1
|
Navarro-Sánchez M, Gil-Miravet I, Montero-Caballero D, Castillo-Gómez E, Gundlach AL, Olucha-Bordonau FE. Some key parameters in contextual fear conditioning and extinction in adult rats. Behav Brain Res 2024; 462:114874. [PMID: 38266780 DOI: 10.1016/j.bbr.2024.114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Contextual fear conditioning is a behavioral paradigm used to assess hippocampal-dependent memory in experimental animals. Perception of the context depends on activation of a distinct population of neurons in the hippocampus and in hippocampal-related areas that process discrete aspects of context perception. In the absence of any putatively associated cue, the context becomes the salient element that may warn of an upcoming aversive event; and in particular conditions, animals generalize this warning to any new or similar context. In this study we evaluated the effects of the number of sessions, the number of unconditioned stimuli per acquisition session and the distribution of extinction sessions to assess fear acquisition and extinction and determine under which conditions generalization occurred in adult, male rats. We observed that the organization and spacing of sessions were relevant factors in the acquisition and extinction of contextual fear memories. Extinction occurred with significantly greater robustness when sessions were spread over two days. Furthermore, results indicated that exposure to a single 0.3 mA, 0.5 s footshock in two different sessions could produce context-specific fear, while more acquisition sessions or more footshocks within a single session produced a generalization of the fear response to a new context. Notably, when generalization occurred, successive re-exposure to the generalized context produced extinction in a similar way to the paired exposure. Together, the present findings identify clear procedural and behavioral parameters amenable to neural systems analysis of three clinically relevant outcomes of contextual fear conditioning, i.e., memory acquisition, storage and extinction.
Collapse
Affiliation(s)
- Mónica Navarro-Sánchez
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Daniel Montero-Caballero
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Esther Castillo-Gómez
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain; Spanish Stress Research Network, Ministry of Science and Innovation, Valencia, Spain; Spanish National Network for Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrew L Gundlach
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Francisco E Olucha-Bordonau
- Unitat Predepartamental de Medicina, Facutat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain; Spanish Stress Research Network, Ministry of Science and Innovation, Valencia, Spain; Spanish National Network for Research in Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Aukema RJ, Baglot SL, Scheufen J, Lightfoot SH, Hill MN. Circadian Influence on Acute Stress-induced Changes in Cortico-limbic Endocannabinoid Levels in Adult Male Rats. Neuroscience 2024; 537:84-92. [PMID: 38006961 DOI: 10.1016/j.neuroscience.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The endocannabinoid (eCB) system plays an important role in regulating the stress response, including glucocorticoid release and the generation of avoidance behaviour. Its two major ligands, 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (anandamide; AEA), are dynamically influenced by psychological stress to gate the generation of the stress response and facilitate recovery upon stress termination. Many biological systems exhibit circadian "daily" rhythms, including glucocorticoids and endocannabinoids, and the behavioural and endocrine impact of stress is modulated by the time of day. Nonetheless, most preclinical experiments investigating the interaction between stress and endocannabinoids occur in the light, "inactive" phase. We therefore tested if circadian phase influences stress-induced changes in eCB levels in the hippocampus (HIP), prefrontal cortex (PFC), and amygdala (AMY). Adult male rats were exposed to 15 min swim stress or immediately euthanized, and brains were collected. Testing occurred either early in the light or early in the dark phase of their cycle to compare circadian effects. We found that overall, stress decreased AEA in the AMY and HIP, with an effect in the PFC dependent on the time of day. Conversely, stress increased 2-AG in the AMY, with an effect in the PFC and HIP dependent on the time of day. This suggests that stress has a similar overall impact on eCB levels regardless of circadian phase, but that subtle differences may occur depending on the brain region, especially the PFC.
Collapse
Affiliation(s)
- Robert J Aukema
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Mathison Centre for Mental Health, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Samantha L Baglot
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Mathison Centre for Mental Health, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jessica Scheufen
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Mathison Centre for Mental Health, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Savannah Hm Lightfoot
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Mathison Centre for Mental Health, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Mathison Centre for Mental Health, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Department of Cell Biology and Anatomy, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada; Department of Psychiatry, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
3
|
Zuo Y, Hou Y, Wang Y, Yuan L, Cheng L, Zhang T. Circadian misalignment impairs oligodendrocyte myelination via Bmal1 overexpression leading to anxiety and depression-like behaviors. J Pineal Res 2024; 76:e12935. [PMID: 38241675 DOI: 10.1111/jpi.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
Circadian misalignment (CM) caused by shift work can increase the risk of mood impairment. However, the pathological mechanisms underlying these deficits remain unclear. In the present study, we used long-term variable photoperiod (L-VP) in wild-type mice to better simulate real-life shift patterns and study its effects on the prefrontal cortex (PFC) and hippocampus, which are closely related to mood function. The results showed that exposure to L-VP altered the activity/rest rhythms of mice, by eliciting phase delay and decreased amplitude of the rhythms. Mice with CM developed anxiety and depression-like manifestations and the number of mature oligodendrocytes (OL) was reduced in the medial prefrontal cortex and hippocampal CA1 regions. Mood impairment and OL reduction worsened with increased exposure time to L-VP, while normal photoperiod restoration had no effect. Mechanistically, we identified upregulation of Bmal1 in the PFC and hippocampal regions of CM mice at night, when genes related to mature OL and myelination should be highly expressed. CM mice exhibited significant inhibition of the protein kinase B (AKT)/mTOR signaling pathway, which is directly associated to OL differentiation and maturation. Furthermore, we demonstrated in the OL precursor cell line Oli-Neu that overexpression of Bmal1 inhibits AKT/mTOR pathway and reduces the expression of genes OL differentiation. In conclusion, BMAL1 might play a critical role in CM, providing strong research evidence for BMAL1 as a potential target for CM therapy.
Collapse
Affiliation(s)
- Yao Zuo
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing Boai Hospital, Beijing, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yuanyuan Hou
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yunlei Wang
- Department of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing Boai Hospital, Beijing, China
| | - Linran Yuan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing Boai Hospital, Beijing, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Lingna Cheng
- Department of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing Boai Hospital, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Tong Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing Boai Hospital, Beijing, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Earnhardt-San AL, Baker EC, Riley DG, Ghaffari N, Long CR, Cardoso RC, Randel RD, Welsh TH. Differential Expression of Circadian Clock Genes in the Bovine Neuroendocrine Adrenal System. Genes (Basel) 2023; 14:2082. [PMID: 38003025 PMCID: PMC10670998 DOI: 10.3390/genes14112082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Knowledge of circadian rhythm clock gene expression outside the suprachiasmatic nucleus is increasing. The purpose of this study was to determine whether expression of circadian clock genes differed within or among the bovine stress axis tissues (e.g., amygdala, hypothalamus, pituitary, adrenal cortex, and adrenal medulla). Tissues were obtained at an abattoir from eight mature nonpregnant Brahman cows that had been maintained in the same pasture and nutritional conditions. Sample tissues were stored in RNase-free sterile cryovials at -80 °C until the total RNA was extracted, quantified, assessed, and sequenced (NovaSeq 6000 system; paired-end 150 bp cycles). The trimmed reads were then mapped to a Bos taurus (B. taurus) reference genome (Umd3.1). Further analysis used the edgeR package. Raw gene count tables were read into RStudio, and low-expression genes were filtered out using the criteria of three minimum reads per gene in at least five samples. Normalization factors were then calculated using the trimmed mean of M values method to produce normalized gene counts within each sample tissue. The normalized gene counts important for a circadian rhythm were analyzed within and between each tissue of the stress axis using the GLM and CORR procedures of the Statistical Analysis System (SAS). The relative expression profiles of circadian clock genes differed (p < 0.01) within each tissue, with neuronal PAS domain protein 2 (NPAS2) having greater expression in the amygdala (p < 0.01) and period circadian regulator (PER1) having greater expression in all other tissues (p < 0.01). The expression among tissues also differed (p < 0.01) for individual circadian clock genes, with circadian locomotor output cycles protein kaput (CLOCK) expression being greater within the adrenal tissues and nuclear receptor subfamily 1 group D member 1 (NR1D1) expression being greater within the other tissues (p < 0.01). Overall, the results indicate that within each tissue, the various circadian clock genes were differentially expressed, in addition to being differentially expressed among the stress tissues of mature Brahman cows. Future use of these findings may assist in improving livestock husbandry and welfare by understanding interactions of the environment, stress responsiveness, and peripheral circadian rhythms.
Collapse
Affiliation(s)
- Audrey L. Earnhardt-San
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA; (C.R.L.); (R.D.R.)
| | - Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Charles R. Long
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA; (C.R.L.); (R.D.R.)
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| | - Ronald D. Randel
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA; (C.R.L.); (R.D.R.)
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (D.G.R.); (R.C.C.)
| |
Collapse
|
5
|
Simon L, Admon R. From childhood adversity to latent stress vulnerability in adulthood: the mediating roles of sleep disturbances and HPA axis dysfunction. Neuropsychopharmacology 2023; 48:1425-1435. [PMID: 37391592 PMCID: PMC10425434 DOI: 10.1038/s41386-023-01638-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/29/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Childhood adversity is a prominent predisposing risk factor for latent stress vulnerability, expressed as an elevated likelihood of developing stress-related psychopathology upon subsequent exposure to trauma in adulthood. Sleep disturbances have emerged as one of the most pronounced maladaptive behavioral outcomes of childhood adversity and are also a highly prevalent core feature of stress-related psychopathology, including post-traumatic stress disorder (PTSD). After reviewing the extensive literature supporting these claims, the current review addresses the notion that childhood adversity-induced sleep disturbances may play a causal role in elevating individuals' stress vulnerability in adulthood. Corroborating this, sleep disturbances that predate adult trauma exposure have been associated with an increased likelihood of developing stress-related psychopathology post-exposure. Furthermore, novel empirical evidence suggests that sleep disturbances, including irregularity of the sleep-wake cycle, mediate the link between childhood adversity and stress vulnerability in adulthood. We also discuss cognitive and behavioral mechanisms through which such a cascade may evolve, highlighting the putative role of impaired memory consolidation and fear extinction. Next, we present evidence to support the contribution of the hypothalamic-pituitary-adrenal (HPA) axis to these associations, stemming from its critical role in stress and sleep regulatory pathways. Childhood adversity may yield bi-directional effects within the HPA stress and sleep axes in which sleep disturbances and HPA axis dysfunction reinforce each other, leading to elevated stress vulnerability. To conclude, we postulate a conceptual path model from childhood adversity to latent stress vulnerability in adulthood and discuss the potential clinical implications of these notions, while highlighting directions for future research.
Collapse
Affiliation(s)
- Lisa Simon
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Haifa, Israel.
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
6
|
Francis TC, Porcu A. Emotionally clocked out: cell-type specific regulation of mood and anxiety by the circadian clock system in the brain. Front Mol Neurosci 2023; 16:1188184. [PMID: 37441675 PMCID: PMC10333695 DOI: 10.3389/fnmol.2023.1188184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023] Open
Abstract
Circadian rhythms are self-sustained oscillations of biological systems that allow an organism to anticipate periodic changes in the environment and optimally align feeding, sleep, wakefulness, and the physiological and biochemical processes that support them within the 24 h cycle. These rhythms are generated at a cellular level by a set of genes, known as clock genes, which code for proteins that inhibit their own transcription in a negative feedback loop and can be perturbed by stress, a risk factor for the development of mood and anxiety disorders. A role for circadian clocks in mood and anxiety has been suggested for decades on the basis of clinical observations, and the dysregulation of circadian rhythms is a prominent clinical feature of stress-related disorders. Despite our understanding of central clock structure and function, the effect of circadian dysregulation in different neuronal subtypes in the suprachiasmatic nucleus (SCN), the master pacemaker region, as well as other brain systems regulating mood, including mesolimbic and limbic circuits, is just beginning to be elucidated. In the brain, circadian clocks regulate neuronal physiological functions, including neuronal activity, synaptic plasticity, protein expression, and neurotransmitter release which in turn affect mood-related behaviors via cell-type specific mechanisms. Both animal and human studies have revealed an association between circadian misalignment and mood disorders and suggest that internal temporal desynchrony might be part of the etiology of psychiatric disorders. To date, little work has been conducted associating mood-related phenotypes to cell-specific effects of the circadian clock disruptions. In this review, we discuss existing literature on how clock-driven changes in specific neuronal cell types might disrupt phase relationships among cellular communication, leading to neuronal circuit dysfunction and changes in mood-related behavior. In addition, we examine cell-type specific circuitry underlying mood dysfunction and discuss how this circuitry could affect circadian clock. We provide a focus for future research in this area and a perspective on chronotherapies for mood and anxiety disorders.
Collapse
Affiliation(s)
- T. Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Alessandra Porcu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
7
|
Ge W, Sun Q, Yang Y, Ding Z, Liu J, Zhang J. Circadian PER1 controls daily fat absorption with the regulation of PER1-PKA on phosphorylation of bile acid synthetase. J Lipid Res 2023; 64:100390. [PMID: 37209828 PMCID: PMC10276160 DOI: 10.1016/j.jlr.2023.100390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
Several epidemiological studies suggest a correlation between eating time and obesity. Night eating syndrome characterized by a time-delayed eating pattern is positively associated with obesity in humans as well as in experimental animals. Here, we show that oil intake at night significantly makes more fat than that at day in wild-type mice, and circadian Period 1 (Per1) contributes to this day-night difference. Per1-knockout mice are protected from high-fat diet-induced obesity, which is accompanied by a reduction in the size of the bile acid pool, and the oral administration of bile acids restores fat absorption and accumulation. We identify that PER1 directly binds to the major hepatic enzymes involved in bile acid synthesis such as cholesterol 7alpha-hydroxylase and sterol 12alpha-hydroxylase. A biosynthesis rhythm of bile acids is accompanied by the activity and instability of bile acid synthases with PER1/PKA-mediated phosphorylation pathways. Both fasting and high fat stress enhance Per1 expression, increasing the fat absorption and accumulation. Our findings reveal that Per1 is an energy regulator and controls daily fat absorption and accumulation. Circadian Per1 controls daily fat absorption and accumulation, suggesting Per1 is a potential candidate of a key regulator in stress response and the relevant obesity risk.
Collapse
Affiliation(s)
- Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Qi Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu, China
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China.
| |
Collapse
|
8
|
Popović N, Morales-Delgado N, la Cruz-Sánchez ED, Popović M. RATS CONSERVE PASSIVE AVOIDANCE RETENTION LEVEL THROUGHOUT THE LIGHT PHASE OF DIURNAL CYCLE. Physiol Behav 2023; 268:114234. [PMID: 37172638 DOI: 10.1016/j.physbeh.2023.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Emotions and memory formation are sensible to circadian rhythm. Here we study whether the time of day during the light phase of the diurnal cycle affects emotional memory in male Wistar rats using the passive avoidance (PA) test. Experiments were conducted at the beginning of Zeitgeber time (ZT) (ZT0.5-2), mid-time (ZT5-6.5), and end (ZT10.5-12) of the light period. Our results suggest that time of day has no impact on emotional response during acquisition trials, but slightly influences cognitive response during the 24-hour retention trial. Retention response was highest for ZT5-6.5, followed by ZT0.5-2, and lowest for ZT10.5-12.
Collapse
Affiliation(s)
- Natalija Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain; Institute of Biomedical Research of Murcia (IMIB Pascual Parilla), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Nicanor Morales-Delgado
- Department of Histology and Anatomy, Faculty of Medicine, University of Miguel Hernández of Elche, 03550 Sant Joan d'Alacant, Spain.
| | - Ernesto De la Cruz-Sánchez
- Institute of Biomedical Research of Murcia (IMIB Pascual Parilla), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain; Public Health and Epidemiology Research Group, San Javier Campus, University of Murcia, Murcia, Spain
| | - Miroljub Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain; Institute of Biomedical Research of Murcia (IMIB Pascual Parilla), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
9
|
Arellano Perez AD, Alves J, de Oliveira Alvares L. Re-exposures in the Dark Cycle Promote Attenuation of Fear Memory: Role of the Circadian Cycle and Glucocorticoids. Neuroscience 2022; 505:1-9. [DOI: 10.1016/j.neuroscience.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
|
10
|
Smies CW, Bodinayake KK, Kwapis JL. Time to learn: The role of the molecular circadian clock in learning and memory. Neurobiol Learn Mem 2022; 193:107651. [PMID: 35697314 PMCID: PMC9903177 DOI: 10.1016/j.nlm.2022.107651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
The circadian system plays an important role in aligning biological processes with the external time of day. A range of physiological functions are governed by the circadian cycle, including memory processes, yet little is understood about how the clock interfaces with memory at a molecular level. The molecular circadian clock consists of four key genes/gene families, Period, Clock, Cryptochrome, and Bmal1, that rhythmically cycle in an ongoing transcription-translation negative feedback loop that maintains an approximately 24-hour cycle within cells of the brain and body. In addition to their roles in generating the circadian rhythm within the brain's master pacemaker (the suprachiasmatic nucleus), recent research has suggested that these clock genes may function locally within memory-relevant brain regions to modulate memory across the day/night cycle. This review will discuss how these clock genes function both within the brain's central clock and within memory-relevant brain regions to exert circadian control over memory processes. For each core clock gene, we describe the current research that demonstrates a potential role in memory and outline how these clock genes might interface with cascades known to support long-term memory formation. Together, the research suggests that clock genes function locally within satellite clocks across the brain to exert circadian control over long-term memory formation and possibly other biological processes. Understanding how clock genes might interface with local molecular cascades in the hippocampus and other brain regions is a critical step toward developing treatments for the myriad disorders marked by dysfunction of both the circadian system and cognitive processes.
Collapse
Affiliation(s)
- Chad W Smies
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kasuni K Bodinayake
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Janine L Kwapis
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
11
|
Jiang L, Liu C, Zhao B, Ma C, Yin Y, Zhou Q, Xu L, Mao R. Time of Day-Dependent Alteration of Hippocampal Rac1 Activation Regulates Contextual Fear Memory in Rats. Front Mol Neurosci 2022; 15:871679. [PMID: 35782392 PMCID: PMC9245039 DOI: 10.3389/fnmol.2022.871679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022] Open
Abstract
Fear memory in species varies according to the time of the day. Although the underlying molecular mechanisms have been extensively explored, they remain largely unknown. Here, we report that hippocampal Rac1 activity undergoes a time of day-dependent alteration both in nocturnal rats and diurnal tree shrews and that training at the lower hippocampal Rac1 activation period during the night leads to better contextual fear memory in rats. Furthermore, day and night reversion by 24 h darkness/24 h light housing inverses the external clock time of hippocampal Rac1 activation, but the better contextual fear memory still coincides with the lower Rac1 activation in rats during the night. Interestingly, exogenous melatonin treatment promotes hippocampal Rac1 activity and impairs better contextual fear memory acquired at the lower Rac1 activation period during the night, and Rac1-specific inhibitor NSC23766 compromises the effect of melatonin. These results suggest that the time of day-dependent alteration of hippocampal Rac1 activation regulates contextual fear memory in rats by forgetting.
Collapse
Affiliation(s)
- Lizhu Jiang
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Clinical Psychology, The Third People’s Hospital of Yunnan Province, Kunming, China
- Department of Neuropsychopathy, Clinical Medical School, Dali University, Dali, China
| | - Chao Liu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Baizhen Zhao
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Chen Ma
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan Yin
- Department of Clinical Psychology, The Third People’s Hospital of Yunnan Province, Kunming, China
| | - Qixin Zhou
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Lin Xu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, KIZ-SU Joint Laboratory of Animal Model and Drug Development, Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- CAS Centre for Excellence in Brain Science and Intelligent Technology, Shanghai, China
- *Correspondence: Lin Xu,
| | - RongRong Mao
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming, China
- RongRong Mao,
| |
Collapse
|
12
|
Asadian N, Parsaie H, Vafaei AA, Dadkhah M, Omoumi S, Sedaghat K. Chronic light deprivation induces different effects on spatial and fear memory and hippocampal BDNF/TRKB expression during light and dark phases of rat diurnal rhythm. Behav Brain Res 2021; 418:113638. [PMID: 34695541 DOI: 10.1016/j.bbr.2021.113638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 11/02/2022]
Abstract
Disruptions in light/dark cycle have been associated with an altered ability to form and retrieve memory in human and animals. Animal studies have shown that chronic light deprivation disrupts the light/dark cycle and alters the neural connections that mediate hippocampal memory formation. In order to better understand how light deprivation affects the formation and retrieval of memory in adult rats, we examined the effect of total darkness on spatial and auditory fear learning and memory formation and BDNF/TRKB protein levels during the light and dark phases of the rat circadian cycle. Male Wistar rats (n = 60), were randomly divided into two main groups: normal rearing (NR, 12 h light/dark cycle for 3 weeks) and dark rearing (DR, kept in constant darkness for 3 weeks); and each of these groups had a "light (day)" and "dark (night)" sub-group. After 3 weeks, the Morris Water maze and auditory fear conditioning were used to assess spatial and fear memory acquisition and retrieval, respectively. BDNF and TRKB protein levels in the hippocampus of rats from the four sub-groups were measured by Western blot, at the completion of the 3 week constant darkness exposure and after the behavioral experiments. These studies revealed that DR for 3 weeks impaired spatial memory retrieval and enhanced extinction of auditory fear memory specifically during the light (day) phase. DR also eliminated the normal fluctuations in BDNF/TRKB levels observed in the hippocampus across the light/dark cycle.
Collapse
Affiliation(s)
- Nader Asadian
- Department of Biophysics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Houman Parsaie
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Masoumeh Dadkhah
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Samira Omoumi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Katayoun Sedaghat
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
13
|
Durairaja A, Fendt M. Orexin deficiency modulates cognitive flexibility in a sex-dependent manner. GENES BRAIN AND BEHAVIOR 2020; 20:e12707. [PMID: 33070452 DOI: 10.1111/gbb.12707] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022]
Abstract
Cognitive flexibility is an important executive function and refers to the ability to adapt behaviors in response to changes in the environment. Of note, many brain disorders are associated with impairments in cognitive flexibility. Several classical neurotransmitter systems including dopamine, acetylcholine and noradrenaline are shown to be important for cognitive flexibility, however, there is not much known about the role of neuropeptides. The neuropeptide orexin, which is brain-widely released by neurons in the lateral hypothalamus, is a major player in maintaining sleep/wake cycle, feeding behavior, arousal, and motivational behavior. Recent studies showed a role of orexin in attention, cognition and stress-induced attenuation of cognitive flexibility by disrupting orexin signaling locally or systemically. However, it is not known so far whether brain-wide reduction or loss of orexin affects cognitive flexibility. We investigated this question by testing male and female orexin-deficient mice in the attentional set shifting task (ASST), an established paradigm of cognitive flexibility. We found that orexin deficiency impaired the intra-dimensional shift phase of the ASST selectively in female homozygous orexin-deficient mice and improved the first reversal learning phase selectively in male homozygous orexin-deficient mice. We also found that these orexin-mediated sex-based modulations of cognitive flexibility were not correlated with trait anxiety, narcoleptic episodes, and reward consumption. Our findings highlight a sexually dimorphic role of orexin in regulating cognitive flexibility and the need for further investigations of sex-specific functions of the orexin circuitry.
Collapse
Affiliation(s)
- Archana Durairaja
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany.,Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
14
|
Kellis DM, Kaigler KF, Witherspoon E, Fadel JR, Wilson MA. Cholinergic neurotransmission in the basolateral amygdala during cued fear extinction. Neurobiol Stress 2020; 13:100279. [PMID: 33344731 PMCID: PMC7739185 DOI: 10.1016/j.ynstr.2020.100279] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 01/06/2023] Open
Abstract
Cholinergic neuromodulation plays an important role in numerous cognitive functions including regulating arousal and attention, as well as associative learning and extinction processes. Further, studies demonstrate that cholinergic inputs from the basal forebrain cholinergic system influence physiological responses in the basolateral amygdala (BLA) as well as fear extinction processes. Since rodent models display individual differences in conditioned fear and extinction responses, this study investigated if cholinergic transmission in the BLA during fear extinction could contribute to differences between extinction resistant and extinction competent phenotypes in outbred Long-Evans male rats. Experiment 1 used in vivo microdialysis to test the hypothesis that acetylcholine (ACH) efflux in the BLA would increase with presentation of an auditory conditioned stimulus (CS+) during extinction learning. Acetylcholine efflux was compared in rats exposed to the CS+, a CS- (the tone never paired with a footshock), or to a context shift alone (without CS+ tone presentation). Consistent with acetylcholine's role in attention and arousal, ACH efflux in the BLA was increased in all three groups (CS+, CS-, Shift Alone) by the initial context shift into the extinction learning chamber, but returned more rapidly to baseline levels in the Shift Alone group (no CS+). In contrast, in the group exposed to the CS+, ACH efflux in the BLA remained elevated during continued presentation of conditioned cues and returned to baseline more slowly, leading to an overall increase in ACH efflux compared with the Shift Alone group. Based on the very dense staining in the BLA for acetylcholinesterase (ACHE), Experiment 2 examined if individual differences in fear extinction were associated with differences in cholinesterase enzyme activity (CHE) in the BLA and/or plasma with a separate cohort of animals. Cholinesterase activity (post-testing) in both the BLA and plasma was higher in extinction competent rats versus rats resistant to extinction learning. There was also a significant negative correlation between BLA CHE activity and freezing during extinction learning. Taken together, our results support a role for ACH efflux in the BLA during cued fear extinction that may be modulated by individual differences in ACHE activity, and are associated with behavioral responses during fear extinction. These findings implicate individual differences in cholinergic regulation in the susceptibility to disorders with dysregulation of extinction learning, such post-traumatic stress disorder (PTSD) in humans.
Collapse
Affiliation(s)
- Devin M. Kellis
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | - Kris Ford Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | - Eric Witherspoon
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | - Jim R. Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, United States
| | | |
Collapse
|
15
|
Yamakawa G, Brady R, Sun M, McDonald S, Shultz S, Mychasiuk R. The interaction of the circadian and immune system: Desynchrony as a pathological outcome to traumatic brain injury. Neurobiol Sleep Circadian Rhythms 2020; 9:100058. [PMID: 33364525 PMCID: PMC7752723 DOI: 10.1016/j.nbscr.2020.100058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex and costly worldwide phenomenon that can lead to many negative health outcomes including disrupted circadian function. There is a bidirectional relationship between the immune system and the circadian system, with mammalian coordination of physiological activities being controlled by the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN receives light information from the external environment and in turn synchronizes rhythms throughout the brain and body. The SCN is capable of endogenous self-sustained oscillatory activity through an intricate clock gene negative feedback loop. Following TBI, the response of the immune system can become prolonged and pathophysiological. This detrimental response not only occurs in the brain, but also within the periphery, where a leaky blood brain barrier can permit further infiltration of immune and inflammatory factors. The prolonged and pathological immune response that follows TBI can have deleterious effects on clock gene cycling and circadian function not only in the SCN, but also in other rhythmic areas throughout the body. This could bring about a state of circadian desynchrony where different rhythmic structures are no longer working together to promote optimal physiological function. There are many parallels between the negative symptomology associated with circadian desynchrony and TBI. This review discusses the significant contributions of an immune-disrupted circadian system on the negative symptomology following TBI. The implications of TBI symptomology as a disorder of circadian desynchrony are discussed.
Collapse
Affiliation(s)
- G.R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - R.D. Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - M. Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - S.J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia
| | - S.R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - R. Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
16
|
Todd WD. Potential Pathways for Circadian Dysfunction and Sundowning-Related Behavioral Aggression in Alzheimer's Disease and Related Dementias. Front Neurosci 2020; 14:910. [PMID: 33013301 PMCID: PMC7494756 DOI: 10.3389/fnins.2020.00910] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Patients with Alzheimer's disease (AD) and related dementias are commonly reported to exhibit aggressive behavior and other emotional behavioral disturbances, which create a tremendous caretaker burden. There has been an abundance of work highlighting the importance of circadian function on mood and emotional behavioral regulation, and recent evidence demonstrates that a specific hypothalamic pathway links the circadian system to neurons that modulate aggressive behavior, regulating the propensity for aggression across the day. Such shared circuitry may have important ramifications for clarifying the complex interactions underlying "sundowning syndrome," a poorly understood (and even controversial) clinical phenomenon in AD and dementia patients that is characterized by agitation, aggression, and delirium during the late afternoon and early evening hours. The goal of this review is to highlight the potential output and input pathways of the circadian system that may underlie circadian dysfunction and behavioral aggression associated with sundowning syndrome, and to discuss possible ways these pathways might inform specific interventions for treatment. Moreover, the apparent bidirectional relationship between chronic disruptions of circadian and sleep-wake regulation and the pathology and symptoms of AD suggest that understanding the role of these circuits in such neurobehavioral pathologies could lead to better diagnostic or even preventive measures.
Collapse
Affiliation(s)
- William D Todd
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
17
|
Meseguer Henarejos AB, Popović N, Bokonjić D, Morales-Delgado N, Alonso A, Caballero Bleda M, Popović M. Sex and Time-of-Day Impact on Anxiety and Passive Avoidance Memory Strategies in Mice. Front Behav Neurosci 2020; 14:68. [PMID: 32523516 PMCID: PMC7261894 DOI: 10.3389/fnbeh.2020.00068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022] Open
Abstract
In humans, anxiety and cognitive processes are age, gender, and time of day dependent. The purpose of the present study was to assess whether the time of day and sex have an influence on anxiety and emotional memory in adult mice. Light-dark and passive avoidance (PA) tests were performed at the beginning and at the end of the light cycle, defined as Zeitgeber time (ZT) ZT0–2.5 and ZT9.5–12, respectively. A baseline difference in anxiety was not found, but on the 24 h retention trial of the PA test, females presented longer latencies to enter into the dark compartment at the ZT0–2.5 time point of the day. The data from the second test day (PA reversal trial) indicated that some animals associated the dark compartment with an aversive stimulus (shock), while others associated the aversive stimulus with crossing from one compartment to another. At the ZT9.5–12, female mice mainly related the aversive stimulus to transferring from one compartment to another, while male mice associated darkness with the aversive stimulus. There was a negative correlation between the frequency of light-dark transitions in the light-dark test and the PA latency on the 24 h retention trial in males tested at ZT0–2.5. The PA latency on the reversal and 24 h retention trials negatively correlated with a risk assessment behavior in male mice tested on ZT0–2.5 and ZT9.5–12, respectively. In conclusion, our data reveal that the impact of motor activity and risk assessment behavior on PA memory formation and applied behavioral strategies are time of day and sex dependent.
Collapse
Affiliation(s)
| | - Natalija Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Dubravko Bokonjić
- Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
| | - Nicanor Morales-Delgado
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain.,Department of Histology and Anatomy, Faculty of Medicine, University of Miguel Hernández, Sant Joan Alacant, Spain
| | - Antonia Alonso
- Department of Physiotherapy, Faculty of Medicine, University of Murcia, Murcia, Spain.,Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - María Caballero Bleda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miroljub Popović
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain.,Institute of Biomedical Research of Murcia (IMIB), Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| |
Collapse
|
18
|
Sleep duration and timing in obsessive-compulsive disorder (OCD): evidence for circadian phase delay. Sleep Med 2020; 72:111-117. [PMID: 32575000 DOI: 10.1016/j.sleep.2020.03.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To investigate potential delays in endogenous melatonin in individuals with obsessive-compulsive disorder (OCD). METHODS First, data are presented for 15 individuals with OCD and matched healthy controls. Next, nine additional participants with OCD who did not have matched controls were added, resulting in a sample of 24 individuals with OCD. All participants were assessed for sleep and circadian rhythm disturbance. Dim light melatonin onset (DLMO) was derived from salivary melatonin and was used in conjunction with sleep diaries, interview measures, and questionnaires. A subset of the OCD group (n = 16) also used actigraphy. RESULTS In sum, 42% percent (10/24) of the patients with OCD met the criteria for delayed sleep-wake phase disorder (DSWPD) in comparison to 0% in the control sample. DLMO was significantly later in individuals with OCD compared to controls. DLMO and bedtime were not significantly associated with the severity of obsessive-compulsive symptoms or negative affect. CONCLUSIONS Replication of the findings presented herein, particularly the DLMO results, is warranted. Further, there are now three studies showing that nearly ½ of individuals with OCD meet criteria for a DSWPD. Future studies can explore the mechanisms underlying these connections and the implications of this comorbidity. These findings may increase our understanding of OCD and inform future interventions.
Collapse
|
19
|
Kordestani-Moghadam P, Nasehi M, Khodagholi F, Vaseghi S, Zarrindast MR, Khani M. The fluctuations of metabotropic glutamate receptor subtype 5 (mGluR5) in the amygdala in fear conditioning model of male Wistar rats following sleep deprivation, reverse circadian and napping. Brain Res 2020; 1734:146739. [PMID: 32087111 DOI: 10.1016/j.brainres.2020.146739] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
Sleep is involved in metabolic system, mental health and cognitive functions. Evidence shows that sleep deprivation (SD) negatively affects mental health and impairs cognitive functions, including learning and memory. Furthermore, the metabotropic glutamate receptor subtype 5 (mGluR5) is a metabolic biomarker, which is affected by various conditions, including stress, sleep deprivation, and cognitive and psychiatric disorders. In this research, we investigated the effect of SD and reverse circadian (RC), and two models of napping (continuous and non-continuous) combined with SD or RC on fear-conditioning memory, anxiety-like behavior and mGluR5 fluctuations in the amygdala. 64 male Wistar rats were used in this study. The water box apparatus was used to induce SD/RC for 48 h, and fear-conditioning memory apparatus was used to assess fear memory. The results showed, fear-conditioning memory was impaired following SD and RC, especially in contextual stage. However, anxiety-like behavior was increased. Furthermore, mGluR5 was increased in the left amygdala more than the right amygdala. Additionally, continuous napping significantly improved fear-conditioning memory, especially freezing behavior. In conclusion, following SD and RC, fear-conditioning memory in contextual stage is more vulnerable than in auditory stage. Furthermore, increase in anxiety-like behavior is related to increase in the activity of left amygdala and mGluR5 receptors.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mojgan Khani
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Hasegawa S, Fukushima H, Hosoda H, Serita T, Ishikawa R, Rokukawa T, Kawahara-Miki R, Zhang Y, Ohta M, Okada S, Tanimizu T, Josselyn SA, Frankland PW, Kida S. Hippocampal clock regulates memory retrieval via Dopamine and PKA-induced GluA1 phosphorylation. Nat Commun 2019; 10:5766. [PMID: 31852900 PMCID: PMC6920429 DOI: 10.1038/s41467-019-13554-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
Cognitive performance in people varies according to time-of-day, with memory retrieval declining in the late afternoon-early evening. However, functional roles of local brain circadian clocks in memory performance remains unclear. Here, we show that hippocampal clock controlled by the circadian-dependent transcription factor BMAL1 regulates time-of-day retrieval profile. Inducible transgenic dominant negative BMAL1 (dnBMAL1) expression in mouse forebrain or hippocampus disrupted retrieval of hippocampal memories at Zeitgeber Time 8-12, independently of retention delay, encoding time and Zeitgeber entrainment cue. This altered retrieval profile was associated with downregulation of hippocampal Dopamine-cAMP signaling in dnBMAL1 mice. These changes included decreases in Dopamine Receptors (D1-R and D5-R) and GluA1-S845 phosphorylation by PKA. Consistently, pharmacological activation of cAMP-signals or D1/5Rs rescued impaired retrieval in dnBMAL1 mice. Importantly, GluA1 S845A knock-in mice showed similar retrieval deficits with dnBMAL1 mice. Our findings suggest mechanisms underlying regulation of retrieval by hippocampal clock through D1/5R-cAMP-PKA-mediated GluA1 phosphorylation.
Collapse
Grants
- R01 MH119421 NIMH NIH HHS
- Grant-in-Aid for Scientific Research on Innovative Areas (17H05962).
- Grant-in-Aids for Scientific Research (A) (15H02488, 18H03944, 19H01047), Scientific Research (B) (23300120 and 20380078) and Challenging Exploratory Research (24650172, 26640014, 17K19464), Grant-in-Aids for Scientific Research on Priority Areas -Molecular Brain Science- (18022038 and 22022039), Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area) (24116008, 24116001, 23115716, 17H06084, 17H05961, 17H05581, 18H05428, 18H05434, 19H04917), MEXT-Supported Program for the Strategic Research Foundation at Private Universities (S1311017), Core Research for Evolutional Science and Technology (CREST), Japan, The Sumitomo Foundation, Japan and the Takeda Science Foundation, Japan, The Naito Foundation, The Uehara Memorial Foundation and The Science Research Promotion Fund, The Promotion and Mutual Aid Corporation for Private Schools of Japan.
Collapse
Affiliation(s)
- Shunsuke Hasegawa
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
- CREST, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Hotaka Fukushima
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
- CREST, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Hiroshi Hosoda
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Tatsurou Serita
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Rie Ishikawa
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Tomohiro Rokukawa
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Ryouka Kawahara-Miki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Yue Zhang
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
- CREST, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Miho Ohta
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Shintaro Okada
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Toshiyuki Tanimizu
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Sheena A Josselyn
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Paul W Frankland
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Satoshi Kida
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan.
- CREST, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
21
|
Jacques A, Chaaya N, Hettiarachchi C, Carmody ML, Beecher K, Belmer A, Chehrehasa F, Bartlett S, Battle AR, Johnson LR. Microtopography of fear memory consolidation and extinction retrieval within prefrontal cortex and amygdala. Psychopharmacology (Berl) 2019; 236:383-397. [PMID: 30610350 DOI: 10.1007/s00213-018-5068-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/04/2018] [Indexed: 10/27/2022]
Abstract
RATIONALE The precise neural circuitry that encodes fear memory and its extinction within the brain are not yet fully understood. Fearful memories can be persistent, resistant to extinction, and associated with psychiatric disorders, especially post-traumatic stress disorder (PTSD). Here, we investigated the microtopography of neurons activated during the recall of an extinguished fear memory, as well as the influence of time on this microtopography. METHODS We used the plasticity-related phosphorylated mitogen-activated protein kinase (pMAPK) to identify neurons activated in the recall of consolidated and extinguished auditory Pavlovian fear memories in rats. Quantitatively matched brain regions were used to investigate activity in the amygdala and prefrontal cortex. RESULTS Recall of a consolidated, nonextinguished auditory fear memory resulted in a significantly greater number of activated neurons located in the dorsolateral subdivision of the lateral amygdala (LADL) when recalled 24 h after consolidation but not when recalled 7 days later. We found that the recall of an extinction memory was associated with pMAPK activation in the ventrolateral subdivision of the lateral amygdala (LAVL). Next, we showed that the pattern of pMAPK expression in the prelimbic cortex differed spatially following temporal variation in the recall of that memory. The deep and superficial layers of the pre-limbic cortex were engaged in recent recall of a fear memory, but only the superficial layers were recruited if the recall occurred 7 days later. CONCLUSIONS Collectively, our findings demonstrate a functional microtopography of auditory fear memory during consolidation and extinction at the microanatomical level within the lateral amygdala and medial prefrontal cortex.
Collapse
Affiliation(s)
- Angela Jacques
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Institute of Health and Biomedical Innovation, Department of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas Chaaya
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Institute of Health and Biomedical Innovation, Department of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chiemi Hettiarachchi
- Translational Research Institute, Institute of Health and Biomedical Innovation, Department of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Marie-Louise Carmody
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Institute of Health and Biomedical Innovation, Department of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kate Beecher
- Translational Research Institute, Institute of Health and Biomedical Innovation, Department of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia.,School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Arnauld Belmer
- Translational Research Institute, Institute of Health and Biomedical Innovation, Department of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia.,School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Fatemeh Chehrehasa
- Translational Research Institute, Institute of Health and Biomedical Innovation, Department of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Selena Bartlett
- Translational Research Institute, Institute of Health and Biomedical Innovation, Department of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia.,School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Andrew R Battle
- Translational Research Institute, Institute of Health and Biomedical Innovation, Department of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.,The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Luke R Johnson
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia. .,Translational Research Institute, Institute of Health and Biomedical Innovation, Department of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia. .,Center for the Study of Traumatic Stress, Department of Psychiatry, USU School of Medicine, Bethesda, MD, USA.
| |
Collapse
|
22
|
Power SC, Michalik MJ, Couture-Nowak S, Kent BA, Mistlberger RE. Midday meals do not impair mouse memory. Sci Rep 2018; 8:17013. [PMID: 30451946 PMCID: PMC6242856 DOI: 10.1038/s41598-018-35427-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/02/2018] [Indexed: 11/20/2022] Open
Abstract
Nocturnal mice fed in the middle of the light period exhibit food anticipatory rhythms of behavior and physiology under control of food-entrainable circadian clocks in the brain and body. This is presumed to be adaptive by aligning behavior and physiology with predictable mealtimes. This assumption is challenged by a report that daytime feeding schedules impair cognitive processes important for survival, including object memory and contextual fear conditioning assessed at two times of day. To further evaluate these effects, mice were restricted to a 6 h daily meal in the middle of the light or dark period and object memory was tested at four times of day. Object memory was not impaired by daytime feeding, and did not exhibit circadian variation in either group. To determine whether impairment might depend on methodology, experimental procedures used previously to detect impairment were followed. Daytime feeding induced food anticipatory rhythms and shifted hippocampal clock genes, but again did not impair object memory. Spontaneous alternation and contextual fear conditioning were also not impaired. Hippocampal memory function appears more robust to time of day and daytime feeding schedules than previously reported; day-fed mice can remember what they have seen, where they have been, and where it is dangerous.
Collapse
Affiliation(s)
- Sarah C Power
- Department of Psychology, Simon Fraser University, Burnaby, Canada
| | | | | | - Brianne A Kent
- Djavad Mowafaghian Centre for Brain Health, Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
23
|
A hypothalamic circuit for the circadian control of aggression. Nat Neurosci 2018; 21:717-724. [PMID: 29632359 PMCID: PMC5920747 DOI: 10.1038/s41593-018-0126-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/09/2018] [Indexed: 11/21/2022]
Abstract
“Sundowning” in dementia and Alzheimer’s disease is characterized by early evening agitation and aggression. While such periodicity suggests a circadian origin, whether the circadian clock directly regulates aggressive behavior is unknown. We demonstrate that a daily rhythm in aggression propensity in male mice is gated by GABAergic subparaventricular zone (SPZGABA) neurons, the major postsynaptic targets of the central circadian clock, the suprachiasmatic nucleus (SCN). Optogenetic mapping revealed that SPZGABA neurons receive input from vasoactive intestinal polypeptide SCN neurons and innervate neurons in the ventrolateral part of the ventromedial hypothalamus (VMHvl) known to regulate aggression. Additionally, VMH-projecting dorsal SPZ neurons are more active during early day than early night, and acute chemogenetic inhibition of SPZGABA transmission phase-dependently increases aggression. Finally, SPZGABA-recipient central VMH neurons directly innervate VMHvl neurons and activation of this intra-VMH circuit drove attack behavior. Altogether, we reveal a functional polysynaptic circuit by which the SCN clock regulates aggression.
Collapse
|
24
|
den Boon FS, Sarabdjitsingh RA. Circadian and ultradian patterns of HPA-axis activity in rodents: Significance for brain functionality. Best Pract Res Clin Endocrinol Metab 2017; 31:445-457. [PMID: 29223280 DOI: 10.1016/j.beem.2017.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis comprises interactions between the hypothalamus, the pituitary and the adrenal glands and its activation results in the release of corticosteroid hormones. Corticosteroids are secreted from the adrenal gland in a distinct 24-h circadian rhythm overarching an ultradian rhythm, which consists of hourly corticosteroid pulses exposing target tissues to rapidly changing steroid levels. On top of these rhythms surges can take place after stress. HPA-axis rhythms promote adaptation to predictable (i.e. the earth's rotation) and unpredictable (i.e. stressors) changes in environmental factors. Two steroid hormone receptors, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), are activated by corticosteroids and mediate effects at fast and slow timescales on e.g. glucose availability, gene transcription and synaptic plasticity. The current review discusses the origin of the circadian and ultradian corticosteroid rhythms and their relevance for gene regulation, neuroendocrine and physiological responses to stress and the involvement in the maintenance of brain functionality in rodents.
Collapse
Affiliation(s)
- Femke S den Boon
- Dept. Translational Neuroscience, Brain Center Rudolf Magnus, UMC Utrecht, The Netherlands
| | | |
Collapse
|