1
|
Yu H, Fan J, Zhang Y, Zhao Z, Lin Z, Jiang P. Syndecan-3 inhibits LPS-induced Inflammation of Bovine Mammary Epithelial Cells through the NF-κB Signal Transduction Pathway. J Dairy Sci 2024:S0022-0302(24)01164-0. [PMID: 39343222 DOI: 10.3168/jds.2024-25212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
In mastitis, excessive inflammation caused by lipopolysaccharide (LPS) is an important factor leading to mammary tissue damage. Therefore, exploring the regulatory factors that can inhibit the widespread inflammation caused by LPS is crucial. Syndecan-3 (SDC3) has been found to play an active role in anti-inflammatory infection by inhibiting leukocyte adhesion, reducing the accumulation of inflammatory products, such as reactive oxygen species, and competing with chemokines; however, the role and regulatory mechanism of SDC3 in mastitis remains unknown. Therefore, this study aimed to reveal the effect of SDC3 on LPS-induced inflammation in bovine mammary epithelial cells (BMECs) and explore its possible molecular mechanisms. First, we constructed a BMEC inflammatory model. It was found that cells stimulated with 10 μg/mL LPS for 24 h strongly induced the expression of inflammatory cytokines and had no toxic effect on cells, which was the best condition to simulate the BMECs inflammatory response in vitro. Subsequently, we used overexpression and RNAi interference, Real Time Quantitative PCR (RT-qPCR), and Western blot assays to explore the effects of SDC3 on LPS-induced inflammatory factors and their mechanisms. The results showed that overexpression of SDC3 could inhibit the transcriptional levels of inflammatory cytokines IL-6, IL-1β, and TNFα induced by LPS and inhibit the activation of the NF-κB inflammatory pathway by inhibiting the expression of NF-κB p50 and p-IκBα and promoting the expression of IκBα. Our results suggest that SDC3 inhibits the LPS-induced inflammatory response of BMECs through the NF-κB pathway, in which NF-κB p50 may be an important target of SDC3. These findings lay the foundation for elucidating the molecular regulatory mechanisms of dairy cow mastitis.
Collapse
Affiliation(s)
- Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Jing Fan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Yongliang Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China
| | - Ziwei Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China.
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; The Key Laboratory of Animal Resources and Breed Innovation in Western Guangdong Province, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Li H, Feng W, Wang Q, Li C, Zhu J, Sun T, Wu J. Inclusion of interleukin-6 improved the performance of postoperative acute lung injury prediction for patients undergoing surgery for thoracic aortic disease. Front Cardiovasc Med 2023; 10:1093616. [PMID: 37636294 PMCID: PMC10457658 DOI: 10.3389/fcvm.2023.1093616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Background We studied acute lung injury (ALI) in thoracic aortic disease (TAD) patients and investigated the predictive effect of interleukin-6 (IL-6) in acute lung injury after thoracic aortic disease. Methods Data on 188 TAD patients, who underwent surgery between January 2016 to December 2021 at our hospital, were enrolled in. We analyzed acute lung injury using two patient groups. Patients with No-ALI were 65 and those with ALI were 123. Univariate logistic, LASSO binary logistic regression model and multivariable logistic regression analysis were performed for acute lung injury. Results Preoperative IL-6 level was lower (15.80[3.10,43.30] vs. 47.70[21.40,91.60] pg/ml, p < 0.001) in No-ALI group than in ALI group. The cut-off points, determined by the ROC curve, were preoperative IL-6 > 18 pg/ml (area under the curve: AUC = 0.727). Univariate logistic regression analysis showed 19 features for TAD appeared to be early postoperative risk factors of acute lung injury. Using LASSO binary logistic regression, 19 features were reduced to 9 potential predictors (i.e., Scrpost + PLTpost + CPB > 182 min + D-dimerpost + D-dimerpre + Hypertension + Age > 58 years + IL6 > 18 pg/ml + IL6). Multivariable logistic regression analysis showed that Postoperative creatinine, CPB > 182 min and IL-6 > 18 pg/ml were early postoperative risk factors for ALI after TAD, and the odds ratios (ORs) of postoperative creatinine, CPB > 182 min and IL-6 > 18 pg/ml were 1.006 (1.002-1.01), 4.717 (1.306-19.294) and 2.96 (1.184-7.497), respectively. When postoperative creatinine, CPB > 182 min and IL-6 > 18 pg/ml (AUC = 0.819), the 95% confidence interval [CI] was 0.741 to 0.898. Correction curves were nearly diagonal, suggesting that the nomogram fit well. The DCA curve was then drawn to demonstrate clinical applicability. The DCA curve showed that the threshold probability of a patient is in the range of 30% to 90%. Conclusions The inclusion of interleukin-6 demonstrated good performance in predicting ALI after TAD surgery.
Collapse
Affiliation(s)
- Huili Li
- Correspondence: Huili Li Jinlin Wu
| | | | | | | | | | | | - Jinlin Wu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
3
|
Guo J, Terhorst I, Stammer P, Ibrahim A, Oberhuber A, Eierhoff T. The short-chain fatty acid butyrate exerts a specific effect on VE-cadherin phosphorylation and alters the integrity of aortic endothelial cells. Front Cell Dev Biol 2023; 11:1076250. [PMID: 36846596 PMCID: PMC9944439 DOI: 10.3389/fcell.2023.1076250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Short-chain fatty acids (SCFAs) like butyrate (BUT) largely influence vascular integrity and are closely associated with the onset and progression of cardiovascular diseases. However, their impact on vascular endothelial cadherin (VEC), a major vascular adhesion and signaling molecule, is largely unknown. Here, we explored the effect of the SCFA BUT on the phosphorylation of specific tyrosine residues of VEC (Y731, Y685, and Y658), which are reported to be critical for VEC regulation and vascular integrity. Moreover, we shed light on the signaling pathway engaged by BUT to affect the phosphorylation of VEC. Thereby, we used phospho-specific antibodies to evaluate the phosphorylation of VEC in response to the SCFA sodium butyrate in human aortic endothelial cells (HAOECs) and performed dextran assays to analyze the permeability of the EC monolayer. The role of c-Src and SCFA receptors FFAR2 and FFAR3 in the induction of VEC phosphorylation was analyzed using inhibitors and antagonists for c-Src family kinases and FFAR2/3, respectively, as well as by RNAi-mediated knockdown. Localization of VEC in response to BUT was assessed by fluorescence microscopy. BUT treatment of HAOEC resulted in the specific phosphorylation of Y731 at VEC with minor effects on Y685 and Y658. Thereby, BUT engages FFAR3, FFAR2, and c-Src kinase to induce phosphorylation of VEC. VEC phosphorylation correlated with enhanced endothelial permeability and c-Src-dependent remodeling of junctional VEC. Our data suggest that BUT, an SCFA and gut microbiota-derived metabolite, impacts vascular integrity by targeting VEC phosphorylation with potential impact on the pathophysiology and therapy of vascular diseases.
Collapse
Affiliation(s)
| | | | - Paul Stammer
- Department for Vascular and Endovascular Surgery, University Hospital Münster, Münster, Germany
| | - Abdulhakim Ibrahim
- Department for Vascular and Endovascular Surgery, University Hospital Münster, Münster, Germany
| | - Alexander Oberhuber
- Department for Vascular and Endovascular Surgery, University Hospital Münster, Münster, Germany
| | | |
Collapse
|
4
|
Endothelial Dysfunction in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24032909. [PMID: 36769234 PMCID: PMC9918222 DOI: 10.3390/ijms24032909] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The cerebral vascular system stringently regulates cerebral blood flow (CBF). The components of the blood-brain barrier (BBB) protect the brain from pathogenic infections and harmful substances, efflux waste, and exchange substances; however, diseases develop in cases of blood vessel injuries and BBB dysregulation. Vascular pathology is concurrent with the mechanisms underlying aging, Alzheimer's disease (AD), and vascular dementia (VaD), which suggests its involvement in these mechanisms. Therefore, in the present study, we reviewed the role of vascular dysfunction in aging and neurodegenerative diseases, particularly AD and VaD. During the development of the aforementioned diseases, changes occur in the cerebral blood vessel morphology and local cells, which, in turn, alter CBF, fluid dynamics, and vascular integrity. Chronic vascular inflammation and blood vessel dysregulation further exacerbate vascular dysfunction. Multitudinous pathogenic processes affect the cerebrovascular system, whose dysfunction causes cognitive impairment. Knowledge regarding the pathophysiology of vascular dysfunction in neurodegenerative diseases and the underlying molecular mechanisms may lead to the discovery of clinically relevant vascular biomarkers, which may facilitate vascular imaging for disease prevention and treatment.
Collapse
|
5
|
Biering SB, Gomes de Sousa FT, Tjang LV, Pahmeier F, Zhu C, Ruan R, Blanc SF, Patel TS, Worthington CM, Glasner DR, Castillo-Rojas B, Servellita V, Lo NTN, Wong MP, Warnes CM, Sandoval DR, Clausen TM, Santos YA, Fox DM, Ortega V, Näär AM, Baric RS, Stanley SA, Aguilar HC, Esko JD, Chiu CY, Pak JE, Beatty PR, Harris E. SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-β signaling. Nat Commun 2022; 13:7630. [PMID: 36494335 PMCID: PMC9734751 DOI: 10.1038/s41467-022-34910-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
Severe COVID-19 is associated with epithelial and endothelial barrier dysfunction within the lung as well as in distal organs. While it is appreciated that an exaggerated inflammatory response is associated with barrier dysfunction, the triggers of vascular leak are unclear. Here, we report that cell-intrinsic interactions between the Spike (S) glycoprotein of SARS-CoV-2 and epithelial/endothelial cells are sufficient to induce barrier dysfunction in vitro and vascular leak in vivo, independently of viral replication and the ACE2 receptor. We identify an S-triggered transcriptional response associated with extracellular matrix reorganization and TGF-β signaling. Using genetic knockouts and specific inhibitors, we demonstrate that glycosaminoglycans, integrins, and the TGF-β signaling axis are required for S-mediated barrier dysfunction. Notably, we show that SARS-CoV-2 infection caused leak in vivo, which was reduced by inhibiting integrins. Our findings offer mechanistic insight into SARS-CoV-2-triggered vascular leak, providing a starting point for development of therapies targeting COVID-19.
Collapse
Affiliation(s)
- Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| | | | - Laurentia V Tjang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Chi Zhu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Richard Ruan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sophie F Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Trishna S Patel
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | - Dustin R Glasner
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Bryan Castillo-Rojas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Venice Servellita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Nicholas T N Lo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Marcus P Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Colin M Warnes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel R Sandoval
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Yale A Santos
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Douglas M Fox
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Victoria Ortega
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Anders M Näär
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah A Stanley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Charles Y Chiu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - John E Pak
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Fuller H, Iles M, Moore JB, Zulyniak MA. Unique Metabolic Profiles Associate with Gestational Diabetes and Ethnicity in Low- and High-Risk Women Living in the UK. J Nutr 2022; 152:2186-2197. [PMID: 35883228 PMCID: PMC9535440 DOI: 10.1093/jn/nxac163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/28/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is the most common global pregnancy complication; however, prevalence varies substantially between ethnicities, with South Asians (SAs) experiencing up to 3 times the risk of the disease compared with white Europeans (WEs). Factors driving this discrepancy are unclear, although the metabolome is of great interest as GDM is known to be characterized by metabolic dysregulation. OBJECTIVES The primary aim was to characterize and compare the metabolic profiles of GDM in SA and WE women (at <28 wk of gestation) from the Born in Bradford (BIB) prospective birth cohort in the United Kingdom. METHODS In total, 146 fasting serum metabolites, from 2,668 pregnant WE and 2,671 pregnant SA women (average BMI 26.2 kg/m2, average age 27.3 y) were analyzed using partial least squares discriminatory analyses to characterize GDM status. Linear associations between metabolite values and post-oral glucose tolerance test measures of dysglycemia (fasting glucose and 2 h postglucose) were also examined. RESULTS Seven metabolites associated with GDM status in both ethnicities (variable importance in projection ≥1), whereas 6 additional metabolites associated with GDM only in WE women. Unique metabolic profiles were observed in healthy-weight women who later developed GDM, with distinct metabolite patterns identified by ethnicity and BMI status. Of the metabolite values analyzed in relation to dysglycemia, lactate, histidine, apolipoprotein A1, HDL cholesterol, and HDL2 cholesterol associated with decreased glucose concentration, whereas DHA and the diameter of very low-density lipoprotein particles (nm) associated with increased glucose concertation in WE women, and in SAs, albumin alone associated with decreased glucose concentration. CONCLUSIONS This study shows that the metabolic risk profile for GDM differs between WE and SA women enrolled in BiB in the United Kingdom. This suggests that etiology of the disease differs between ethnic groups and that ethnic-appropriate prevention strategies may be beneficial.
Collapse
Affiliation(s)
- Harriett Fuller
- Nutritional Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Mark Iles
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - J Bernadette Moore
- Nutritional Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Michael A Zulyniak
- Nutritional Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds, UK
| |
Collapse
|
7
|
Al-Attar R, Storey KB. RAGE management: ETS1- EGR1 mediated transcriptional networks regulate angiogenic factors in wood frogs. Cell Signal 2022; 98:110408. [PMID: 35842171 DOI: 10.1016/j.cellsig.2022.110408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022]
Abstract
Freeze-tolerant species, such as wood frogs (Rana sylvatica), are susceptible to multiple co-occurring stresses that they must overcome to survive. Freezing is accompanied by mechanical stress and dehydration due to ice crystal formation in the extracellular space, ischemia/anoxia due to interruption in blood flood, and hyperglycemia due to cryoprotective measures. Wood frogs can survive dehydration, anoxia, and high glucose stress independently of freezing, thereby creating a multifactorial model for studying freeze-tolerance. Oxidative stress and high glucose levels favors the production of pro-oxidant molecules and advanced glycation end product (AGE) adducts that could cause substantial cellular damage. In this study, the involvement of the high mobility group box 1 (HMGB1)-AGE/RAGE (receptor for AGE) axis and the regulation of ETS1 and EGR1-mediated angiogenic responses were investigated in liver of wood frogs expose to freeze/thaw, anoxia/reoxygenation and dehydration/rehydration treatments. HMGB1 and not AGE-adducts are likely to induce the activation of ETS1 and EGR1 via the RAGE pathway. The increase in nuclear localization of both ETS1 and EGR1, but not DNA binding activity in response to stress hints to a potential spatial and temporal regulation in inducing angiogenic factors. Freeze/thaw and dehydration/rehydration treatments increase the levels of both pro- and anti-angiogenic factors, perhaps to prepare for the distribution of cryoprotectants or enable the repair of damaged capillaries and wounds when needed. Overall, wood frogs appear to anticipate the need for angiogenesis in response to freezing and dehydration but not anoxic treatments, probably due to mechanical stress associated with the two former conditions.
Collapse
Affiliation(s)
- Rasha Al-Attar
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S-5B6, Canada; McEwen Stem Cell Institute, University Health Network, Toronto, Ontario, Canada
| | - Kenneth B Storey
- Institude of Biochemistry and Department of Biology, Carleton University, Ottawa, ON K1S-5B6, Canada.
| |
Collapse
|
8
|
Biering SB, de Sousa FTG, Tjang LV, Pahmeier F, Ruan R, Blanc SF, Patel TS, Worthington CM, Glasner DR, Castillo-Rojas B, Servellita V, Lo NT, Wong MP, Warnes CM, Sandoval DR, Clausen TM, Santos YA, Ortega V, Aguilar HC, Esko JD, Chui CY, Pak JE, Beatty PR, Harris E. SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-β signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.10.472112. [PMID: 34931188 PMCID: PMC8687463 DOI: 10.1101/2021.12.10.472112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Severe COVID-19 is associated with epithelial and endothelial barrier dysfunction within the lung as well as in distal organs. While it is appreciated that an exaggerated inflammatory response is associated with barrier dysfunction, the triggers of this pathology are unclear. Here, we report that cell-intrinsic interactions between the Spike (S) glycoprotein of SARS-CoV-2 and epithelial/endothelial cells are sufficient to trigger barrier dysfunction in vitro and vascular leak in vivo , independently of viral replication and the ACE2 receptor. We identify an S-triggered transcriptional response associated with extracellular matrix reorganization and TGF-β signaling. Using genetic knockouts and specific inhibitors, we demonstrate that glycosaminoglycans, integrins, and the TGF-β signaling axis are required for S-mediated barrier dysfunction. Our findings suggest that S interactions with barrier cells are a contributing factor to COVID-19 disease severity and offer mechanistic insight into SARS-CoV-2 triggered vascular leak, providing a starting point for development of therapies targeting COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | - Laurentia V. Tjang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Richard Ruan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sophie F. Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Trishna S. Patel
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | - Dustin R. Glasner
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Bryan Castillo-Rojas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Venice Servellita
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Nicholas T.N. Lo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Marcus P. Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Colin M. Warnes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel R. Sandoval
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Yale A. Santos
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Victoria Ortega
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Charles Y. Chui
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - John E. Pak
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - P. Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Lead contact
| |
Collapse
|
9
|
Lim JJ, Li X, Lehmler HJ, Wang D, Gu H, Cui JY. Gut Microbiome Critically Impacts PCB-induced Changes in Metabolic Fingerprints and the Hepatic Transcriptome in Mice. Toxicol Sci 2021; 177:168-187. [PMID: 32544245 DOI: 10.1093/toxsci/kfaa090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are ubiquitously detected and have been linked to metabolic diseases. Gut microbiome is recognized as a critical regulator of disease susceptibility; however, little is known how PCBs and gut microbiome interact to modulate hepatic xenobiotic and intermediary metabolism. We hypothesized the gut microbiome regulates PCB-mediated changes in the metabolic fingerprints and hepatic transcriptome. Ninety-day-old female conventional and germ-free mice were orally exposed to the Fox River Mixture (synthetic PCB mixture, 6 or 30 mg/kg) or corn oil (vehicle control, 10 ml/kg), once daily for 3 consecutive days. RNA-seq was conducted in liver, and endogenous metabolites were measured in liver and serum by LC-MS. Prototypical target genes of aryl hydrocarbon receptor, pregnane X receptor, and constitutive androstane receptor were more readily upregulated by PCBs in conventional conditions, indicating PCBs, to the hepatic transcriptome, act partly through the gut microbiome. In a gut microbiome-dependent manner, xenobiotic, and steroid metabolism pathways were upregulated, whereas response to misfolded proteins-related pathways was downregulated by PCBs. At the high PCB dose, NADP, and arginine appear to interact with drug-metabolizing enzymes (ie, Cyp1-3 family), which are highly correlated with Ruminiclostridium and Roseburia, providing a novel explanation of gut-liver interaction from PCB-exposure. Utilizing the Library of Integrated Network-based Cellular Signatures L1000 database, therapeutics targeting anti-inflammatory and endoplasmic reticulum stress pathways are predicted to be remedies that can mitigate PCB toxicity. Our findings demonstrate that habitation of the gut microbiota drives PCB-mediated hepatic responses. Our study adds knowledge of physiological response differences from PCB exposure and considerations for further investigations for gut microbiome-dependent therapeutics.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195
| | - Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242; and
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242; and
| | - Dongfang Wang
- Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, Arizona 85259
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195
| |
Collapse
|
10
|
Wang T, Liu C, Pan LH, Liu Z, Li CL, Lin JY, He Y, Xiao JY, Wu S, Qin Y, Li Z, Lin F. Inhibition of p38 MAPK Mitigates Lung Ischemia Reperfusion Injury by Reducing Blood-Air Barrier Hyperpermeability. Front Pharmacol 2020; 11:569251. [PMID: 33362540 PMCID: PMC7759682 DOI: 10.3389/fphar.2020.569251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023] Open
Abstract
Background: Lung ischemia reperfusion injury (LIRI) is a complex pathophysiological process activated by lung transplantation and acute lung injury. The p38 mitogen-activated protein kinase (MAPK) is involved in breakdown of the endothelial barrier during LIRI, but the mechanism is still unclear. Therefore, we investigated the function of p38 MAPK in LIRI in vivo and in vitro. Methods: Sprague–Dawley rats were subjected to ischemia reperfusion with or without pretreatment with a p38 MAPK inhibitor. Lung injury was assessed using hematoxylin and eosin staining, and pulmonary blood–air barrier permeability was evaluated using Evans blue staining. A rat pulmonary microvascular endothelial cell line was infected with lentiviral expressing short hairpin (sh)RNA targeting p38 MAPK and then cells were subjected to oxygen/glucose deprivation and reoxygenation (OGD/R). Markers of endothelial destruction were measured by western blot and immunofluorescence. Results:In vivo LIRI models showed structural changes indicative of lung injury and hyperpermeability of the blood–air barrier. Inhibiting p38 MAPK mitigated these effects. Oxygen/glucose deprivation and reoxygenation promoted hyperpermeability of the endothelial barrier in vitro, but knockdown of p38 MAPK attenuated cell injury; maintained endothelial barrier integrity; and partially reversed injury-induced downregulation of permeability protein AQP1, endothelial protective protein eNOS, and junction proteins ZO-1 and VE-cadherin while downregulating ICAM-1, a protein involved in destroying the endothelial barrier, and ET-1, a protein involved in endothelial dysfunction. Conclusion: Inhibition of p38 MAPK alleviates LIRI by decreasing blood–air hyperpermeability. Blocking p38 MAPK may be an effective treatment against acute lung injury.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chunxia Liu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ling-Hui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhen Liu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chang-Long Li
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jin-Yuan Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yi He
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing-Yuan Xiao
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Siyi Wu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yi Qin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhao Li
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
11
|
Oliveira GL, Coelho AR, Marques R, Oliveira PJ. Cancer cell metabolism: Rewiring the mitochondrial hub. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166016. [PMID: 33246010 DOI: 10.1016/j.bbadis.2020.166016] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
To adapt to tumoral environment conditions or even to escape chemotherapy, cells rapidly reprogram their metabolism to handle adversities and survive. Given the rapid rise of studies uncovering novel insights and therapeutic opportunities based on the role of mitochondria in tumor metabolic programing and therapeutics, this review summarizes most significant developments in the field. Taking in mind the key role of mitochondria on carcinogenesis and tumor progression due to their involvement on tumor plasticity, metabolic remodeling, and signaling re-wiring, those organelles are also potential therapeutic targets. Among other topics, we address the recent data intersecting mitochondria as of prognostic value and staging in cancer, by mitochondrial DNA (mtDNA) determination, and current inhibitors developments targeting mtDNA, OXPHOS machinery and metabolic pathways. We contribute for a holistic view of the role of mitochondria metabolism and directed therapeutics to understand tumor metabolism, to circumvent therapy resistance, and to control tumor development.
Collapse
Affiliation(s)
- Gabriela L Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ana R Coelho
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Ricardo Marques
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal.
| |
Collapse
|
12
|
Hypothesis: Rheumatoid arthritis and periodontitis: A new possible link via prolactin hormone. Med Hypotheses 2020; 146:110350. [PMID: 33189451 DOI: 10.1016/j.mehy.2020.110350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
Rheumatoid arthritis and periodontitis are two common chronic inflammatory diseases affecting human population worldwide. The association between the two conditions have been the focus of many researches, trying to explore the possible mechanisms underlying this association. Prolactin hormone, besides its known lactogenic effects acts as a cytokine secreted from various tissues other than the pituitary gland with multiple pleotropic actions in immunity and inflammation. Several data showed that prolactin levels are increased significantly in the synovial and periodontal tissues, and this increase is correlated with disease activity and tissue destruction. Our hypothesis suggests that local prolactin can represent a link between the two conditions. In this work, we suggest a possible mechanistic interactions, hypothesized to form a common path linking between rheumatoid arthritis, periodontitis and prolactin. This is because of the need to develop new treatment strategies for the most effective long term control of inflammation in both conditions.
Collapse
|
13
|
Fu P, Ramchandran R, Shaaya M, Huang L, Ebenezer DL, Jiang Y, Komarova Y, Vogel SM, Malik AB, Minshall RD, Du G, Tonks NK, Natarajan V. Phospholipase D2 restores endothelial barrier function by promoting PTPN14-mediated VE-cadherin dephosphorylation. J Biol Chem 2020; 295:7669-7685. [PMID: 32327488 DOI: 10.1074/jbc.ra119.011801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/03/2020] [Indexed: 11/06/2022] Open
Abstract
Increased permeability of vascular lung tissues is a hallmark of acute lung injury and is often caused by edemagenic insults resulting in inflammation. Vascular endothelial (VE)-cadherin undergoes internalization in response to inflammatory stimuli and is recycled at cell adhesion junctions during endothelial barrier re-establishment. Here, we hypothesized that phospholipase D (PLD)-generated phosphatidic acid (PA) signaling regulates VE-cadherin recycling and promotes endothelial barrier recovery by dephosphorylating VE-cadherin. Genetic deletion of PLD2 impaired recovery from protease-activated receptor-1-activating peptide (PAR-1-AP)-induced lung vascular permeability and potentiated inflammation in vivo In human lung microvascular endothelial cells (HLMVECs), inhibition or deletion of PLD2, but not of PLD1, delayed endothelial barrier recovery after thrombin stimulation. Thrombin stimulation of HLMVECs increased co-localization of PLD2-generated PA and VE-cadherin at cell-cell adhesion junctions. Inhibition of PLD2 activity resulted in prolonged phosphorylation of Tyr-658 in VE-cadherin during the recovery phase 3 h post-thrombin challenge. Immunoprecipitation experiments revealed that after HLMVECs are thrombin stimulated, PLD2, VE-cadherin, and protein-tyrosine phosphatase nonreceptor type 14 (PTPN14), a PLD2-dependent protein-tyrosine phosphatase, strongly associate with each other. PTPN14 depletion delayed VE-cadherin dephosphorylation, reannealing of adherens junctions, and barrier function recovery. PLD2 inhibition attenuated PTPN14 activity and reversed PTPN14-dependent VE-cadherin dephosphorylation after thrombin stimulation. Our findings indicate that PLD2 promotes PTPN14-mediated dephosphorylation of VE-cadherin and that redistribution of VE-cadherin at adherens junctions is essential for recovery of endothelial barrier function after an edemagenic insult.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | | | - Mark Shaaya
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Longshuang Huang
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - David L Ebenezer
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Ying Jiang
- Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Yulia Komarova
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Stephen M Vogel
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois, Chicago, Illinois
| | - Richard D Minshall
- Department of Pharmacology, University of Illinois, Chicago, Illinois.,Department of Anesthesiology, University of Illinois, Chicago, Illinois
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois .,Department of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
14
|
Liu X, Yu J, Zhao J, Guo J, Zhang M, Liu L. Glucose challenge metabolomics implicates the change of organic acid profiles in hyperlipidemic subjects. Biomed Chromatogr 2020; 34:e4815. [PMID: 32115742 DOI: 10.1002/bmc.4815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/02/2020] [Accepted: 02/26/2020] [Indexed: 01/17/2023]
Abstract
Hyperlipidemia (HLP) is a major risk factor of diabetes and cardiovascular disease. Here, we applied gas chromatography-mass spectrometry to study differences in postprandial organic acid profiles in healthy and HLP subjects. In fasting status, six intermediates of the tricarboxylic acid cycle showed significant differences in HLP and healthy controls (P < 0.05). The percentage changes of 17 metabolites including three intermediates of the tricarboxylic acid cycle were significantly different during the oral glucose tolerance test. Postprandial changes in ethylmalonic acid and pimelic acid were negatively associated with HOMA-IR (homeostasis model assessment of insulin resistance; all P < 0.05) in the HLP group. Postprandial metabolism of organic acid profiles revealed energy metabolism perturbations in HLP. Our findings provide new insights into the complex physiological regulation of HLP postprandial metabolism.
Collapse
Affiliation(s)
- Xiaowei Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Jiaying Yu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Jinhui Zhao
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Jing Guo
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Mingjia Zhang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Liyan Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
15
|
Shomali N, Baradaran B, Deljavanghodrati M, Akbari M, Hemmatzadeh M, Mohammadi H, Jang Y, Xu H, Sandoghchian Shotorbani S. A new insight into thymosin β4, a promising therapeutic approach for neurodegenerative disorders. J Cell Physiol 2019; 235:3270-3279. [PMID: 31612500 DOI: 10.1002/jcp.29293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
Thymosin β4 (Tβ4), a G-actin-sequestering secreted peptide, improves neurovascular remodeling and central nervous system plasticity, which leads to neurological recovery in many neurological diseases. Inflammatory response adjustment and tissue inflammation consequences from neurological injury are vital for neurological recovery. The innate or nonspecific immune system is made of different components. The Toll-like receptor pro-inflammatory signaling pathway, which is one of these components, regulates tissue injury. The main component of the Toll-like/IL-1 receptor signaling pathway, which is known as IRAK1, can be regulated by miR-146a and regulates NF-κB expression. Due to the significant role of Tβ4 in oligodendrocytes, neurons, and microglial cells in neurological recovery, it is suggested that Tβ4 regulates the Toll-like receptor (TLR) pro-inflammatory signaling pathway by upregulating miR-146a in neurological disorders. However, further investigations on the role of Tβ4 in regulating the expression of miR146a and TLR signaling pathway in the immune response adjustment in neurological disorders provides an insight into mechanisms of action and the possibility of Tβ4 therapeutic effect enhancement.
Collapse
Affiliation(s)
- Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Yue Jang
- Department of Immunology, Center of Clinical Medicine and Laboratory, Jiangsu University, Zhenjiang, China
| | - Huaxi Xu
- Department of Immunology, Center of Clinical Medicine and Laboratory, Jiangsu University, Zhenjiang, China
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Center of Clinical Medicine and Laboratory, Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Akla N, Viallard C, Popovic N, Lora Gil C, Sapieha P, Larrivée B. BMP9 (Bone Morphogenetic Protein-9)/Alk1 (Activin-Like Kinase Receptor Type I) Signaling Prevents Hyperglycemia-Induced Vascular Permeability. Arterioscler Thromb Vasc Biol 2019; 38:1821-1836. [PMID: 29880487 DOI: 10.1161/atvbaha.118.310733] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective- Diabetic macular edema is a major cause of visual impairment. It is caused by blood-retinal barrier breakdown that leads to vascular hyperpermeability. Current therapeutic approaches consist of retinal photocoagulation or targeting VEGF (vascular endothelial growth factor) to limit vascular leakage. However, long-term intravitreal use of anti-VEGFs is associated with potential safety issues, and the identification of alternative regulators of vascular permeability may provide safer therapeutic options. The vascular specific BMP (bone morphogenetic protein) receptor ALK1 (activin-like kinase receptor type I) and its circulating ligand BMP9 have been shown to be potent vascular quiescence factors, but their role in the context of microvascular permeability associated with hyperglycemia has not been evaluated. Approach and Results- We investigated Alk1 signaling in hyperglycemic endothelial cells and assessed whether BMP9/Alk1 signaling could modulate vascular permeability. We show that high glucose concentrations impair Alk1 signaling, both in cultured endothelial cells and in a streptozotocin model of mouse diabetes mellitus. We observed that Alk1 signaling participates in the maintenance of vascular barrier function, as Alk1 haploinsufficiency worsens the vascular leakage observed in diabetic mice. Conversely, sustained delivery of BMP9 by adenoviral vectors significantly decreased the loss of retinal barrier function in diabetic mice. Mechanistically, we demonstrate that Alk1 signaling prevents VEGF-induced phosphorylation of VE-cadherin and induces the expression of occludin, thus strengthening vascular barrier functions. Conclusions- From these data, we suggest that by preventing retinal vascular permeability, BMP9 could serve as a novel therapeutic agent for diabetic macular edema.
Collapse
Affiliation(s)
- Naoufal Akla
- From the Department of Biochemistry (N.A., P.S.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| | - Claire Viallard
- Department of Molecular Biology (C.V., B.L.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| | - Natalija Popovic
- Department of Biomedical Sciences (N.P., C.L.G., B.L.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| | - Cindy Lora Gil
- Department of Biomedical Sciences (N.P., C.L.G., B.L.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| | - Przemyslaw Sapieha
- From the Department of Biochemistry (N.A., P.S.).,Department of Ophthalmology (P.S., B.L.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| | - Bruno Larrivée
- Department of Molecular Biology (C.V., B.L.).,Department of Biomedical Sciences (N.P., C.L.G., B.L.).,Department of Ophthalmology (P.S., B.L.).,University of Montreal, Quebec, Canada; and Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec, Canada (N.A., C.V., N.P., C.L.G., P.S., B.L.)
| |
Collapse
|
17
|
Pourmand A, Whiteside T, Yamane D, Rashed A, Mazer-Amirshahi M. The controversial role of corticosteroids in septic shock. Am J Emerg Med 2019; 37:1353-1361. [PMID: 31056383 DOI: 10.1016/j.ajem.2019.04.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/13/2019] [Accepted: 04/25/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Several clinical trials and literature reviews have been conducted to evaluate the impact of corticosteroids on the physiological markers and clinical outcomes of patients in septic shock. While the findings have been somewhat contradictory, there is evidence of moderate benefit from the administration of low-dose corticosteroids to patients in septic shock. In this review, we discuss recent studies evaluating the impact of corticosteroids on morbidity and mortality in septic shock and explore future directions to fully elucidate when and how the administration of corticosteroid therapies can be beneficial. METHODS A literature review was performed using the Mesh database of PubMed with the term "septic shock" and subheadings "therapeutic use", "drug therapy", "pharmacology", and "therapy" followed by the addition of "steroid". Filters were added to restrict the search to 18+ age, English and human studies, and articles published within the last 10 years. One hundred sixty-five articles were examined and twenty-five were deemed relevant to this review. RESULTS The twenty-five articles reviewed here provide conflicting evidence as to the usefulness of corticosteroid treatments during septic shock. Several showed improved physiological outcomes, including rates of organ failure, need for life supporting interventions, adverse effects, inflammatory markers, and perfusion during the course of septic shock, as well as decreased mortality for a statistically significant number of patients. CONCLUSIONS There remains a need for improved therapy for patients in septic shock. Corticosteroids have shown some potential in improving mortality rates and clinical markers. Additional studies are needed to determine the optimal role of corticosteroids in septic shock.
Collapse
Affiliation(s)
- Ali Pourmand
- Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Tess Whiteside
- Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - David Yamane
- Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Amir Rashed
- Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Maryann Mazer-Amirshahi
- Department of Emergency Medicine, MedStar Washington Hospital Center, Washington, DC, United States; Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
18
|
Abebayehu D, Spence AJ, Caslin H, Taruselli M, Haque TT, Kiwanuka KN, Kolawole EM, Chumanevich AP, Sell SA, Oskeritzian CA, Ryan J, Kee SA. Lactic acid suppresses IgE-mediated mast cell function in vitro and in vivo. Cell Immunol 2019; 341:103918. [PMID: 31030957 DOI: 10.1016/j.cellimm.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/21/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Mast cells have functional plasticity affected by their tissue microenvironment, which greatly impacts their inflammatory responses. Because lactic acid (LA) is abundant in inflamed tissues and tumors, we investigated how it affects mast cell function. Using IgE-mediated activation as a model system, we found that LA suppressed inflammatory cytokine production and degranulation in mouse peritoneal mast cells, data that were confirmed with human skin mast cells. In mouse peritoneal mast cells, LA-mediated cytokine suppression was dependent on pH- and monocarboxylic transporter-1 expression. Additionally, LA reduced IgE-induced Syk, Btk, and ERK phosphorylation, key signals eliciting inflammation. In vivo, LA injection reduced IgE-mediated hypothermia in mice undergoing passive systemic anaphylaxis. Our data suggest that LA may serve as a feedback inhibitor that limits mast cell-mediated inflammation.
Collapse
Affiliation(s)
- Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States
| | - Andrew J Spence
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States
| | - Heather Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States
| | - Marcela Taruselli
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States
| | - Tamara T Haque
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States
| | - Kasalina N Kiwanuka
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States
| | | | - Alena P Chumanevich
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - Scott A Sell
- Department of Biomedical Engineering, Parks College of Engineering, Aviation and Technology, Saint Louis University, St. Louis, MO 63103, United States
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - John Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States.
| | - Sydney Ann Kee
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284-2012, United States
| |
Collapse
|
19
|
Li X, Zhang Q, Hou N, Li J, Liu M, Peng S, Zhang Y, Luo Y, Zhao B, Wang S, Zhang Y, Qiao Y. Carnosol as a Nrf2 Activator Improves Endothelial Barrier Function Through Antioxidative Mechanisms. Int J Mol Sci 2019; 20:ijms20040880. [PMID: 30781644 PMCID: PMC6413211 DOI: 10.3390/ijms20040880] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is the main pathogenesis of diabetic microangiopathy, which can cause microvascular endothelial cell damage and destroy vascular barrier. In this study, it is found that carnosol protects human microvascular endothelial cells (HMVEC) through antioxidative mechanisms. First, we measured the antioxidant activity of carnosol. We showed that carnosol pretreatment suppressed tert-butyl hydroperoxide (t-BHP)-induced cell viability, affected the production of lactate dehydrogenase (LDH) as well as reactive oxygen species (ROS), and increased the produce of nitric oxide (NO). Additionally, carnosol promotes the protein expression of vascular endothelial cadherin (VE-cadherin) to keep the integrity of intercellular junctions, which indicated that it protected microvascular barrier in oxidative stress. Meanwhile, we investigated that carnosol can interrupt Nrf2-Keap1 protein−protein interaction and stimulated antioxidant-responsive element (ARE)-driven luciferase activity in vitro. Mechanistically, we showed that carnosol promotes the expression of heme oxygenase 1(HO-1) and nuclear factor-erythroid 2 related factor 2(Nrf2). It can also promote the expression of endothelial nitric oxide synthase (eNOS). Collectively, our data support the notion that carnosol is a protective agent in HMVECs and has the potential for therapeutic use in the treatments of microvascular endothelial cell injury.
Collapse
Affiliation(s)
- Xi Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Qiao Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Ning Hou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Jing Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Min Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Sha Peng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Yuxin Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Yinzhen Luo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Bowen Zhao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Shifeng Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Yanling Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| | - Yanjiang Qiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
- Beijing Key Laboratory of Chinese Materia Medica Foundation and New Drug Research and Development, Beijing 100102, China.
| |
Collapse
|
20
|
Yang L, Zhang Y, Ma Y, Du J, Gu L, Zheng L, Zhang X. Effect of melatonin on EGF- and VEGF-induced monolayer permeability of HUVECs. Am J Physiol Heart Circ Physiol 2018; 316:H1178-H1191. [PMID: 30575440 DOI: 10.1152/ajpheart.00542.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Melatonin is a natural hormone involved in the regulation of circadian rhythm, immunity, and cardiovascular function. In the present study, we focused on the mechanism of melatonin in the regulation of vascular permeability. We found that melatonin could inhibit both VEGF- and EGF-induced monolayer permeability of human umbilical vein endothelial cells (HUVECs) and change the tyrosine phosphorylation of vascular-endothelial (VE-)cadherin, which was related to endothelial barrier function. In addition, phospho-AKT (Ser473) and phospho-ERK(1/2) played significant roles in the regulation of VE-cadherin phosphorylation. Both the phosphatidylinositol 3-kinase/AKT inhibitor LY49002 and MEK/ERK inhibitor U0126 could inhibit the permeability of HUVECs, but with different effects on tyrosine phosphorylation of VE-cadherin. Melatonin can influence the two growth factor-induced phosphorylation of AKT (Ser473) but not ERK(1/2). Our results show that melatonin can inhibit growth factor-induced monolayer permeability of HUVECs by influencing the phosphorylation of AKT and VE-cadherin. Melatonin can be a potential treatment for diseases associated with abnormal vascular permeability. NEW & NOTEWORTHY We found that melatonin could inhibit both EGF- and VEGF-induced monolayer permeability of human umbilical vein endothelial cells, which is related to phosphorylation of vascular-endothelial cadherin. Blockade of phosphatidylinositol 3-kinase/AKT and MEK/ERK pathways could inhibit the permeability of human umbilical vein endothelial cells, and phosphorylation of AKT (Ser473) might be a critical event in the changing of monolayer permeability and likely has cross-talk with the MEK/ERK pathway.
Collapse
Affiliation(s)
- Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University , Changzhou, Jiangsu , China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University , Nanjing, Jiangsu , China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University , Nanjing, Jiangsu , China
| | - Yadong Ma
- Department of Physiology, Nanjing Medical University , Nanjing, Jiangsu , China
| | - Jun Du
- Department of Physiology, Nanjing Medical University , Nanjing, Jiangsu , China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University , Nanjing, Jiangsu , China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University , Nanjing, Jiangsu , China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University , Nanjing, Jiangsu , China
| | - Lu Zheng
- General Laboratory, The Third Affiliated Hospital of Soochow University , Changzhou, Jiangsu , China
| | - Xiaoying Zhang
- Department of Cardiothoracic surgery and the General Laboratory, The Third Affiliated Hospital of Soochow University , Changzhou, Jiangsu , China
| |
Collapse
|
21
|
Sahin Aydınyurt H, Yuncu YZ, Tekin Y, Ertugrul AS. IL-6, TNF-α levels and periodontal status changes during the menstrual cycle. Oral Dis 2018; 24:1599-1605. [DOI: 10.1111/odi.12917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Hacer Sahin Aydınyurt
- Department of Periodontology; Faculty of Dentistry; Yuzuncu Yil University; Van Turkey
| | - Yusuf Ziya Yuncu
- Department of Periodontology; Faculty of Dentistry; Yuzuncu Yil University; Van Turkey
| | - Yasin Tekin
- Department of Periodontology; Faculty of Dentistry; Trakya University; Edirne Turkey
| | | |
Collapse
|
22
|
Reyes L, Phillips P, Wolfe B, Golos TG, Walkenhorst M, Progulske-Fox A, Brown M. Porphyromonas gingivalis and adverse pregnancy outcome. J Oral Microbiol 2017; 10:1374153. [PMID: 29291034 PMCID: PMC5646603 DOI: 10.1080/20002297.2017.1374153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/23/2017] [Indexed: 01/12/2023] Open
Abstract
Porphyromonas gingivalis is a Gram-negative, anaerobic bacterium considered to be an important pathogen of periodontal disease that is also implicated in adverse pregnancy outcome (APO). Until recently, our understanding of the role of P. gingivalis in APO has been limited and sometimes contradictory. The purpose of this review is to provide an overview of past and current research on P. gingivalis that addresses some of the controversies concerning the role of this organism in the pathogenesis of APO.
Collapse
Affiliation(s)
- Leticia Reyes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Priscilla Phillips
- Microbiology & Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| | - Bryce Wolfe
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Madison, WI, USA.,Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Molly Walkenhorst
- Microbiology & Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO, USA
| | - Ann Progulske-Fox
- Department of Oral Microbiology, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA
| | - Mary Brown
- Infectious Disease and Immunology, College of Veterinary Medicine and D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| |
Collapse
|
23
|
Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM. ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:105-137. [PMID: 29047084 PMCID: PMC7120947 DOI: 10.1007/978-3-319-63245-2_8] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The generation of reactive oxygen species (ROS) plays an important role for the maintenance of cellular processes and functions in the body. However, the excessive generation of oxygen radicals under pathological conditions such as acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) leads to increased endothelial permeability. Within this hallmark of ALI and ARDS, vascular microvessels lose their junctional integrity and show increased myosin contractions that promote the migration of polymorphonuclear leukocytes (PMNs) and the transition of solutes and fluids in the alveolar lumen. These processes all have a redox component, and this chapter focuses on the role played by ROS during the development of ALI/ARDS. We discuss the origins of ROS within the cell, cellular defense mechanisms against oxidative damage, the role of ROS in the development of endothelial permeability, and potential therapies targeted at oxidative stress.
Collapse
Affiliation(s)
- Manuela Kellner
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Satish Noonepalle
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Qing Lu
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Anup Srivastava
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Evgeny Zemskov
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Stephen M Black
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA.
| |
Collapse
|