1
|
Santos da Silva T, da Silva-Júnior LN, Horvath-Pereira BDO, Valbão MCM, Garcia MHH, Lopes JB, Reis CHB, Barreto RDSN, Buchaim DV, Buchaim RL, Miglino MA. The Role of the Pancreatic Extracellular Matrix as a Tissue Engineering Support for the Bioartificial Pancreas. Biomimetics (Basel) 2024; 9:598. [PMID: 39451804 PMCID: PMC11505355 DOI: 10.3390/biomimetics9100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic condition primarily managed with insulin replacement, leading to significant treatment costs. Complications include vasculopathy, cardiovascular diseases, nephropathy, neuropathy, and reticulopathy. Pancreatic islet transplantation is an option but its success does not depend solely on adequate vascularization. The main limitations to clinical islet transplantation are the scarcity of human pancreas, the need for immunosuppression, and the inadequacy of the islet isolation process. Despite extensive research, T1DM remains a major global health issue. In 2015, diabetes affected approximately 415 million people, with projected expenditures of USD 1.7 trillion by 2030. Pancreas transplantation faces challenges due to limited organ availability and complex vascularization. T1DM is caused by the autoimmune destruction of insulin-producing pancreatic cells. Advances in biomaterials, particularly the extracellular matrix (ECM), show promise in tissue reconstruction and transplantation, offering structural and regulatory functions critical for cell migration, differentiation, and adhesion. Tissue engineering aims to create bioartificial pancreases integrating insulin-producing cells and suitable frameworks. This involves decellularization and recellularization techniques to develop biological scaffolds. The challenges include replicating the pancreas's intricate architecture and maintaining cell viability and functionality. Emerging technologies, such as 3D printing and advanced biomaterials, have shown potential in constructing bioartificial organs. ECM components, including collagens and glycoproteins, play essential roles in cell adhesion, migration, and differentiation. Clinical applications focus on developing functional scaffolds for transplantation, with ongoing research addressing immunological responses and long-term efficacy. Pancreatic bioengineering represents a promising avenue for T1DM treatment, requiring further research to ensure successful implementation.
Collapse
Affiliation(s)
- Thamires Santos da Silva
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Leandro Norberto da Silva-Júnior
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Bianca de Oliveira Horvath-Pereira
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
| | - Maria Carolina Miglino Valbão
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | | | - Juliana Barbosa Lopes
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
| | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- UNIMAR Beneficent Hospital (HBU), Medical School, University of Marilia (UNIMAR), Marilia 17525-160, Brazil
| | - Rodrigo da Silva Nunes Barreto
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (T.S.d.S.); (L.N.d.S.-J.); (B.d.O.H.-P.); (R.d.S.N.B.); (D.V.B.); (R.L.B.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil
| | - Maria Angelica Miglino
- Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (M.C.M.V.); (M.H.H.G.); (J.B.L.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| |
Collapse
|
2
|
Stoian A, Adil A, Biniazan F, Haykal S. Two Decades of Advances and Limitations in Organ Recellularization. Curr Issues Mol Biol 2024; 46:9179-9214. [PMID: 39194760 DOI: 10.3390/cimb46080543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
The recellularization of tissues after decellularization is a relatively new technology in the field of tissue engineering (TE). Decellularization involves removing cells from a tissue or organ, leaving only the extracellular matrix (ECM). This can then be recellularized with new cells to create functional tissues or organs. The first significant mention of recellularization in decellularized tissues can be traced to research conducted in the early 2000s. One of the landmark studies in this field was published in 2008 by Ott, where researchers demonstrated the recellularization of a decellularized rat heart with cardiac cells, resulting in a functional organ capable of contraction. Since then, other important studies have been published. These studies paved the way for the widespread application of recellularization in TE, demonstrating the potential of decellularized ECM to serve as a scaffold for regenerating functional tissues. Thus, although the concept of recellularization was initially explored in previous decades, these studies from the 2000s marked a major turning point in the development and practical application of the technology for the recellularization of decellularized tissues. The article reviews the historical advances and limitations in organ recellularization in TE over the last two decades.
Collapse
Affiliation(s)
- Alina Stoian
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Aisha Adil
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Felor Biniazan
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Siba Haykal
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Reconstructive Oncology, Division of Plastic and Reconstructive Surgery, Smilow Cancer Hospital, Yale, New Haven, CT 06519, USA
| |
Collapse
|
3
|
Mantovani M, Damaceno-Rodrigues N, Ronatty G, Segovia R, Pantanali C, Rocha-Santos V, Caldini E, Sogayar M. Which detergent is most suitable for the generation of an acellular pancreas bioscaffold? Braz J Med Biol Res 2024; 57:e13107. [PMID: 39166604 PMCID: PMC11338550 DOI: 10.1590/1414-431x2024e13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/14/2024] [Indexed: 08/23/2024] Open
Abstract
Pancreatic bioengineering is a potential therapeutic alternative for type 1 diabetes (T1D) in which the pancreas is decellularized, generating an acellular extracellular matrix (ECM) scaffold, which may be reconstituted by recellularization with several cell types to generate a bioartificial pancreas. No consensus for an ideal pancreatic decellularization protocol exists. Therefore, we aimed to determine the best-suited detergent by comparing sodium dodecyl sulfate (SDS), sodium deoxycholate (SDC), and Triton X-100 at different concentrations. Murine (n=12) and human pancreatic tissue from adult brain-dead donors (n=06) was harvested in accordance with Institutional Ethical Committee of the University of São Paulo Medical School (CEP-FMUSP) and decellularized under different detergent conditions. DNA content, histological analysis, and transmission and scanning electron microscopy were assessed. The most adequate condition for pancreatic decellularization was found to be 4% SDC, displaying: a) effective cell removal; b) maintenance of extracellular matrix architecture; c) proteoglycans, glycosaminoglycans (GAGs), and collagen fibers preservation. This protocol was extrapolated and successfully applied to human pancreas decellularization. The acellular ECM scaffold generated was recelullarized using human pancreatic islets primary clusters. 3D clusters were generated using 0.5×104 cells and then placed on top of acellular pancreatic slices (25 and 50 μm thickness). These clusters tended to connect to the acellular matrix, with visible cells located in the periphery of the clusters interacting with the ECM network of the bioscaffold slices and continued to produce insulin. This study provided evidence on how to improve and accelerate the pancreas decellularization process, while maintaining its architecture and extracellular structure, aiming at pancreatic bioengineering.
Collapse
Affiliation(s)
- M.C. Mantovani
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
- Divisão Técnica de Apoio ao Ensino, Pesquisa e Inovação (DTAPEPI) - Centro de Biotecnologia e Inovação, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - N.R. Damaceno-Rodrigues
- Departamento de Patologia, Laboratório de Biologia Celular, LIM 59, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - G.T.S. Ronatty
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
| | - R.S. Segovia
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
| | - C.A. Pantanali
- Departamento de Gastroenterologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - V. Rocha-Santos
- Departamento de Gastroenterologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - E.G. Caldini
- Departamento de Patologia, Laboratório de Biologia Celular, LIM 59, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - M.C. Sogayar
- Grupo NUCEL de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo SP, Brasil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
4
|
Kuo YC, Lin SY, De S, Rajesh R. Regeneration of Pancreatic Cells Using Optimized Nanoparticles and l-Glutamic Acid-Gelatin Scaffolds with Controlled Topography and Grafted Activin A/BMP4. ACS Biomater Sci Eng 2023; 9:6208-6224. [PMID: 37882705 DOI: 10.1021/acsbiomaterials.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Regeneration of insulin-producing cells (IPCs) from induced pluripotent stem cells (iPSCs) under controlled conditions has a lot of promise to emulate the pancreatic mechanism in vivo as a foundation of cell-based diabetic therapy. l-Glutamic acid-gelatin scaffolds with orderly pore sizes of 160 and 200 μm were grafted with activin A and bone morphogenic proteins 4 (BMP4) to differentiate iPSCs into definitive endoderm (DE) cells, which were then guided with fibroblast growth factor 7 (FGF7)-grafted retinoic acid (RA)-loaded solid lipid nanoparticles (FR-SLNs) to harvest IPCs. Response surface methodology was adopted to optimize the l-glutamic acid-to-gelatin ratio of scaffolds and to optimize surfactant concentration and lipid proportion in FR-SLNs. Experimental results of immunofluorescence, flow cytometry, and western blots revealed that activin A (100 ng/mL)-BMP4 (50 ng/mL)-l-glutamic acid (5%)-gelatin (95%) scaffolds provoked the largest number of SOX17-positive DE cells from iPSCs. Treatment with FGF7 (50 ng/mL)-RA (600 ng/mL)-SLNs elicited the highest number of PDX1-positive β-cells from differentiated DE cells. To imitate the natural pancreas, the scaffolds with controlled topography were appropriate for IPC production with sufficient insulin secretion. Hence, the current scheme using FR-SLNs and activin A-BMP4-l-glutamic acid-gelatin scaffolds in the two-stage differentiation of iPSCs can be promising for replacing impaired β-cells in diabetic management.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC
- Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC
| | - Sheng-Yuan Lin
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC
| | - Sourav De
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, ROC
| |
Collapse
|
5
|
Pantoja BTDS, Carvalho RC, Miglino MA, Carreira ACO. The Canine Pancreatic Extracellular Matrix in Diabetes Mellitus and Pancreatitis: Its Essential Role and Therapeutic Perspective. Animals (Basel) 2023; 13:ani13040684. [PMID: 36830471 PMCID: PMC9952199 DOI: 10.3390/ani13040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 02/18/2023] Open
Abstract
Diabetes mellitus and pancreatitis are common pancreatic diseases in dogs, affecting the endocrine and exocrine portions of the organ. Dogs have a significant role in the history of research related to genetic diseases, being considered potential models for the study of human diseases. This review discusses the importance of using the extracellular matrix of the canine pancreas as a model for the study of diabetes mellitus and pancreatitis, in addition to focusing on the importance of using extracellular matrix in new regenerative techniques, such as decellularization and recellularization. Unlike humans, rabbits, mice, and pigs, there are no reports in the literature characterizing the healthy pancreatic extracellular matrix in dogs, in addition to the absence of studies related to matrix components that are involved in triggering diabetes melittus and pancreatitis. The extracellular matrix plays the role of physical support for the cells and allows the regulation of various cellular processes. In this context, it has already been demonstrated that physiologic and pathologic pancreatic changes lead to ECM remodeling, highlighting the importance of an in-depth study of the changes associated with pancreatic diseases.
Collapse
Affiliation(s)
- Bruna Tássia dos Santos Pantoja
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
| | - Rafael Cardoso Carvalho
- Department of Animal Science, Center for Agricultural and Environmental Sciences, Federal University of Maranhao, Chapadinha 65500-000, MA, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre 09280-550, SP, Brazil
- Correspondence: or ; Tel.: +55-11-983229615
| |
Collapse
|
6
|
Tissue engineering of decellularized pancreas scaffolds for regenerative medicine in diabetes. Acta Biomater 2023; 157:49-66. [PMID: 36427686 DOI: 10.1016/j.actbio.2022.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Diabetes mellitus is a global disease requiring long-term treatment and monitoring. At present, pancreas or islet transplantation is the only reliable treatment for achieving stable euglycemia in Type I diabetes patients. However, the shortage of viable pancreata for transplantation limits the use of this therapy for the majority of patients. Organ decellularization and recellularization is emerging as a promising solution to overcome the shortage of viable organs for transplantation by providing a potential alternative source of donor organs. Several studies on decellularization and recellularization of rodent, porcine, and human pancreata have been performed, and show promise for generating usable decellularized pancreas scaffolds for subsequent recellularization and transplantation. In this state-of-the-art review, we provide an overview of the latest advances in pancreas decellularization, recellularization, and revascularization. We also discuss clinical considerations such as potential transplantation sites, donor source, and immune considerations. We conclude with an outlook on the remaining work that needs to be done in order to realize the goal of using this technology to create bioengineered pancreata for transplantation in diabetes patients. STATEMENT OF SIGNIFICANCE: Pancreas or islet transplantation is a means of providing insulin-independence in diabetes patients. However, due to the shortage of viable pancreata, whole-organ decellularization and recellularization is emerging as a promising solution to overcome organ shortage for transplantation. Several studies on decellularization and recellularization of rodent, porcine, and human pancreata have shown promise for generating usable decellularized pancreas scaffolds for subsequent recellularization and transplantation. In this state-of-the-art review, we highlight the latest advances in pancreas decellularization, recellularization, and revascularization. We also discuss clinical considerations such as potential transplantation sites, donor source, and immune considerations. We conclude with future work that needs to be done in order to realize clinical translation of bioengineered pancreata for transplantation in diabetes patients.
Collapse
|
7
|
Pignatelli C, Campo F, Neroni A, Piemonti L, Citro A. Bioengineering the Vascularized Endocrine Pancreas: A Fine-Tuned Interplay Between Vascularization, Extracellular-Matrix-Based Scaffold Architecture, and Insulin-Producing Cells. Transpl Int 2022; 35:10555. [PMID: 36090775 PMCID: PMC9452644 DOI: 10.3389/ti.2022.10555] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
Intrahepatic islet transplantation is a promising β-cell replacement strategy for the treatment of type 1 diabetes. Instant blood-mediated inflammatory reactions, acute inflammatory storm, and graft revascularization delay limit islet engraftment in the peri-transplant phase, hampering the success rate of the procedure. Growing evidence has demonstrated that islet engraftment efficiency may take advantage of several bioengineering approaches aimed to recreate both vascular and endocrine compartments either ex vivo or in vivo. To this end, endocrine pancreas bioengineering is an emerging field in β-cell replacement, which might provide endocrine cells with all the building blocks (vascularization, ECM composition, or micro/macro-architecture) useful for their successful engraftment and function in vivo. Studies on reshaping either the endocrine cellular composition or the islet microenvironment have been largely performed, focusing on a single building block element, without, however, grasping that their synergistic effect is indispensable for correct endocrine function. Herein, the review focuses on the minimum building blocks that an ideal vascularized endocrine scaffold should have to resemble the endocrine niche architecture, composition, and function to foster functional connections between the vascular and endocrine compartments. Additionally, this review highlights the possibility of designing bioengineered scaffolds integrating alternative endocrine sources to overcome donor organ shortages and the possibility of combining novel immune-preserving strategies for long-term graft function.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Campo
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Alessia Neroni
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Silva IBB, Kimura CH, Colantoni VP, Sogayar MC. Stem cells differentiation into insulin-producing cells (IPCs): recent advances and current challenges. Stem Cell Res Ther 2022; 13:309. [PMID: 35840987 PMCID: PMC9284809 DOI: 10.1186/s13287-022-02977-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/19/2022] [Indexed: 11/10/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic disease characterized by an autoimmune destruction of insulin-producing β-pancreatic cells. Although many advances have been achieved in T1D treatment, current therapy strategies are often unable to maintain perfect control of glycemic levels. Several studies are searching for new and improved methodologies for expansion of β-cell cultures in vitro to increase the supply of these cells for pancreatic islets replacement therapy. A promising approach consists of differentiation of stem cells into insulin-producing cells (IPCs) in sufficient number and functional status to be transplanted. Differentiation protocols have been designed using consecutive cytokines or signaling modulator treatments, at specific dosages, to activate or inhibit the main signaling pathways that control the differentiation of induced pluripotent stem cells (iPSCs) into pancreatic β-cells. Here, we provide an overview of the current approaches and achievements in obtaining stem cell-derived β-cells and the numerous challenges, which still need to be overcome to achieve this goal. Clinical translation of stem cells-derived β-cells for efficient maintenance of long-term euglycemia remains a major issue. Therefore, research efforts have been directed to the final steps of in vitro differentiation, aiming at production of functional and mature β-cells and integration of interdisciplinary fields to generate efficient cell therapy strategies capable of reversing the clinical outcome of T1D.
Collapse
Affiliation(s)
- Isaura Beatriz Borges Silva
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Camila Harumi Kimura
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil
| | - Vitor Prado Colantoni
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil. .,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
9
|
Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater 2022; 10:15-31. [PMID: 34901526 PMCID: PMC8637010 DOI: 10.1016/j.bioactmat.2021.09.014] [Citation(s) in RCA: 236] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/24/2021] [Accepted: 09/08/2021] [Indexed: 01/09/2023] Open
Abstract
The application of scaffolding materials is believed to hold enormous potential for tissue regeneration. Despite the widespread application and rapid advance of several tissue-engineered scaffolds such as natural and synthetic polymer-based scaffolds, they have limited repair capacity due to the difficulties in overcoming the immunogenicity, simulating in-vivo microenvironment, and performing mechanical or biochemical properties similar to native organs/tissues. Fortunately, the emergence of decellularized extracellular matrix (dECM) scaffolds provides an attractive way to overcome these hurdles, which mimic an optimal non-immune environment with native three-dimensional structures and various bioactive components. The consequent cell-seeded construct based on dECM scaffolds, especially stem cell-recellularized construct, is considered an ideal choice for regenerating functional organs/tissues. Herein, we review recent developments in dECM scaffolds and put forward perspectives accordingly, with particular focus on the concept and fabrication of decellularized scaffolds, as well as the application of decellularized scaffolds and their combinations with stem cells (recellularized scaffolds) in tissue engineering, including skin, bone, nerve, heart, along with lung, liver and kidney.
Collapse
Affiliation(s)
| | | | - Hua Hong
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Rubei Hu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Jiashang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| |
Collapse
|
10
|
Wan J, Wu T, Liu Y, Yang M, Fichna J, Guo Y, Yin L, Chen C. Mast Cells Tryptase Promotes Intestinal Fibrosis in Natural Decellularized Intestinal Scaffolds. Tissue Eng Regen Med 2022; 19:717-726. [PMID: 35218507 PMCID: PMC9294124 DOI: 10.1007/s13770-022-00433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/18/2021] [Accepted: 01/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Standard two-dimensional (2D) culture has confirmed the mechanism of mast cells (MCs) in the pathogenesis of inflammatory bowel disease (IBD), but the regulation of signaling responses of MCs may well differ in three-dimensional (3D) microenvironments. The aim of the study was to develop a 3D culture model based on decellularized intestinal scaffolds (DIS) and verify how MCs influenced fibroblasts phenotype in the 3D model. METHODS DIS were achieved using the detergent technique and extracellular matrix (ECM) components were verified by histologic analysis, quantification and scanning electron microscope. After human colon fibroblasts recellularized into the scaffolds and activated by MCs tryptase and TGFβ1, the changes in genes and signaling pathways during fibroblasts activation in 3D were studied and compared with the changes in 2D cell culture on plastic plates. RESULTS Decellularization process effectively removed native cell debris while retaining natural ECM components and structure. The engrafted fibroblasts could penetrate into the scaffolds and maintain its phenotype. No matter whether fibroblasts were cultured in 2D or 3D, MCs tryptase and transforming growth factor β1 (TGF-β1) could promote the differentiation of fibroblasts into fibrotic-phenotype myofibroblasts through Akt and Smad2/3 signaling pathways. Furthermore, the pro-collagen1α1 and fibronectin synthesis of myofibroblasts in 3D was higher than in 2D culture. CONCLUSION Our results demonstrated that the DIS can be used as a bioactive microenvironment for the study of intestinal fibrosis, providing an innovative platform for future intestinal disease modeling and screening of genes and signaling pathways.
Collapse
Affiliation(s)
- Jian Wan
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Tianqi Wu
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Ying Liu
- Department of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Muqing Yang
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072 China
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226000 China
| | - Lu Yin
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Chunqiu Chen
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
11
|
Xu ZY, Huang JJ, Liu Y, Zhao Y, Wu XW, Ren JA. Current knowledge on the multiform reconstitution of intestinal stem cell niche. World J Stem Cells 2021; 13:1564-1579. [PMID: 34786158 PMCID: PMC8567451 DOI: 10.4252/wjsc.v13.i10.1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/02/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The development of “mini-guts” organoid originates from the identification of Lgr5+ intestinal stem cells (ISCs) and circumambient signalings within their specific niche at the crypt bottom. These in vitro self-renewing “mini-guts”, also named enteroids or colonoids, undergo perpetual proliferation and regulated differentiation, which results in a high-performance, self-assembling and physiological organoid platform in diverse areas of intestinal research and therapy. The triumphant reconstitution of ISC niche in vitro also relies on Matrigel, a heterogeneous sarcoma extract. Despite the promising prospect of organoids research, their expanding applications are hampered by the canonical culture pattern, which reveals limitations such as inaccessible lumen, confine scale, batch to batch variation and low reproducibility. The tumor-origin of Matrigel also raises biosafety concerns in clinical treatment. However, the convergence of breakthroughs in cellular biology and bioengineering contribute to multiform reconstitution of the ISC niche. Herein, we review the recent advances in the microfabrication of intestinal organoids on hydrogel systems.
Collapse
Affiliation(s)
- Zi-Yan Xu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jin-Jian Huang
- Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ye Liu
- Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, Nanjing 210019, Jiangsu Province, China
| | - Xiu-Wen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jian-An Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
12
|
Fathi I, Imura T, Inagaki A, Nakamura Y, Nabawi A, Goto M. Decellularized Whole-Organ Pre-vascularization: A Novel Approach for Organogenesis. Front Bioeng Biotechnol 2021; 9:756755. [PMID: 34746108 PMCID: PMC8567193 DOI: 10.3389/fbioe.2021.756755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 01/15/2023] Open
Abstract
Introduction: Whole-organ decellularization is an attractive approach for three-dimensional (3D) organ engineering. However, progress with this approach is hindered by intra-vascular blood coagulation that occurs after in vivo implantation of the re-cellularized scaffold, resulting in a short-term graft survival. In this study, we explored an alternative approach for 3D organ engineering through an axial pre-vascularization approach and examined its suitability for pancreatic islet transplantation. Methods: Whole livers from male Lewis rats were decellularized through sequential arterial perfusion of detergents. The decellularized liver scaffold was implanted into Lewis rats, and an arteriovenous bundle was passed through the scaffold. At the time of implantation, fresh bone marrow preparation (BM; n = 3), adipose-derived stem cells (ADSCs; n = 4), or HBSS (n = 4) was injected into the scaffold through the portal vein. After 5 weeks, around 2,600 islet equivalents (IEQs) were injected through the portal vein of the scaffold. The recipient rats were rendered diabetic by the injection of 65 mg/kg STZ intravenously 1 week before islet transplantation and were followed up after transplantation by measuring the blood glucose and body weight for 30 days. Intravenous glucose tolerance test was performed in the cured animals, and samples were collected for immunohistochemical (IHC) analyses. Micro-computed tomography (CT) images were obtained from one rat in each group for representation. Results: Two rats in the BM group and one in the ADSC group showed normalization of blood glucose levels, while one rat from each group showed partial correction of blood glucose levels. In contrast, no rats were cured in the HBSS group. Micro-CT showed evidence of sprouting from the arteriovenous bundle inside the scaffold. IHC analyses showed insulin-positive cells in all three groups. The number of von-Willebrand factor-positive cells in the islet region was higher in the BM and ADSC groups than in the HBSS group. The number of 5-bromo-2'-deoxyuridine-positive cells was significantly lower in the BM group than in the other two groups. Conclusions: Despite the limited numbers, the study showed the promising potential of the pre-vascularized whole-organ scaffold as a novel approach for islet transplantation. Both BM- and ADSCs-seeded scaffolds were superior to the acellular scaffold.
Collapse
Affiliation(s)
- Ibrahim Fathi
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
- Department of Surgery, University of Alexandria, Alexandria, Egypt
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ayman Nabawi
- Department of Surgery, University of Alexandria, Alexandria, Egypt
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
- Department of Surgery, Tohoku University, Sendai, Japan
| |
Collapse
|
13
|
Jin Y, Cho SW. Bioengineering platforms for cell therapeutics derived from pluripotent and direct reprogramming. APL Bioeng 2021; 5:031501. [PMID: 34258498 PMCID: PMC8263070 DOI: 10.1063/5.0040621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Pluripotent and direct reprogramming technologies hold great potential for tissue repair and restoration of tissue and organ function. The implementation of induced pluripotent stem cells and directly reprogrammed cells in biomedical research has resulted in a significant leap forward in the highly promising area of regenerative medicine. While these therapeutic strategies are promising, there are several obstacles to overcome prior to the introduction of these therapies into clinical settings. Bioengineering technologies, such as biomaterials, bioprinting, microfluidic devices, and biostimulatory systems, can enhance cell viability, differentiation, and function, in turn the efficacy of cell therapeutics generated via pluripotent and direct reprogramming. Therefore, cellular reprogramming technologies, in combination with tissue-engineering platforms, are poised to overcome current bottlenecks associated with cell-based therapies and create new ways of producing engineered tissue substitutes.
Collapse
Affiliation(s)
- Yoonhee Jin
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | | |
Collapse
|
14
|
Agrawal A, Narayan G, Gogoi R, Thummer RP. Recent Advances in the Generation of β-Cells from Induced Pluripotent Stem Cells as a Potential Cure for Diabetes Mellitus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:1-27. [PMID: 34426962 DOI: 10.1007/5584_2021_653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders characterized by high blood glucose levels due to insufficient insulin secretion, insulin action, or both. The present-day solution to diabetes mellitus includes regular administration of insulin, which brings about many medical complications in diabetic patients. Although islet transplantation from cadaveric subjects was proposed to be a permanent cure, the increased risk of infections, the need for immunosuppressive drugs, and their unavailability had restricted its use. To overcome this, the generation of renewable and transplantable β-cells derived from autologous induced pluripotent stem cells (iPSCs) has gained enormous interest as a potential therapeutic strategy to treat diabetes mellitus permanently. To date, extensive research has been undertaken to derive transplantable insulin-producing β-cells (iβ-cells) from iPSCs in vitro by recapitulating the in vivo developmental process of the pancreas. This in vivo developmental process relies on transcription factors, signaling molecules, growth factors, and culture microenvironment. This review highlights the various factors facilitating the generation of mature β-cells from iPSCs. Moreover, this review also describes the generation of pancreatic progenitors and β-cells from diabetic patient-specific iPSCs, exploring the potential of the diabetes disease model and drug discovery. In addition, the applications of genome editing strategies have also been discussed to achieve patient-specific diabetes cell therapy. Last, we have discussed the current challenges and prospects of iPSC-derived β-cells to improve the relative efficacy of the available treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ranadeep Gogoi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
15
|
Zhang X, Ma Z, Song E, Xu T. Islet organoid as a promising model for diabetes. Protein Cell 2021; 13:239-257. [PMID: 33751396 PMCID: PMC7943334 DOI: 10.1007/s13238-021-00831-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Studies on diabetes have long been hampered by a lack of authentic disease models that, ideally, should be unlimited and able to recapitulate the abnormalities involved in the development, structure, and function of human pancreatic islets under pathological conditions. Stem cell-based islet organoids faithfully recapitulate islet development in vitro and provide large amounts of three-dimensional functional islet biomimetic materials with a morphological structure and cellular composition similar to those of native islets. Thus, islet organoids hold great promise for modeling islet development and function, deciphering the mechanisms underlying the onset of diabetes, providing an in vitro human organ model for infection of viruses such as SARS-CoV-2, and contributing to drug screening and autologous islet transplantation. However, the currently established islet organoids are generally immature compared with native islets, and further efforts should be made to improve the heterogeneity and functionality of islet organoids, making it an authentic and informative disease model for diabetes. Here, we review the advances and challenges in the generation of islet organoids, focusing on human pluripotent stem cell-derived islet organoids, and the potential applications of islet organoids as disease models and regenerative therapies for diabetes.
Collapse
Affiliation(s)
- Xiaofei Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhuo Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory (Bioland Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
16
|
Insulin/Glucose-Responsive Cells Derived from Induced Pluripotent Stem Cells: Disease Modeling and Treatment of Diabetes. Cells 2020; 9:cells9112465. [PMID: 33198288 PMCID: PMC7696367 DOI: 10.3390/cells9112465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes, characterized by dysfunction of pancreatic β-cells and insulin resistance in peripheral organs, accounts for more than 90% of all diabetes. Despite current developments of new drugs and strategies to prevent/treat diabetes, there is no ideal therapy targeting all aspects of the disease. Restoration, however, of insulin-producing β-cells, as well as insulin-responsive cells, would be a logical strategy for the treatment of diabetes. In recent years, generation of transplantable cells derived from stem cells in vitro has emerged as an important research area. Pluripotent stem cells, either embryonic or induced, are alternative and feasible sources of insulin-secreting and glucose-responsive cells. This notwithstanding, consistent generation of robust glucose/insulin-responsive cells remains challenging. In this review, we describe basic concepts of the generation of induced pluripotent stem cells and subsequent differentiation of these into pancreatic β-like cells, myotubes, as well as adipocyte- and hepatocyte-like cells. Use of these for modeling of human disease is now feasible, while development of replacement therapies requires continued efforts.
Collapse
|
17
|
Tran R, Moraes C, Hoesli CA. Developmentally-Inspired Biomimetic Culture Models to Produce Functional Islet-Like Cells From Pluripotent Precursors. Front Bioeng Biotechnol 2020; 8:583970. [PMID: 33117786 PMCID: PMC7576674 DOI: 10.3389/fbioe.2020.583970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Insulin-producing beta cells sourced from pluripotent stem cells hold great potential as a virtually unlimited cell source to treat diabetes. Directed pancreatic differentiation protocols aim to mimic various stimuli present during embryonic development through sequential changes of in vitro culture conditions. This is commonly accomplished by the timed addition of soluble signaling factors, in conjunction with cell-handling steps such as the formation of 3D cell aggregates. Interestingly, when stem cells at the pancreatic progenitor stage are transplanted, they form functional insulin-producing cells, suggesting that in vivo microenvironmental cues promote beta cell specification. Among these cues, biophysical stimuli have only recently emerged in the context of optimizing pancreatic differentiation protocols. This review focuses on studies of cell–microenvironment interactions and their impact on differentiating pancreatic cells when considering cell signaling, cell–cell and cell–ECM interactions. We highlight the development of in vitro cell culture models that allow systematic studies of pancreatic cell mechanobiology in response to extracellular matrix proteins, biomechanical effects, soluble factor modulation of biomechanics, substrate stiffness, fluid flow and topography. Finally, we explore how these new mechanical insights could lead to novel pancreatic differentiation protocols that improve efficiency, maturity, and throughput.
Collapse
Affiliation(s)
- Raymond Tran
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Sart S, Jeske R, Chen X, Ma T, Li Y. Engineering Stem Cell-Derived Extracellular Matrices: Decellularization, Characterization, and Biological Function. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:402-422. [DOI: 10.1089/ten.teb.2019.0349] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sébastien Sart
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
- Laboratory of Physical Microfluidics and Bioengineering, Department of Genome and Genetics, Institut Pasteur, Paris, France
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
19
|
Thakur G, Lee HJ, Jeon RH, Lee SL, Rho GJ. Small Molecule-Induced Pancreatic β-Like Cell Development: Mechanistic Approaches and Available Strategies. Int J Mol Sci 2020; 21:E2388. [PMID: 32235681 PMCID: PMC7178115 DOI: 10.3390/ijms21072388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes is a metabolic disease which affects not only glucose metabolism but also lipid and protein metabolism. It encompasses two major types: type 1 and 2 diabetes. Despite the different etiologies of type 1 and 2 diabetes mellitus (T1DM and T2DM, respectively), the defining features of the two forms are insulin deficiency and resistance, respectively. Stem cell therapy is an efficient method for the treatment of diabetes, which can be achieved by differentiating pancreatic β-like cells. The consistent generation of glucose-responsive insulin releasing cells remains challenging. In this review article, we present basic concepts of pancreatic organogenesis, which intermittently provides a basis for engineering differentiation procedures, mainly based on the use of small molecules. Small molecules are more auspicious than any other growth factors, as they have unique, valuable properties like cell-permeability, as well as a nonimmunogenic nature; furthermore, they offer immense benefits in terms of generating efficient functional beta-like cells. We also summarize advances in the generation of stem cell-derived pancreatic cell lineages, especially endocrine β-like cells or islet organoids. The successful induction of stem cells depends on the quantity and quality of available stem cells and the efficient use of small molecules.
Collapse
Affiliation(s)
- Gitika Thakur
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Hyeon-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Ryoung-Hoon Jeon
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| |
Collapse
|
20
|
Sharma A, Sances S, Workman MJ, Svendsen CN. Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell 2020; 26:309-329. [PMID: 32142662 PMCID: PMC7159985 DOI: 10.1016/j.stem.2020.02.011] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) provide a powerful platform for disease modeling and have unlocked new possibilities for understanding the mechanisms governing human biology, physiology, and genetics. However, hiPSC-derivatives have traditionally been utilized in two-dimensional monocultures, in contrast to the multi-systemic interactions that influence cells in the body. We will discuss recent advances in generating more complex hiPSC-based systems using three-dimensional organoids, tissue-engineering, microfluidic organ-chips, and humanized animal systems. While hiPSC differentiation still requires optimization, these next-generation multi-lineage technologies can augment the biomedical researcher's toolkit and enable more realistic models of human tissue function.
Collapse
Affiliation(s)
- Arun Sharma
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Samuel Sances
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael J Workman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
21
|
Wan J, Wang L, Huang Y, Fan H, Chen C, Yuan X, Guo Y, Yin L. Using GRGDSPC peptides to improve re-endothelialization of decellularized pancreatic scaffolds. Artif Organs 2019; 44:E172-E180. [PMID: 31736099 DOI: 10.1111/aor.13602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022]
Abstract
Engineering of functional vascularized pancreatic tissues offers an alternative way to solve the perpetual shortage of organs for transplantation. However, revascularization remains a major bottleneck in biological engineering, which limited the further clinical applications of this strategy. In this study, an efficient approach for enhancing re-endothelialization of rat decellularized pancreatic scaffolds (DPS) was presented, by conjugating with GRGDSPC peptide to maximize coverage of the vessel walls with human umbilical vein endothelial cells (HUVECs). First, pancreas was perfused with 1% Triton X-100 and 0.1% ammonium hydroxide to remove the cellular components. Subsequently, GRGDSPC was covalently coupled to the vasculature of DPS and re-seeded with HUVECs via perfusion of the portal vein in the bioreactor. After the re-endothelialized scaffolds were created, in vitro and in vivo experiments were undertaken to evaluate the angiogenesis. Our results demonstrated that GRGDSPC-conjugated scaffolds could support the survival and accelerated the proliferation of HUVECs; angiogenesis was also significantly improved over untreated scaffolds. In conclusion, GRGDSPC-conjugated scaffolds showed great potential for the generation of functional bioengineered pancreatic tissue suitable for long-term transplantation.
Collapse
Affiliation(s)
- Jian Wan
- Center for Difficult and Complicated Abdominal Surgery, The Tenth Hospital Affiliated Shanghai Tongji University, Shanghai, China
| | - Lei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nan Tong, China
| | - Yan Huang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nan Tong, China
| | - Haowen Fan
- Clinical Medicine Department, Medical School of Nantong University, Nan Tong, China
| | - Chunqiu Chen
- Center for Difficult and Complicated Abdominal Surgery, The Tenth Hospital Affiliated Shanghai Tongji University, Shanghai, China
| | - Xiaoqi Yuan
- Center for Difficult and Complicated Abdominal Surgery, The Tenth Hospital Affiliated Shanghai Tongji University, Shanghai, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nan Tong, China
| | - Lu Yin
- Center for Difficult and Complicated Abdominal Surgery, The Tenth Hospital Affiliated Shanghai Tongji University, Shanghai, China
| |
Collapse
|
22
|
Ciccocioppo R, Cantore A, Chaimov D, Orlando G. Regenerative medicine: the red planet for clinicians. Intern Emerg Med 2019; 14:911-921. [PMID: 31203564 DOI: 10.1007/s11739-019-02126-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Regenerative medicine represents the forefront of health sciences and holds promises for the treatment and, possibly, the cure of a number of challenging conditions. It relies on the use of stem cells, tissue engineering, and gene therapy alone or in different combinations. The goal is to deliver cells, tissues, or organs to repair, regenerate, or replace the damaged ones. Among stem-cell populations, both haematopoietic and mesenchymal stem cells have been employed in the treatment of refractory chronic inflammatory diseases with promising results. However, only mesenchymal stem cells seem advantageous as both systemic and local injections may be performed without the need for immune ablation. Recently, also induced pluripotent stem cells have been exploited for therapeutic purposes given their tremendous potential to be an unlimited source of any tissue-specific cells. Moreover, through the development of technologies that make organ fabrication possible using cells and supporting scaffolding materials, regenerative medicine promises to enable organ-on-demand, whereby patients will receive organs in a timely fashion without the risk of rejection. Finally, gene therapy is emerging as a successful strategy not only in monogenic diseases, but also in multifactorial conditions. Several of these approaches have recently received approval for commercialization, thus opening a new therapeutic era. This is why both General Practitioners and Internists should be aware of these great advancements.
Collapse
Affiliation(s)
- Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, AOUI Policlinico G.B. Rossi and University of Verona, Piazzale L.A. Scuro 10, 37134, Verona, Italy.
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Deborah Chaimov
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Giuseppe Orlando
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
23
|
Oxygenation strategies for encapsulated islet and beta cell transplants. Adv Drug Deliv Rev 2019; 139:139-156. [PMID: 31077781 DOI: 10.1016/j.addr.2019.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 04/19/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023]
Abstract
Human allogeneic islet transplantation (ITx) is emerging as a promising treatment option for qualified patients with type 1 diabetes. However, widespread clinical application of allogeneic ITx is hindered by two critical barriers: the need for systemic immunosuppression and the limited supply of human islet tissue. Biocompatible, retrievable immunoisolation devices containing glucose-responsive insulin-secreting tissue may address both critical barriers by enabling the more effective and efficient use of allogeneic islets without immunosuppression in the near-term, and ultimately the use of a cell source with a virtually unlimited supply, such as human stem cell-derived β-cells or xenogeneic (porcine) islets with minimal or no immunosuppression. However, even though encapsulation methods have been developed and immunoprotection has been successfully tested in small and large animal models and to a limited extent in proof-of-concept clinical studies, the effective use of encapsulation approaches to convincingly and consistently treat diabetes in humans has yet to be demonstrated. There is increasing consensus that inadequate oxygen supply is a major factor limiting their clinical translation and routine implementation. Poor oxygenation negatively affects cell viability and β-cell function, and the problem is exacerbated with the high-density seeding required for reasonably-sized clinical encapsulation devices. Approaches for enhanced oxygen delivery to encapsulated tissues in implantable devices are therefore being actively developed and tested. This review summarizes fundamental aspects of islet microarchitecture and β-cell physiology as well as encapsulation approaches highlighting the need for adequate oxygenation; it also evaluates existing and emerging approaches for enhanced oxygen delivery to encapsulation devices, particularly with the advent of β-cell sources from stem cells that may enable the large-scale application of this approach.
Collapse
|
24
|
Navarro-Tableros V, Gomez Y, Brizzi MF, Camussi G. Generation of Human Stem Cell-Derived Pancreatic Organoids (POs) for Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:179-220. [PMID: 31025308 DOI: 10.1007/5584_2019_340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin-dependent diabetes mellitus or type 1 diabetes mellitus (T1DM) is an auto-immune condition characterized by the loss of pancreatic β-cells. The curative approach for highly selected patients is the pancreas or the pancreatic islet transplantation. Nevertheless, these options are limited by a growing shortage of donor organs and by the requirement of immunosuppression.Xenotransplantation of porcine islets has been extensively investigated. Nevertheless, the strong xenoimmunity and the risk of transmission of porcine endogenous retroviruses, have limited their application in clinic. Generation of β-like cells from stem cells is one of the most promising strategies in regenerative medicine. Embryonic, and more recently, adult stem cells are currently the most promising cell sources exploited to generate functional β-cells in vitro. A number of studies demonstrated that stem cells could generate functional pancreatic organoids (POs), able to restore normoglycemia when implanted in different preclinical diabetic models. Nevertheless, a gradual loss of function and cell dead are commonly detected when POs are transplanted in immunocompetent animals. So far, the main issue to be solved is the post-transplanted islet loss, due to the host immune attack. To avoid this hurdle, nanotechnology has provided a number of polymers currently under investigation for islet micro and macro-encapsulation. These new approaches, besides conferring PO immune protection, are able to supply oxygen and nutrients and to preserve PO morphology and long-term viability.Herein, we summarize the current knowledge on bioengineered POs and the stem cell differentiation platforms. We also discuss the in vitro strategies used to generate functional POs, and the protocols currently used to confer immune-protection against the host immune attack (micro- and macro-encapsulation). In addition, the most relevant ongoing clinical trials, and the most relevant hurdles met to move towards clinical application are revised.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T Società per la gestione dell'incubatore di imprese e per il trasferimento tecnologico Scarl, University of Turin, Turin, Italy
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Turin, Italy.
- Fondazione per la Ricerca Biomedica-ONLUS, Turin, Italy.
| |
Collapse
|
25
|
Salg GA, Giese NA, Schenk M, Hüttner FJ, Felix K, Probst P, Diener MK, Hackert T, Kenngott HG. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J Tissue Eng 2019; 10:2041731419884708. [PMID: 31700597 PMCID: PMC6823987 DOI: 10.1177/2041731419884708] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
A bioartificial endocrine pancreas is proposed as a future alternative to current treatment options. Patients with insulin-secretion deficiency might benefit. This is the first systematic review that provides an overview of scaffold materials and techniques for insulin-secreting cells or cells to be differentiated into insulin-secreting cells. An electronic literature survey was conducted in PubMed/MEDLINE and Web of Science, limited to the past 10 years. A total of 197 articles investigating 60 different materials met the inclusion criteria. The extracted data on materials, cell types, study design, and transplantation sites were plotted into two evidence gap maps. Integral parts of the tissue engineering network such as fabrication technique, extracellular matrix, vascularization, immunoprotection, suitable transplantation sites, and the use of stem cells are highlighted. This systematic review provides an evidence-based structure for future studies. Accumulating evidence shows that scaffold-based tissue engineering can enhance the viability and function or differentiation of insulin-secreting cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Gabriel Alexander Salg
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Miriam Schenk
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix J Hüttner
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Felix
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Pascal Probst
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus K Diener
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Hannes Götz Kenngott
- Department of General, Abdominal and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
26
|
Taheri B, Soleimani M, Fekri Aval S, Esmaeili E, Bazi Z, Zarghami N. Induced pluripotent stem cell-derived extracellular vesicles: A novel approach for cell-free regenerative medicine. J Cell Physiol 2018; 234:8455-8464. [PMID: 30478831 DOI: 10.1002/jcp.27775] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
In recent years, induced pluripotent stem cells (iPSCs) have been considered as a promising approach in the field of regenerative medicine. iPSCs can be generated from patients' somatic cells and possess the potential to differentiate, under proper conditions, into any cell type. However, the clinical application of iPS cells is restricted because of their tumorigenic potential. Recent studies have indicated that stem cells exert their therapeutic benefit via a paracrine mechanism, and extracellular vesicles have been demonstrated that play a critical role in this paracrine mechanism. Due to lower immunogenicity, easier management, and presenting no risk of tumor formation, in recent years, researchers turned attention to exosomes as potential alternatives to whole-cell therapy. Application of exosomes derived from iPSCs and their derived precursor provides a promising approach for personalized regenerative medicine. This study reviews the physiological functions of extracellular vesicles and discusses their potential therapeutic benefit in regenerative medicine.
Collapse
Affiliation(s)
- Behnaz Taheri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Technology Research Center, Tehran, Iran
| | | | - Sedigheh Fekri Aval
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zahra Bazi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Huang Y, Mei J, Yu Y, Ding Y, Xia W, Yue T, Chen W, Zhou M, Yang Y. Comparative Decellularization and Recellularization of Normal Versus Streptozotocin‐Induced Diabetes Mellitus Rat Pancreas. Artif Organs 2018; 43:399-412. [PMID: 30182423 DOI: 10.1111/aor.13353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Ying‐Bao Huang
- Department of Radiology The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Jin Mei
- Anatomy Department Wenzhou Medical University Wenzhou China
- Institute of Bioscaffold Transplantation and Immunology Wenzhou Medical University Wenzhou China
- Institute of Neuroscience Wenzhou Medical University Wenzhou China
| | - Yaling Yu
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People’s Hospital Shanghai China
| | - Yuqiang Ding
- Institute of Neuroscience Wenzhou Medical University Wenzhou China
| | - Weizhi Xia
- Department of Radiology The Second Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Ting Yue
- Department of Radiology The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Weijian Chen
- Department of Radiology The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Meng‐Tao Zhou
- Department of Surgery The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Yun‐Jun Yang
- Department of Radiology The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|
28
|
Abstract
Diabetes can be treated with β cell replacement therapy, where a patient is transplanted with cadaveric human islets to restore glycemic control. Despite this being an effective treatment, the process of isolating islets from the pancreas requires collagenase digestion which disrupts the islet extracellular matrix (ECM) and activates anoikis-mediated apoptosis. To improve islet survival in culture and after transplantation, the islet microenvironment may be enhanced with the addition of ECM components which are lost during isolation. Furthermore, novel β cell replacement strategies, such as stem cell-derived beta cell (SCβC) treatments or alternative transplant sites and devices, could benefit from a better understanding of how β cells interact with ECM. In this mini-review, we discuss the current understanding of the pancreas and islet ECM composition and review decellularization approaches to generate a native pancreatic ECM scaffold for use in both islet and SCβC culture and transplantation.
Collapse
Affiliation(s)
- Daniel M Tremmel
- a Division of Transplantation, Department of Surgery , University of Wisconsin-Madison School of Medicine and Public Health , Madison , Wisconsin , 53705 , USA
| | - Jon S Odorico
- a Division of Transplantation, Department of Surgery , University of Wisconsin-Madison School of Medicine and Public Health , Madison , Wisconsin , 53705 , USA
| |
Collapse
|
29
|
Vennin C, Murphy KJ, Morton JP, Cox TR, Pajic M, Timpson P. Reshaping the Tumor Stroma for Treatment of Pancreatic Cancer. Gastroenterology 2018; 154:820-838. [PMID: 29287624 DOI: 10.1053/j.gastro.2017.11.280] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is accompanied by a fibrotic reaction that alters interactions between tumor cells and the stroma to promote tumor progression. Consequently, strategies to target the tumor stroma might be used to treat patients with pancreatic cancer. We review recently developed approaches for reshaping the pancreatic tumor stroma and discuss how these might improve patient outcomes. We also describe relationships between the pancreatic tumor extracellular matrix, the vasculature, the immune system, and metabolism, and discuss the implications for the development of stromal compartment-specific therapies.
Collapse
Affiliation(s)
- Claire Vennin
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Jennifer P Morton
- Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Thomas R Cox
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Marina Pajic
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| | - Paul Timpson
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; The Kinghorn Cancer Center, Sydney, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
30
|
Xu L, Guo Y, Huang Y, Xiong Y, Xu Y, Li X, Lu J, Wang L, Wang Y, Lu Y, Wang Z. Constructing heparin-modified pancreatic decellularized scaffold to improve its re-endothelialization. J Biomater Appl 2018; 32:1063-1070. [PMID: 29338566 DOI: 10.1177/0885328217752859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pancreas transplantation is considered as a promising therapeutic option with the potential to cure diabetes. However, efficacy of current clinical transplantation is limited by the donor organ. With regard to creating a functional pancreas-tissue equivalent for transplantation, vascularization remains a large obstacle. To enhance the angiogenic properties of pancreatic decellularized scaffold, surface modification of the vasculature was used to promote endothelialization efficiency. In this study, an endothelialized pancreatic decellularized scaffold was obtained through heparin modification under mild conditions. The immobilization of heparin was performed through 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and N-Hydroxysuccinimide. The morphology, ultra-structure and porosity of the heparinized scaffold were characterized by toluidine blue staining, scanning electron microscope and infrared spectrum. The adhesion, proliferation and angiogenesis of human umbilical vein endothelial cells on heparin-pancreatic decellularized scaffold were also researched in vitro. In vivo transplantation was also performed to observe the location of human umbilical vein endothelial cells and the formation of new blood vessel, which exhibited significant differences with pancreatic decellularized scaffold group (p<0.05). These findings indicated that the endothelialized heparin-pancreatic decellularized scaffold may be used to solve the problem of blood supply and to support the function of insulin-secreting cells better after in vivo transplantation, and therefore, would be a potential candidate for pancreatic tissue engineering.
Collapse
Affiliation(s)
- Liancheng Xu
- 1 Research center of clinical medical, Affiliated Hospital of Nantong University, Nantong City, Jiangsu, PR China.,2 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong City, Jiangsu, PR China
| | - Yibing Guo
- 1 Research center of clinical medical, Affiliated Hospital of Nantong University, Nantong City, Jiangsu, PR China
| | - Yan Huang
- 1 Research center of clinical medical, Affiliated Hospital of Nantong University, Nantong City, Jiangsu, PR China.,2 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong City, Jiangsu, PR China
| | - Yicheng Xiong
- 3 Department of General Surgery , The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Yang Xu
- 1 Research center of clinical medical, Affiliated Hospital of Nantong University, Nantong City, Jiangsu, PR China.,2 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong City, Jiangsu, PR China
| | - Xiaohong Li
- 1 Research center of clinical medical, Affiliated Hospital of Nantong University, Nantong City, Jiangsu, PR China
| | - Jingjing Lu
- 1 Research center of clinical medical, Affiliated Hospital of Nantong University, Nantong City, Jiangsu, PR China
| | - Lei Wang
- 2 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong City, Jiangsu, PR China
| | - Yao Wang
- 2 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong City, Jiangsu, PR China
| | - Yuhua Lu
- 1 Research center of clinical medical, Affiliated Hospital of Nantong University, Nantong City, Jiangsu, PR China.,2 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong City, Jiangsu, PR China
| | - Zhiwei Wang
- 2 Department of General Surgery, Affiliated Hospital of Nantong University, Nantong City, Jiangsu, PR China
| |
Collapse
|