that Lentilolactobacillus brevis, Pediococcus pentosaceus and Enterococcus faecium were the most prevalent bacteria when silos were opened, whereas Weissella paramesenteroides, Bacillus cereus, B. megaterium and Bacillus spp. were most prevalent bacteria after 7 days of aerobic exposure. Dry matter, pH, and WSC content were not affected by SDA, but doses above 5 g/kg induced a homofermentative process, which increased lactic acid concentration and lactic acid to acetic acid ratio, decreased yeast count during aerobic exposure, and improved aerobic stability. These findings offer useful information for optimizing SDA usage in silage, assuring improved quality and longer storage, and thereby improving animal husbandry and sustainable feed practices.
Collapse
Affiliation(s)
- Selim Esen
- Balikesir Directorate of Provincial Agriculture and Forestry, Republic of Turkey Ministry of Agriculture and Forestry, 10470 Balıkesir, Turkey
| | - Fisun Koç
- Department of Animal Science, Tekirdag Namik Kemal University, 59030 Tekirdaǧ, Turkey
| | - Raziye Işık
- Department of Agricultural Biotechnology, Tekirdag Namik Kemal University, 59030 Tekirdaǧ, Turkey
| |
Collapse
|
9
|
Sun Y, Sun Q, Tang Y, Li Q, Tian C, Sun H. Integrated microbiology and metabolomic analysis reveal the improvement of rice straw silage quality by inoculation of Lactobacillus brevis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:184. [PMID: 38017535 PMCID: PMC10685638 DOI: 10.1186/s13068-023-02431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Ensiling technology holds promise for preserving and providing high-quality forage. However, the preservation of rice straw poses challenges due to its high lignocellulosic content and low water-soluble carbohydrate levels. Developing highly effective lactic acid bacteria (LAB) for rice straw silage remains a priority. RESULTS This study evaluated the impact of three LAB strains, Lactobacillus brevis R33 (Lac33), L. buchneri R17 (Lac17), and Leuconostoc pseudomesenteroides (Leu), on the fermentation quality of rice straw silage. Rice straw silage inoculated with Lac33 alone or in combination with other strains exhibited significantly lower neutral detergent fiber (NDF) (66.5% vs. 72.3%) and acid detergent fiber (ADF) (42.1% vs. 47%) contents, along with higher lactic acid (19.4 g/kg vs. not detected) and propionic acid (2.09 g/kg vs. 1.54 g/kg) contents compared to control silage. Bacterial community analysis revealed Lactobacillus dominance (> 80%) and suppression of unwanted Enterobacter and Clostridium. Metabolomic analysis highlighted increased carbohydrates and essential amino acids, indicating improved nutrient values in Lac33-inoculated rice straw silage and a potential explanation for Lac33 dominance. CONCLUSIONS This research identified a highly efficient LAB candidate for rice straw silage, advancing our comprehension of fermentation from integrated microbiology and metabolomic perspectives.
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Qinglong Sun
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- Northeast Agricultural University, Harbin, 150030, China
| | - Yunmeng Tang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Qingyang Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Chunjie Tian
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Haixia Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| |
Collapse
|
10
|
Jie H, He P, Zhao L, Ma Y, Jie Y. Molecular Mechanisms Regulating Phenylpropanoid Metabolism in Exogenously-Sprayed Ethylene Forage Ramie Based on Transcriptomic and Metabolomic Analyses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3899. [PMID: 38005796 PMCID: PMC10675582 DOI: 10.3390/plants12223899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Ramie (Boehmeria nivea [L.] Gaud.), a nutritious animal feed, is rich in protein and produces a variety of secondary metabolites that increase its palatability and functional composition. Ethylene (ETH) is an important plant hormone that regulates the growth and development of various crops. In this study, we investigated the impact of ETH sprays on the growth and metabolism of forage ramie. We explored the mechanism of ETH regulation on the growth and secondary metabolites of forage ramie using transcriptomic and metabolomic analyses. Spraying ramie with ETH elevated the contents of flavonoids and chlorogenic acid and decreased the lignin content in the leaves and stems. A total of 1076 differentially expressed genes (DEGs) and 51 differentially expressed metabolites (DEMs) were identified in the leaves, and 344 DEGs and 55 DEMs were identified in the stems. The DEGs that affect phenylpropanoid metabolism, including BGLU41, LCT, PER63, PER42, PER12, PER10, POD, BAHD1, SHT, and At4g26220 were significantly upregulated in the leaves. Ethylene sprays downregulated tyrosine and chlorogenic acid (3-O-caffeoylquinic acid) in the leaves, but lignin biosynthesis HCT genes, including ACT, BAHD1, and SHT, were up- and downregulated. These changes in expression may ultimately reduce lignin biosynthesis. In addition, the upregulation of caffeoyl CoA-O-methyltransferase (CCoAOMT) may have increased the abundance of its flavonoids. Ethylene significantly downregulated metabolites, affecting phenylpropanoid metabolism in the stems. The differential 4CL and HCT metabolites were downregulated, namely, phenylalanine and tyrosine. Additionally, ETH upregulated 2-hydroxycinnamic acid and the cinnamyl hydroxyl derivatives (caffeic acid and p-coumaric acid). Cinnamic acid is a crucial intermediate in the shikimic acid pathway, which serves as a precursor for the biosynthesis of flavonoids and lignin. The ETH-decreased gene expression and metabolite alteration reduced the lignin levels in the stem. Moreover, the HCT downregulation may explain the inhibited lignin biosynthesis to promote flavonoid biosynthesis. In conclusion, external ETH application can effectively reduce lignin contents and increase the secondary metabolites of ramie without affecting its growth and development. These results provide candidate genes for improving ramie and offer theoretical and practical guidance for cultivating ramie for forage.
Collapse
Affiliation(s)
- Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Pengliang He
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Long Zhao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (H.J.); (P.H.); (L.Z.); (Y.M.)
- Hunan Provincial Engineering Technology Research Center for Grass Crop Germplasm Innovation and Utilization, Changsha 410128, China
| |
Collapse
|
11
|
Bakare AG, Zindove TJ, Bhavna A, Devi A, Takayawa SL, Sharma AC, Iji PA. Lactobacillus buchneri and molasses can alter the physicochemical properties of cassava leaf silage. Heliyon 2023; 9:e22141. [PMID: 38034723 PMCID: PMC10685371 DOI: 10.1016/j.heliyon.2023.e22141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/16/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
In developing countries where feed resources are scarce, cassava leaves can be used as feed for animals. However, the use of cassava leaves is limited mainly because of their high fibre content and overall acceptability by animals. The resolution to this problem is to process the cassava leaves by ensiling and using additives. Therefore, the objective of the study was to determine the effects of including different inclusion levels of molasses and bacteria concentration on the physicochemical properties of cassava leaf silage. Molasses was added at inclusion levels of 0, 3, 5 and 7 g/100g of the chopped cassava leaves, and Lactobacillus buchneri was mixed with chopped cassava leaves at different concentrations of 0, 3.1 × 106 cfu/ml, 3.1 × 108 cfu/ml and 3.1 × 1010 cfu/ml. The effects of inclusion level of molasses on the colour, smell and texture of cassava leaf silage were significant (P < 0.05). Inclusion of bacteria concentration also influenced the smell of silage (P < 0.05). Effects of the inclusion level of molasses and bacteria concentration resulted in decreased pH, crude protein and crude fibre of silage (P < 0.05). There was a quadratic relationship between Ca and K with inclusion level of molasses in cassava leaf silage (P < 0.05). A positive linear relationship was observed between Mg and molasses inclusion levels in cassava leaf silage (P < 0.05). Using principal component analysis (PCA), molasses had a strong positive correlation with PCA 1, whereas crude fibre, pH and crude protein had a positive correlation with PCA 2. The inclusion level of bacterial concentration was negatively correlated to Ca, CP, P and CF. From the study, the use of molasses and L. buchneri can greatly improve the physicochemical qualities of cassava leaf silage.
Collapse
Affiliation(s)
- Archibold G. Bakare
- Department of Animal Science, School of Animal and Veterinary Sciences, Fiji National University, Koronivia, Fiji
| | - Titus J. Zindove
- Department of Animal Science, School of Animal and Veterinary Sciences, Fiji National University, Koronivia, Fiji
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Arti Bhavna
- Department of Animal Science, School of Animal and Veterinary Sciences, Fiji National University, Koronivia, Fiji
| | - Ashika Devi
- Department of Animal Science, School of Animal and Veterinary Sciences, Fiji National University, Koronivia, Fiji
| | - Sereana L. Takayawa
- Department of Crop Science, School of Agriculture and Forestry, Fiji National University, Koronivia, Fiji
| | - Ami C. Sharma
- Ministry of Agriculture, Department of Chemistry, Fiji
| | - Paul A. Iji
- Department of Animal Science, School of Animal and Veterinary Sciences, Fiji National University, Koronivia, Fiji
| |
Collapse
|
12
|
Seboka DW, Bejiga AT, Turunesh DJ, Turito AA, Girma A. Microbial and Physicochemical Dynamics of Kocho, Fermented Food from Enset. Int J Microbiol 2023; 2023:6645989. [PMID: 37901594 PMCID: PMC10602703 DOI: 10.1155/2023/6645989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/16/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023] Open
Abstract
Over 20 million Ethiopians depend on enset (Ensete ventricosum) as a staple or costaple food. "Kocho," "Bulla," and "Amicho" are the three main food types obtained from enset. This review aimed to summarize the physicochemical and microbial dynamics of kocho. It is the most common food obtained from the scraped pseudostem and decorticated corm of enset after a long period of fermentation. The quality of kocho depends on the maturity of the enset plant, the enset processing method, the fermentation period, and the dynamics of microorganisms during the fermentation process. Microorganisms play a significant role in kocho fermentation to enhance its nutritional quality, improve sensory properties, and reduce spoilage and disease-causing agents. The populations of microbes available in kocho fermentation include lactic acid bacteria (LAB), Enterobacteriaceae, acetic acid bacteria (AAB), yeasts and molds, and Clostridium spp., which have both positive and negative impacts on kocho quality. There is a visible variation in microbial dynamics during kocho fermentation caused by the fermentation period. As the fermentation day increases, species of LAB also increase, whereas counts of Enterobacteriaceae decrease. This is due to a decrease in pH, which leads to an increase in titratable acidity. Moisture content also slightly decreases as fermentation progresses. Dynamics in the microbial population and physicochemical parameters ensure the development of desirable qualities in kocho and enhance the acceptability of the final product. Organic acids (such as lactic acid, acetic acid, and propionic acid), bacteriocins, phenolic compounds, flavonoids, and tannins are bioactive compounds produced by microorganisms during Kocho fermentation. Further research is needed on the molecular identification of microorganisms during Kocho fermentation.
Collapse
Affiliation(s)
- Dereba Workineh Seboka
- Department of Biology, College of Natural and Computational Science, Mizan-Tepi University, P.O. Box. 121, Tepi, Ethiopia
| | - Abay Tabor Bejiga
- Department of Biology, College of Natural and Computational Science, Mizan-Tepi University, P.O. Box. 121, Tepi, Ethiopia
| | - Debela Jufar Turunesh
- Department of Chemistry, College of Natural and Computational Science, Mizan-Tepi University, P.O. Box. 121, Tepi, Ethiopia
| | - Andualem Arimo Turito
- Department of Biology, College of Natural and Computational Science, Mizan-Tepi University, P.O. Box. 121, Tepi, Ethiopia
| | - Abayeneh Girma
- Department of Biology, College of Natural and Computational Science, Mekdela Amba University, P.O. Box. 32, Tuluawlia, Ethiopia
| |
Collapse
|
13
|
Ahmed MG, Al-Sagheer AA, El-Waziry AM, El-Zarkouny SZ, Elwakeel EA. Ensiling Characteristics, In Vitro Rumen Fermentation Patterns, Feed Degradability, and Methane and Ammonia Production of Berseem ( Trifolium alexandrinum L.) Co-Ensiled with Artichoke Bracts ( Cynara cardunculus L.). Animals (Basel) 2023; 13:ani13091543. [PMID: 37174580 PMCID: PMC10177127 DOI: 10.3390/ani13091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
This study investigated the effect of co-ensiling increasing levels of artichoke bracts (Cynara cardunculus L.) with berseem (Trifolium alexandrinum L.) (100:0, 75:25, 50:50, 25:75, and 0:100, respectively) on silage quality after 0, 30, 60, and 120 days. Moreover, the in vitro rumen fermentation characteristics and methane (CH4) and ammonia (NH3-N) production were evaluated using a buffalo inoculum source. The results showed that pH of the silage and the concentration of acetic, propionic, butyric acid, and NH3-N significantly decreased (L; p < 0.01) with the increasing amounts of artichoke bracts in the mixture. At 30 and 60 days of ensiling, the highest lactic acid concentration was observed at intermediate proportions of artichoke bracts (p < 0.01). Cumulative gas production was higher in artichoke bracts than in the berseem silage. After 24 h of incubation, the highest value (p < 0.05) of truly dry matter, organic matter, natural detergent fiber degradability, and NH3-N concentration was recorded with 500 g/kg of forage mixtures. As the artichoke bract concentration increased, the partitioning factor and ruminal pH declined linearly (p ≤ 0.05). No significant differences were observed for total volatile fatty acids and volatile fatty acids molar proportions. In summary, co-ensiling artichoke bracts with berseem at a ratio of 1:1 might be a promising and easy method for the production of high-quality silage from legume forage with positively manipulating rumen fermentation.
Collapse
Affiliation(s)
- Mariam G Ahmed
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Adham A Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed M El-Waziry
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Samir Z El-Zarkouny
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Eman A Elwakeel
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| |
Collapse
|
14
|
Xin Y, Chen C, Zhong Y, Bu X, Huang S, Tahir M, Du Z, Liu W, Yang W, Li J, Wu Y, Zhang Z, Lian J, Xiao Q, Yan Y. Effect of storage time on the silage quality and microbial community of mixed maize and faba bean in the Qinghai-Tibet Plateau. Front Microbiol 2023; 13:1090401. [PMID: 36741892 PMCID: PMC9893498 DOI: 10.3389/fmicb.2022.1090401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Tibetan Plateau is facing serious shortage of forage in winter and spring season due to its special geographical location. Utilization of forages is useful to alleviate the forage shortage in winter and spring season. Consequently, the current study was aimed to evaluate the influence of storage time on the silage quality and microbial community of the maize (Zea mays L.) and faba bean (Vicia faba L.) mixed silage at Qinghai-Tibet Plateau. Maize and faba bean were ensiled with a fresh weight ratio of 7:3, followed by 30, 60, 90, and 120 days of ensiling. The results showed the pH value of mixed silage was below 4.2 at all fermentation days. The LA (lactic acid) content slightly fluctuated with the extension of fermentation time, with 33.76 g/kg DM at 90 days of ensiling. The AA (acetic acid) and NH3-N/TN (ammonium nitrogen/total nitrogen) contents increased with the extension of fermentation time and no significantly different between 90 and 120 days. The CP (crude protein) and WSC (water soluble carbohydrate) contents of mixed silage decreased significantly (P < 0.05) with ensiling time, but the WSC content remained stable at 90 days. The Proteobacteria was the predominant phyla in fresh maize and faba bean, and Pseudomonas and Sphingomonas were the predominant genera. After ensiling, Lactobacillus was the prevalent genus at all ensiling days. The relative abundance of Lactococcus increased rapidly at 90 days of ensiling until 120 days of fermentation. Overall, the storage time significant influenced the silage fermentation quality, nutrient content, and microbial environment, and it remained stable for 90 days of ensiling at Qinghai-Tibet Plateau. Therefore, the recommended storage time of forage is 90 days in Qinghai-Tibet Plateau and other cool areas.
Collapse
Affiliation(s)
- Yafen Xin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chen Chen
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yihao Zhong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xingyue Bu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shan Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Tahir
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhaochang Du
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jiayi Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yushan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Zhengyong Zhang
- Agricultural Science Research Institute of Ganzi District, Garzê Tibetan Autonomous Prefecture, China
| | - Jinglong Lian
- Agricultural Science Research Institute of Ganzi District, Garzê Tibetan Autonomous Prefecture, China
| | - Qiyin Xiao
- Agricultural Science Research Institute of Ganzi District, Garzê Tibetan Autonomous Prefecture, China,*Correspondence: Qiyin Xiao,
| | - Yanhong Yan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China,Yanhong Yan,
| |
Collapse
|
15
|
Huang F, Wang T, Zhang J, Tahir M, Sun J, Liu Y, Yun F, Xia T, Teng K, Wang J, Zhong J. Exploring the bacterial community succession and metabolic profiles of Lonicera japonica Thunb. residues during anaerobic fermentation. BIORESOURCE TECHNOLOGY 2023; 367:128264. [PMID: 36343778 DOI: 10.1016/j.biortech.2022.128264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Discarding Lonicera japonica Thunb. (LJT) residues containing many active metabolites create tremendous waste. This study aimed to effectively use LJT residues by anaerobic fermentation. Fermentation significantly decreased the pH values and reduced the abundance of undesirable bacteria (potential pathogenic and biofilm-forming) while increasing Lactobacillus abundance. Compound additive use further improved fermentation quality (significantly increased the lactic acid (LA) content and decreased the pH values and ammonia nitrogen (a-N) content) and nutrient quality (significantly decreased the acid detergent fiber (ADF) content and increased the water-soluble carbohydrate (WSC) content) and optimized the microbial community (increased the Lactobacillus abundance). Fermentation also altered the flavonoids, alkaloids and phenols contents in the residues with minor effects on the functional metabolites amounts. The LJT residues metabolic profile was mainly attributed to its epiphytic bacteria, with a small contribution from the compound additive. Thus, compound additives may improve anaerobic LJT residue fermentation without functionally impairing the metabolites.
Collapse
Affiliation(s)
- Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Tianwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaqi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Muhammad Tahir
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jiahao Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fangfei Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Tianqi Xia
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiwen Wang
- Institute of Biology Co., Ltd., Henan Academy of Science, Zhengzhou 450008, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
16
|
Fan X, Xie Z, Cheng Q, Li M, Long J, Lei Y, Jia Y, Chen Y, Chen C, Wang Z. Fermentation quality, bacterial community, and predicted functional profiles in silage prepared with alfalfa, perennial ryegrass and their mixture in the karst region. Front Microbiol 2022; 13:1062515. [DOI: 10.3389/fmicb.2022.1062515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022] Open
Abstract
There is little information regarding the dynamics of fermentation products and the bacterial community in silage prepared with alfalfa (MS), perennial ryegrass (LP), and their mixture in the karst region. In this study, we explored the effects of combining MS with LP in different ratios (100% MS, 70% MS + 30% LP, 50% MS + 50% LP, 30% MS + 70% LP and 100% LP; fresh matter basis) on silage chemical composition, fermentation quality, bacterial communities and predicted functions during the ensiling process. Each treatment was prepared in triplicate and stored at room temperature (22–25°C) for 7, 15, and 45 days. The dry matter (DM) and water-soluble carbohydrate content of the silages increased as the LP proportion in the mixed silage increased; at 45 days, the 70% MS + 30% LP, 50% MS + 50% LP and 30% MS + 70% LP silages contained higher (p < 0.05) CP content than the 100% MS and 100% LP silages. The 30% MS + 70% LP and 100% LP silages exhibited lower (p < 0.05) pH and higher (p < 0.05) LA content than the other silages; at 45 days, none of the silages contained PA or BA. As fermentation proceeded, the abundance of harmful (Enterobacteriaceae and Sphingomonas) and beneficial (Lentilactobacillus, Lactiplantibacillus, Secundilactobacillus, and Levilactobacillus) microorganisms decreased and increased, respectively, as the LP proportion in the mixed silage increased. The predicted functional distribution of microbial communities and metabolic pathways revealed that the 30% MS + 70% LP and 100% LP silages had a stronger capacity for fermentation and a weaker capacity for nitrate reduction than the other silages. Moreover, as the fermentation proceeded, the 30% MS + 70% LP and 100% LP treatments enhanced the functions of “Metabolism,” “Genetic information processing” and “Organismal systems” at level 1, the functions of “Amino acid metabolism” and “Nucleotide metabolism” at level 2, and the functions of “Metabolic pathways,” “Biosynthesis of secondary metabolites,” “Biosynthesis of antibiotics” and “Purine metabolism” at level 3. Thus, adding LP could improve the fermentation quality of MS silage by changing the composition and metabolic function of microbes; furthermore, ensiling 30% alfalfa with 70% ryegrass can produce high-quality silage in the karst region.
Collapse
|
17
|
Ensiling of rice straw enhances the nutritive quality, improves average daily gain, reduces in vitro methane production and increases ruminal bacterial diversity in growing Hu lambs. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Feng Q, Shi W, Chen S, Degen AA, Qi Y, Yang F, Zhou J. Addition of Organic Acids and Lactobacillus acidophilus to the Leguminous Forage Chamaecrista rotundifolia Improved the Quality and Decreased Harmful Bacteria of the Silage. Animals (Basel) 2022; 12:2260. [PMID: 36077980 PMCID: PMC9454833 DOI: 10.3390/ani12172260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the effects of citric acid, malic acid, and Lactobacillus acidophilus (L) on fermentation parameters and the microbial community of leguminous Chamaecrista rotundifolia silage. Fresh C. rotundifolia was treated without any additive (CK), or with L (106 CFU/g fresh weight), different levels (0.1, 0.3, 0.5, and 1% fresh weight) of organic acid (malic or citric acid), and the combinations of L and the different levels of organic acids for 30, 45, and 60 days of ensiling. The effects of malic acid and citric acid were similar during the ensiling process. Treatment with either citric or malic acid and also when combined with L inhibited crude protein degradation, lowered pH and ammonia nitrogen, and increased lactic acid concentration and dry matter content (p < 0.05). The neutral detergent fiber and acid detergent fiber increased initially and then decreased with fermentation time in all treatments (p < 0.05). Increasing the level of organic acid positively affected the chemical composition of C. rotundifolia silage. In addition, the addition of 1% organic acid increased the relative abundance of Lactobacillus, while the relative abundances of Clostridium and Enterobacter decreased at 60 days (p < 0.05). Moreover, both organic acids and combined additives increased (p < 0.05) the relative abundance of Cyanobacteria at 60 days of fermentation. We concluded that adding malic acid, citric acid, and L combined with an organic acid could improve the quality of C. rotundifolia silage and increase the relative abundance of beneficial bacteria. The addition of organic acid at a level of 1% was the most effective.
Collapse
Affiliation(s)
- Qixian Feng
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjiao Shi
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siqi Chen
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel
| | - Yue Qi
- Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, China
| | - Fulin Yang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Zhou
- China National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
19
|
Fu Z, Sun L, Hou M, Hao J, Lu Q, Liu T, Ren X, Jia Y, Wang Z, Ge G. Effects of different harvest frequencies on microbial community and metabolomic properties of annual ryegrass silage. Front Microbiol 2022; 13:971449. [PMID: 36110305 PMCID: PMC9468666 DOI: 10.3389/fmicb.2022.971449] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022] Open
Abstract
In this study, we analyzed the fermentation quality, microbial community, and metabolome characteristics of ryegrass silage from different harvests (first harvest-AK, second harvest-BK, and third harvest-CK) and analyzed the correlation between fermentative bacteria and metabolites. The bacterial community and metabolomic characteristics were analyzed by single-molecule real-time (SMRT) sequencing and ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS), respectively. After 60 days of ensiling, the pH of BK was significantly lower than those of AK and CK, and its lactic acid content was significantly higher than those of AK and CK. Lactiplantibacillus and Enterococcus genera dominate the microbiota of silage obtained from ryegrass harvested at three different harvests. In addition, the BK group had the highest abundance of Lactiplantibacillus plantarum (58.66%), and the CK group had the highest abundance of Enterococcus faecalis (42.88%). The most annotated metabolites among the differential metabolites of different harvests were peptides, and eight amino acids were dominant in the composition of the identified peptides. In the ryegrass silage, arginine, alanine, aspartate, and glutamate biosynthesis had the highest enrichment ratio in the metabolic pathway of KEGG pathway enrichment analysis. Valyl-isoleucine and glutamylvaline were positively correlated with Lactiplantibacillus plantarum. D-Pipecolic acid and L-glutamic acid were positively correlated with Levilactobacillus brevis. L-phenylalanyl-L-proline, 3,4,5-trihydroxy-6-(2-methoxybenzoyloxy) oxane-2-carboxylic acid, and shikimic acid were negatively correlated with Levilactobacillus brevis. In conclusion, this study explains the effects of different harvest frequencies on the fermentation quality, microbial community, and metabolites of ryegrass, and improves our understanding of the ensiling mechanisms associated with different ryegrass harvesting frequencies.
Collapse
Affiliation(s)
- Zhihui Fu
- Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, College of Grassland, Resources and Environment, Hohhot, China
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Meiling Hou
- College of Life Sciences, Baicheng Normal University, Baicheng, China
| | - Junfeng Hao
- Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, College of Grassland, Resources and Environment, Hohhot, China
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Qiang Lu
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Tingyu Liu
- College of Agriculture, Inner Mongolia Minzu University, Tongliao, China
| | - Xiuzhen Ren
- College of Agriculture, Inner Mongolia Minzu University, Tongliao, China
| | - Yushan Jia
- Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, College of Grassland, Resources and Environment, Hohhot, China
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - ZhiJun Wang
- Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, College of Grassland, Resources and Environment, Hohhot, China
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Gentu Ge
- Laboratory of Forage Cultivation, Processing and High Efficient Utilization of Ministry of Agriculture, College of Grassland, Resources and Environment, Hohhot, China
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
20
|
Huang RZ, Wang X, Ma C, Zhang F. Effects of intrinsic tannins on proteolysis dynamics, protease activity, and metabolome during sainfoin ensiling. Front Microbiol 2022; 13:976118. [PMID: 36060786 PMCID: PMC9433569 DOI: 10.3389/fmicb.2022.976118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Condensed tannins (CT) from sainfoin have a high capacity to inhibit proteolysis. A previous study reported that CT from sainfoin can inhibit lactic acid bacteria activity and decrease ammonium-nitrogen (N) content during sainfoin ensiling; however, no study has focused on the metabolome of ensiled sainfoin. The objective of the present study was to investigate the effects of CT [following supplementation of deactivated CT with polyethylene glycol (PEG)] on protease activity, keystone bacteria, and metabolome during sainfoin ensiling. According to the results, PEG amendment increased non-protein N, amino acid, and soluble protein contents significantly (in the 49.08-59.41, 116.01-64.22, and 23.5-41.94% ranges, respectively, p < 0.05) during ensiling, whereas neutral detergent-insoluble protein and acid detergent-insoluble protein were decreased significantly (in the 55.98-64.71 and 36.58-57.55% ranges, respectively, p < 0.05). PEG supplementation increased aminopeptidase and acid protease activity after 3 days of ensiling (p < 0.05) and increased carboxypeptidase activity during the entire ensiling process (p < 0.05). The keystone bacteria changed following PEG addition (Stenotrophomonas, Pantoea, and Cellulosimicrobium in the control vs. Microbacterium, Enterococcus, and Brevundimonas in the PEG-treated group). In total, 510 metabolites were identified after 60 days of sainfoin ensiling, with 33 metabolites annotated in the Kyoto Encyclopedia of Genes and Genomes database. Among the metabolites, phospholipids were the most abundant (72.7% of 33 metabolites). In addition, 10 upregulated and 23 downregulated metabolites were identified in the PEG-treated group when compared with the control group, after 60 days of ensiling (p < 0.05). Pediococcus (correlated with 20 metabolites, R 2 > 0.88, p < 0.05) and Lactobacillus (correlated with 16 metabolites, R 2 > 0.88, p < 0.05) were the bacteria most correlated with metabolites. The results suggested antagonistic effects between Lactobacillus and Pediococcus during ensiling. The decreased proteolysis during sainfoin ensiling was mainly attributed to the inhibition of protease activity by CT, particularly carboxypeptidase activity. In addition, proteolysis decreased partly due to CT inhibiting Pediococcus activity during ensiling, with Pediococcus being significantly and positively correlated with dopamine after 60 days of ensiling (R 2 = 0.8857, p < 0.05).
Collapse
Affiliation(s)
| | | | - Chunhui Ma
- Grassland Science, School of Animal Technology, Shihezi University, Shihezi, China
| | - Fanfan Zhang
- Grassland Science, School of Animal Technology, Shihezi University, Shihezi, China
| |
Collapse
|
21
|
Zhang Y, Wang M, Usman S, Li F, Bai J, Zhang J, Guo X. Lignocellulose conversion of ensiled Caragana korshinskii Kom. facilitated by Pediococcus acidilactici and cellulases. Microb Biotechnol 2022; 16:432-447. [PMID: 35960257 PMCID: PMC9871525 DOI: 10.1111/1751-7915.14130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023] Open
Abstract
To explore the biofuel production potential of Caragana korshinskii Kom., Pediococcus acidilactici and an exogenous fibrolytic enzyme were employed to investigate the fermentation profile, structural carbohydrates degradation, enzymatic saccharification and the dynamics of bacterial community of C. korshinskii silage. After 60 d of ensiling, all additives increased the fermentation quality. The highest lactic and acetic acids and lowest non-protein nitrogen (NPN) and ammonia nitrogen (NH3 -N) were observed in P. acidilactici and Acremonium cellulase (PA + AC) treated silage. Additionally, all additives significantly increased the ferulic acid content and fibre degradability with the highest values obtained from PA + AC silage. The bacterial community in all silages was dominated by P. acidilactici throughout the entire fermentation process. The bacterial community was also modified by the silage additives exhibiting a relatively simple network of bacterial interaction characterized by a lower bacterial diversity in P. acidilactici (PA) treated silage. The highest 6-phospho-beta-glucosidase abundance was observed in PA-treated silage at the mid-later stage of ensiling. PA treatment exhibited lower structural carbohydrates degradation but performed better in lignocellulose conversion during enzymatic saccharification. These results indicated that pretreating C. korshinskii improved its silage quality and potential use as a lignocellulosic feedstock for the production of bio-product and biofuel.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Grassland Agro‐Ecosystems, School of Life SciencesLanzhou UniversityLanzhouPR China,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouPR China
| | - Musen Wang
- State Key Laboratory of Grassland Agro‐Ecosystems, School of Life SciencesLanzhou UniversityLanzhouPR China,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouPR China
| | - Samaila Usman
- Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouPR China,State Key Laboratory of Grassland Agro‐Ecosystems, College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouPR China
| | - Fuhou Li
- Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouPR China,State Key Laboratory of Grassland Agro‐Ecosystems, College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouPR China
| | - Jie Bai
- Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouPR China,State Key Laboratory of Grassland Agro‐Ecosystems, College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouPR China
| | - Jiayao Zhang
- Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouPR China,State Key Laboratory of Grassland Agro‐Ecosystems, College of Pastoral Agriculture Science and TechnologyLanzhou UniversityLanzhouPR China
| | - Xusheng Guo
- State Key Laboratory of Grassland Agro‐Ecosystems, School of Life SciencesLanzhou UniversityLanzhouPR China,Probiotics and Biological Feed Research CentreLanzhou UniversityLanzhouPR China
| |
Collapse
|
22
|
Xue Y, Shen R, Li Y, Sun Z, Sun X, Li F, Li X, Cheng Y, Zhu W. Anaerobic Fungi Isolated From Bactrian Camel Rumen Contents Have Strong Lignocellulosic Bioconversion Potential. Front Microbiol 2022; 13:888964. [PMID: 35928163 PMCID: PMC9345502 DOI: 10.3389/fmicb.2022.888964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/26/2022] [Indexed: 11/14/2022] Open
Abstract
This study aims to obtain anaerobic fungi from the rumen and fecal samples and investigates their potential for lignocellulosic bioconversion. Multiple anaerobic strains were isolated from rumen contents (CR1–CR21) and fecal samples (CF1–CF10) of Bactrian camel using the Hungate roll tube technique. After screening for fiber degradability, strains from rumen contents (Oontomyces sp. CR2) and feces (Piromyces sp. CF9) were compared with Pecoramyces sp. F1 (earlier isolated from goat rumen, having high CAZymes of GHs) for various fermentation and digestion parameters. The cultures were fermented with different substrates (reed, alfalfa stalk, Broussonetia papyrifera leaves, and Melilotus officinalis) at 39°C for 96 h. The Oontomyces sp. CR2 had the highest total gas and hydrogen production from most substrates in the in vitro rumen fermentation system and also had the highest digestion of dry matter, neutral detergent fiber, acid detergent fiber, and cellulose present in most substrates used. The isolated strains provided higher amounts of metabolites such as lactate, formate, acetate, and ethanol in the in vitro rumen fermentation system for use in various industrial applications. The results illustrated that anaerobic fungi isolated from Bactrian camel rumen contents (Oontomyces sp. CR2) have the highest lignocellulosic bioconversion potential, suggesting that the Bactrian camel rumen could be a good source for the isolation of anaerobic fungi for industrial applications.
Collapse
Affiliation(s)
- Yihan Xue
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Rui Shen
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Xiaoni Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Fengming Li
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Xiaobin Li
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yanfen Cheng,
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Ma Y, Chen X, Khan MZ, Xiao J, Cao Z. A Combination of Novel Microecological Agents and Molasses Role in Digestibility and Fermentation of Rice Straw by Facilitating the Ruminal Microbial Colonization. Front Microbiol 2022; 13:948049. [PMID: 35910602 PMCID: PMC9329086 DOI: 10.3389/fmicb.2022.948049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we evaluated the effect of microecological agents (MA) combined with molasses (M) on the biodegradation of rice straw in the rumen. Rice straw was pretreated in laboratory polyethylene 25 × 35 cm sterile bags with no additive control (Con), MA, and MA + M for 7, 15, 30, and 45 days, and then the efficacy of MA + M pretreatment was evaluated both in vitro and in vivo. The scanning electron microscopy, X-ray diffraction analysis, and Fourier-transform infrared spectroscopy results showed that the MA or MA + M pretreatment altered the physical and chemical structure of rice straw. Meanwhile, the ruminal microbial attachment on the surface of rice straw was significantly increased after MA+M pretreatment. Furthermore, MA + M not only promoted rice straw fermentation in vitro but also improved digestibility by specifically inducing rumen colonization of Prevotellaceae_UCG-001, Butyrivibrio, and Succinimonas. Altogether, we concluded that microecological agents and molasses could be the best choices as a biological pretreatment for rice straw to enhance its nutritive value as a ruminant's feed.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Faculty of Veterinary and Animal Sciences, Department of Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Cui X, Yang Y, Zhang M, Jiao F, Gan T, Lin Z, Huang Y, Wang H, Liu S, Bao L, Su C, Qian Y. Optimized Ensiling Conditions and Microbial Community in Mulberry Leaves Silage With Inoculants. Front Microbiol 2022; 13:813363. [PMID: 35722340 PMCID: PMC9201477 DOI: 10.3389/fmicb.2022.813363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Mulberry leaves (ML) are a promising alternative fodder source due to their high protein content and the abundance of active components. A test of three inoculants in various combinations revealed that high-quality ML silage was produced at an inoculum ratio of 1:1:0 (50% Saccharomyces cerevisiae, 50% Lactobacillus plantarum, and 0% Bacillus subtilis). Using dry matter (DM) loss, pH, ammonia-N and amino acid contents, total antioxidant activity, and total flavonoids content to evaluate silage quality, this inoculant mixture was shown to produce high-quality silage within a range of inoculum size (5–15%), moisture contents (50–67%), ensiling temperatures (27–30°C), and ensiling duration (14–30 days). A third trial comparing silages produced after 30 days at 28°C and 50% moisture content revealed that silage E, prepared using an L. plantarum inoculant alone, displayed the lowest DM loss and pH, and low bacterial diversity, and it was dominated by Lactobacillus (88.6%), with low abundance of Enterobacter (6.17%). In contrast, silage B5, prepared with equal ratios of L. plantarum and S. cerevisiae, was dominated by Enterococcus (67.16%) and Lactobacillus (26.94%), with less marked yeast persistence, and reducing the DM content from 50 to 40% altered these relative abundances to 5.47 and 60.61, respectively. Control silages produced without an inoculant had the highest pH and ammonia-N content (indicative of poor quality), had the lowest antioxidant activity, had higher bacterial diversity, and were dominated by Carnobacterium (74.28%) and Enterococcus (17.3%). In summary, ensiling of ML conditions with proper inoculants yielded high-quality silage with a favorable microbial community composition.
Collapse
Affiliation(s)
- Xiaopeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Minjuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Feng Jiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tiantian Gan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ziwei Lin
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yanzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hexin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shuang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lijun Bao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chao Su
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yonghua Qian
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
25
|
Silage Quality and Output of Different Maize–Soybean Strip Intercropping Patterns. FERMENTATION 2022. [DOI: 10.3390/fermentation8040174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intercropping improves land-use efficiency under conditions of limited land and resources, but no information is currently available pertaining to land-use efficiency and silage quality based on whole-plant utilization. Therefore, a two-year field experiment was conducted with the following conditions: three maize–soybean strip intercropping patterns (SIPs), comprising two maize rows along with two, three, or four soybean rows (2M2S, 2M3S, and 2M4S, respectively); and two sole cropping patterns of maize (SM) and soybean (SS). The aim was to evaluate the biomass yield and silage quality under each condition. Our results showed that all SIPs had a land equivalent ratio (LER) of over 1.6 based on both fresh and dry matter yield, and a higher whole plant yield, compared to sole cropping. Specifically, 2M3S exhibited the highest whole crop dry matter LER (1.8–1.9) and yield (24.6–27.2 t ha−1) compared to SM and SS (20.88–21.49 and 3.48–4.79 t ha−1, respectively). Maize–soybean mixed silages also showed better fermentation quality with higher lactic acid content (1–3%) and lower ammonia-N content (2–8%) compared to SS silages, and higher crude protein content (1–1.5%) with lower ammonia-N content (1–2%) compared to SM silage. Among the intercropping patterns, 2M3S had the highest fermentation quality index V-score (92–95). Consequently, maize–soybean strip intercropping improved silage quality and biomass yield, with 2M3S being recommended, due to its highest LER and biomass yield, and most optimal silage quality.
Collapse
|
26
|
Bio-Fermentation Improved Rumen Fermentation and Decreased Methane Concentration of Rice Straw by Altering the Particle-Attached Microbial Community. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bio-fermentation technology has been successfully developed for ensiling rice straw; however, its effects on the particle-attached microbial community remains unknown. Therefore, rice straw (RS) and bio-fermented rice straw (BFRS) were used as substrates for in vitro rumen fermentation to investigate the effect of bio-fermentation on particle-attached microbial community, as well as their effects on gas and methane production, fermentation products, and fiber degradation. Our results have shown that total gas production, fiber degradation, and in vitro fermentation products were significantly higher (p < 0.05) for the BFRS than the RS, while methane concentration in total gas volume was significantly lower (p < 0.05) for the BFRS than RS. Linear discriminant effect size (LefSe) analysis revealed that the relative abundance of the phyla Bacteroidetes, Fibrobacteres, Proteobacteria, and Lantisphaerae, as well as the genera Fibrobacter, Saccharofermentans, and [Eubacterium] ruminantium groups in the tightly attached bacterial community, was significantly higher (p < 0.05) for the BFRS than the RS, whereas other microbial communities did not change. Thus, bio-fermentation altered the tightly attached bacterial community, thereby improving gas production, fiber degradation, and fermentation products. Furthermore, bio-fermentation reduced methane concentration in total gas volume without affecting the archaeal community.
Collapse
|
27
|
Effect of ligninolytic axenic and coculture white-rot fungi on rice straw chemical composition and in vitro fermentation characteristics. Sci Rep 2022; 12:1129. [PMID: 35064211 PMCID: PMC8782829 DOI: 10.1038/s41598-022-05107-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/06/2022] [Indexed: 01/19/2023] Open
Abstract
The study sought to investigate the potentials of axenic cultures of Pleurotus ostreatus, Phanerochaete chrysosporium and their coculture (P. chrysosporium and P. ostreatus) to break down lignin and to enhance the rumen fermentability of rice straw. Rice straw was fermented by two lignin-degrading fungi, namely, P. ostreatus, P. chrysosporium and its coculture (P. ostreatus and P. chrysosporium) with uninoculated straw as control under solid-state fermentation employing a completely randomized research design. The coculture exhibited a mutual intermingling plus inhibition interaction. The fungi treatment increased the crude protein from (5.1%) in the control to (6.5%, 6.6%, and 6.7%) in the P. ostreatus, P. chrysosporium and coculture respectively. The coculture treated straw had a lower lignin content (5.3%) compared to the P. chrysosporium (6.2%) with the P. ostreatus recording the least (3.3%) lignin fraction. Treatment of rice straw with coculture improved the in vitro dry matter digestibility (68.1%), total volatile fatty acids (35.3 mM), and total gas (57.4 ml/200 mg) compared to P. chrysosporium (45.1%, 32.2 mM, 44.4 ml/200 mg) but was second to P. ostreatus (75.3%, 38.3 mM, 65.6 ml/200 mg). Instead of an anticipated synergistic effect from the coculture, a competitive antagonistic effect was rather observed at the end of the study, a condition that can be attributed to the coculture behavior.
Collapse
|
28
|
Li R, Zheng M, Zheng M, Cai R, Cui X, Wang Y, Jiang X, Xu C. Metagenomic analysis reveals the linkages between bacteria and the functional enzymes responsible for potential ammonia and biogenic amine production in alfalfa silage. J Appl Microbiol 2021; 132:2594-2604. [PMID: 34897914 DOI: 10.1111/jam.15411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
AIMS To clarify the molecular mechanisms underlying ammonia (NH3 ) and biogenic amines (BAEs) formation in alfalfa silage, whole metagenomic sequencing analysis was performed to identify the linkages between functional bacteria and their responsible enzymes in alfalfa silage prepared with and without sucrose addition. METHODS AND RESULTS Genes encoding nitrite reductase (nirB) resulting in NH3 formation were the most abundant and were mostly assigned to Enterobacter cloacae and Klebsiella oxytoca. Putrescine-related genes, classified mainly to encode ornithine decarboxylase (odcA), were predominantly carried by Escherichia coli, Ent. cloacae and Citrobacter sp. Escherichia coli and Kl. oxytoca were the important species responsible for cadaverine and tyramine formation. Ent. cloacae, E. coli, and Kl. oxytoca dominated the bacterial community in naturally fermented alfalfa silage, whilst sucrose-treated silages greatly inhibited the growth of these species by promoting the dominance of Lactobacillus plantarum, thus decreasing the concentrations of NH3 , cadaverine, putrescine and tyramine. CONCLUSIONS Enterobacteriaceae bacteria are mainly responsible for the NH3 , putrescine, cadaverine and tyramine formations in alfalfa silage. SIGNIFICANCE AND IMPACT OF THE STUDY Whole metagenomic sequencing analysis served as a useful tool to identify the linkages between functional bacteria and associated enzymes responsible for NH3 and BAEs formation.
Collapse
Affiliation(s)
- Rongrong Li
- College of Engineering, China Agricultural University, Beijing, China
| | - Mingli Zheng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Menghu Zheng
- College of Engineering, China Agricultural University, Beijing, China
| | - Rui Cai
- College of Engineering, China Agricultural University, Beijing, China
| | - Xinyu Cui
- College of Engineering, China Agricultural University, Beijing, China
| | - Yan Wang
- College of Engineering, China Agricultural University, Beijing, China
| | - Xin Jiang
- College of Engineering, China Agricultural University, Beijing, China
| | - Chuncheng Xu
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Manipulation of Rice Straw Silage Fermentation with Different Types of Lactic Acid Bacteria Inoculant Affects Rumen Microbial Fermentation Characteristics and Methane Production. Vet Sci 2021; 8:vetsci8060100. [PMID: 34199943 PMCID: PMC8226620 DOI: 10.3390/vetsci8060100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/23/2022] Open
Abstract
Bacterial inoculants are known to improve the quality of silage. The objectives of the present study were to evaluate the effects of different types of lactic acid bacteria (LAB; L. plantarum, L. salivarius, L. reuteri, L. brevi, and S. bovis) inoculation (106 cfu/ DM) on rice straw silage quality and to determine these effects on ruminal fermentation characteristics, digestibility and microbial populations in an in vitro condition. Inoculated rice straw was ensiled for 15 and 30 days. For the in vitro study, rumen fluid was obtained from three rumen-fistulated bulls fed on mixed forage and concentrate at 60:40 ratio twice daily. Inoculation with LAB improved (p < 0.05) the rice straw silage quality as indicated by higher dry matter and crude protein contents, decreased pH and butyric acid, and increased propionic acid and LAB numbers, especially after 30 days of ensiling. Results from the in vitro study revealed that starting with the addition of LAB to rice straw silage improved in vitro fermentation characteristics such as increased total volatile fatty acids and dry matter digestibility (p < 0.05). LAB treatments also decreased methane production and methane/total gas ratio after 15 and 30 days of ensiling. From the rumen microbial population perspective, cellulolytic, and fungal zoospores were enhanced, while protozoa and methanogens were decreased by the LAB treatments. Based on these results, it could be concluded that inoculating rice straw silage with LAB (especially for L. plantarum and S. bovis) improved silage quality, rumen fermentation parameters and microbial populations in vitro.
Collapse
|
30
|
Tao Q, Li B, Chen Y, Zhao J, Li Q, Chen Y, Peng Q, Yuan S, Li H, Huang R, Wang C. An integrated method to produce fermented liquid feed and biologically modified biochar as cadmium adsorbents using corn stalks. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 127:112-120. [PMID: 33933868 DOI: 10.1016/j.wasman.2021.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/11/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The recycling of agricultural waste is a global challenge to the sustainable development of agriculture. By using corn stalks, we studied the feasibility of combining anaerobic fermentation and pyrolysis processes to produce both fermentated liquid feed and biologically modified biocharas cadmium adsorbents. Anaerobic ensiling enhanced the biodegradation of corn stalks by increasing crude protein and reducing fiber contents. After 24-h anaerobic fermentation, corn stalks silage was decomposed into the liquid filtrate and non-fermented residue. Fermented liquid feed (FLF) was prepared by storing feed and liquid filtrate (1:4.0, wt/wt) in a closed tank at 20 °C for 4 days, which showed desired properties (pH < 4.5, lactic acid bacteria greater than 9.0 lg cfu g-1, lactic acid greater than 100 mmol L-1). The non-fermented residue was pyrolyzed at 500 °C to prepare biologically modified biochar (BCB24). In comparison with pristine biochar produced from corn stalks (CB), anaerobic ensiling and anaerobic fermentation significantly increased the surface area, oxygen-containing functional groups, as well as mineral components in BCB24. The maximum sorption capacity of Cd(II) for BCB24 was 2.1 times of CB, suggesting that BCB24 is an effective adsorbent for Cd(II) removal from water. Our results indicated that coupling anaerobic fermentation and pyrolysis technology can significantly improve the efficiency of corn stalks recycling.
Collapse
Affiliation(s)
- Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yixuan Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Junwen Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulan Chen
- Sichuan Tobacco Company Liangshanzhou Company, Xichang Sichuan 615000, China
| | - Quanhui Peng
- Institute of Animal Nutrition, Key Laboratory of Bovine Low Carbon Farming and Safe Production, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
31
|
Wei SN, Li YF, Jeong EC, Kim HJ, Kim JG. Effects of formic acid and lactic acid bacteria inoculant on main summer crop silages in Korea. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:91-103. [PMID: 33987587 PMCID: PMC7882833 DOI: 10.5187/jast.2021.e7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 11/20/2022]
Abstract
To improve the fermentation quality of silage and reduce the nutrients loss of raw materials during the ensiling process, silage additives are widely used. The effect of additives on silage is also affected by the species of crop. Therefore, this study was designed to explore the effects of formic acid (FA) and lactic acid bacterial inoculant on the quality of main summer crop silage. The experiment was consisted on split-plot design with three replications. The experiment used the main summer forage crops of proso millet ("Geumsilchal"), silage corn ("Gwangpyeongok"), and a sorghum-sudangrass hybrid ("Turbo-gold"). Treatments included silage with Lactic acid bacterial Inoculant (Lactobacillus plantarum [LP], 1.0 × 106 CFU/g fresh matter), with FA (98%, 5 mL/kg), and a control (C, without additive). All silages were stored for 60 days after preparation. All additives significantly increased the crude protein content and in vitro dry matter digestibility (IVDMD) of the silages and also reduced the content of ammonia nitrogen (NH3-N) and pH. Corn had the highest content of IVDMD, total digestible nutrients and relative feed value among silages. Compared with the control, irrespective of whether FA or LP was added, the water soluble carbohydrate (WSC) of three crops was largely preserved and the WSC content in the proso millet treated with FA was the highest. The treatment of LP significantly increased the lactic acid content of the all silage, while the use of FA significantly increased the content of acetic acid (p < 0.05). The highest count of lactic acid bacteria (LAB) was detected in the LP treatment of corn. In all FA treatment groups, the total microorganism and mold numbers were significantly lower than those of the control and LP groups (p < 0.05). In conclusion, both additives improved the fermentation quality and nutritional composition of the main summer forage crops. The application of FA effectively inhibited the fermentation of the three crops, whereas LAB promoted fermentation. So, both FA and LP can improve the quality of various species of silage.
Collapse
Affiliation(s)
- Sheng Nan Wei
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Yan Fen Li
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Eun Chan Jeong
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Hak Jin Kim
- Research Institute of Eco-friendly Livestock Science, GBST, Seoul National University, Pyeongchang 25354, Korea
| | - Jong Geun Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea.,Research Institute of Eco-friendly Livestock Science, GBST, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
32
|
Ibrahim D, Abdelfattah-Hassan A, Arisha AH, El-Aziz RMA, Sherief WR, Adli SH, El Sayed R, Metwally AE. Impact of feeding anaerobically fermented feed supplemented with acidifiers on its quality and growth performance, intestinal villi and enteric pathogens of mulard ducks. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Ramírez-Vega H, Arteaga-Garibay RI, Maya-Lucas O, Gómez-Rodríguez VM, Chávez-Díaz IF, Ruvalcaba-Gómez JM, Heredia-Nava D, Loperena-Martínez R, Zelaya-Molina LX. The Bacterial Community Associated with the Amarillo Zamorano Maize ( Zea mays) Landrace Silage Process. Microorganisms 2020; 8:microorganisms8101503. [PMID: 33003516 PMCID: PMC7601214 DOI: 10.3390/microorganisms8101503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Maize silage is used in the diet of dairy cows, with suitable results in milk yield. In this study, the composition and diversity of the bacterial communities of the silage process of Amarillo Zamorano (AZ) Mexican maize landrace with relation to the Antilope (A) commercial hybrid are described. From both types of maize, seeds were sown in experimental plots, plants harvested at the reproductive stage, chopped, and packed in laboratory micro-silos. Physicochemical parameters were evaluated, and DNA was extracted from the juice in the micro-silos. The bacterial communities were analyzed by next-generation sequencing (NGS) of seven hypervariable regions of the 16S rRNA gene. The composition of both bacterial communities was dominated by Lactobacillales and Enterobacteriales, Lactobacillales mainly in A silage and Enterobacteriales in AZ silage; as well, the core bacterial community of both silages comprises 212 operational taxonomic units (OTUs). Sugar concentration showed the highest number of significant associations with OTUs of different phyla. The structure of the bacterial communities was different in both silage fermentation processes, showing that AZ silage has a shorter fermentation process than A silage. In addition, NGS demonstrated the effect of the type of maize and local conditions on silage fermentation and contributed to potential strategies to improve the quality of AZ silage.
Collapse
Affiliation(s)
- Humberto Ramírez-Vega
- Departamento de Ciencias Pecuarias y Agrícolas, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco 47600, Mexico; (H.R.-V.); (V.M.G.-R.); (D.H.-N.); (R.L.-M.)
| | - Ramón I. Arteaga-Garibay
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigación Forestales, Agrícolas y Pecuarios, Tepatitlán de Morelos, Jalisco 47600, Mexico; (R.I.A.-G.); (I.F.C.-D.)
| | - Otoniel Maya-Lucas
- Departamento de Genética y Biología Molecular, CINVESTAV-Unidad Zacatenco, Ciudad de México 07360, Mexico;
| | - Victor M. Gómez-Rodríguez
- Departamento de Ciencias Pecuarias y Agrícolas, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco 47600, Mexico; (H.R.-V.); (V.M.G.-R.); (D.H.-N.); (R.L.-M.)
| | - Ismael F. Chávez-Díaz
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigación Forestales, Agrícolas y Pecuarios, Tepatitlán de Morelos, Jalisco 47600, Mexico; (R.I.A.-G.); (I.F.C.-D.)
| | - José M. Ruvalcaba-Gómez
- Campo Experimental Altos de Jalisco, Instituto Nacional de Investigación Forestales, Agrícolas y Pecuarios, Tepatitlán de Morelos, Jalisco 47600, Mexico;
| | - Darwin Heredia-Nava
- Departamento de Ciencias Pecuarias y Agrícolas, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco 47600, Mexico; (H.R.-V.); (V.M.G.-R.); (D.H.-N.); (R.L.-M.)
| | - Raquel Loperena-Martínez
- Departamento de Ciencias Pecuarias y Agrícolas, Centro Universitario de Los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco 47600, Mexico; (H.R.-V.); (V.M.G.-R.); (D.H.-N.); (R.L.-M.)
| | - L. X. Zelaya-Molina
- Laboratorio de Recursos Genéticos Microbianos, Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigación Forestales, Agrícolas y Pecuarios, Tepatitlán de Morelos, Jalisco 47600, Mexico; (R.I.A.-G.); (I.F.C.-D.)
- Correspondence:
| |
Collapse
|
34
|
Utilization of waste straw and husks from rice production: A review. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2020. [DOI: 10.1016/j.jobab.2020.07.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Dong L, Zhang H, Gao Y, Diao Q. Dynamic profiles of fermentation characteristics and bacterial community composition of Broussonetia papyrifera ensiled with perennial ryegrass. BIORESOURCE TECHNOLOGY 2020; 310:123396. [PMID: 32388351 DOI: 10.1016/j.biortech.2020.123396] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Broussonetia papyrifera (B. papyrifera) has been proposed to improve silage fermentation due to its high content of protein and abundant active plant extracts. Thus, dynamic profiles of fermentation quality and bacterial community of B. papyrifera mixing with perennial ryegrass in different ratios: 100:0, 90:10, 80:20, 70:30, 60:40, and 50:50 were examined during 60-d fermentation. Results showed that adding perennial ryegrass increased soluble carbohydrate content and lactic acid production in silage and decreased pH and population of epiphytic microorganisms. Adding ryegrass exerted a remarkable effect on the silage bacterial community with a dramatic decrease in the abundance of Enterobacter. Spearman's rank correlation showed that silage lactic acid concentration was positively correlated with Lactobacillus and Stenotrophomonas abundance, while ammonia nitrogen concentration was positively correlated with the abundance of Enterobacter. In conclusion, B. papyrifera ensiled with perennial ryegrass could improve B. papyrifera silage quality and provide high-quality forage resources for sustainable ruminant livestock production.
Collapse
Affiliation(s)
- Lifeng Dong
- Feed Research Institute, Chinese Academy of Agricultural Sciences/Beijing Key Laboratory for Dairy Cow Nutrition/Key Laboratory of Feed Biotechnology, Ministry of Agriculture/Sino-US Joint, Lab on Nutrition and Metabolism of Ruminants, Beijing, China
| | - Hongsen Zhang
- College of Life Sciences, Henan Agricultural University, Henan 450002, China
| | - Yanhua Gao
- College of Life Science and Technology, South Minzu University, Chengdu 610041, China
| | - Qiyu Diao
- Feed Research Institute, Chinese Academy of Agricultural Sciences/Beijing Key Laboratory for Dairy Cow Nutrition/Key Laboratory of Feed Biotechnology, Ministry of Agriculture/Sino-US Joint, Lab on Nutrition and Metabolism of Ruminants, Beijing, China.
| |
Collapse
|
36
|
Sadarman S, Ridla M, Nahrowi N, Ridwan R, Jayanegara A. Evaluation of ensiled soy sauce by-product combined with several additives as an animal feed. Vet World 2020; 13:940-946. [PMID: 32636591 PMCID: PMC7311863 DOI: 10.14202/vetworld.2020.940-946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/15/2020] [Indexed: 11/16/2022] Open
Abstract
Aim: The present experiment aimed to evaluate the use of different additives, i.e., lactic acid bacteria (LAB) inoculant, tannin extract, and propionic acid, on the chemical composition, fermentative characteristics, and in vitro ruminal fermentation of soy sauce by-product (SSB) silage. Materials and Methods: SSB was subjected to seven silage additive treatments: Fresh SSB, ensiled SSB, ensiled SSB+LAB, ensiled SSB+2% acacia tannin, ensiled SSB+2% chestnut tannin, ensiled SSB+0.5% propionic acid, and ensiled SSB+1% acacia tannin+1% chestnut tannin+0.5% propionic acid. Ensiling was performed for 30 days in three replicates, and each replicate was made in duplicate. The samples were evaluated for their chemical composition and silage fermentation characteristics and were tested in an in vitro rumen fermentation system. Results: In general, the nutrient compositions did not differ among the tested SSBs in response to the different additives used. The addition of tannins, either acacia or chestnut, and propionic acid significantly decreased the pH of the ensiled SSB (p<0.05). The addition of several additives (except LAB) decreased the ammonia concentration in SSB silage (p<0.05). The total volatile fatty acids in the in vitro rumen fermentation profile of the ensiled SSB were not significantly altered by the various additives applied. The addition of some additives, i.e., ensiled SSB+LAB and ensiled SSB+2% acacia tannin, reduced the digestibility values of the SSB (p<0.05). Different silage additives did not significantly affect methane production, although the addition of acacia tannins tended to result in the lowest methane production among treatments. Conclusion: The use of additives, particularly 2% acacia tannins, can reduce proteolysis in SSB silage.
Collapse
Affiliation(s)
- Sadarman Sadarman
- Study Program of Nutrition and Feed Science, Graduate School of IPB University, Bogor, Indonesia.,Department of Animal Science, Sultan Syarif Kasim State Islamic University, Pekanbaru, Indonesia
| | - Muhammad Ridla
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
| | - Nahrowi Nahrowi
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
| | - Roni Ridwan
- Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
| |
Collapse
|
37
|
Tian P, Vyas D, Niu D, Zuo S, Jiang D, Xu C. Effects of calcium carbonate on the fermentation quality and aerobic stability of total mixed ration silage. JOURNAL OF ANIMAL AND FEED SCIENCES 2020. [DOI: 10.22358/jafs/124047/2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
The Effect of Ensiling on the Nutritional Composition and Fermentation Characteristics of Brown Seaweeds as a Ruminant Feed Ingredient. Animals (Basel) 2020; 10:ani10061019. [PMID: 32545350 PMCID: PMC7341188 DOI: 10.3390/ani10061019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary In recent years, there has emerged a renewed interest in the inclusion of seaweed as an animal feed ingredient. Due to annual fluctuations in the availability and biochemical composition of seaweeds, effective preservation methods are needed. These are currently restricted to thermal processing methods. Ensiling is a commonly applied preservation technique for terrestrial forages intended for livestock feed but little is known about the characteristics of silage made from seaweeds. This study considered the potential of ensiling two brown seaweed species (Fucus vesiculosus and Saccharina latissimi) with or without the use of a microbial inoculant. The potential applications of seaweed silage as a feed ingredient in ruminant diets were considered. The results showed that, depending on the species, ensiling may be a suitable preservation method for brown seaweeds. Abstract Ensiling could be an effective method to preserve seaweeds for animal feed applications, however, there is limited scientific knowledge in this area. Seaweeds are a promising ruminant feed ingredient, in part due to the content of phenolic compounds, which are receiving considerable interest as alternative antimicrobial agents in feed. The aim of the study was to compare the effect of ensiling on the nutritional composition and fermentation characteristics of two brown seaweed species, Fucus vesiculosus (FV) and Saccharina latissimi (SL) with or without the use of a Lactobacillus plantarum (LAB) inoculant. The effect of ensiling on the stability of phlorotannin was also investigated using nuclear magnetic resonance (NMR). After harvesting, the seaweeds were wilted for 24 h and subsequently ensiled in laboratory-scaled silos for 90 days. SL silage showed a stronger fermentation pattern (pH < 4), dominated by lactic acid (50–60 g/kg Dry Matter (DM)), and a slightly higher acetic acid content compared to FV silages (p < 0.05). The fermentability of FV was limited (pH > 4.8) with low lactic acid production (<5 g/kg DM). The addition of the LAB inoculant showed no effect on the fermentation process but a modest effect on the chemical composition of both species was observed after the 90-day ensiling period. The results showed no losses in the nutrient content of FV after ensiling, however losses in the Crude Protein (CP, −32%), ash (−36%), Neutral Detergent Fibre (NDF, −77%) and Acid Detergent Fibre (ADF, −58%) content of SL were observed. The ensiling process had a limited effect on the in vitro true dry matter digestibility and phenolic content of either species. Therefore, ensilage may be a suitable preservation method for the use of brown seaweeds as a ruminant feed; however, species-specific differences were observed.
Collapse
|
39
|
Abdelazeem S, Takeda KI, Kurosu K, Uyeno Y. Fermentative Quality and Animal Acceptability of Ensiled Persimmon Skin with Absorbents for Practical Use in Ruminant Feed. Animals (Basel) 2020; 10:E612. [PMID: 32252372 PMCID: PMC7222718 DOI: 10.3390/ani10040612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/24/2020] [Accepted: 03/28/2020] [Indexed: 11/16/2022] Open
Abstract
Persimmon skin (PS), while representing an attractive feed source, requires an appropriate preservation procedure to increase its shelf life. We assessed the fermentation quality, in vitro ruminal incubation, and intake of persimmon skin silage ensiled with different dry absorbents. We prepared the silage on a table scale (Experiment 1) and evaluated five different mixtures: PS without an additive, PS plus Lactobacillus buchneri inoculum (LB), and PS plus LB plus each of the absorbents kraft pulp, wheat bran, or beet pulp. We opened the laboratory bags, kept at 25 °C, at 0, 14, 28, and 60 days for fermentation quality and chemical analysis (n = 3 for each measurement). Further, with an in vitro rumen simulated cultivation study (Experiment 2), we evaluated the fermentation pattern of PS with a mixture of two absorbents (kraft pulp and wheat bran) either raw (no fermentation) or ensiled (n = 4 for each treatment). Finally, we conducted an in vivo experiment using six dry ewes assigned based on their body weight to two experimental groups in a crossover design of two periods (Experiment 3). We fed a control group a 100% basal diet (tall fescue hay and concentrate mixture) and ensiled PS (PSS) group, a 20% dry matter substitution of tall fescue with PS silage mixed with kraft pulp as the sole absorbent. The results of Experiment 1 show, regardless of the absorbents used, the effluent volume of the lab bags was lower in absorbent-treated groups (p < 0.001). In Experiment 2, the condition of the PS with absorbents (raw or ensiled) did not affect the total gas production (p > 0.05), but we observed an increased propionate proportion in PSS with absorbents compared to basal diet (p = 0.019). The proportion of methane to the total gas in PSS group was considerably reduced compared with that in the other groups (p < 0.001). As we did this incubation study with a single run, a more detailed evaluation in the future would verify these observations. In the animal trial (Experiment 3), dry matter intake was similar between groups (p > 0.05), but ewes spent a shorter time eating in the PSS-fed group (p = 0.011). Here we present the practical use of PSS as part of ruminant feed in which dry absorbents prevented dry matter loss.
Collapse
Affiliation(s)
- Shimaa Abdelazeem
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 3994511, Japan; (S.A.); (K.T.)
- Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Ken-ichi Takeda
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 3994511, Japan; (S.A.); (K.T.)
| | | | - Yutaka Uyeno
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 3994511, Japan; (S.A.); (K.T.)
| |
Collapse
|
40
|
Shah AA, Liu Z, Qian C, Wu J, Zhong X, Kalsoom UE. Effect of endophytic Bacillus megaterium colonization on structure strengthening, microbial community, chemical composition and stabilization properties of Hybrid Pennisetum. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1164-1173. [PMID: 31680258 DOI: 10.1002/jsfa.10125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND This study was conducted to analyze the effects of endophytic Bacillus megaterium (BM 18-2) colonization on structure strengthening, microbial community, chemical composition and stabilization properties of Hybrid Pennisetum. RESULTS The BM 18-2 had successfully colonized in the interior tissues in both leaf and stem of Hybrid Pennisetum. During ensiling, the levels of pH, acetic acid (AA), butyric acid (BA), propionic acid (PA), and the population of yeast and aerobic bacteria were significantly (P > 0.05) lower, while lactic acid bacteria (LAB) and lactic acid (LA) were significantly (P < 0.001) higher with the steps forward of ensiling in with BM 18-2 as compared to without BM 18-2 colonized of Hybrid Pennisetum. During the different ensiling days, at days 3, 6, 15, and 30, the genus Brevundimonas, Klebsiella, Lactococcus, Weissella, Enterobacter, Serratia, etc. population were significantly decreased, while genus Pediococcus acidilactici and Lactobacillus plantarum were significantly influenced in treated groups as compared to control. The genus Lactobacillus and Pediococcus were positively correlated with treatment groups. CONCLUSIONS It is concluded that the endophytic bacteria strain BM 18-2 significantly promoted growth characteristics and biomass yield before ensiling and after ensiling inoculated with or without Lactobacillus plantarum could improve the distinct changes of the undesirable microbial diversity, chemical composition, and stabilization properties in with BM 18-2 as compared to without BM 18-2 colonized Hybrid Pennisetum. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Assar A Shah
- National Forage Breeding Innovation Base (JAAS), Nanjing, P. R. China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Nanjing, P. R. China
| | - Zhiwei Liu
- National Forage Breeding Innovation Base (JAAS), Nanjing, P. R. China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Nanjing, P. R. China
| | - Chen Qian
- National Forage Breeding Innovation Base (JAAS), Nanjing, P. R. China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Nanjing, P. R. China
| | - Juanzi Wu
- National Forage Breeding Innovation Base (JAAS), Nanjing, P. R. China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Nanjing, P. R. China
| | - Xiaoxian Zhong
- National Forage Breeding Innovation Base (JAAS), Nanjing, P. R. China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Nanjing, P. R. China
| | - Umm-E- Kalsoom
- Department of Biochemistry, Hazara University Mansehra, Mansehra, Pakistan
| |
Collapse
|
41
|
|
42
|
Li F, Ding Z, Ke W, Xu D, Zhang P, Bai J, Mudassar S, Muhammad I, Guo X. Ferulic acid esterase-producing lactic acid bacteria and cellulase pretreatments of corn stalk silage at two different temperatures: Ensiling characteristics, carbohydrates composition and enzymatic saccharification. BIORESOURCE TECHNOLOGY 2019; 282:211-221. [PMID: 30861451 DOI: 10.1016/j.biortech.2019.03.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
The effects of Acremonium cellulase and L. plantarum A1 with ferulic acid esterase activity on corn stalk silage fermentation characteristics, carbohydrate composition and enzymatic saccharification were studied at 25 and 40 °C, respectively. Corn stalk was ensiled without additive (C), Acremonium cellulase (AC), L. plantarum A1 (Lp) and AC + Lp for 60 days. Pretreatment with Lp or AC + Lp promoted the better silage fermentation and the degradation of lignocellulose as indicated by high lactic acid and low pH and lignocellulose content compared to control silages at 25 °C. AC + Lp performed better in reducing lignocellulose and DM loss. In addition, Lp alone enhanced enzymatic saccharification of corn stalk silage. However, the influence of L. plantarum A1 on corn stalk silage was not obvious at 40 °C. Corn stalk ensiled with combined additive is a suitable pretreatment method for subsequent biofuel production at 25 °C, but addition of Acremonium cellulase alone at 40 °C may be a promising method.
Collapse
Affiliation(s)
- Fuhou Li
- The State Key Laboratory of Grassland Agro-ecosystems of Lanzhou University, Lanzhou 730020, PR China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Zitong Ding
- The State Key Laboratory of Grassland Agro-ecosystems of Lanzhou University, Lanzhou 730020, PR China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China; School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Wencan Ke
- The State Key Laboratory of Grassland Agro-ecosystems of Lanzhou University, Lanzhou 730020, PR China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China; School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Dongmei Xu
- The State Key Laboratory of Grassland Agro-ecosystems of Lanzhou University, Lanzhou 730020, PR China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China; School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Ping Zhang
- The State Key Laboratory of Grassland Agro-ecosystems of Lanzhou University, Lanzhou 730020, PR China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China; School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jie Bai
- The State Key Laboratory of Grassland Agro-ecosystems of Lanzhou University, Lanzhou 730020, PR China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Shah Mudassar
- The State Key Laboratory of Grassland Agro-ecosystems of Lanzhou University, Lanzhou 730020, PR China; School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Ishaq Muhammad
- The State Key Laboratory of Grassland Agro-ecosystems of Lanzhou University, Lanzhou 730020, PR China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China; School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- The State Key Laboratory of Grassland Agro-ecosystems of Lanzhou University, Lanzhou 730020, PR China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China; School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
43
|
Fermentation Characteristics of Lactobacillus Plantarum and Pediococcus Species Isolated from Sweet Sorghum Silage and Their Application as Silage Inoculants. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study aims to evaluate the fermentation characteristics of Lactobacillus plantarum and Pediococcus spp isolated from sweet sorghum silage to enhance the fermentation quality of Napier grass and sweet sorghum silage. Based on molecular 16S ribosomal ribonucleic identification the isolated strains were phylogenetically related to Lactobacillus plantarum (HY1), Pediococcus acidilactici (HY2) and Pediococcus claussenii (HY3). Strains HY1, HY2 and HY3 and commercial bacteria Lactobacillus plantarum, Ecosyl; (MTD\1( were ensiled with sweet sorghum and Napier grass and the non-inoculated grasses, have been arranged in a completely randomized experimental design in a 5 (inoculants) × 3 (ensiling periods). In both grasses, the fermentation characteristics chemical composition and microbial population were assessed at 5–30 and 90 days of ensiling. The results showed that the effect of addition inoculants significantly reduced (p < 0.05) the pH, ammonia-N, acetic acid and undesirable microbial population and increased (p < 0.05) lactic acid and lactic acid bacteria counting when compared to the control. The effect of ensiling days on silage quality through the increasing lactic acid, acetic acid, ammonia-N, propionic acid and butyric acid whereas decreasing pH and water-soluble carbohydrates and microbial counts. In both sweet sorghum and Napier silage treated with isolated strains showed the best results in silage quality. The HY3 belongs to Pediococcus claussenii was not extensively studied in silage but it has shown good fermentation quality which strongly recommended to apply as probiotic.
Collapse
|
44
|
Jayanegara A, Yaman A, Khotijah L. Reduction of proteolysis of high protein silage from Moringa and Indigofera leaves by addition of tannin extract. Vet World 2019; 12:211-217. [PMID: 31040560 PMCID: PMC6460870 DOI: 10.14202/vetworld.2019.211-217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/21/2018] [Indexed: 12/03/2022] Open
Abstract
Aim: The objective of this experiment was to evaluate the effect of the addition of tannin extract to Moringa and Indigofera leaf silages on their chemical composition, silage quality characteristics, and in vitro rumen fermentation parameters and digestibility. Materials and Methods: Moringa and Indigofera leaves were cut (3 cm length) and added with either 0, 2, or 4% chestnut tannin in three replicates. The leaves were then inserted into lab-scale silos (1 L capacity) and kept for 30 days. Silage samples were subjected to silage quality determination, chemical composition analysis, and in vitro rumen fermentation and digestibility evaluation using a gas production technique. Data obtained were subjected to the analysis of variance with a factorial statistical model in which the first factor was different silage species and the second factor was tannin addition levels. Results: Tannin addition at 4% dry matter (DM) increased neutral detergent insoluble crude protein (NDICP) and acid detergent insoluble CP (ADICP) of Indigofera silage. A similar response was observed in Moringa silage, but it required less tannin, i.e., 2% DM to increase its NDICP and ADICP. Moringa silage had lower pH than that of Indigofera silage (p<0.05), and tannin addition did not change pH of both Indigofera and Moringa silages. Higher addition level of tannin decreased total volatile fatty acid (VFA) and ammonia concentrations of both Indigofera and Moringa silages (p<0.05). A higher level of tannin addition reduced ruminal total VFA concentration, ammonia, in vitro DM digestibility, and in vitro organic matter digestibility of Indigofera and Moringa silages (p<0.05). Tannin addition also decreased ruminal methane emission of both Indigofera and Moringa silages (p<0.05). Conclusion: Tannin extract can reduce proteolysis of high protein silage from Moringa and Indigofera leaves.
Collapse
Affiliation(s)
- Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Aldi Yaman
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Lilis Khotijah
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680, Indonesia
| |
Collapse
|
45
|
Andeta AF, Vandeweyer D, Teffera EF, Woldesenbet F, Verreth C, Crauwels S, Lievens B, Vancampenhout K, Van Campenhout L. Effect of fermentation system on the physicochemical and microbial community dynamics during enset (Ensete ventricosum) fermentation. J Appl Microbiol 2019; 126:842-853. [PMID: 30520189 DOI: 10.1111/jam.14173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/26/2018] [Accepted: 12/02/2018] [Indexed: 01/06/2023]
Abstract
AIMS The present study was conducted to assess the effect of three different fermentation systems on fermentation of enset into kocho. METHODS AND RESULTS Nine enset plants were processed, mixed and fermented in either a pit, a bamboo basket or a sauerkraut jar. Samples were taken on days 1, 7, 15, 31, 60 and 90. Moisture content and pH generally decreased and titratable acidity increased during fermentation. Total viable aerobic counts were generally high for all samples and Enterobacteriaceae counts were reduced to below the detectable level after day 1 for the pits and jars and after day 7 for the baskets. Illumina MiSeq sequencing of 16S ribosomal RNA genes revealed that Leuconostoc and Lactococcus spp. were the most abundant lactic acid bacteria in the initial phases of the fermentation. Later on, Lactobacillus, Weissella and Bifidobacterium dominated. CONCLUSIONS The type of fermentation system used had an effect on the microbial dynamics and the effect increased towards the end of fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY Millions of people in Ethiopia daily consume kocho prepared in either a pit or a basket. These systems show practical problems, but this study shows that fermentation is also possible in a sauerkraut jar.
Collapse
Affiliation(s)
- A F Andeta
- Lab4Food, Department of Microbial and Molecular Systems, Technology Cluster Bioengineering Technology, KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium.,Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - D Vandeweyer
- Lab4Food, Department of Microbial and Molecular Systems, Technology Cluster Bioengineering Technology, KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - E F Teffera
- Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - F Woldesenbet
- Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
| | - C Verreth
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium.,Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, Technology Cluster Bioengineering Technology, KU Leuven, Sint-Katelijne Waver, Belgium
| | - S Crauwels
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium.,Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, Technology Cluster Bioengineering Technology, KU Leuven, Sint-Katelijne Waver, Belgium
| | - B Lievens
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium.,Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, Technology Cluster Bioengineering Technology, KU Leuven, Sint-Katelijne Waver, Belgium
| | - K Vancampenhout
- Lab4Food, Department of Microbial and Molecular Systems, Technology Cluster Bioengineering Technology, KU Leuven, Geel, Belgium
| | - L Van Campenhout
- Lab4Food, Department of Microbial and Molecular Systems, Technology Cluster Bioengineering Technology, KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Lunsin R, Duanyai S, Pilajun R, Duanyai S, Sombatsri P. Effect of urea- and molasses-treated sugarcane bagasse on nutrient composition and in vitro rumen fermentation in dairy cows. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.anres.2018.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Khota W, Pholsen S, Higgs D, Cai Y. Comparative analysis of silage fermentation and in vitro digestibility of tropical grass prepared with Acremonium and Tricoderma species producing cellulases. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1913-1922. [PMID: 29879827 PMCID: PMC6212740 DOI: 10.5713/ajas.18.0083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/11/2018] [Indexed: 12/02/2022]
Abstract
Objective To find out ways of improving fermentation quality of silage, the comparative analysis of fermentation characteristics and in vitro digestibility of tropical grasses silage applied with cellulases produced from Acremonium or Tricoderma species were studied in Thailand. Methods Fresh and wilted Guinea grass and Napier grass silages were prepared with cellulases from Acremonium (AC) or Trichoderma (TC) at 0.0025%, 0.005%, and 0.01% on a fresh matter (FM), and their fermentation quality, chemical composition and in vitro digestibility were analyzed. Results All silages of fresh Napier grass were good quality with lower pH, butyric acid, and ammonia nitrogen, but higher lactic acid content than wilted Napier grass and Guinea grass silage. Silages treated with AC 0.01% had the best result in terms of fermentation quality. They also had higher in vitro dry matter digestibility and in vitro organic matter digestibility at 6 and 48 h after incubation than other silages. Silages treated with lower levels at 0.005% or 0.0025% of AC and all levels of TC did not improve silage fermentation. Conclusion The AC could improve silage fermentation and in vitro degradation of Guinea grass and Napier grass silages, and the suitable addition ration is 0.01% (73.5 U) of FM for tropical silage preparation.
Collapse
Affiliation(s)
- Waroon Khota
- Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suradej Pholsen
- Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - David Higgs
- Department of Biological and Environmental Sciences, University of Hertfordshire, AL10 9AB, UK
| | - Yimin Cai
- Japan International Research Center for Agricultural Science (JIRCAS), Tsukuba, Ibaraki 305-8686, Japan
| |
Collapse
|
48
|
Valorizing Rice Straw and Its Anaerobically Digested Residues for Biochar to Remove Pb(II) from Aqueous Solution. INT J POLYM SCI 2018. [DOI: 10.1155/2018/2684962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To seek a new path to valorize rice straw (RS) and its anaerobically digested residues (DRS), biochar production at different temperatures for removing Pb(II) from aqueous solution and its basic physicochemical characteristics for elucidating potentially adsorption mechanisms were investigated. Overall, pH, electrical conductivity (EC), ash, specific surface area (SA), micronutrient content, and aromaticity of RS biochars (RSBCs) and DRS biochars (DRSBCs) increased with the promoted pyrolysis temperature, and opposite trends were found on the yield, volatile matter, H, N, and O. Lower pH and K content but higher yield, carbon stability, and N and P content were achieved by DRSBCs. Consequently, DRSBCs exhibited lower Pb(II) removal, which was 0.15–0.35 of RSBCs. Maximum adsorption capacities of 276.3 and 90.5 mg·g−1 were achieved by RSBC and DRSBC, respectively, at 500°C. However, distinct mechanisms dominated Pb(II) removal, in which carbonates and carboxylates were responsible for RSBCs, and phosphate silicate precipitation and complexation with carboxylate groups controlled DRSBCs.
Collapse
|
49
|
Yuan XJ, Wen AY, Wang J, Desta ST, Dong ZH, Shao T. Effects of four short-chain fatty acids or salts on fermentation characteristics and aerobic stability of alfalfa (Medicago sativa L.) silage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:328-335. [PMID: 28585343 DOI: 10.1002/jsfa.8475] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The objective of the present study was to evaluate the effects of four chemicals on the fermentation quality and aerobic stability of alfalfa (Medicago sativa L.) silage. Wilted alfalfa was ensiled without additive (control), or with formic acid (FA), potassium diformate (KDF), sodium diacetate (SDA) or calcium propionate (CAP). RESULTS After 60 days of ensiling, the pH values in FA, KDF and SDA silages were lower (P < 0.05) compared to that of control and CAP silages, and chemicals (P < 0.05) decreased butyric acid and ammonia N concentrations and populations of aerobic bacteria and yeasts compared to the control. The SDA and CAP silages had a higher (P < 0.05) lactic acid bacteria content compared to the FA and KDF silages. The SDA and CAP silages had higher (P < 0.05) acetic and propionic acid contents compared to the other silages, respectively. The ammonia N concentrations in the FA and KDF silages were lower compared to the other silages during the first 5 days of aerobic exposure, and then increased sharply to 105 and 100 g kg-1 total N, respectively, which was higher (P < 0.05) than that of the SDA and CAP silages on day 9 of aerobic exposure. Yeasts and aerobic bacteria counts in SDA silage slowly increased and remained at lower levels compared to the other silages after 7 days of aerobic exposure. CONCLUSION Additives prolonged the aerobic stability duration compared to the control, and the SDA and CAP silages remained stable for more than 216 h, followed by the KDF and FA silages (202 and 196 h, respectively). © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xian J Yuan
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Nanjing, China
| | - Ai Y Wen
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Nanjing, China
- College of Animal Science, Anhui Science and Technology University, Feng Yang, China
| | - Jian Wang
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Nanjing, China
- Institute of Tropical Agriculture and Forestry collage, Hainan University, Haikou, China
| | - Seare T Desta
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Nanjing, China
| | - Zhi H Dong
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Nanjing, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
50
|
Gharechahi J, Kharazian ZA, Sarikhan S, Jouzani GS, Aghdasi M, Hosseini Salekdeh G. The dynamics of the bacterial communities developed in maize silage. Microb Biotechnol 2017; 10:1663-1676. [PMID: 28696065 PMCID: PMC5658587 DOI: 10.1111/1751-7915.12751] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 02/01/2023] Open
Abstract
Ensilage provides an effective means of conserving summer‐grown green forage to supply as winter feed to ruminants. The fermentation process involved in the ensilage process relies on lactic acid bacteria (LAB). Here, 16S ribosomal DNA amplicon pyrosequencing was used to follow the dynamic behaviour of the LAB community during the ensilage of maize biomass, with a view to identify the key species involved in the process. The biomass used for ensilage was a single‐cross maize hybrid, harvested at the milk‐line stage. The crop was grown at three contrasting locations. Aspects of the physico‐chemical composition of the material and the LAB species present were sampled at 0, 3, 6, 14, 21 and 32 days after ensilage was initiated. In all three cases, members of the Leuconostocaceae family dominated the epiphytic bacterial community, notably Leuconostoc and Weissella, but some variation was noted in the abundance of certain Leuconostocaceae and Lactobacillaceae species, as well as that of some Acetobacteraceae, Enterobacteriaceae and Moraxellaceae species. The constellation of the microbiome which developed during the ensilage process differed markedly from that of the epiphytic one, with Lactobacillaceae, particularly Lactobacillus and Pediococcus spp. dominating. The abundance of heterofermentative Leuconostocaceae spp. in the epiphytic community and the extent of the transition from hetero‐ to homo‐fermentation during the initial ensilage period are important factors in determining silage quality.
Collapse
Affiliation(s)
- Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Science, Tehran, Iran
| | | | - Sajjad Sarikhan
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Gholamreza Salehi Jouzani
- Department of Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Mahnaz Aghdasi
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| |
Collapse
|